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ABSTRACT 

This paper presents a microscopic traffic simulation-based method for urban traffic state estimation using Assisted 

Global Positioning System (A-GPS) mobile phones. In this approach, real-time location data are collected by A-GPS 

mobile phones to track vehicles traveling on urban roads. In addition, tracking data obtained from individual mobile 

probes are aggregated to provide estimations of average road link speeds along rolling time periods. Moreover, the es-

timated average speeds are classified to different traffic condition levels, which are prepared for displaying a real-time 

traffic map on mobile phones. Simulation results demonstrate the effectiveness of the proposed method, which are fun-

damental for the subsequent development of a system demonstrator. 
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1. Introduction 

Real-time traffic information is essential for supporting 

the development of many Intelligent Transportation Sys-

tems (ITS) applications: incident detection, vehicle navi- 

gation, traffic signal control, traffic monitoring, etc. For 

instance, since 2007, Google began to integrate real-time 

traffic information with its mapping service. The traffic 

data are aggregated from several sources, e.g., road sen-

sors, cars, taxi fleets and more recently mobile users [1].  

The current state-of-the-practice traffic data collection 

in most parts of the world is to rely on a network of 

road-side sensors, e.g., inductive loop detectors (ILDs), 

to gather information about traffic flow at fixed points on 

the road network [2-4]. Although fixed sensors are a 

proven technology, they are not deployed at wide scale 

mostly because of its high cost. Moreover, with fixed 

sensors, it is only possible to measure the spot speed, 

which is one inherent deficiency in comprehensive re-

flection of speed over the entire road link. Additionally, 

this type of model is link and detector location specific, 

which requires careful calibration [5]. An alternative to 

these luxury road-side infrastructures is to employ dedi-

cated vehicles as floating traffic probes [6-8]. The dedi-

cated vehicle probes (PVs) are typically equipped with a 

GPS receiver and a dedicated communication link. A 

large number of vehicles should be so equipped to have 

enough probes. Insufficient number of probes limits the 

ability of generating information for large area and accu-

racy of results [9]. Given the trend that GPS-equipped 

vehicles are expected to increase in the future, the capac-

ity and cost of dedicated communication links between 

in-vehicle equipment and traffic management center will 

still limit the sample size of PVs [5]. Moreover, since 

PVs are chosen from a particular category of vehicles, 

e.g., taxis or buses, the traffic information could be bi-

ased and not representative of the whole population [10].  

With the advance of the mobile communication tech-

nology, mobile phones are increasingly utilized for col-

lecting traffic data. This approach avoids installation and 

maintenance costs, either in vehicles or along roads. In 

addition, using mobile phones as traffic probes over-

comes the coverage limitation in road-side sensors and 

insufficient probes in dedicated PVs. By the end of 2010, 

there had been 5.3 billion mobile subscriptions [11], 

which is equivalent to 77% of the world population. Ide-

ally, any mobile phone that is switched on, even if not in 

use, can act as a probe. Thus, potentially there is a large 

sample size available to this type of probe system. More- 

er, in 2010, sales of smartphones (most of which are equ- 

d with A-GPS chips) showed strong growth worldwide 

[12]: total shipments in 2010 were 292.9 million units 

which had increased by 67.6% from 2009; this made 

smartphones 21.5% of all handsets shipped.  

In the past decade, field trials have been conducted to 

show the feasibility of using mobile phones as traffic 

probes [10,13-16]. Nevertheless, most of these trials tried 

to estimate traffic states on freeways and only few de-

ployments attempted to monitor urban arterial roads. It 

has been suggested in [10] that future research efforts 

should be focused on obtaining traffic data for arterials 
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where no data is currently available rather than obtaining 

data from freeways where fixed traffic sensors are al-

ready deployed. However, traffic estimation on arterials 

is more challenging than on freeways due to the follow-

ing facts [7,14,17]: 1) arterials have lower traffic volume; 

2) arterials have more variability in speeds; and 3) arte-

rials are controlled by traffic signals at intersections. 

Among the past field deployments, the majority of 

them employed network monitoring methods that make 

use of network signaling information, e.g., the handover 

measurements or the time/angle (difference) of arrivals. 

