
Vol.:(0123456789)1 3

Journal of Real-Time Image Processing (2021) 18:889–900

https://doi.org/10.1007/s11554-020-01044-0

ORIGINAL RESEARCH PAPER

Real-time video fire/smoke detection based on CNN in antifire
surveillance systems

Sergio Saponara1 · Abdussalam Elhanashi1 · Alessio Gagliardi1

Received: 18 May 2020 / Accepted: 23 October 2020 / Published online: 10 November 2020

© The Author(s) 2020

Abstract

This work presents a real-time video-based fire and smoke detection using YOLOv2 Convolutional Neural Network (CNN)

in antifire surveillance systems. YOLOv2 is designed with light-weight neural network architecture to account the require-

ments of embedded platforms. The training stage is processed off-line with indoor and outdoor fire and smoke image sets in

different indoor and outdoor scenarios. Ground truth labeler app is used to generate the ground truth data from the training

set. The trained model was tested and compared to the other state-of-the-art methods. We used a large scale of fire/smoke

and negative videos in different environments, both indoor (e.g., a railway carriage, container, bus wagon, or home/office)

or outdoor (e.g., storage or parking area). YOLOv2 is a better option compared to the other approaches for real-time fire/

smoke detection. This work has been deployed in a low-cost embedded device (Jetson Nano), which is composed of a sin-

gle, fixed camera per scene, working in the visible spectral range. There are not specific requirements for the video camera.

Hence, when the proposed solution is applied for safety on-board vehicles, or in transport infrastructures, or smart cities,

the camera installed in closed-circuit television surveillance systems can be reused. The achieved experimental results show

that the proposed solution is suitable for creating a smart and real-time video-surveillance system for fire/smoke detection.

Keywords Video fire/smoke detection · Ground truth labeler · YOLOv2 · Embedded video systems · Real-time · CNN

1 Introduction

Fire is one of the leading hazards endangering human life,

the economy, and the environment [1]. Due to the rapid

increase in fire accidents, every building or passenger vehi-

cle for public transportation is equipped with fire protection

and fire prevention systems. These systems consist mainly

of point-type thermal and smoke detectors that need to be

installed in proximity of the fire; otherwise, they may eas-

ily fail without detecting the fire. In addition, these devices

must be properly installed and positioned as they can be

damaged during the fire itself. Video-based fire detection

is currently a standard technology due to image processing,

computer vision, and Artificial Intelligence. These systems

have remarkable potential advantages over traditional meth-

ods, such as a fast response and wide detection areas.

Traditional smoke/fire sensors based on photometry, ther-

mal, or chemical detection can react within several minutes,

requiring a large amount of fire/smoke to trigger an alarm.

Moreover, they cannot provide information about fire loca-

tion and fire size, and they cannot work for outdoor scenes.

The development of new camera-based solutions improves

the robustness and reliability of smoke and fire detection

by filling the gap of previous systems. Cameras and closed-

circuit television (CCTV) systems are already installed for

surveillance purposes in most human environments, such

as city streets, industry, public transportation. The existing

infrastructure includes hundreds of video cameras, a com-

munication network, possible processing units, and monitor

screens in a control room. Their utilization would allow a

reduction in purchase and installation cost as there is no need

for additional products. The fire detection algorithm can be

easily integrated into this infrastructure with the installation

of additional software. A possible low-cost alternative could

be the installation of an ad-hoc architecture based on a dis-

tributed video camera IoT nodes system. Such IoT distribu-

tion system could provide a web platform for video stream-

ing and could be able to trigger a fire alarm by itself [2].

