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Vehicle detection is one of the most important environment perception tasks for autonomous vehicles. The traditional vision-
based vehicle detection methods are not accurate enough especially for small and occluded targets, while the light detection
and ranging- (lidar-) based methods are good in detecting obstacles but they are time-consuming and have a low classification
rate for different target types. Focusing on these shortcomings to make the full use of the advantages of the depth information
of lidar and the obstacle classification ability of vision, this work proposes a real-time vehicle detection algorithm which fuses
vision and lidar point cloud information. Firstly, the obstacles are detected by the grid projection method using the lidar point
cloud information. Then, the obstacles are mapped to the image to get several separated regions of interest (ROIs). After that,
the ROIs are expanded based on the dynamic threshold and merged to generate the final ROI. Finally, a deep learning
method named You Only Look Once (YOLO) is applied on the ROI to detect vehicles. The experimental results on the
KITTI dataset demonstrate that the proposed algorithm has high detection accuracy and good real-time performance.
Compared with the detection method based only on the YOLO deep learning, the mean average precision (mAP) is
increased by 17%.

1. Introduction

The core technology of the unmanned driving includes the
environmental perception, precise positioning, and path
planning. The complex road environments, especially the
mixed traffic environments, cause great difficulties to the
environment perception of the autonomous vehicles. More-
over, vehicle detection is an important part of the environ-
ment perception and plays a vital role in the safe driving of
the unmanned ground vehicle (UGV).

Currently, the mainstream obstacle detection sensors are
camera and lidar. Cameras have been widely used in the
intelligent driving because of their low cost and the ability
to obtain textures and colors of targets, which are especially
important in recognition of the traffic lights and traffic signs.
In [1], vehicles were detected based on the ground plane
assumption. In [2, 3], the histogram of oriented gradient
(HOG) and Haar features were, respectively, used to detect
the vehicles. In [4], a scale-insensitive convolution neural

network (SINet) was proposed to detect vehicles, and vehicles
of different sizes were detected in the images. However, a sin-
gle camera cannot obtain depth information and is greatly
affected by lighting conditions.

On the other hand, lidar can acquire distance and three-
dimensional information at a long detection distance. Lidar is
not affected by the illumination conditions and has strong
robustness, so it has been widely used in the environmental
perception. In [5], the geometry-based target recognition
was used, but that method was highly influenced by the envi-
ronmental conditions, such as the presence of bushes, which
could be misidentified. Moreover, in [6], lidar was used to
detect and classify pedestrians. The point clouds acquired
by the lidar were projected onto the grid and clustered by
the global nearest neighbor (GNN), and for each candidate,
its eigenvector was calculated and classified by the support
vector machine (SVM) based on the radical basis function
(RBF) kernel. In [7], the heuristic algorithm based on the
shape and location of the road network was used, and the
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clustered data were processed to select the objects that could
be vehicles. In [8], pedestrians and cyclists on the road are
classified by saliency network. In [9], the local features were
extracted from 3D voxels and the targets were classified by
the decision trees. In [10], the deep neural network model
is used to classify objects in multiscale. On the one hand, in
[11], the vehicles and pedestrians were classified using the
Gaussian hybrid model classifier (GMM classifier). In [12],
a 3D object recognition method that does not require seg-
mentation was proposed. The 3D Haar-like local features
were used instead of the global features, and the local fea-
tures were combined with the AdaBoost training. In order
to improve the efficiency of the operation, a 3D summation
area table was used, and to reduce the false alarm, the classi-
fier was retrained multiple times using the false detection as
negative samples. However, the cost of the used lidar was
very high, the amount of calculation was large, the color
information could not be obtained, and the resolution
decreased with the increase in the distance; besides, only
very scarce information on the long-distance objects could
be obtained.

The usage of the multisensor fusion scheme that com-
bines camera and lidar in the UGV has been gradually
increasing. There are three mainstream integration schemes:
(1) target detection using lidar and camera separately and
then merging the results [13, 14], (2) target detection using
the images obtained by the camera and then using the lidar
for the confirmation [15], and (3) target detection by using
the lidar to determine the region of interest and the camera
for target detection [16, 17]. In [14], the obstacles in the
image and point cloud were processed separately to identify
and classify the pedestrians. Then, the target matching was
carried out, and the results were merged for pedestrians with
the same detection and classification results. In [15], targets
were extracted from the image obtained by the camera, and
then vehicles were detected, and hypotheses were generated
by the Haar-like features and AdaBoost, and after that, the
hypotheses were confirmed by lidar. In [16], the authors used
lidar to determine the region of interest and the SVM to clas-
sify the target in the image, but the proposed method could
detect only the rear features of a vehicle, and the detection
rate was low. In [17], vehicle features were extracted from
the side view of a tire, so the detection rate for the vehicles
parallel to the autonomous vehicle was low. The main idea
of this paper is the same as that of [16, 17], which is to use
lidar to extract the region of interest, and then to use the
YOLO, which has high detection accuracy, to detect the
objects in the ROI of the images.