Only very few of them were handset-based (using GPS- 

enabled phones), for example, a pioneer field trial held 

by Globis Data in 2004 [18] and the Mobile Century 

field experiment conducted in 2008 [19]. Evaluation re-

sults from field trials indicated that the network-based 

probe systems cannot provide sufficiently accurate traffic 

data for arterials. Since arterials tend to introduce addi-

tional complexities, the more accurate handset-based 

A-GPS mobile probe is expected to be a better solution 

for urban arterial roads; however, this has not yet been 

verified (both [18] and [19] provided only successful 

traffic estimations on highways). Two issues were identi-

fied as primary hurdles to the success of A-GPS mobile 

phones as traffic probes [20]: 1) the additional commu-

nications costs; and 2) the slow uptake of GPS-enabled 

phones. These two issues are no longer problems under 

current circumstances: 1) modern cellular networks have 

wide communication bandwidths; and 2) A-GPS mobile 

phones are increasingly available in the global market. 

When evaluating the results from field tests, there is 

hardly any available ground traffic data to compare with, 

especially for arterial roads. Additionally, the field test 

data is not suitable for statistical analysis due to varia-

tions in different tests and limited number of observa-

tions. In simulation-based studies, on the other hand, 

individual vehicle tracks and aggregated traffic states can 

be extracted as “ound truth” [15]. In addition, traffic sim- 

ations can generate traffic data under a variety of traffic 

conditions, featured by different volumes and road net-

works [21]. Although these simulation studies do not 

replicate the actual conditions precisely, they may still 

provide valuable indication of the potential performance 

of a probe-based traffic information system. 

In our proposed smart traffic information system [22], 

A-GPS mobile phones are used to locate the vehicles. 

They are also utilized as on-board processing units. In 

addition, these switched-on mobile phones are employed 

as probes to collect traffic data, based on which real-time 

urban traffic states can be estimated and sent as feedback 

to service subscribers. In this paper we show how loca-

tion data collected by A-GPS mobile phones can be used 

to estimate urban traffic states. The urban traffic is gen-

erated by microscopic simulation while small scale field 

tests are used to emulate the A-GPS measurements. This 

paper is organized as follows: Section 2 provides a brief 

overview of the simulation-based framework. In Section 

3, three data processing steps are presented: emulation of 

A-GPS measurements, filtering of individual probe data, 

and estimation of average link speeds. Simulation set-up, 

result of each step, and performance evaluation are given 

in Section 4. Finally, Section 5 concludes this paper. 

2. System Overview 

2.1. Simulation-Based Framework 

A simulation-based framework is developed to emulate 

the A-GPS mobile phone-based urban traffic estimation, 

as shown in Figure 1. The framework consists of three 

parts: 1) microscopic traffic simulation; 2) location data 

processing and speed aggregation; and 3) performance 

evaluation and result presentation. The microscopic traf-

fic simulation is used to simulate the urban road network 

and the corresponding traffics. It generates “actual” loca-

tion tracks for each vehicle, and prepares “ground truth” 

traffic states. The generated locations are firstly pre- 

rocessed to emulate “realistic” location samples that 

A-GPS mobile phones may provide in real world situa-

tions. The pre-processing defines the percentage of vehi-

cles that are equipped with A-GPS mobiles (according to 

a penetration rate), and introduces statistical errors into 

the location updates (according to the field test). These 

“realistic” location data are then post-processed by a 

2-step filtering process. The Kalman Filter (KF) is im-

plemented to track each vehicle/mobile and the simple 

data screening is employed to filter out undesired posi-

tion/speed estimates. The next steps are allocating the 

individual speed estimates to road links, and aggregating 

them at a pre-defined time interval. As for performance 

assessment, the accuracy of average speed estimation is 

evaluated by comparing it with the “ground truth” aver-

age speeds. The coverage is examined by finding the 

fraction of road links that have available estimations in 

that time interval. Finally, with a simple threshold tech-

nique, estimated average link speeds are classified into 

several traffic condition levels which can be presented as 

colored road segments on the service subscribers’ mobile 

phone displays. 

2.2. Urban Traffic Modeling 

In this work, the microscopic road traffic simulation 

package “Simulation of Urban MObility” (SUMO) [23] 

is employed to model the urban traffic on arterial roads. 

Two applications featured in the SUMO package are 

used to generate the road network and vehicle routes, 

respectively. NETCONVERT imports digital road net-

works from different sources and converts them into the 

SUMO-format. DFROUTER generates random routes 
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Figure 1. Simulation-based framework. 