 * Sergio Saponara
 sergio.saponara@iet.unipi.it

1 Dip. Ingegneria Dell’Informazione, University of Pisa, Via
G. Caruso 16, 56122 Pisa, Italy

http://crossmark.crossref.org/dialog/?doi=10.1007/s11554-020-01044-0&domain=pdf

890 Journal of Real-Time Image Processing (2021) 18:889–900

1 3

With the rapid development of computer vision tech-

nology and digital camera technology, intelligent video

fire detection methods have been proposed and applied in

industry. At the beginning, color and shape characteristics

of smoke were used to extract hand-designed features for

detecting smoke and fire in a video stream. Recently we

have witnessed the rapid dissemination of hardware accel-

erations, graphics processing units (GPUs), and high-per-

formance processors capable of handling a massive amount

of computation, and hence to the development of artificial

intelligence techniques. Deep learning models have dra-

matically improved the state-of-the-art in speech recogni-

tion, visual object recognition, object detection, and many

other domains, outperforming human-level performance

especially in a custom computer vision application, such as

image classification [3]. Deep learning model has the abil-

ity to perform feature extraction and classification within

one network. Consequently, the hand-crafted visual detec-

tion approaches have been progressively replaced by deep

learning approaches due to their ability to extract features

from raw images automatically.

In this paper, we present an intelligent fire/smoke detec-

tion approach based on YOLOv2 network, which aims to

achieve high detection rate, low false alarm rate, and high

speed. Such an algorithm has been tested with a state-of-

the-art dataset plus a set of other not public videos. Finally,

the detector has been deployed on a single board embedded

system, NVIDIA Jetson Nano, as a standalone application

for real-time video processing.

Hereafter, the paper is organized as follows: Sects. 1 and

2 deal with introduction and state-of-the-art video-based

fire/smoke detectors. Section 3 presents the algorithm

description. Section 4 discusses the global architecture and

then each of the layers used in the video processing steps.

Section 5 shows the experiment results and discussion. Sec-

tion 6 presents the algorithm implementation in the embed-

ded system. Conclusions are drawn in Section 7.

2 State-of-art video-based �re/smoke
detectors

Conventional video smoke detection methods addressed the

problem by extracting a multi-dimensional feature vector

from the input smoke image [4], which may be the color,

texture, shapes, irregularity, flutter, or frequency, and clas-

sifying the feature vector into “smoke” or “non-fire” class.

Celik et al. [5] proposed a method based on different color

models for both fire and smoke, obtained by statistical analy-

sis fuzzy-logic to achieve discrimination between fires and

fire-like colored objects. Rafiee et al. [6] used static char-

acteristics (two-dimensional wavelet analysis) and dynamic

characteristics like smoke disorder. The first for detecting

the color and the motion while the second implements back-

ground subtraction using frame differentiation. However, the

false-negative rate remains an issue here also due to the pres-

ence of other objects in the background with similar color

properties as the fire pixels. A similar technique is used in

work in [7] that generates the background subtraction using

visual background estimation (ViBe). Recent work in [8]

proposes a smoke detector based on Kalman estimator, color

analysis, image segmentation, blob labeling, geometrical

features analysis, and M of N decisor, to extract an alarm

signal within a strict real-time deadline. Such presented

methods can be deployed on embedded systems achiev-

ing good performance in terms of power consumption and

frame rate. The drawback of these techniques lies in having

to extract by hand the features from the video streams.

With the rapid development of artificial intelligence and

deep learning, computer vision has achieved significant

attention from academia and industry. On the other hand,

deep learning techniques have the advantage of extract-

ing the features automatically, making this process more

effective and dramatically improving the state-of-the-art

in Image Classification and object detection methods [9].

Various deep learning methods have been proposed for fire

and smoke detection. In [10], Wu et al. used popular object

detection methods like R-CNN, YOLO, and SSD for real-

time forest fire detection. Sharma et al. [11] instead propose

a CNN-based fire detection based on a pre-trained VGG16

and Resnet50 as baseline architecture. In [12] and in [13],

both authors used YOLO method for fire detection and flame

detection respectively. In all cases, albeit they achieve good

results in terms of accuracy, they do not provide a low-cost

implementation on an embedded platform. This is due to the

large disk size and the total number of parameters that make

these models not suitable for that purpose.

In this paper, we used YOLOv2 algorithm to identify and

locate fire and smoke objects using a video camera. Our

target in this work is to create a light-weight deep learn-

ing model for embedded application, able to fit into low-

cost, low-performance hardware such as Jetson nano and

can achieve good performance for real-time fire and smoke

detection [14]. A Ground Truth Labeler application has been

used for labeling and creating the training set of collected

images for our benchmark. We used such dataset to iden-

tify and label the features of fire and smoke in which to be

trained for YOLOv2 detector.

