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Abstract—The vehicle-to-grid (V2G) system enables energy
flow from the electric vehicles (EVs) to the grid. The distributed
power of the EVs can either be sold to the grid or be used to
provide frequency regulation service when V2G is implemented.
A V2G control algorithm is necessary to decide whether the EV
should be charged, discharged, or provide frequency regulation
service in each hour. The V2G control problem is further
complicated by the price uncertainty, where the electricity price
is determined dynamically every hour. In this paper, we study
the real-time V2G control problem under price uncertainty. We
model the electricity price as a Markov chain with unknown
transition probabilities and formulate the problem as a Markov
decision process (MDP). This model features implicit estimation
of the impact of future electricity prices and current control
operation on long-term profits. The Q-learning algorithm is then
used to adapt the control operation to the hourly available price
in order to maximize the profit for the EV owner during the whole
parking time. We evaluate our proposed V2G control algorithm
using both the simulated price and the actual price from PJM in
2010. Simulation results show that our proposed algorithm can
work effectively in the real electricity market and it is able to
increase the profit significantly compared with the conventional
EV charging scheme.

I. INTRODUCTION

Vehicle-to-grid (V2G) system enables the delivery of energy

from the future electric vehicles (EVs) to the grid [1]–[3]. The

batteries of the EVs in the V2G system can either provide

power to the grid when parked or take power from the grid to

charge the batteries. With V2G abilities, the EVs have a dual

role in the electricity market. On one hand, they are power

consumers when the batteries are being charged. On the other

hand, they are power suppliers when they sell excessive energy

from the batteries. As most of the vehicles are parked on an

average of 96% of the time [4], they can be utilized as a

power source besides transportation. However, each EV has

a limited power capacity (10-20 kW) [2] and most of the

services in the electricity market are carried out on a MW
basis [5]. Therefore, an intermediate system called the V2G

aggregator is needed to collect the small scale power from a

large number of EVs in order to enter the electricity market.

The primary objective of the EVs when parked is to

charge batteries before their next departure. The conventional

approach would start charging at the maximum rate once

plugged in until the expected state-of-charge (SOC) is reached

[6]. With the development of V2G technology, bulk power

selling and frequency regulation can be provided via the V2G

aggregator in order to bring revenues for the EV drivers.

The V2G aggregator controls the charging operations of the

batteries of hundreds or thousands of EVs. As each EV is in

different conditions (e.g., arrival and departure time, SOC, and

capacity) from each other, an intelligent control algorithm is

necessary for the aggregator to determine the control operation

for the EVs in each hour (charging, discharging, or providing

frequency regulation service) in a way that the profit of the EV

is maximized subject to the EV’s constraints (e.g., expected

SOC must be reached).

There are a few V2G control algorithms proposed in the lit-

erature. The work in [7] considers the problem of maximizing

the profits for the EV owners by selling excessive energy to the

grid. Binary particle swarm optimization is used to determine

if the EV should be charged, discharged, or in standby mode.

Frequency regulation is integrated with the V2G system in [6].

The EVs in the V2G system can either be charged or provide

frequency regulation. A dynamic programming (DP) algorithm

is proposed to obtain the optimal control sequence for each

EV. Both algorithms assume that the future electricity pricing

information is given in advance based on a day-ahead pricing

model.

With the recent development of smart grid technologies

especially the communications infrastructure, real-time pricing

[8]–[10] is becoming a promising scheme to increase power

system reliability and efficiency by adjusting electricity prices

according to the real-time supply and demand conditions

[11]. The prices are usually high during peak hours and

they change at different hours of the day to reflect the real-

time cost of electricity. Real-time pricing has already been

implemented in some places (e.g., Illinois Power Company

in Chicago [8]). With real-time pricing, the electricity price

can be determined by the utility company just a few minutes

prior to the beginning of each hour. The customers can receive

the hourly pricing information and respond to it by adjusting

their electricity usage. However, real-time pricing creates great

challenges for customers as they are facing not only the hourly

decisions making problem but also the uncertainty of the future

electricity prices.

