
Liang and Wakahara EURASIP Journal onWireless Communications and

Networking 2014, 2014:85

http://jwcn.eurasipjournals.com/content/2014/1/85

RESEARCH Open Access

Real-time urban traffic amount prediction
models for dynamic route guidance systems
Zilu Liang1* and Yasushi Wakahara1,2

Abstract

The route guidance system (RGS) has been considered an important technology to mitigate urban traffic congestion.

However, existing RGSs provide only route guidance after congestion happens. This reactive strategy imposes a

strong limitation on the potential contribution of current RGS to the performance improvement of a traffic network.

Thus, a proactive RGS based on congestion prediction is considered essential to improve the effectiveness of RGS. The

problem of congestion prediction is translated into traffic amount (i.e. the number of vehicles on the individual roads)

prediction, as the latter is a straightforward indicator of the former. We thereby propose two urban traffic prediction

models using different modeling approaches. Model-1 is based on the traffic flow propagation in the network, while

Model-2 is based on the time-varied spare flow capacity on the concerned road links. These two models are then

applied to construct a centralized proactive RGS. Evaluation results show that (1) both of the proposed models reduce

the prediction error up to 52% and 30% in the best cases compared to the existing Shift Model, (2) providing

proactive route guidance helps reduce average travel time by up to 70% compared to providing reactive one and

(3) non-rerouted vehicles could benefit more from route guidance than rerouted vehicles do.
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1 Introduction
Urban road traffic congestion has been a global issue

for many years due to rapid urbanization. Residents in

cities are suffering from the most annoying side-product

of urbanization every day. According to data from IBM

[1], there are more than one billion cars running on all

the roads around the world, and the number will dou-

ble by 2020. Traffic congestion not only causes mental

stress in drivers, but also leads to more severe pollu-

tion, higher gasoline consumption and huge economic

loss [2,3]. There are three levels of solutions to urban road

traffic congestion: reducing road traffic demand, shifting

road traffic to other travel mode, and spatially distributing

traffic to maximize the usage of traffic network capacity.

Since it is not always possible to reduce the number of

trips or persuade drivers to change their travel mode, dis-

tributing traffic through route guidance is considered a

most feasible, effective and economic solution to urban

*Correspondence: z.liang@cnl.t.u-tokyo.ac.jp
1Department of Electrical Engineering and Information Science, Graduate

School of Engineering, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku,

Tokyo 113-8658, Japan

Full list of author information is available at the end of the article

road traffic congestion. Consequently, the route guid-

ance system (RGS) has attracted great research interest

from the government [4], companies [1,5,6] and research

institutes [7] for many years. In our daily life, RGS has

been widely used to facilitate driving either in unfamiliar

or familiar environment through providing turn-by-turn

route navigation or recommending real-time optimal

route information.

The route guidance provided by RGS can be based

either on prevailing real-time traffic condition (prevailing

route guidance) or predicted traffic condition (predictive

route guidance), and it has been widely recognized in

the transportation engineering community [8] that when

predictions are accurate, predictive information is gener-

ally expected to be more effective than prevailing infor-

mation because predictive information accounts for the

rapid change of traffic conditions spatially and tempo-

rally. Although a couple of anticipatory RGSs have been

proposed in academia [9,10], these systems are funda-

mentally reactive solutions. In other words, current route

guidance systems are no more than alert systems, as

they provide drivers traffic information after congestion
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happens instead of proactively guiding drivers to pre-

vent congestion from happening. Due to this strategic

limitation of current RGS, the traffic prediction mod-

ule in existing RGS has been mainly focusing on travel

time prediction and the consistency of predicted travel

time.

We argue that an RGS has the potential to bring more

benefit to a transportation system if it gives proactive

route guidance to related vehicles, which helps drivers

detour to reduce the degree of congestion and even pre-

vent congestion from happening. The mechanism of this

kind of proactive RGS is to provide route guidance to

drivers when traffic congestion is predicted. In this paper,

the problem of congestion prediction is translated to the

prediction of traffic amount (i.e. the number of vehicles)

on a road link, as high traffic amount is a straightforward

indicator of congestion. We propose traffic amount pre-

diction models tailored for urban road links adopting two

distinct modeling approaches, with the intension of lay-

ing a foundation for proactive RGS. The first model is

based on the propagation of traffic flow along the suc-

cessive road links on a route, while the second model

is based on time-varied occupied link capacity on the

concerned links. In order to evaluate the prediction accu-

racy of the proposed models, we run simulations in a

microscopic simulator SUMO [11], conduct prediction

using the proposed models, and analyze the prediction

errors under the effect of varied prediction interval. The

results demonstrate advantages of the proposed predic-

tion models compared to an existing one. We then apply

the prediction models to an RGS to investigate how the

proactive route guidance affects the performance of a traf-

fic network (i.e. average travel time, average travel length)

and the impact of rerouting on drivers (e.g. the number

of rerouted vehicles, average travel time of rerouted/non-

rerouted vehicles, etc.).