 

and emits vehicles into networks. In addition, eWorld 

[24], a SUMO extension, is employed to facilitate the 

processes of importing the OpenStreetMap (OSM) data 

[25], then editing, enriching it and finally exporting the 

data files of networks and routes for SUMO simulation. 

As a result of the SUMO simulation, two useful data-

sets can be generated for further analysis. One is the ag-

gregated speed information for each road link/edge called 

“aggregated edge states”. It includes information such as 

road edge IDs, time intervals, mean speeds, etc. These 

aggregated speeds can be used to determine the “ground 

truth” of traffic flow. The other is the location informa-

tion of every vehicle called “net-state dumps”. It records 

at every timestamp the location of every vehicle in the 

simulated road network. Each record consists of a vehicle 

ID, a timestamp, and the vehicle’s coordinates. This data 

file is used as the basis for the simulation of the mobile 

probe-based traffic information system. 

2.3. System Design Parameters 

For such a probe-based monitoring system that makes 

use of collected location samples, the sample size and the 

sampling frequency are two key design parameters that 

would influence the system performance. These sampling 

related issues have been discussed extensively in many 

previous studies of probe-based traffic systems. In those 

studies, both the experimental figures and analytical 

models were presented, which could be very good refer-

ences for this work.  

As it has been discussed in the introduction, the main 

concern of probe-based monitoring is the determination 

of the probe penetration rate (i.e., the percentage of vehicles/ 

mobiles that serve as traffic probes) to ensure an accept-

able quality. Similar conclusions were drawn from pre-

vious field tests and simulation studies [7,22,26-28]: 

probe-based system can be expected to work well for 

freeways with penetration rates range from 3% to 5%. 

However, as indicated in [7,22,29], urban arterial roads 

may require a penetration rate greater than 7% to provide 

reliable speed estimates. 

Another essential issue in traffic systems using GPS 

equipped probes is the data sampling/reporting intervals. 

Typical GPS receivers receive location updates at every 

1 - 3 seconds. This frequency of data collection from a 

large number of probes may cause network congestion. 

To avoid this issue, a temporal sampling method is usu-

ally applied in which probes report their data at a pre-

scribed time. In addition, [30] claimed that using longer 

sampling intervals allows gather information over longer 

distances, hence reducing the chance of capturing a non- 

representative speed. However, this sampling interval 

cannot be too long, since it affects the timeliness of data 

and the system coverage on short road links. A sampling 

interval of 10 - 20 seconds can be used in practice, as 

indicated by the previous studies [7-8,22,31]. 

3. Data Processing and Aggregation 

In this section, we describe in detail the processes, me- 

thods, and algorithms involved in the right branch of the 

simulation-based framework (Figure 1). There are ma- 

inly three steps in this part: emulation of A-GPS probe 

location updates, filtering of individual probe data, and 

estimation of average road link speeds. 

3.1. A-GPS Probe Data Emulation 

Due to technological and practical limitations, location 
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updates collected by A-GPS mobile phones are not per-

fectly precise and limited in sample size. Therefore, both 

quality and quantity of the location data generated from 

traffic simulation should be reduced in order to emulate 

the realistic field condition. As described in Section 2.1, 

location data are degraded in two ways: 1) setting a 

specified percentage of simulated vehicles/ mobiles to be 

trafficc probes; and 2) introducing statistical positioning 

errors of A-GPS mobile phones.  

The SUMO simulation output file “net-state dumps” 

may grow extremely large since it contains detail infor-

mation of each vehicle/mobile. Hence, there is a need of 

converting this location data into more compressed one. 

In addition, positions in SUMO are expressed in Carte-

sian coordinates instead of using the WGS84 [32]. In this 

work, the SUMOPlayer [33], a Java API, is employed to 

“play” the SUMO network-dump files in real-time to 

WGS84 coordinates for each probe. The SUMOPlayer is 

also customized by defining parameters such as fraction 

of tracked vehicles (i.e., the probe penetration rate). 

In order to get practical error statistics of A-GPS loca-

tion updates, field tests were conducted on Sony Ericsson 

and Nokia A-GPS mobile phones. The location updates 

include latitude and longitude coordinates, their accura-

cies, and the corresponding timestamps. Location accu-

racy (in meters) is the root mean square (RMS) of the 

north and the east accuracy (1-sigma standard deviation). 