3 Algorithm description

3.1 Principle of YOLO

You look only once (YOLO) is a deep learning model for

object detection. It was first explored by Redmon et al.

891Journal of Real-Time Image Processing (2021) 18:889–900

1 3

[15]. YOLO can detect the location of multiple classes at

one time. It is accurate and fast, which meets the require-

ments for real-time processing, thus outperforming in speed

object detection models based on region techniques, such as

Regional convolutional neural network (R-CNN) models.

R-CNN detectors create bounding boxes in the image and

then classify these proposed boxes. After the classification,

R-CNN refines these boxes and initiate the scores for the

objects to be detected. These processes are hard and slow to

optimize because each stage needs to be trained separately

[16]. Instead, YOLO network uses a single-stage architecture

with less neural network layers and fewer filters to these

layers. For the proposed YOLOv2 technique, we used full

images to train and test the network: the algorithm takes

the input image and splits it into S × S grids. It extracts the

features from each grid and predicts the bounding boxes

and the confidence score for the detected objects in these

boxes, see Fig. 1.

There are five values for predictions in the algorithm: the

rectangle box is represented with (x, y, w, h), plus there is

the confidence score that defines the probability of the class

presence in the box. Only one class will be predicted in each

grid. A specific confidence score is obtained for each box.

The confidence score is defined as seen in Eq. (1). If there

is an object in the cell, the confidence score will be equal to

the Intersection over Union (IoU) value between the ground

truth and the bounding boxes. Otherwise, the confidence

score will be zero if no object exists in the cell.

where Pr(Object) is the probability that the box contains

the object. IoU is the (Intersection over Union) between the

ground truth and predicted boxes.

IoU is an evaluation algorithm used in object detection

benchmarks. It determines the overlap between two areas

and measures how these two areas are equal in terms of

location and size. It is an indicator that judges the distance

between Ground truth bounding boxes and the predicted

bounding box from the module in object detection. The for-

mula of IoU is defined as the following Eq. (2):

(1)
Pr (Classi|Object) × Pr (Object) × IOU = Pr (Classi) × IoU

where A is the prediction boxes. B is the ground truth boxes.

3.2 YOLOv2

YOLOv2 is the second version, which has several enhance-

ments to YOLO, as presented in YOLO9000 [17]. Indeed,

YOLO has two drawbacks for object detection. The first

weakness is that it is inaccurate to locate and position the

classes to be detected in the images. The second problem

is a low recall rate when it compares to the regional based

detectors. YOLOv2 resolved these issues, thus increasing the

accuracy and the speed of the architecture. This algorithm is

suitable for GPU-based embedded computing modules for

real-time processing [18]. YOLOv2 used batch normaliza-

tion layers in all convolutional layers to normalize the value

distribution from one layer to another. Batch normalization

improved the regularization for YOLOv2 neural network

model. It reduced the requirement for a dropout layer to

overcome the overfitting problems. It normalizes its input

by calculating the mean and variance values over the mini-

batch, and it calculates the activation, as seen in Eq. (3).

where � is the property Epsilon and improves the mini-batch

when the variance is small.

Fully connected layers were removed in YOLOv2, and

instead, anchor boxes were used to predict bounding boxes.

This idea was drawn from the state of art Faster R-CNN

detector. YOLOv2 uses these anchors to detect the objects

in the images. YOLOv2 anchor boxes are a set of rectangle

boxes predefined with a specific height and width. These

boxes are used to capture the specific scale for the object

to be detected. The size of anchor boxes is chosen based on

the scale of bounding boxes in the training dataset. YOLOv2

with anchor boxes increases the output resolution for the

networks’ convolutional layers. Anchor boxes can evaluate

(2)IoU =
|A ∩ B|

|A ∪ B|
,

(3)
x̂

i
=

xi − �
B

√

�2

B
+ �

,

Fig. 1 YOLO model: input
images split into S × S grid cell,
each grid predicts the bounding
boxes and the confidence scores
and finally, the score encodes
the probability with enclosed
bounding box on the detected
object

892 Journal of Real-Time Image Processing (2021) 18:889–900

1 3

the prediction of all classes at once. It can also eliminate the

requirement of scanning the image with a sliding window

such as the detectors based on regional R-CNN and Fast

R-CNN Algorithms.