The main contributions of this paper are listed below:

• We propose two novel traffic amount prediction

models tailored for urban traffic networks based on

two distinct microscopic modeling approaches.
• We construct a proactive RGS based on the proposed

prediction models to improve the performance of

RGS.
• We evaluate the prediction accuracy of our models

using realistic traffic traces on real city maps, and

compare their performance with a good baseline

model. We demonstrate the advantage of the

proposed models with respect to varied prediction

interval.
• We investigated the effectiveness of proactive route

guidance with respect to the performance of a traffic

network on the system level and the impact of the

guidance on rerouted and non-rerouted drivers.

The rest of the paper is organized as follows: In

section 2, we discuss related works on RGS and traffic

prediction; the proposed urban traffic amount prediction

models are presented in section 3; in section 4, we con-

struct a centralized proactive RGS based on the prediction

models; in section 5, we evaluate the prediction accuracy

of the proposed models, and investigate the impact of

proactive route guidance on a traffic network; in the last

section, we draw the conclusions.

2 Related work
2.1 Route guidance systems (RGS)

Route guidance systems [12] were originally invented to

facilitate drivers to arrive at their destinations when trav-

eling in unfamiliar environment. Early route guidance

service was limited to in-vehicle car navigation [13], which

was initially used only by a small proportion of peo-

ple because these systems were expensive and mainly

installed in high-end cars. Moreover, first generation

route guidance systems primarily compute the shortest

routes on the basis of static map and do not respond to

real-time traffic condition.

With the development of traffic surveillance infrastruc-

ture and communication technologies, it is possible to

generate dynamic route guidance based on real-time traf-

fic conditions [14,15]. The benefit of route guidance sys-

tem has thereby been extended far beyond the traditional

turn-by-turn navigation function. Even when drivers are

traveling in familiar environment, they feel the need to

use route guidance service to acquire the information

on not only real-time traffic conditions and suggestions

on alternative routes that avoid on-going congestion, but

also road pricing, parking availability, and even entertain-

ment facilities. Although the efficiency of route guidance

is closely related to the quality of real-time traffic data,

simulation study has confirmed the potential of RGS in

reducing average travel time and congestion severity even

with imperfect traffic information [16].

In academia, besides the research effort on the mecha-

nism of route guidance generation, many researchers have

also devoted to the study on individual drivers’ responses

or compliance to route guidance [17-21]. It is worth notic-

ing that, in [21], the authors conclude from questionnaire

surveys that ‘it would be naive to assume that ... a guidance

system could cause equipped drivers in a familiar network

to take routes very different from those they would wish to

take’ and ‘those drivers who are congestion avoiders would

be more malleable than those who are time minimisers’.

At the same time, most drivers have high expectations

of the potential savings in time that might be gained by

following route guidance for travels made in congested

conditions even in familiar environment. The above fact

confirmed the necessity to improve the function of RGS in

terms of combating road traffic congestion, which will not
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only bring more benefit to drivers but serve as enforce-

ment to drivers’ compliance. In recognition of this need,

we intend to design a dynamic RGS that helps reduce the

degree of traffic congestion or even prevent congestion

from happening. Specifically, our goal is to reduce average

travel time in the traffic network by providing proactive

route guidance that is based on short-term traffic amount

(and thus congestion) prediction.

2.2 Traffic prediction

Intensive research effort has been made on traffic pre-

diction in traffic engineering, with a dominant amount

of work done on travel time prediction. According to the

type of data a predictionmodel is based on, we can classify

existing models into two categories: models based on his-

torical traffic data and models based on real-time traffic

data.

Most of the traditional prediction models belong to the

first category, including historical average and smooth-

ing techniques, parametric and non-parametric regres-

sion [22-24], autoregressive integrated moving average

(ARIMA) [25-27], machine learning [28], fuzzy logic

[29,30] and neural networks [31-33]. These methods often

suffer from high computational complexity either due to

the stationery requirements or a large number of esti-

mated parameters and may not be adaptive to the change

in traffic patterns [34]. Smith and Demetsky [35] con-

ducted comparisons of historical average, time-series,

nonparametric regression and artificial neural network

(ANN), and found that the non-parametric regression

model significantly outperformed the other models and

was easier to implement. Even so, non-parametric regres-

sion models require large amount of historical data and

training process. Moreover, in the scenario wherematches

are not enough good in the historical database, the

non-parametric regression may fail to output reliable

prediction.

In order to improve the prediction accuracy, several

models were proposed based on real-time traffic data

[36,37]. Very recently, a traffic flow prediction method for

signal-controlled city street network has been proposed

in [38]. However, some input variables required by this

model are usually difficult to obtain in real transporta-

tion systems. Furthermore, the speed-density fundamen-

tal diagram [39] adopted by this model may not hold in

urban traffic networks, as the dependency of travel speed

on the traffic flow in urban areas is not significant [40] and

may demonstrate multivaluedness and instability [41,42].

For a single urban link, the speed on this link is not only

dependent on flows on the link itself but also on other

conflicting links [43,44].