Under a Gaussian assumption (can be motivated by the 

central limit theorem according to [34]), this implies that 

the actual location is within the circle defined by the re-

turned point and radius at a probability of about 68%. 

Figure 2 shows the A-GPS location samples collected by 

the 10-second interval continuously for 1-hour in the 

urban area of Stockholm. The median of RMS errors was 

found to be 8.83 m; and 90% of the errors were found 

below 18.53 m according to their Cumulative Distribu-

tion Function (CDF). Although these A-GPS location 

measurements are less accurate than those from regular 

GPS units, they still appear sufficient for traffic state es- 

timation (a location technology within 20 m accuracy can 

produce quantitative travel information [35]). 

 

 

Figure 2. Vehicle trajectory samples collected by the A-GPS 

mobile phone. 

3.2. Filtering of Location Data 

After the pre-processing stage, the A-GPS mobile phone- 

based data collection is emulated for every traffic probe. 

The “realistic” location samples cannot be directly util- 

ized in trafficc estimation since they are inherently erro- 

neous. A two-step post-processing is therefore applied: 

the Kalman filtering (KF) to transform A-GPS measure- 

ments into dynamical state estimates of position and ve- 

locity; and the data screening to eliminate undesired data. 

3.2.1. KF-Based Tracking 

In this subsection, the KF is exploited to track the move- 

ment of vehicle/mobile probes. For computational sim-

plicity, we model the travelling vehicle/mobile as a dy-

namic linear system driven by a random acceleration. As 

a result, the transition equation is firstly derived for con-

tinuous-time movement, and then expressed in discrete- 

time after discretization.  

Suppose that a vehicle, equipped with a mobile, moves 

in a 2D Cartesian coordinate system (SUMO works with 

Cartesian coordinates only; and road networks specified 

with WGS84 are converted by NETCONVERT using 

UTM [36]). In order to track this moving mobile, its state 

can be expressed as a dynamic state vector: 

          T
X t x t y t x t y t    

      
(1) 

where  x t  and  y t are the positions and their first de- 

rivatives  x t  and  y t  are velocities. Then, motion 

dynamics of the travelling probes is described by a conti- 

nuous white noise acceleration (CWNA) model [37]. In 

this model, the velocity undergoes perturbations which 

can be modeled by zero-mean white Gaussian noise  v t :  

    v t x t y t                 (2) 

with the variance 

    cE v t v q t                  (3) 

where c  is the process noise intensity. The continu-

ous-time transition equation is then written as: 

q

     X t AX t V t              (4) 

where 
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00 0 0 1

0 0 0 0

0 0 0 0

A V t
v t

v t

  
  
  
 
  
    




       (5) 

Let the sampling interval in this system to be T , af-

ter discretization, the discrete-time transition equation is: 

    1 X k FX k V   k           (6) 

with the transition matrix 

Copyright © 2012 SciRes.                                                                                 JTTs 



S. TAO  ET  AL. 26 

1 0 0

0 1 0

0 0 1 0

0 0 0 1

A T

T

T
F e



 
  

 
 






         (7) 

and process noise vector   

that models disturbance in driving velocity. The covari-

ance matrix of the process noise vector is 
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The state vector           T
X k x k y k x k y k      

is r s ( )Y k by the 

measurement equation: 

elated to the noisy location observation

    Y k HX k W k            (9) 

with the measurement matrix  



taking only position observations, and the measurement 

1 0 0 0

0 1 0 0
H   

 
 

noise 

   
 

0 0
~ ,

0 0

w k R
W k N

w k R

      
       

     
, 2 2

x yR     

is the measurement error variance. It is assumed that the 

cr

variances in both directions are the same and independent. 

In order to track the vehicle/mobile in real-time, a dis-

ete-time Kalman filter (KF) is applied to the noisy lo-

cation measurements. The KF gives a recursive solution 

for the state estimation of the system described by equa-

tions (6) and (9). The transition and measurement equa-

tions can be rewritten in a more compact way as: 

1 1k k kX FX V  ,  ~ 0,V N Q     1k   (10) 

      (1

where Q and R are the covariance matrices of the

k kY HX W  ,k  ~ 0,kW N R 1) 

 process 

error 1kV   and measurement error kW , respectively. 