In this paper, the map is constructed by the max-min
elevation map from point cloud, which is clustered by eight
connected region markers, and then, morphological expan-
sion is applied to the clustering results. After that, the mini-
mum rectangle of each connected domain is calculated and
points from these rectangles are projected onto the image.
After projection, the coordinate extremum of each rectangle
on the image is obtained. The area is enlarged and merged to
obtain the area of interest in the image, and finally, the
YOLO is used to classify the obstacles. The process is shown
in Figure 1.

2. Region of Interest Extraction

2.1. Build Grid Map. The Velodyne HDL-64 lidar used in this
paper returns about 1.3 million points per second. The huge
amount of data helps the environment perception of the
UGV, but it poses a great challenge to the real-time algorithm
performance. In response to this problem, this paper uses the
max-min elevation map for environment creation. At the dis-
tance of d f , in front of the vehicle, an M ×N grid map with

the bottom left corner as the origin is established where each
cell is a square with the side length dc. We setM to 320, N to
160, and dc to 0.2m. The projection of the lidar coordinate
system onto the grid coordinate system is given as follows:

Pm =
yl − d f

dc
+ 1,

Pn =
xl + N/2 ∗ dc

dc
+ 1,

1

where xl, yl is the lidar returned point in the lidar coordi-
nate system. The lidar coordinate system takes the vehicle
direction as the y-axis, the vertical direction as the z-axis,
and direction that is perpendicular to the forward direction
to the right as the x-axis. Pm and Pn correspond to the grid
coordinates of the point. When points Pm and Pn satisfy the
conditionsM < Pm or Pm < 0 and N < Pn or Pn < 0, the point
is dropped. Example of grid map is shown in Figure 2.

After traversing all the points, the points within the grid
map are projected onto the corresponding grid, and the
height data is preserved. We consider that there is an obstacle
when the difference between the maximum height and the
minimum height of a single grid is greater than the set
threshold. The grid map provides a computationally efficient
approximation to the terrain gradient in a cell [18] and
the amount of data we need to deal with is greatly reduced
from p to M ∗N , where p is the amount of data returned
from lidar.

Considering that the distance between the scanning lines
of a multiline lidar increases with the increase in the scan-
ning distance, an incomplete scanning of obstacles can be
caused, especially in the vertical direction, and the distant
obstacles can be scanned only by several scanning lines.
Therefore, this paper uses the morphological expansion
operation for obstacle cells in the grid map. The matrix we
use is given as follows:

0 1 0

1 1 1

1 1 1

0 1 0

2

Taking the scene shown in Figure 3 as an example, the
top view of the original point cloud, the created grid map,
and the grid map after expansion operation shown in
Figures 4, 5, and 6, respectively, are obtained.
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2.2. Grid Clustering. In this paper, eight connected region
markers are applied to clustering. If an obstacle cell is con-
nected with the other obstacle cells in the upper, lower, left,
right, upper-left, lower-left, upper-right, or lower-right cor-
ner, these cells are considered to belong to the same obstacle,
so they are represented by the same number.

2.3. Projection from Grid Map to Image. We first convert the
grid coordinate extremum xg min, xg max, yg min, yg max of each

obstacle to the lidar coordinate system xl min, xl max, yl min,

yl max and then extract all the obstacle points xli, yli, zli from
the point cloud as follows:

xl min < xli < xl max,

yl min < yli < yl max,
3

where l denotes the obstacle number. After that, we project the
extractedpoints to the image,wherepin is the inputpoint cloud
and E is the projection matrix of the point cloud to the image.
Since the dimension of pin is n × 3 and the dimension of E is

Enlarge ROIMerge ROIROI-YOLO

Process point cloud
Origin point cloud

Origin image Project point cloud Extract ROI

Figure 1: Algorithm flowchart.
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y

Figure 2: Example of grid map.

Figure 3: Example scenario.
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3 × 4, it is necessary to fill 1 in the last column of pin to obtain
pin1. The projection formula is given as follows:

pout1 = E ∗ pTin1
T
, 4

where pin1 denotes thematrix of input point cloud after exten-
sionwith 1 in the last columnandpout1 denotes thenonnorma-
lized homogeneous coordinates of obstacle points.

The normalized homogeneous coordinates are obtained
as follows:

pout =
L pout1 1,2

L pout1 3 ∗ 1 1
, 5

where L pout1 1,2 represents a new matrix consisting of the

first and second column elements of pout1, and its dimen-
sion is n × 2; L pout1 3 represents a new matrix composed

of elements of the third column of pout1, and its dimension
is n × 1. The dimension of pout is n × 2 and it denotes a set
of the projection coordinates of the point cloud on the
image. The image coordinate system takes the upper-left
corner of the image as the origin, the right direction as
the x-axis positive direction, and the downward direction
as the y-axis positive direction.