Despite the varying degrees of accuracy that have been

achieved by these prediction models, they can hardly be

effectively applied to realize dynamic route guidance that

helps prevent congestion from happening. These mod-

els are fundamentally macroscopic or mesoscopic, and

therefore, it is not easy to accommodate the effect of traf-

fic lights and other traffic management measures such as

dynamic route guidance and congestion pricing. Besides,

some of the models are based on classic traffic flow the-

ory that is originally established for highways and does not

necessarily hold on urban links. In this paper, we adopt

a microscopic modeling approach to compensate the

demerits of existing modeling approaches, and develop

effective traffic prediction models to facilitate congestion

prediction and construct proactive RGS based on such

prediction.

3 The proposed predictionmodels
3.1 Problem definition

The goal of our problem is to predict the traffic amount

on a road link in urban traffic network based on real-

time traffic information. The traffic amount on link i in

time interval k, denoted as Xi(k), is defined as the num-

ber of vehicles on link i at the beginning of time interval k.

Although conventionally transportation researchers have

been focusing on the parameter of traffic flow, or traf-

fic volume, defined as the number of vehicles passing an

observation point per unit of time (usually 1 h) [45], we

believe that traffic amount is a better target for our prob-

lem than traffic flow or volume, as high traffic amount is

a direct indicator of traffic congestion. Besides, it is fea-

sible to count the traffic amount on urban links, whereas

the same task can hardly be done on highways.

Suppose in an urban network there is a centralized

traffic control center that periodically conducts traffic

amount prediction and generates route guidance based

on the prediction. The control center considers the traffic

network as a discrete-time system and adopts the rolling

horizon approach [46] to conduct the prediction. In other

words, the time horizon is divided into discrete traffic

prediction time intervals whose length is τ seconds, and

traffic prediction is performed repeatedly every τ seconds

and at the beginning of each time interval. In practice, the

traffic control center needs to carefully decide on the value

of τ to ensure effective and feasible prediction. If τ is too

long, the prediction output cannot facilitate timely traffic

management. On the other hand, if τ is too short, the new

round of prediction is not meaningful, as new traffic data

will not have become available at the traffic control cen-

ter. Suppose there are traffic sensors (e.g. loop detectors

and probe cars) on all road links and each sensor pro-

vides a traffic data at given time interval τAG, we define the

short-term traffic amount prediction problem as follows:

Definition 1. Given the observed traffic data on all the

links during time interval k, find the traffic amount on a

link i during time interval k + 1.
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We adopt a microscopic modeling approach to take into

consideration of the impact of traffic signal and drivers’

route choice on traffic flow. Compared to conventional

mesoscopic modeling based on traffic flow theory, our

modeling approach can not only effectively capture the

sudden change in traffic flow pattern, but easily be inte-

grated to traffic management measures such as adaptive

traffic signaling and dynamic route guidance.

Before presenting the details of the two proposed urban

traffic prediction models, we first clarify the assump-

tions for the models here. We assume that the number

of vehicles on each link at an initial time equals zero.

The traffic amount is assumed to stay constant during

each prediction time interval. The traffic data aggregation

period interval τAG is equivalent to the prediction inter-

val τ . Moreover, we assume that the split rate of traffic

flows at the intersections and the departure/arrival traf-

fic amount on each link are obtained beforehand, e.g. via

vehicle tracking [47,48], vehicular route prediction [49]

or even by collecting drivers’ feedback on their route

choice [50].

3.2 Model-1: prediction based on spatiotemporal

correlation

Model-1 is based on the rationale that a traffic flow prop-

agates along successive links in a traffic network, and the

flow thus has spatiotemporal characteristics. It has been

shown in [34] that utilizing traffic amount of the nearest

upstream links helps improve the prediction accuracy, but

those of distant neighbouring links do not affect it. There-

fore, Model-1 considers the spatial correlation between

the concerned link and each of its direct upstream links.

In addition, the traffic flow may be split up at intersec-

tions depending on the predetermined destinations of

vehicles and the routes selected by the drivers. Model-1 is

formulated as follows:

X̂i(k + 1) = max
{

X̂i,calculated(k + 1), 0
}

(1)

and

X̂i,calculated(k + 1) = Xi(k) + Q̂i,in(k) + Xdep,i(k)

− Q̂i,out(k) − Xarr,i(k)
(2)

Q̂i,in(k) =

Ui
∑

u=1

X(i−1)u(k) · γ(i−1)u→i(k) · δ(i−1)u→i(k) (3)

Q̂i,out(k) =

Di
∑

d=1

Xi(k) · γi→(i+1)d (k) · δi→(i+1)d (k) (4)

where X̂i(k+1) is the predicted traffic amount on link i in

time interval k + 1, Xi(k) and X(i−1)u(k) are the detected

traffic amount on link i and its uth upstream in time

interval k, Q̂i,in(k) and Q̂i,out(k) are the predicted traffic

amount that enters and leaves link i respectively, Xdep,i(k)

and Xarr,i(k) are the departure and arrival traffic amount

on link i, γ(i−1)u→i(k) is the split rate of traffic amount

that travels on the uth upstream of link i in time inter-

val k and will enter link i afterwards, γi→(i+1)d (k) is the

split rate of the traffic amount that travels on link i and

will enter the dth downstream link in time interval k after-

wards. The δ(i−1)u→i(k) is the adjustment factor for the

traffic flow from the uth upstream link to link i in time

interval k, and δi→(i+1)d (k) is the adjustment factor for the

traffic flow from link i to its dth downstream link. The

adjustment factors take into account the effect of traffic

lights on traffic dynamics.