4 Fire and smoke detection methodology

Many researches were focused on the traditional method of

feature extraction for fire and smoke detection. The main

problem for such techniques was time consumption for com-

puting these feature extractions. This resulted in low per-

formance and slow real-time for fire and smoke detection.

These methods also generated a number of false positives

and mistakes in the detection of background.

Motivated to the new development on the deep learning

models, we proposed Fire and smoke detection based on a

video camera using YOLOv2 model. Fire and smoke detec-

tion have a higher speed in imaging processing. In such a

case, YOLOv2 is the best technique to encounter the detec-

tion of these objects. This detection is essential for firefight-

ers because it will give an early alerting sign for fire and

smoke accidents to take remedial actions accordingly.

Figure 2 shows the workflow for building up our architec-

ture for fire and smoke detection. It started with creating the

ground truth data by labeling the training images. Then we

designed the model with neural network and YOLOv2 lay-

ers. Furthermore, we trained, validated, and tested YOLOv2

technique to assess its performance and accuracy. Finally,

the proposed technique is deployed to the target node (Jetson

Nano) to run as a stand-alone application in this embedded

device.

4.1 The proposed YOLOv2 neural network design

In this section, we will discuss the design for our YOLOv2

model. We used Deep Neural Designer tool in MATLAB

to build YOLOv2 neural network layers. To establish a

light-weight deep learning model to fit the embedded sys-

tem, we constructed CNN with 21 layers, see Fig. 3. This

light-weight model is suitable for real-time performance,

and it is worthy enough to be deployable on low-cost IoT

devices. The proposed approach includes the input layer,

middle layers, and subnetwork of YOLOv2 layers.

Our proposed model starts with the input image layer.

We set the image input layer with a minimum image size

of 128 × 128 × 3 for the proposed model. Then we used

middle layers, which contain a cascade of convolutional,

batch normalization, ReLU (rectified linear unit), and

max-pooling layers. Convolutional layers were used to

map the features for the input images. The filter size on

the convolutional layers is set to [3 × 3]. This size is com-

monly used for the convolutional neural network architec-

ture. Filter size defines the width and height of the regions

in which the neurons connect in the input. Batch normali-

zation layers are used to regularize the model, normalize

the training, and speed up the convergence. Batch nor-

malization layers reduce the sensitivity of the initialization

of the network. Then we used ReLU activation function

to introduce the non-linearity to the neural network. We

utilized max-pooling layers to downsample the images into

pooling regions. We applied 2 × 2 for size of pooling with

a stride of 2 × 2 for all pooling layers in our network.

We used ‘Batch normalization_4′ as the feature extrac-

tion layer. The features extracted from this layer are

given as input to YOLOv2 object detection subnetwork.

YOLO2Layer subnetwork is used in this model, which

creates YOLOv2 detection network. YOLOv2 Transform

layer is used in our model to enhance the network stabil-

ity for object localization. Finally, YOLOv2 output layer

is used to refine the location of bounding boxes to the

targeted objects. The architecture was examined with deep

network analyzer in MATLAB, which reported zero errors.

4.2 Data pre-processing

We prepared a dataset of 400 images for fire and smoke

to train YOLOv2 detector in our experiments. The images

were collected from Kaggle website [19]. These images

were selected from different realistic situations for fire and

smoke accidents. Ground truth application was used to

label the images in MATLAB. The following steps were

carried to pre-process the proposed model:

• Load the collection of images of fire and smoke into

ground truth application.

• Label the objects of interest for fire and smoke with

(rectangular boxes) in the selected images using a cus-

tom algorithm tool in the ground truth labeler [20].