The issue of price uncertainty brought up by real-time

pricing has recently been studied in demand response in order

to solve the decision making problem of whether customers

should consume the energy now at current price or shift the

demand to the future at unknown prices [12], [13]. In [12],

a real-time demand response algorithm operating on a daily



24-hours horizon is proposed, where the price uncertainty

is considered in the model via robust optimization. Another

method to tackle the price uncertainty issue can be found in

[13], where reinforcement learning is used in the residential

demand response algorithm. Both [12] and [13] deal with the

real-time demand response problem, while we consider the

same price uncertainty problem in the context of V2G control.

In this paper, we consider the real-time V2G control prob-

lem under price uncertainty. We propose a novel V2G control

algorithm that learns from past experiences and automatically

adapts to the unknown pricing information and makes optimal

hourly control decisions. The contributions of this paper are

as follows:

• We model the V2G control problem as a Markov decision

process (MDP), where the price uncertainty is taken into

account by maximizing the long-term objective function.

The decisions at current time are made with consideration

of future profits.

• We then propose an online learning algorithm to automat-

ically control the EVs in response to the hourly electricity

prices. The proposed algorithm can adapt to the changing

pricing information.

• We evaluate the proposed algorithm using both the simu-

lated price and the actual price. Simulation results show

that the proposed algorithm can increase the profit sig-

nificantly and it is effective under real market conditions.

The real-time availability of the pricing information brought

by the recent development of smart grid technologies differs

our proposed V2G control algorithm from previous works [6],

[7] which require the pricing information of the whole parking

time in advance. Our proposed algorithm is based on real-time

pricing, which is different from algorithms [6], [7] based on

day-ahead pricing. Real-time pricing and day-ahead pricing

are two different pricing models in the electricity market.

Therefore, our proposed algorithm has a different application

background than the previous algorithms. Modeling the time

series of electricity price as a Markov chain is not new [14]

and it can also be found in the real-time demand response

algorithm [13], but the idea of applying it to the design of V2G

control algorithm under price uncertainty is novel. In addition

to the modeling of price uncertainty, our proposed algorithm

is also different from the existing V2G control algorithms [6],

[7] in that both frequency regulation and bulk power selling

are considered.

The rest of the paper is organized as follows. Our system

model is described in Section II. The MDP formulation of the

V2G control algorithm under price uncertainty is discussed

in Section III. The Q-learning algorithm to solve the MDP

problem is presented in Section IV. Simulation results are

provided in Section V. Conclusions are given in Section VI.

II. SYSTEM MODEL

This section describes the real-time V2G control problem.

It also introduces an overview of the V2G system and the

objective of the system design, which will be used in the

following MDP formulation.

1 day (24 hours)

Known Prices Unknown Prices

0t t dt

7:00 10:00 16:00

Fig. 1. The electricity price uncertainty in the V2G control problem.

A. System Overview

As we discussed in Section I, the small scale power capacity

of a single EV’s battery requires the V2G aggregator to

gather the large scale power from hundreds or thousands

of EVs in order to sell the V2G power or to provide the

frequency regulation service in the electricity market. In the

V2G system, all the control operations are initiated by the

aggregator using the control algorithm. With real-time pricing

program implemented, the V2G aggregator receives the pricing

information a few minutes (e.g., 10 min) prior to the beginning

of each hour. Using this pricing information, the V2G control

algorithm is run for each EV, which will stay parked in

the next hour, to find whether the aggregator should charge

its battery for the next trip, discharge for selling excessive

power, or use its available power capacity to provide frequency

regulation service. After gathering the control operations of all

the EVs, the V2G aggregator sends the contract information

(i.e., total amount of power to buy, total amount of power to

sell, and total capacity for frequency regulation) to the utility

company (e.g., 5 min before the coming hour). The above

communications process is carried out at the beginning of each

hour. In the following hour, the contracted buying and selling

power will be dispatched. An energy management system from

the utility company will dispatch appropriate regulation signals

to the V2G aggregator based on the contracted capacity using

its own algorithm.