Equation 1 ensures that the predicted traffic amount is

always non-negative; if the outcome of Equation 2 is neg-

ative, it will be replaced by zero. The temporal correlation

between the predicted traffic amount and the current traf-

fic amount on link i is represented by Equation 2. The

spatial correlations between the predicted traffic amount

on link i and each of the current traffic amount on

neighboring links, captured by the predicted inflow and

outflow traffic amount, are represented by Equations 3

and 4, respectively. To be more specific, the split rate

γ(i−1)u→i(k) and γi→(i+1)d (k) adaptively capture the direc-

tion of traffic propagation, while the adjustment factors

δ(i−1)u→i(k) and δi→(i+1)d (k) adaptively capture the speed

of traffic propagation under the effect of traffic lights.

The adjustment factors are defined by Equations 5 and 6,

where Tg(k) is the ratio of green time of the traffic signal

for the correspondent traffic flow during time interval k,

T̂Ti(k) and T̂T(i−1)u(k) are the estimated travel time on

link i and its uth upstream link, respectively. As has been

mentioned in the assumptions, we assume that the split

rates are obtained beforehand. The adjustment factors are

formulated as the length of the green phase of the traffic

lights divided by the estimated link travel time.

δ(i−1)u→i(k) =
T
g
(i−1)u→i(k)

T̂T(i−1)u(k)
(5)

δi→(i+1)d (k) =
T
g
i→(i+1)d

(k)

T̂Ti(k)
(6)

For simplicity, we estimate the link travel time using

Equation 7 in the implementation of this model, though

we are aware of the possibility to adopt more compre-

hensive travel time estimation algorithms e.g. using probe

data [51].

T̂Ti(k) =
Li

vi(k)
(7)

where Li is the length of link i, and vi(k) is the aver-

age travel speed on link i in time interval k. Here the

speed information is assumed to be obtained from loop

detectors or sensors rather than calculated using the con-

ventional speed-density-flow relationship. The reason is
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that for a road link in a city, the dependency of travel speed

on the flow is not very significant, and the travel speed is

mainly dependent on the type and the geometry of the link

[40]. Using data from inductive loop detectors, including

vehicle count and occupancy, the average speed of vehicles

can be estimated from Equation 8 [52].

vi(k) =
Ni(k) · Leff

τAG · oi(k)
(8)

where Ni(k) and oi(k) are the measured traffic count and

occupancy (the percentage of time the detector is occu-

pied by vehicles) on link i in time interval k, respectively,

and Leff is the average effective vehicle lengths (EVLs) of

the traffic stream, which is the average vehicle length plus

the detector length. In practice, Leff has been assumed to

be constant; for example, the Washington State Depart-

ment of Transportation uses Leff= 20 to 25 ft [53]. If

no loop detector has been installed on road links, it is

still possible to estimate the real-time vehicle speed using

telecommunication technologies [54,55].

3.3 Model-2: prediction based on spare road capacity

Model-2 is based on the rationale that the inflow and out-

flow on the concerned link are largely determined by its

spare capacity. In order to quantify the time-varied spare

capacity of a road link, we first define the maximum out-

flow and inflow that are possible on a link in a certain

time interval. The maximum outflow of a road link i to its

dth downstream link (i + 1)d in time interval k, denoted

by Si→(i+1)d ,out(k), is defined as the maximum number

of vehicles that can exit link i and enter link i + 1 in

this time interval. Similarly, the maximum inflow of link

i, denoted by Si,in(k), is defined as the maximum num-

ber of vehicles that can enter link i from all its upstream

links. The maximum outflow and inflow are determined

by the real-time traffic situation on the concerned link,

which may vary significantly at different time intervals.

The Si→(i+1)d ,out(k) and Si,in(k) can be estimated by the

following formulas:

Si→(i+1)d ,out(k) =
T
g
i→(i+1)d

(k) · vi(k)

Lv + Lg
(9)

Si,in(k) =
vi(k)

Lv + Lg
(10)

where Lv and Lg are the average vehicle length and the

minimum gap between vehicles, respectively.

Accordingly, the predicted inflow and outflow is an

adjustment of the maximum flows based on the real-time

vehicle occupancy on the concerned links. On the basis of

the above consideration, Model-2 is formulated below.