The projection effect is shown in Figure 7.

Figure 4: Original point cloud.

Figure 5: Grid map.

Figure 6: Grid map after expansion.

Figure 7: Obstacle point cloud projection image.
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2.4. Extract Regions of Interest. From the coordinates of the
points of pout, the extremum of the horizontal and vertical
coordinates of each obstacle in the image coordinate system
xip min, x

i
p max, y

i
p min, y

i
p max can be obtained. We use the

rectangular region formed by the four extreme values that
indicate the region of interest of the obstacle in the image,
as shown in Figure 8. Since for the lidar, the farther the
scanning distance is, the lower the density of the point
cloud is, and when the obstacle is far away from the
UGV, the lidar can only scan a part of the obstacle. At
the same time, the scanning point of the lidar cannot pen-
etrate the obstacle, so the occlusion between the obstacles
can also cause the same problem. If only the abovemen-
tioned method for the region of interest extraction is used,
often, only a part of the target obstacle is extracted, which
affects obstacle classification. On this basis, this paper pro-
poses a region of interest amplification method based on
the dynamic threshold.

For obstacle i, the average distance between the lidar
scanning point belonging to the obstacle and the UGV
labeled as dmeani is calculated, and the threshold is given
as follows:

h =
M ∗ dc

M ∗ dc − dmeani

6

The parameters of the rectangular region of interest
that the obstacle belongs to are given as follows:

xiroimin = xip min − h ∗ 3,

yiroimin = yip min − h ∗ 3,

widthiroi = xip max − xip min + 6 ∗ h,

heightiroi = yip max − yip min + 6 ∗ h,

7

where widthiroi is the rectangle width, and heightiroi is the
rectangle height. The rectangular frame in Figure 9
denotes the enlarged region of interest.

The region of interest will overlap after enlargement. In
this paper, the overlapped rectangles are merged into one
region of interest whose parameters are given as follows:

The merged region of interest is shown in Figure 10.

3. Obstacle Classification by YOLO

The YOLO is a new target detection algorithm. It uses a
single neural network to predict the bounding box and class
probability directly from the complete image by only one
evaluation. Moreover, it can directly optimize the detection
performance end-to-end, so it has a high real-time

performance. The basic YOLO model can process the image
in real-time at the speed of 45 frames/sec while achieving
twice larger mAP than the other common real-time detec-
tors. However, the YOLO has a certain positioning error
[19]. In this work, the YOLO v3 is used to classify the obsta-
cles. The YOLO v3 combines various advanced methods to
overcome the shortcomings (low detection accuracy, lousy
performance at detecting small objects, etc.) of the previous
two generations of the YOLO algorithm and improves the

Figure 8: Original region of interest. Figure 9: Enlarged region of interest.

Figure 10: Merged region of interest.

widthiroi =max xi1p min + widthi1roi, x
i2
p min + widthi2roi −min xi1p min, x

i2
p min ,

heightiroi =max yi1p min + heighti1roi, y
i2
p min + heighti2roi −min yi1p min, y

i2
p min ,

xiroimin =min xi1p min, x
i2
p min ,

yiroimin =min yi1p min, y
i2
p min

8
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detection accuracy guaranteeing excellent real-time perfor-
mance. The YOLO v3 is based on the idea of the ResNet,
and it combines the Darknet19 network of the YOLO2 to
propose a new feature extraction network named the
Darknet-53. Regarding the classification accuracy, the
Darknet-53 is close to the ResNet-101 and ResNet-152, but
much faster [20]. The running time of the YOLO v3 on 320
× 320 pixels images is 22.2ms, reaching 28.2mAP, which is
as accurate as the single shot multibox detector (SSD), but
three times faster [21]. However, the YOLO shows a certain
decrease in the detection rate when the target is dense and
when there is occlusion.

3.1. Dataset Selection and Processing. In this work, we used
the KITTI [22] dataset to train and verify the YOLO network.
The KITTI dataset was cofounded by the German Karlsruhe
Institute of Technology (KIT) and the Toyota Institute of
Technology to provide a dataset for the computer vision
algorithms in an autonomous driving environment. The
KITTI dataset contained eight obstacle types: cars, vans,
trucks, pedestrians in standing and sitting positions, cyclists,
trams, and others. In this work, cars, vans, and trucks were
considered to be the same type of obstacles (vehicles), and
the other types of obstacles were ignored.

3.2. Network Training. Before the training, we created the
training set and verification set. We used the random
selection method to divide all of the 7481 images in the
KITTI dataset into the training set and verification set by
the ratio of 7 : 3. Size of images provided by KITTI is
1242 ∗ 375.