Then, t ptimal estimations (in terms inimizing vari- 

ances) are obtained by the following iterated steps (devia- 

tion can be found in state estimation texts, e.g., [37,38]): 

 Before the measurements are available at kt  priori

he o m

 

estimate of the state mean ˆ
kX
  and the covariance 

kP
  are obtained by the time update equations: 

1
ˆ ˆ

k kX FX


                (12) 

1
ˆ T

k kP FX F Q


            (13) 

 Kalman gain is then computed to skk et an appropriate 

correction term for the next propagation step, so as to 

minimize the mean square estimation (MSE) error: 

  1
T T

k k kK P H HP H R  
         (14) 

 After processing the noisy measurement kY , posteriori 

estimate of the state mean ˆ
kX  is obtained by updat-

ing ˆ
kX
 with a corrected version of measurement re-

sidual: 

 ˆ ˆ ˆ
k k k k kX X K Y HX

            (15) 

Then the covariance matrix which is associated 

w
kP  

ith ˆ
kX  can be updated as: 

 k kP I K H P
  k           (16) 

3.2.2. Data Screening 

n, we obtain the recursively upd- 

ile probe 

sy

obile application 

us

speed 

arest road 

 

From the last subsectio

ated position and velocity estimates of each probe. Bef- 

ore they can be aggregated to provide the estimation of 

average link speeds, simple data screening process needs 

to be applied to filter out some undesired data. 

One challenge in the network-based mob

stems is the need to distinguish non-valid probes (e.g., 

mobile users in buildings, on subways, or pedestrians) 

from mobile phones travelling on-board vehicles. As 

stated in [39], since the outliers’ influence is severe, esp- 

ecially for dense urban areas, they should be identified 

and filtered out. In our system, the validity of traffic 

probes is not a big issue any more. Unlike the network 

monitoring method that randomly monitors mobile users 

within a wireless network, probe data in this system 

come from our service subscribers, and we can assume 

that the service subscribers would only start the traffic 

application when they are in vehicles. 

Provided that in this system our m

ers are unlikely to be non-valid probes, following cri-

teria are considered for the data screening process: 

 Speed estimates that are greater than 120% of 

limits should be eliminated, since those very large 

speed estimates most probably source from positi- 

oning errors (speed limits in Stockholm downtown 

areas vary from 30 km/h to 50 km/h [40]). 

 Location estimate with a distance to the ne

link larger than 20 m should be eliminated. It helps to 

solve the problem of mapping estimates between two 

nearly parallel links (location accuracy of at least 20 

m is expected to differentiate between closely spaced 

parallel urban roads [41]).  
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3.3. Estimation of Aggregated Link Speeds 

rk are 

3.3.1. Allocation of State Estimates 

rated in Section 3.2, 

 

ea

Generally, the real-time traffic states in this wo

characterized by the average link speeds of the simulated 

urban arterials along with rolling time periods. Within 

each period (i.e., the aggregation interval), speed esti- 

mates from individual probes are firstly allocated to road 

links and then aggregated to provide estimates of the 

average conditions for the road links. 

After applying the filtering steps illust

the estimated vehicle/mobile tracks are still deviated 

from their actual trajectories due to the introduction of 

location errors. Therefore, we need to project these posi- 

tion/velocity estimates onto road links (known as map 

matching) so as to get traffic information for each link. In 

this work, the simple point-to-curve geometric map mat- 

ching technique [42] is applied, because of its effective- 

ness and given the real-time requirement of this system. 

Projection distances are calculated from a position esti-

mate to each of road link candidates. The road link, 

which gives the smallest distance, is identified as the as- 

sociated link to that position/velocity estimate. As a re- 

sult, at every sampling step, speed estimations can be 

allocated to specific links in the simulated road network. 

From the estimation result of Section 3.2, we can

sily derive the position and speed of the
th

i probe at kt  

as: 

   2

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆˆ ( ) ( ) ( )

T
i i i

i i i

p k x k y k

v k x k y k

    

  


 
 

2
      (17) 

After map matching, at certain timestamp , we can ob- 

ta  
kt

 frin  ˆi

jv k  as the speed estimate of link j om probe i, 

where 1,2, ,  pi n  ( pn is the total number of probes),  

and j n n i the number of monitored links). 1,2, , l   ( l s 

3.3.2. Aggregation of Link Speeds 

d estimates are rec- In Section 3.3.1, the mapped spee

orded for each link along with sampling time stamps. 