X̂i(k + 1) = max
{

X̂i,calculated(k + 1), 0
}

(11)

and

X̂i,calculated(k + 1) = Xi(k) + Q̂i,in(k) + Xdep,i(k)

− Q̂i,out(k) − Xarr,i(k)
(12)

Q̂i,in(k) = min

{

Ui
∑

u=1

S(i−1)u→i,out(k) · γ(i−1)u→i(k)

·
X(i−1)u(k)

C(i−1)u

, Si,in(k)

}

(13)

Q̂i,out(k) =

Di
∑

d=1

min

{

Si→(i+1)d ,out(k) · γi→(i+1)d (k)

·
Xi(k)

Ci
, S(i+1)d ,in(k)

}

(14)

δ(i−1)u→i(k) =
T
g
(i−1)u→i(k)

T̂T(i−1)u(k)
(15)

δi→(i+1)d (k) =
T
g
i→(i+1)d

(k)

T̂Ti(k)
(16)

where X(i−1)u(k) and Xi(k) are the average traffic amount

on the uth upstream link and link i respectively in time

interval k, C(i−1)u and Ci are the capacity of the uth

upstream link and that of link i. It is worth noting that

the capacities used in Equations 13 and 14 are in fact

the queuing capacity [56] of a road defined as the num-

ber of vehicles that can be stored on the road in a queue.

When this storage capacity is exceeded the queue will

spill back onto the upstreams of this road and often block

intersections.

The maximum flows are calculated according to the

definitions by Equations 9 and 10.

S(i−1)u→i,out(k) =
T
g
(i−1)u→i(k) · v(i−1)u(k)

Lv + Lg
(17)

Si→(i+1)d ,out(k) =
T
g
i→(i+1)d

(k) · vi(k)

Lv + Lg
(18)

Si,in(k) =
vi(k)

Lv + Lg
(19)

S(i+1)d ,in(k) =
v(i+1)d (k)

Lv + Lg
(20)

The main difference between Model-1 and Model-2 lies

in the prediction of inflow and outflow traffic amount.

Model-1 considers the propagation of traffic on successive

links, which is adaptively adjusted according to the real-

time traffic conditions. In contrast, Model-2 predicts the

actual inflow/outflows by taking the maximum flows that

is possible on the concerned link during that time inter-

val as reference. As is shown in Equation 13, the predicted

inflow of link i is theminimumof the following two values:

(1) the maximum inflow of link i and (2) the sum of the
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maximum outflow of the direct upstream links adjusted

by the split rates and occupied road capacity. Similarly, as

is shown in Equation 14, the predicted outflow of link i is

the sum of the minimum of the following two values: (1)

the maximum inflow of a direct downstream link and (2)

the maximum outflow of link i adjusted by the split rates

and occupied road capacity.

4 Applying predictionmodels to RGS
We apply the proposed urban traffic amount predic-

tion models to a typical centralized RGS to construct

the proactive RGS. The proposed RGS operates in three

phases: (1) detecting and predicting congestion, (2) select-

ing vehicles for rerouting and computing alternative

routes and (3) pushing route guidance to drivers. The RGS

also adopts the rolling horizon approach; that is, the time

horizon is divided into discrete time intervals, and the

three phases are conducted at the beginning of each time

interval repeatedly. It is worth noticing that the control

time interval τc of the RGS is equivelent to the prediction

time interval τ . Each of the phases is described in detail

below.

4.1 Detecting and predicting congestion

The centralized RGS service provider periodically collects

traffic data, e.g. traffic amount on each road link Xi(k),

every τ minutes, where τ is the duration of a traffic con-

trol interval, and k is the index of control interval. Based

on the collected real-time traffic data, the service provider

predicts X̂i(k + 1) for all road links using a traffic amount

prediction model, and then detects and predicts traffic

congestion using Equations 21 and 22. A link is considered

to be currently congested if Equation 21 is satisfied, while

a link is considered to be will-be-congested if Equation 22

is satisfied.

Xi(k)

Ci
≥ α (21)

Xi(k)

Ci
< α and

X̂i(k + 1)

Ci
≥ α (22)

where α ∈ [0, 1] is a predefined congestion threshold

value.

4.2 Selecting vehicles and computing alternative routes

When congestion is detected or predicted on a road, vehi-

cles that satisfy the following two requirements will be

selected for rerouting: (1) they are on up to the l-hop

upstream of the congested or will-be-congested link and

(2) they intend to use this link afterwards. The selection

level, denoted as l, needs to be properly chosen to mitigate

congestion without triggering secondary congestion on

popular alternative routes [7]. The service provider then

computes the shortest alternative route for selected vehi-

cles using the Dijkstra algorithm based on current travel

time on each road.

4.3 Pushing route guidance to vehicles

When the service provider completes the computation of

alternative routes for all selected vehicles, it pushes the

guidance to each of the vehicles. Vehicles are expected to

switch to the guided alternative routes and continue their

travel.

5 Performance evaluation
The purpose of the evaluation is to clarify the answers to

the following questions

With respect to the prediction models:

• How to decide on the prediction interval τ ? How

does τ affect the accuracy of the prediction models?

With respect to the proactive RGS:

• How to decide on the congestion threshold α? How

does α effect the system performance of an RGS?
• How does proactive route guidance affect the

performance of a traffic network on its system level?

How does control/prediction interval affect the

ultimate system performance?
• How many vehicles are involved in rerouting? Is the

impact of rerouting the same on rerouted and

non-rerouted vehicles?