B. Objective

We now describe the V2G control problem under price

uncertainty at time t. Assume that the EV arrives at time t0
and will depart at time td as shown in Fig. 1. The time indices

in our discussions are all assumed to be the beginning of the

hour. The pricing information (i.e., the electricity price and

the frequency regulation price) and the control decisions for

the previous hours from t0 to t − 1 are known. The pricing

information for the current hour is known (e.g., a few minutes

prior to t). The prices for the following parking hours (t, td−1]

are unknown data and this uncertainty needs to be modeled.

The control decision for time t needs to be determined by the

control algorithm after it receives the pricing information for

the current hour.

The objective of the V2G control algorithm is to maximize

the profit for the EV owner which refers to the payment from

the utility company by selling power and providing frequency

regulation service minus the costs of purchasing power from

the grid. To calculate the profit, we need to first understand

how the payments are made. The payment from bulk power

selling is equal to the product of the electricity price and



the amount of energy sold. Another source of payment is

frequency regulation. Unlike bulk power selling, the payment

from regulation is made according to the power capacity

provided instead of the amount of real dispatched energy.

In fact, the SOC of the battery will be affected due to the

regulation signals. However, as the fluctuations of the positive

and negative power deviations in regulations are uniformly

distributed, the total amount of energy flows into the grid is

equal to the amount of energy flows out of the grid in the long

run [15]. Therefore, we assume that the SOC stays the same

when providing frequency regulation service [6].

III. V2G CONTROL PROBLEM AS AN MDP

This section describes formulation of the V2G control

problem under price uncertainty as an MDP. An MDP is com-

pletely described through its state space, action space, system

dynamics, and value function. The following definitions are

the foundation for the Q-learning algorithm to be discussed in

the next section.

A. State Space

We consider the V2G control problem for a single EV

arriving in the V2G aggregator at discrete time t0. We assume

that once the EV is parked, its departure time td and the

expected SOC at departure B are known. The hourly electricity

pricing signals are indicated by a vector pt = [pc
t pr

t ], where

pc
t

is the market price for purchasing and selling electricity in

$/kWh and pr
t is the price for providing frequency regulation

in $/kWh−1
. Note that kWh−1

is the regulation power

capacity contracted for an hour and should not be confused

with kWh which is the energy unit. Let 0 ≤ bt ≤ 1 be the

SOC which is defined as the percentage of the battery power

capacity that are available at time t and lt denote the time left

for departure.

Let st ∈ S denote the state of the system at time t. We

define st = [pt bt lt] ∈ S, where S is the state space of the

V2G control problem. S is the composite space comprising

of the pricing space P , the SOC space B, and the remaining

time space L, i.e., S = P × B × L, where × denotes the

Cartesian product. Note that there is a terminal state which

ends the MDP when t = td.

B. Action Space

The action in the V2G control problem can be interpreted

as choosing one control operation from the action space A =
{charging, discharging, regulation}. However, due to the

constraints in the V2G control problem, not all the actions

can be performed at a given state. Let at ∈ Ast denote the

action, where Ast is the set of all possible actions given the

state of the system.

Ast is limited by two types of constraints in the V2G

control problem. The first constraint is that the EV must be

charged to the expected SOC at departure. We assume that

when the EV arrives, the driver will notify the expected SOC

B and departure time td, which are essential information

for the control algorithm, to the aggregator. This mandatory

notification can be achieved by signing a contract by the EV

driver to guarantee that the EV would be plugged in during

the notified period of time in return of some incentives [16].

However, it still may happen that the EV leaves before the

expected departure time. Under this circumstance, the battery

of the EV may not be charged enough for the expected SOC

even though it has been plugged in for a long time due to the

discharging. Some V2G control algorithms restrict that once

the expected SOC is reached, the EV cannot be discharged any

more as way to deal with early departure [7]. We do not adopt

this approach in our algorithm and leave the responsibility to

the driver to make sure that the EV departs as expected.