Since traffic conditions are characterized by average tra- 

vel speed on road links, the rest of the problem is to aggr- 

egate the speed estimates over a specific time interval. 

Previous works on traffic estimation [7,10,43] indicate 

that a 10-minute aggregation time appears a reasonable 

choice taking into consideration both the real-time re-

quirement and data availability. As a result, the average 

speed along track J during the interval of interest is: 

 
,

1 k Tt

j


ˆ, ( )
kk k T

ave k k T jj
k tt t

V t t v k
n






         (18) 

where is the available speed estimate on link j 

terv

ˆ ( )jv k  

during in al  ,k k Tt t  , and ,k k T

j

t tn


is the total num-

ber of available estimates. 

Simulation Results and Evaluation 4. 

 parts of 

en- 

er

As shown in Figure 3(a), the road network of

downtown area in Stockholm has been chosen as a simu-

lation case study. The OpenStreetMap (OSM) XML file 

is firstly edited in Java OpenStreetMap Editor (JOSM) [44] 

in order to remove all the road edges which cannot be 

used by vehicles such as railway, roadways for motorcy- 

cle, bicycle, and pedestrian, etc. In addition, all the edges 

are set as one-way for simplicity. The simplified version 

of network, which consists of 14 nodes, 22 links as well 

as 4 traffic lights, is imported into the eWorld, as shown 

in Figure 3(b). In eWorld, we can further edit road pro- 

perties, e.g., street name, speed limit, and phase assign- 

ment of traffic light, which can be accessed from the 

OSM data. Then, with the export feature of eWorld, the 

network file, required by SUMO simulation, can be gen-

erated using NETCONVERT. Since OSM data works 

with the WGS84 instead of the Cartesian coordinate sys- 

tem used by SUMO, projection and offset are applied 

during the conversion. Traffic light logics, speed limits 

and priorities are also encoded in the network files.  

Once the road network is ready, the next step is to g

ate the traffic. In the eWorld, the properties of vehicles 

are firstly defined, such as acceleration, maximum all- 

owed speed, and speed variation. Then, random routes of 

vehicles traveling on the road network are generated for a 

specific time interval using the DUAROUTER. Since the 

limited simulation network makes the traveling vehicles 

leave the network fast (typically no more than 250 s), in 

each time step a given number of vehicles are emitted to 

the network in order to achieve traffic equilibrium. These 

randomly generated vehicles and their routes are also 

exported as the SUMO file. As a result of a 3600-second- 

interval, 575 vehicles have been generated with random 

trips. 

 

 
           (b) 

Figure 3. Simula rom the Open- 

StreetMap; and d diagram in the eWorld. 

(a)          

t

 (b) simplifie

ed road network: (a) image f
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Link6 and Link15 have lower traveling speeds, which are The SUMO simulation is conducted for 1-hour without 

incidents. The real-time traffic data, i.e., the aggregated 

link/edge state is collected together with the network 

state dump. As introduced in Section 2.2, the aggregated 

state file is used to establish the “ground truth” link 

speeds, and the network state dump file is used as input 

to the SUMOPlayer to generate the mobile probe data. 

Suppose that the travel speeds of interest are those of 

links 1, 4, 5, 6, 9, 12, 15, 18, 19, and 22. The links’ 

length ranges from 173 m to 236 m. Other links are not 

included mainly because their aggregated density and 

occupancy are generally smalll which makes the estima- 

tion less necessary and potentially results in small num- 

ber of probes. Figure 4 shows the mean traveling speeds 

of selected links recorded in the “aggregated edge states”. 

Since only Link22 has a speed limit of 50 km/h and all 

the others have speed limits of 30 km/h, average link 

speed of Link22 is considerably higher. In addition, 

 

 

Figure 4. Aggregated link speeds—the “ground truth” data.

 

in

-GPS location 

sa

 
 

expected to be detected as congestions in the estimation. 