We adopt an open-source and highly portable micro-

scopic traffic simulator, SUMO [11], to run simulations

and collect real traffic data. The route guidance function

is realized by employing Traffic Control Interface (TraCI)

[57]. TraCI provides an access to a running road traffic

simulation in a real-time mode so that we can change the

route of a vehicle on the run. The default setting in SUMO

0.15.0 is used to configure vehicles. The vehicle length is

5 m, the minimal gap between vehicles is 2.5 m, and the

Krauss model [58] is used as car following model. We use

different network topology and traffic demand depending

on the purpose of the evaluation, which will be described

in detail in each of the following subsections.

5.1 Accuracy of proposed prediction models

In order to evaluate the performance of the proposed

urban traffic prediction models, we implement the mod-

els to predict traffic amount in Cologne, Germany. The

real traffic amount data are collected from simulations

in SUMO by applying the real data of traffic demand

between 6:00 and 8:00 a.m. of a day in the ‘TAPAS

Cologne’ Scenario [59] to the simulator. We intend to pre-

dict the traffic amount on link 23572355♯2 that has three
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upstream links and two downstream links. The parame-

ters of the local topology of link 23572355♯2 are shown in

Table 1.

We compare our proposed models with the existing

Shift Model, which is represented by Equation 23.

X̂i(k + 1) = Xi(k) (23)

Since the prediction interval is small, the Shift Model

is considered a very competitive prediction model for

dynamic traffic networks. We employ the following mea-

sures as criteria to evaluate the accuracy of the predic-

tion models: Mean Absolute Error (MAE) and Symmetric

Mean Absolute Percent Error (SMAPE) [60]. The defini-

tions of these measures are shown below.

MAE =
1

K

K
∑

k=1

∣

∣

∣
X̂(k) − X(k)

∣

∣

∣
(24)

SMAPE =
1

K

K
∑

k=1

∣

∣

∣
X̂(k) − X(k)

∣

∣

∣

X(k) + X̂(k)
(25)

where K is the total number of prediction intervals, X(k)

are the values collected from the simulations in SUMO,

while X̂(k) are the predicted values. The reason for adopt-

ing two measures is that a combined evaluation based

on both measures can compensate for the potential dis-

advantages of each single measure and thus provide a

better picture of the errors. On the one hand, MAE is

scale-dependent so that it cannot be compared across esti-

mation series on different scales [61]; on the other hand,

SMAPE is scale-independent, but it is favorable for over-

estimation. An observation on the difference between the

trend of SMAPE andMAE could roughly indicate whether

an estimation model tends to yield overestimation. It is

also worth noting that we do not adopt the widely used

measure Mean Absolute Percent Error (MAPE) [62] here,

as this measure yields biased evaluation when real value is

close to zero [62].

We conduct prediction every 10, 60, 180, and 300 s,

which are equivalent to the aggregation period of traffic

data. We run the simulations five times under different

seed values, and acquire five sets of real traffic data. For

Table 1 The local topology of link 23572355♯2

Link ID Length Max. Speed Relation

(m) (m/s)

23572355♯2 109 14 Link i

-24665807♯ 1 125 14 Upstream of i

24665807♯ 0 134 14 Upstream of i

23572355♯ 1 98 14 Upstream of i

23585509♯ 0 103 14 Downstream of i

23572355♯ 3 121 14 Downstream of i

each value of prediction interval, the prediction is con-

ducted over each of the five sets of data and prediction

errors are calculated after each prediction. The average

values of the prediction errors over the five repetitions are

taken as the final results, and the 95% confidence interval

is also calculated.

The prediction errors MAE and SMAPE are shown

in Figure 1a,b, respectively. Generally speaking, the pre-

diction errors (both MAE and SMAPE) decrease as the

prediction interval τ decreases. As the prediction is based

on the collected real-time traffic information that reflects

the traffic conditions in the previous τ seconds, the

shorter τ is, the higher is the possibility that the cur-

rent traffic conditions are close to that of τ seconds ago.

Therefore, higher frequency of prediction, i.e. smaller

τ , has the potential to improve prediction accuracy. In

reality, however, τ is bounded by the latency introduced

in traffic data aggregation, transmission and processing.

Therefore, short τ is desirable but not always achiev-

able. For example, if the detected traffic data is updated

every 10 min, then τ can only be longer than 10 min;

in this case, it is meaningless if we conduct traffic pre-

diction less than every 10 min, as new data are not yet

available.

Figure 1 shows that Model-1 has the smallest errors

among the three prediction models regardless of τ . It

significantly reduces MAE by 52% and SMAPE by 41%

compared to the baseline Shift Model in the best case

(τ = 10 s). Model-2 also reduces MAE by 30% (τ = 10 s)

and SMAPE by 28% (τ = 300 s) compared to the Shift

Model in the best cases. In the studied scenario, Model-1

gains its maximum advantage when τ = 10 s, which is in

the same magnitude as the link travel time. As the predic-

tion interval further increases, the advantage of Model-1

decreases, whereas the advantage of Model-2 increases.