Let C denote the charging rate which is the percentage of

the battery energy capacity that can be charged per hour. We

assume the discharging rate is the same as the charging rate but

with an opposite direction which is denoted by −C. The action

space satisfying the departure constraint can be expressed as

Ast

1 =























































{charging, discharging, regulation},

if lt ≥

⌈

B − bt

C

⌉

+ 2,

{charging, regulation},

if

⌈

B − bt

C

⌉

< lt <

⌈

B − bt

C

⌉

+ 2,

{charging}, if lt ≤

⌈

B − bt

C

⌉

,

(1)

where ⌈·⌉ is the ceiling function.

The second constraint is the energy constraint. The V2G

power flow from the EV to the grid is limited by not only the

periphery circuits, but also the SOC. The battery management

system would protect the battery by restricting charging and

discharging when the SOC is approaching the maximum and

minimum, respectively. Therefore, we forbid the battery from

being charged and discharged when the SOC is approaching

the maximum (e.g., 95%) and minimum (e.g., 5%), respec-

tively. The action space satisfying the energy constraint can

be obtained as

Ast

2 =

{

{discharging, regulation}, if bt ≥ 95%− C,

{charging, regulation}, if bt ≤ 5% + C.
(2)

The action space given the current state st satisfying both

constraints would be the intersection of the sets Ast

1 and Ast

2

Ast = Ast

1

⋂

Ast

2 . (3)

When the system is in state st ∈ S, a finite number of possible

actions which are elements of the set Ast can be taken.

At each time step, the control algorithm implements a

randomized policy which is a discrete probability function of

the state and the possible actions. The randomized policy at

time t is denoted πt(s, a) which is the probability that action

a is taken when the state is s at time t.

We define the function Ψ(at), at ∈ Ast which returns the



amount of energy dispatched from the grid by action at

Ψ(at) =











EC, if at = charging,

0, if at = regulation,

−EC, if at = discharging,

(4)

where E is the battery capacity of the EV in kWh.

C. System Dynamics

For a given policy, the evolution of an MDP is characterized

by the transition probability

P(st+1 | st, at), (5)

for some st, st+1 ∈ S, at ∈ Ast , and t = {t0, t0 +1, . . . , td −
1}.

The evolutions of bt and lt are given by

P(bt+1 | bt) =

{

1, if bt+1 = bt + Ψ(at),

0, otherwise,
(6)

and

P(lt+1 | lt) =

{

1, if lt+1 = lt − 1,

0, otherwise.
(7)

Therefore, we can obtain the system state transition proba-

bility as

P(st+1 | st, at) = P(bt+1 | bt)P(lt+1 | lt)P(pt+1 | pt). (8)

Unfortunately, the underlying statistical structure of the

pricing information is difficult to estimate and it is subject

to the market conditions. Hence, P(st+1 | st, at) is unknown

and may change with time.

D. Value Function

Let finite reward r(st, at) be the instantaneous revenue of

taking action at at state st. We define the reward as the

financial revenue for the EV owner. The reward is equal

to the energy payment of charging and discharging or the

capacity payment of providing frequency regulation. As the

charging/discharging operations are performed at the rate C,

the corresponding rewards are calculated based on the energy

flow Ψ(at). Note that the reward is the negative when the

owner pays money and positive when the owner gains money.

The payment of regulation is made using the maximum power

capacity. To sum up, the reward function is defined as

r(st, at) =











−pc

t
EC, if at = charging,

pr

tEC, if at = regulation,

pc

t
EC, if at = discharging.

(9)

We adopt the expected total reward as the optimization

criterion in the V2G control problem. Let the total reward

conditioned on the initial state st0 under a given policy π be

defined as

Rπ

st0
= Eπ

{

td−1
∑

t=t0

r(st, at) | st0

}

, (10)

where the expectation is over randomized actions at and

system state st evolution for t = {t0, t0 + 1, . . . , td − 1}.

The objective is to compute the optimal control policy π∗ that

maximizes the expected total reward (10).

IV. THE Q-LEARNING ALGORITHM

Solving (10) for the optimal control policy π∗ generally

requires the knowledge of the transition probability distri-

bution of pt. Unfortunately, the underlying structure of the

energy price is difficult to estimate and may change with

market conditions. To address this challenge, we use an online

learning algorithm. Among many such algorithms, we choose

the Q-learning algorithm [17], [18] for its simplicity.