The SUMO output “net-state dumps” is then used as

put for the SUMOPlayer to generate a large amount of 

simulated mobile probes in real-time. The SUMOPlayer 

first reads the corresponding network file and then 

chooses randomly vehicles from the network state dump, 

according to the probe penetration rate (10% is specified 

in this case). As a result, it writes location updates (lon- 

gitudes and latitudes) every second for the vehicles that 

are selected as traffic probes. In order to be compatible 

with the SUMO network format, those coordinates are 

projected back to zero-origin Cartesian system with the 

same offset used by the NETCONVERT. There are in 

total 63 probes and the time they spend in the system 

range from 49 s to 241 s. Figure 5(a) plots location data 

collected from the chosen probes, which are aggregated 

at every 10-minute. As illustrated previously, these loca-

tions should be further processed. A sampling interval of 

10-second is used to achieve a balance among commu-

nication load, data effectiveness, timeliness and availa- 

bility. A normal distributed positioning error is introd- 

uced to the position coordinates with 1-sigma standard 

deviation of 8.83 m in both northing and easting direc-

tions. The emulated A-GPS location samples after this 

pre-processing are plotted in Figure 5(b). 

As stated in Section 3.2, the emulated A

mples are then post-processed in two steps: the Kalman 

filtering (KF), and the data screening (DS). The KF step 

results in dynamically updated state estimates of position 
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(a)                                           (b) 

Figure 5. Probe location data a ated from SUMOPlayer; and ggregated every 10 minutes: (a) individual probe locations gener

(b) the emulated “realistic” A-GPS location samples. 



S. TAO  ET  AL. 29

 
nd velocity. Figure 6 shows the A-GPS locatioa n up- 

and 

sp



dates of all the mobile probes from 1-hour simulation as 

well as all the position estimates after the KF. In the DS 

step, the position/velocity estimates which fail to meet 

the criteria (specified in Section 3.3.2) are discarded. 

After the post-processing, accuracies of position 

eed estimations are evaluated statistically (the actual 

position and speed of each probe is available in the 

SUMOPlayer output). The figure of merits used to eval- 

uate the th
n position and speed estimates (out of totally 

701 estim s) are the root square error (RSE) and the 

absolute error (AE), respectively: 

 

ate

2 2

position
ˆRSEn ˆ

n n n nx x  y y      (19) 

2 2

speed
ˆ ˆn

n n nAE x y     v          (20) 

where  ,n nx y
 

and are the actual positions and  

 while

nv  

speeds; ˆ ˆ,n nx y d an 2 2ˆ ˆ
n nx y   are the estimated  

positions and  Tab he statistics of the speeds. le 1 lists t

 is then al-

lo

position and speed estimation errors. It is worth noticing 

that more accurate speed estimates are obtained from 

relatively inaccurate position estimates. This is mainly 

due to the fact that the speed estimate is derived from 

two position estimates and the error in position estimates 

is relatively small compared to the distance traveled by 

the probe between successive estimates [45]. 

Each of the state estimates after KF and DS

cated to a specific road link through the geometric map 

matching. Table 2 lists the statistics of the correct link 

identification (CLI) rates from 63 probe routes. As 

shown in the table, in average 84.92% of the estimates 

are mapped correctly to the road links. Sources of error 

in the link identification are due largely to the fact that 

 

 

Figure 6. KF-based tracking: A-GPS measurements vs po

sition estimates after Kalman filtering. 

Table 1. Statistics of position and speed estimation errors. 

- 

Statistics 
Total Number of 

Estimates: 701  
Mean Median Standard deviation

RSE of position 
7.7082 7.2769 4.0637 

estimates (m) 

AE of speed 

estimates (m/s) 
1.7985 1.0296 1.9984 

 
luation of the link  (map-matching). 

Statistics of the Correct

Table 2. Eva allocation

 Link Identification Rate

Number of 

Tracks: 63 

Mean Median Standard deviationAllocated Probe 

84.92% 87.87% 13.06% 

 

v ing ban roa wo  

stationary for a w pica  60 sec n re-

onse to a traffic signal at the cross. Since the mapped 

ban traffic state 

estimation has been presented. The proposed method, 

ehicles travel on ur d net rks tend to stay

hile (ty lly 30 - onds) i

sp

speed estimates are used only to calculate the average 

speed, this level of CLI is not as problematic as in the 

vehicle navigation and road pricing applications which 

rely on very accurate vehicle location. 