When τ = 300 s, the accuracy of the two proposedmodels

is very close. We can infer that Model-1 may work better

when τ is on the same magnitude as link travel time, while

Model-2 may be more suitable for longer τ .

In practice, the aggregation period of traffic data ranges

from 20 or 30 s [63] to 5min. The predictionmodel should

be chosen depending on the data aggregation period. For

example, if the traffic data is aggregated in less than 1 min,

Model-1 should be used to perform the prediction; other-

wise, Model-2 would be a better candidate to yield accu-

rate prediction. In addition, it is worthy of mentioning

that the prediction accuracy could be influenced by other

factors, such as the characteristics of traffic demand, the

topology of the traffic network, the route choice decision

made by drivers with or without guidance, the configura-

tion of traffic signal, etc. Hence, the ultimate requirement

on the prediction accuracy could be greatly dependent

on the specific applications. We also confirmed that the

proposed models are not biased [64].
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Figure 1 Prediction errors versus prediction interval τ. (a)MAE (b) SMAPE. Model-1 has the best prediction accuracy and reduces MAE and

SMAPE by up to 52% and 41% respectively compared to the Shift Model in the best case (τ = 10 s). Model-2 also reduces MAE and SMAPE by up to

30% (τ = 10 s) and SMAPE by 28% (τ = 300 s) compared to the Shift Model in the best cases. Reducing τ may improve prediction accuracy, but

short τ is not always achievable as it is bounded by the latency of traffic data collection and data processing at the control center.

5.2 Performance of RGS with traffic prediction

In order to investigate the benefit of traffic predic-

tion to RGS, we implement a typical RGS incorporated

with the proposed traffic prediction models in SUMO.

The map of a small proportion of London traffic net-

work shown in Figure 2 was exported from Open-

StreetMap [65]. The network includes a total of 3,002

links and 332 intersections. The exported map is then

converted into required format using the tool NETGEN

provided in SUMO. In the simulation, 954 vehicles are

generated in total. One vehicle is generated every sec-

ond between [0, 1,000] s and each vehicle randomly

selects an Origin-Destination pair. Each run of simula-

tion last 5,000 s to ensure that all the vehicles would

have reached their destinations before the simulation

terminates.

Figure 2 Topology of traffic network. A portion of London traffic network is used as the network topology in the simulations.
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We compare the performance of the following five cases.

• RGS+Model-1 : A proactive RGS that generates route

guidance based on traffic prediction using Model-1.
• RGS+Model-2 : A proactive RGS that generates route

guidance based on traffic prediction using Model-2.
• RGS+Model-shift : A proactive RGS that generates

route guidance based on traffic prediction using the

existing Shift Model.
• RGS : A reactive RGS that generates route guidance

based on current traffic condition without prediction.
• No-RG : No route guidance is provided; thus no

rerouting is performed.

We run each simulation five times under different seed

values, and take the average values as the final results. In

the figures, we also indicate 95% confidence intervals. The

selection level l is set to 3, as it produces good results with

moderate computation [7]. The penetration rate is 100%;

that is, all vehicles are subscribed to the route guidance

service and thus can periodically receive route guidance.

The compliance rate is set to 100% so that all the drivers

are supposed to follow the guidance. The RGS generates

route guidance every τ second, which is equivalent to the

traffic prediction interval.

We first analyze the performance of the RGS under

the impact of the congestion threshold α that is set to

three fixed values 0.6, 0.7 and 0.8. In order to evaluate

the operating efficiency of the route guidance, we use

average travel time as the level-of-service measure. Com-

pared with other similar measures such as travel speed,

travel time is not only intuitive to travelers, but also can

be easily interpreted in economic terms, which is criti-

cal to quantifying the cost and benefit of transportation

investments.

The results of RGS+Model-1, RGS+Model-2 and

RGS+Model-shift under different values of α are shown

in Figure 3a,b,c, respectively. In each of the three cases,

the impact of α is not obvious from the statistical point of

view, as the confidence intervals for three threshold values

are considerably overlapped. However, it also shows that

α = 0.7 has the potential to produce the most competitive

results. Therefore, the value of α is set to 0.7 in the here-

after evaluations. It is worth noticing that the value of α

should be tuned according to the scenario.

With respect to the prediction/control interval τ , we

set it to 30, 60, 180 and 300 s to investigate its effect on

the system performance. The simulation results of aver-

age travel time is shown in Figure 4. Firstly, we confirmed

that rerouting does help drivers arrive earlier, as the travel

time is more than twice when no rerouting is performed.

Moreover, the average travel time increases as τ increases,

which indicates that increasing the frequency of traffic

control may lead to more efficient traffic operation due to

timely response to traffic dynamics.