The Q-learning algorithm estimates the value of the optimal

action-value function, denoted Q∗, and defined as

Q∗(s, a) = maxπEπ

{

td−t−1
∑

k=0

r(st+k, at+k) |

st = s, at = a} .

(11)

To approximate the optimal action-value function Q∗, the

Q-learning algorithm learns from experiences and updates at

each time step. Let a∗ be the greedy action which maximizes

Q(st, a). At each time step, the Q-learning algorithm chooses

a∗ most of the time, but with probability ǫ it selects an action

at random. The randomized policy πt(st, a), ∀ a ∈ Ast is

defined by

πt(st, a) =











1 − ǫ +
ǫ

|Ast |
, if a = a∗,

ǫ

|Ast |
, if a 6= a∗,

(12)

where ǫ is a small number which ensures that all state-action

pairs can be visited and updated.

The instant reward r(st, at) can be obtained after at is

executed and the system state transits to st+1. The learned

Q function can be updated by

Q(st, at) := Q(st, at) + αt[r(st, at)

+ maxa∈A
st+1Q(st+1, a) − Q(st, at)],

(13)

where 0 < αt < 1 is the learning rate. It determines how

the new information is averaged with existing estimate. It

can be shown that choosing the learning rate αt = 1

t
under

the usual stochastic approximation conditions and if all state-

action pairs are continuously updated, Qt converges to Q∗ with

probability 1. However, using this decreasing learning rate

means that the algorithm will respond less to the environment

as the time goes on, which is not helpful in the V2G control

problem to capture the changing transition probabilities of the

prices. Alternatively, we choose αt to be a small constant

number. It can be shown in [19] that Qt converges to a region

near the optimal Q∗ using a constant learning rate. Although

some estimation errors cannot be avoided using this method,

it is able to adapt to the changes of the underlying statistical

structure of the environment.

A complete description of the Q-learning algorithm for

solving the real-time V2G control problem can be found in



Algorithm 1 - The Q-learning Algorithm: Executed by the

V2G aggregator when the EV arrives.

1: t := t0.
2: The EV informs td and B to the aggregator.
3: Initialization: lt0 = td − t0.
4: Repeat
5: Receive the real-time pricing information pt.
6: a∗ = arg max

a
Q(st, a).

7: Choose at from policy πt defined by (12).
8: Take action at and obtain the reward rt(st, at).
9: bt+1 = bt + Ψ(at), lt+1 = lt − 1.

10: Update the Q function using (13).
11: t := t + 1.
12: Until the EV departs
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Fig. 2. States and transition probabilities for (a) the market price pc
t
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Algorithm 1. The algorithm is run for every EV in the V2G

aggregator when it arrives. Upon the EV arriving, the driver

needs to inform the expected departure time and expected

departure SOC to the aggregator. At the beginning of the fol-

lowing hours, the algorithm will receive the real-time pricing

information from the utility company (Step 5). Step 7 finds

the control action to be taken at the current state based on the

current estimate of the Q function. The aggregator executes the

control action in Step 8 and obtains the reward. The system

evolves after the action is implemented in Step 9. Step 10
updates the Q function. Steps 5-11 are repeated during the

parking hours until the EV departs. Note that the Q function

is a global variable stored in the V2G aggregator so that its

value can be accessed and updated by all the EVs. The initial

value of the Q function can be arbitrary.

V. PERFORMANCE EVALUATION

In this section, we present the simulation results for the

proposed real-time V2G control algorithm. For simplicity, we

consider the case where the proposed V2G control algorithm

is run for a single EV on different days with exactly the same

conditions. The battery energy capacity is E = 20 kWh. The

charging rate C = 0.1. We assume that the EV arrives at

18:00 in the afternoon with arriving SOC of 40% every day

and departs at 8:00 next morning with expected departure SOC

of 70%. In the simulation, we consider two different scenarios.
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Fig. 3. The comparison between the daily profit of the proposed V2G control
algorithm and the conventional charging scheme using the simulated price.