For each road link, all the mapped speed estimates are 

accumulated every 10 minutes. They are then aggregated 

to estimate the average link speed during that 10-min 

interval. The resultant average link speed estimations for 

selected links are shown in Table 3, being compared 

with the “ground truth” average link speeds recorded 

from the traffic simulation. As shown in the table, two 

performance metrics are considered: 1) the estimation 

accuracy evaluated by the mean absolute error; and 2) the 

system coverage evaluated by the speed estimation 

availability. The mean absolute error is defined as the 

absolute difference between the true speed on the link 

and the estimated speed. The speed estimation availabil-

ity is the fraction of links that have speed estimates 

available in the time interval. 

In addition, we classify the estimated road traveling 

speeds into three traffic condition levels, i.e., green, red, 

and yellow: 1) green level (smooth traffic) if link speed 

is above 7 m/s; 2) red level (congested traffic) if link 

speed is below 4 m/s; 3) yellow level (medium traffic) if 

link speed is between 4 m/s and 7 m/s. These two speed 

thresholds are determined considering the state-of-the-art 

traffic speed classification in urban area [8,32]. As it can 

be seen in the table, the congested traffics on link 6 and 

15 have been detected. These estimated traffic conditions 

will be color-coded on the road network and presented on 

the service subscriber’s mobile display. 

5. Conclusion 

In this paper, a method of real-time ur

Copyright © 2012 SciRes.                                                                                 JTTs 
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Table 3. Actual vs estimate

Actual│Estimated 

d average link speeds. 

verage Link Speeds (m/s) Every 10-min Interval A
Link# (Street Name) 

0 - in 40 - 50 min 50 - 60 min 10 min 10 - 20 min 20 - 30 min 30 - 40 m

Link1 (Olofsgatan) 6.95│NA 6.86│6.29 7.25│NA 7.03│7.82 7.14│6.73 6.9│NA 

Link4 (Tegnérgatan) 6.35│6.33 6.32│4.66 6.02│7.23 6.21│7.13 6.13│6.57 6.46│6.73 

Link5 (Drottninggatan) 7.16│NA 7.11│7.36 7.19│NA 7.01│7.52 7.16│7.70 7

rkogata) 

.18│7.52 

Link6 (A. Fredriks Ky 1.49│1.61 2.31│2.94 2.66│0.84 2.11│1.55 1.80│2.68 2.14│2.34 

Link9 (Kammakargatan) 7.46│8.00 7.43│8.42 6.68│NA 7.26│7.99 7.19│7.33 7.10│6.09 

Link12 (Luntmakargatan) 7.37│7.80 7.40│7.76 7.39│NA 7.40│7.86 7.29│7.44 7.45│8.10 

Link15 (Sveavägen) 2.67│3.74 3.13│4.66 2.84│3.03 2.80│3.05 2.55│3.66 2.62│3.53 

Link18 (Holländargatan) 7.21│8.31 7.28│7.58 7.34│7.47 7.33│7.51 7.07│5.78 7.24│5.95 

Link19 (Apelbergsgatan) 7.64│6.80 7.62│7.50 7.66│8.05 7.29│8.05 7.59│7.64 7.47│8.69 

Link22 (Olof Palmes Gata) 11.38│NA 11.59│NA 1  1.39│11.69 11.34│11.77 1  1.53│11.66 1  

) 

1.49│10.83

Mean Absolute Error (m/s 0.59 0.71 0.67 0.49 0.61 0.73 

Speed Estimate Availability 70% 90% 60% 100% 100% 90% 

N ailable; green: s  yellow: me ed: congeste

 

ank the Swedish Foundation 

for funding this work. 

[1] Google Maps M ic Data. 

http://google 08/google-

l-

A: the speed estimate is not av mooth; dium; r d. 

taking advantage of the recently booming A-GPS mobile 

hones, potentially solves the problems (e.g., cost and sp

urban coverage) in the current state-of-the-practice traffic 

systems. Based on the microscopic traffic simulation and 

field tests, “realistic” A-GPS mobile probe data is emu-

lated and “ground truth” traffic data is generated. The 

A-GPS location samples are firstly processed by Kalman 

filtering and data screening. The resultant position/speed 

estimates are then allocated to nearest road links through 

simple map-matching. By aggregating the speed esti-

mates on each road link, traffic states (i.e., average link 

speeds) are determined every 10 minutes for 1 hour. The 

achieved simulation results suggest that reliable average 

link speed estimations can be generated, which are used 

for indicating the real-time urban road traffic condition. 

Future work targets a smart traffic information system 

demonstrator that employs the proposed urban traffic 

state estimation method. 
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