Figure 4 also demonstrates the advantage of RGS incor-

porated with traffic congestion prediction, where the

average travel time under proactive route guidance is

much shorter than that under a reactive one. Route guid-

ance based on traffic prediction leads to maximum 70%

reduction in average travel time compared to that based

on current traffic condition. However, the gap between

the former and the latter decreases a bit as the con-

trol/prediction interval increases. The contribution of

traffic prediction to travel time reduction also depends

on the prediction model. Compared to the existing Shift

Model, both of the proposed models can further reduce

up to 14% of the average travel time in the best cases. It is

interesting to notice that the average travel length, which

Figure 3 The effect of congestion threshold α (a,b,c). The impact of congestion threshold is not statistically obvious; however, the threshold

value 0.7 has the potential to produce the most competitive outcome.
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Figure 4 Average travel time versus prediction/control interval

τ . Congestion prediction contributes to travel time reduction in the

proposed RGS. The advantage is more obvious as τ decreases.

is plotted in Figure 5, is longer if the route guidance is pro-

vided. It seems that an RGS helps drivers to save travel

time at the sacrifice of traveling on longer routes. From

another angle, we can infer that the fastest routes are not

necessarily the shortest; traveling on longer routes could

lead to earlier arrival.

In order to further understand the impact of route guid-

ance on rerouted vehicles and non-rerouted vehicles, we

also plot the average travel time for each of the two cat-

egories of vehicles in Figure 6. Since the average travel

time produced by the reactive RGS is always much longer

than that of the proposed proactive one, we do not include

the results of the former in the figure in order to have a

clear comparison among the proactive ones with different

prediction models. Simulation results also show that both

rerouted and non-rerouted vehicles are benefited from

traffic prediction, as the average travel time for both cat-

egories of vehicles is much shorter under predictive route

guidance than that under reactive route guidance. How-

ever, the average travel time of non-rerouted vehicles is

shorter in comparison with rerouted vehicles. An explana-

tion to this phenomenon could be that the route-switch of

rerouted vehicles helps mitigate the on-going congestion

or reduce the possibility of potential congestion on origi-

nally shortest routes, and thus facilitates smooth travel of

non-rerouted vehicles on their original routes.

Figures 7 and 8 demonstrate the total number of

rerouted vehicles and the average number of reroutings

Figure 5 Average travel length versus prediction/control interval

τ . Route guidance leads to longer travel length. As τ increases, the

average length of the conventional RGS stays almost constant,

whereas that of the proposed predictive RGS increases probably due

to the longer routes used to avoid predicted congestion.

for each rerouted vehicle, respectively. It is interesting that

the number of vehicles involved in rerouting does not

change much as the control/prediction interval increases,

and reactive route guidance affects slight less vehicles than

predictive one does. On the other hand, the average num-

ber of reroutings for each rerouted vehicle decreases as

the control/prediction interval increases. This is reason-

able because longer interval means less frequent interac-

tion between the route guidance service provider and the

drivers. Moreover, individual vehicles are rerouted more

times under reactive route guidance than predictive guid-

ance. We can infer that proactive route guidance can give

preventive response to traffic conditions and thus less

times of reroutings for each vehicle.

6 Conclusions
In this paper, we proposed two urban traffic amount pre-

diction models based on the propagation of traffic flow

and the spare road capacity, respectively, for applying the

proposed models to a route guidance system (RGS) to

reduce average travel time. We evaluated the prediction

accuracy of the proposed models by comparing their per-

formance with the Shift Model under varied prediction

interval using the real data collected in the traffic simu-

lator SUMO. The results demonstrated that both models

significantly reduce prediction error up to 52% and 30%

in the best cases compared to the existing Shift Model.
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Figure 6 Average travel time versus prediction/control interval τ among (a) rerouted vehicles and (b) non-rerouted vehicles. Both rerouted

and non-rerouted vehicles are benefited from traffic prediction, as the average travel time for both categories of vehicles is much shorter under

predictive route guidance than that under reactive route guidance. However, non-rerouted vehicles could enjoy more benefit than rerouted ones.

In addition, we found that the performance of Model-1

peaks when the prediction interval is in the same magni-

tude as the link travel time, while Model-2 demonstrates

superiority when the prediction interval is longer. We also

evaluated the impact of proactive route guidance by com-

paring the performance of an RGS with traffic amount

prediction (proactive route guidance) to that of an RGS

without prediction (reactive route guidance). Simulation

Figure 7 Total number of rerouted vehicles. The number of

vehicles involved in rerouting does not change much as τ increases,

and the conventional route guidance affects slightly less vehicles

than predictive one does.

results confirmed that the proactive route guidance helps

greatly reduce average travel time by up to 70% compared

to the reactive ones, and the proposed traffic predic-

tion models can further reduce average travel time by

up to 14% in comparison with the existing Shift Model.

Figure 8 Average number of reroutings for an individual

rerouted vehicle. The average number of reroutings for each

rerouted vehicle decreases as the τ increases. Individual vehicles are

rerouted more times under reactive route guidance than a predictive

one, which indicates that the route guidance based on congestion

prediction serves as a global preventive management on traffic

conditions and thus leads to less times of reroutings for each vehicle.
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Moreover, proactive route guidance leads to less number

of reroutings for each rerouted vehicle. We also discov-

ered that non-rerouted vehicles could benefit more from

route guidance than rerouted vehicles do. In the next step,

we intend to propose more efficient route scheduling and

routing mechanism in RGS with the objective of pushing

the system performance to its optimal.
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