In the first scenario, we generate the electricity prices using

a two-state Markov chain. In the second scenario, we use the

actual real-time location marginal price (LMP) and regulation

market clearing price (RMCP) from PJM Interconnection [20]

which is a major regional transmission organization operating

the wholesale electricity market in the US. The simulated

prices and actual prices are all given for 24 hours a day on a

MW scale. Note that the previously proposed V2G control

algorithms [6], [7] cannot be directly compared with our

proposed algorithm due to the different pricing models.

A. Simulated Price

We first implement our proposed V2G control algorithm

using the electricity prices generated by a Markov chain. The

Markov chain for pc
t

and pr
t

are shown in Fig. 2. The prices are

chosen as the typical values from the actual price data from

PJM. The initial state is randomly selected. The time period

we run for the proposed algorithm is one year. The parameters

in the algorithm are chosen as αt = 0.05 and ǫ = 0.02 in the

simulation.

The results of the daily profit of the proposed algorithm

and the conventional scheme, which charges the battery at the

maximum rate to the expected SOC once it is plugged in,

are shown in Fig. 3. We can see the learning process of our

proposed algorithm from the figure. The proposed algorithm

does not show advantages over the conventional scheme at

first. As it learns from the experiences and adapts to the

changing prices, the daily profit of the proposed algorithm

starts to increase. The proposed algorithm constantly outper-

forms the conventional scheme by a significant margin after

the learning process which lasts about 25 days. If we compare

the average daily profit after the learning process, the results

would be $0.079 and −$0.23 for the proposed algorithm and

the conventional scheme, respectively. The positive profit of

the proposed algorithm is remarkable because it shows that

plugging in the EVs does not necessarily cost money when

V2G is implemented and it can even bring profit to the EV

owners by properly scheduling the control operations.



50 60 70 80 90
−40

−20

0

20

40

60

80

Departure SOC (%)

A
v
e

ra
g

e
 d

a
ily

 p
ro

fi
t 

(c
e

n
t)

 

 

C = 0.20

C = 0.15

C = 0.10

C = 0.05

Fig. 4. The average daily profit of the proposed V2G control algorithm
using the actual pricing data from PJM under different charging rates C and
departure SOCs.

B. Actual Price

We then evaluate our proposed real-time V2G control

algorithm using the actual electricity price data from PJM

starting from 1:00 January 1st 2010 to 24:00 December 31st

2010 under different charging rates and departure SOCs. The

simulation parameters are the same as in the simulated price

scenario. For each set of the simulation run, 50 trails of the

proposed algorithm are performed.

The simulation results of the proposed algorithm when

the departure SOC varies from 50% to 90% and the battery

charging rate varies from 0.05 to 0.2 are shown in Fig. 4. As

we can see from the figure, the average daily profit decreases

linearly as the departure SOC increases while the charging

rate stays the same. This is due to the fact that more hours are

required for charging in order to meet the increasing departure

SOC, which costs more money. If we compare the result of

different charging rates at the same departure SOC, it can

be found that increasing the charging rate can result in an

increasing daily profit. It is not hard to understand this result

as the required charging hours diminish when the charging

rate is increased. Decreasing required charging hours mean

that more hours during the parking time can be utilized to sell

power and provide regulation service in order to increase the

revenue. Therefore, the EV must either be charged/discharged

at the maximum rate, or provide regulation service using full

capacity in order to maximize the profit.

VI. CONCLUSION

In this paper, we investigated the V2G control problem

under price uncertainty. The problem is formulated as a

discrete-time MDP, where the price uncertainty is modeled

via a Markov chain with unknown transition probabilities. We

proposed an online learning algorithm to solve the problem

adaptively using hourly available pricing information. The

proposed algorithm differs from previous algorithms in mod-

eling the price uncertainty brought up by the real-time pricing

to make the control decisions. We evaluated the proposed

algorithm using both the simulated price and the actual price

data from PJM. Simulation results showed that our proposed

algorithm is able to increase the profit for the EV owners

significantly. More advanced statistical models such as hidden

Markov models (HMMs) can also be applied within the same

framework in the future.
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