The main parameters of the experimental platform were
CPU—Intel Xeon E5-2687W V4 at 3.00GHz, mem-
ory—128G, and GPU—NVIDIA Quadro M4000. The deep
learning used the Keras platform.

The training parameters of the YOLO v3 are given in
Table 1.

4. Results

4.1. Overall Results. In the test, the test set provided by the
KITTI was used. The result of the original YOLO v3 algo-
rithm is shown in Table 2(a). The result of vehicle detection
using the proposed method is shown in Table 2(b). The pre-
cision and recall chart of the YOLO v3 algorithm and the
proposed algorithm for vehicle detection on the KITTI test
set are presented in Figures 11(a) and 11(b), respectively.

4.2. Comparison of Experimental Results in Sample Scenarios.
Figures 12, 13, and 14 show some of the scenarios in the
experiment. As it can be seen in these figures, there was a
large number of vehicles in each scene, and the occlusion
was severe. Figure 12(b) shows the results of vehicle detection
using the YOLO v3 algorithm. Figure 12(c) shows the results
of vehicle detection using the proposed algorithm.

5. Discussion

The experimental results showed that the proposed algo-
rithm significantly improved the vehicle detection accuracy

at different detection difficulty levels compared to the orig-
inal YOLO v3 algorithm, especially for the vehicles with
severe occlusion. Under easy, moderate, and hard difficul-
ties, the average accuracy (AP) improvement was by
nearly 12%, 20%, and 17%, respectively. We calculated
the proportion of the area of all ROIs to the total area
of images on the training dataset in KITTI, which is
55%, and the proportion of the number of ground truths
contained in ROIs to the total number of ground truths
in the training dataset, which is 96%. At the same time,
because the use of grid map for the purpose of reducing
dimensions of point clouds and the selected point clouds
is only in the range of 64m∗32m in front of the vehicle,
the computational complexity of the algorithm is greatly
reduced. Therefore, the time consumption of the proposed
algorithm does not increase much compared to YOLO v3.
We tested it on our experimental platform with 1000
frames of data which randomly selected from KITTI data-
set, and the average processing time per frame of the pro-
posed algorithm was about 0.09 s, while of the YOLO v3
algorithm was 0.05 s.

We selected 50 easy, moderate, and difficult images,
respectively, from the KITTI test set and compared the
obtained results with the results given in [16, 17] as shown
in Table 3.

The experimental results show that the proposed algo-
rithm has great advantages under various difficulty condi-
tions compared with the algorithms proposed in [16, 17].

However, the proposed algorithm still has certain short-
comings. For instance, when the target vehicle is far away
from the UGV, it cannot be scanned by the lidar, so the algo-
rithm cannot detect it. At the same time, if a large vehicle is
close to the autonomous vehicle, such as a container truck,
it is possible that only a portion of that vehicle would be
detected after enlarging the ROI area so that the algorithm
could fail to identify it.

Table 1: Training parameters of the YOLO v3.

Parameter Value

Batch size 2

Learning rate 10-4

Ignore thresh 0.5

Number of epochs 100

Table 2

(a) Result of the original YOLO v3

Benchmark Easy Moderate Hard

Car (detection) 58.56% 43.38% 38.23%

(b) Result of the proposed method

Benchmark Easy Moderate Hard

Car (detection) 70.58% 62.71% 55.17%
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Figure 11: Test results on the KITTI dataset. (a) Precision and recall chart of vehicle detection on the KITTI test set of the YOLO v3
algorithm. (b) Precision and recall chart of vehicle detection on the KITTI test set of our algorithm.

(a) (b)

(c)

Figure 12: The experimental results of Scenario 1. (a) Scenario 1. (b) Results of vehicle detection using the YOLO v3 algorithm. (c) Results of
vehicle detection using our algorithm.

(a) (b)

(c)

Figure 13: The experimental results of Scenario 2. (a) Scenario 2. (b) Results of vehicle detection using the YOLO v3 algorithm. (c) Results of
vehicle detection using our algorithm.
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6. Summary and Outlook

A vehicle detection method based on the multisensor fusion
is proposed in this paper. Using the calibration relationship
between the lidar and camera, the region of interest extracted
by the lidar is projected into the image obtained by the cam-
era, and the region of interest in the image is obtained and
processed. Finally, the YOLO v3 algorithm is used to detect
the vehicle in the region of interest. The effectiveness of the
proposed algorithm is verified by experiments.

In our future work, we will optimize the extraction of
the region of interest to achieve better target extraction.
At the same time, different ROI sizes mean different input
image sizes. Although they will be resized into images of
the same size in the beginning of YOLO, the proportion
of area of obstacles on the image will change greatly, which
will make the detection accuracy of the model decrease. To
solve the problem, we will improve the YOLO algorithm or
use some other more targeted networks to achieve better
detection accuracy.
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