• Export the ground truth data to the MATLAB work-

space to obtain the arrays of labeled features.Fig. 2 Workflow for building up our architecture for fire and smoke
detection

893Journal of Real-Time Image Processing (2021) 18:889–900

1 3

4.3 Training

We trained the proposed detector on MATLAB script and

saved the model at the end of the training process. The

image size of training dataset images has been resized from

416 × 416 × 3to 128 × 128 × 3 to account the requirement of

YOLOv2 model. We trained the network with stochastic gra-

dient descent (sdgm) [21] see Table 1. The number of epochs

was set to 160. These epochs define the number of times

that the learning algorithm will work through the training

dataset. The model was trained with an optimal number of

epochs. This is to avoid overtraining, which could lead to

overfitting and overconfident the model in its predictions.

We used a learning rate parameter in the training option to

control the model change in response to the error [22]. We

started the learning rate with 10–2. However, we observed

that the network was unstable during the training process.

We fine-tuned the learning rate at 10–3, and we obtained the

best result of 0.2. The mini-batch loss curve was stable with

small fluctuation, see Fig. 4.

For anchor boxes, we run k-mean clustering in MATLAB

to select a good set of labeled boxes in the training dataset. It

is important to have the correct sizes of these boxes (width,

height) for YOLOv2 to detect the objects accurately. We

measured the IoU score of k-means to define the required

number of these boxes for the model. This is to avoid using

more anchor boxes, which could result in overfitting and

poor performance of the detector.

Fig. 3 Architecture of the pro-
posed YOLOv2 Neural Network

Table 1 Training hyper-
parameters for YOLOv2

Parameter Method

Training options sdgm

L2 regularization 0.06

Number of epochs 160

Verbose frequency 50

Mini-batch size 16

Learning rate 0.001

894 Journal of Real-Time Image Processing (2021) 18:889–900

1 3

4.4 Validation

We validated the proposed model with 200 images (100

images with fire/smoke, and 100 images with NO fire /

smoke). This is an independent test bench, which is dif-

ferent from the training dataset. As per the results from

receiver operating characteristic (ROC) analysis, the accu-

racy for this validation was 93%. See Table 2 and Fig. 5.

5 Experiment results and discussion

In literature, methods used for testing data are still images

instead of videos. In method [23], there is a lack of diver-

sity for using videos to encounter various realistic situ-

ations for fire/smoke and normal conditions. In method

[24], the work refers to monitor the fire only in forest

areas. However, our model will be exploited in different

indoor and outdoor conditions. The experiments were car-

ried out on a large scale of videos as testing dataset. In

our exploration, we used two testing datasets from dif-

ferent sources in our proposed approach. Dataset_v1 is

our test bench; it consists of 287 videos from different

environments (indoor, outdoor, forest, railways, parking,

and public area). 117 videos contained a non-smoke/fire

condition, and 170 videos contained smoke and fire. This

dataset has been made challenging for motion-based and

color-based objects. This has been obtained by capturing

videos which include objects like smoke, such as clouds.

This is one of the motivations for selecting this dataset for

our experiments. Dataset_v2 is used from method [26] to

evaluate our model, which will be illustrated in the fol-

lowing sub-section.

As a further experiment, we designed and trained R-CNN

object detector for fire and smoke detection based on a

regional method. We compared this R-CNN to our proposed

model using the same Dataset_v1.

We used confusion matrix criteria to analyze different

matrices in terms of (false positive rate, false-negative rate,

and accuracy) see Eq. (4) and Table 3. This is to evaluate

the performance of the proposed approach in comparison to

the other methodologies,

Fig. 4 a Mini-batch loss curve before fine-tuning b mini-batch loss
curve after fine-tuning

Table 2 Summary for validation
results by ROC tool analysis

Matrices Valida-
tion
values

Number of images 200

Accuracy 93%

Sensitivity 94%

Specificity 80%

Fig. 5 Results obtained by the proposed system in terms of ROC
curve for validation Dataset

895Journal of Real-Time Image Processing (2021) 18:889–900

1 3

where we mark the result as: TP if the model detects fire/

smoke objects in positive videos. FP if the model detects

fire/smoke objects in negative videos. TN if the model does

not detect fire/smoke in negative videos. FN if the model

does not detect fire/smoke in positive videos.

Based to the results from these experiments, the proposed

method achieves good classification performance for fire and

smoke detection, see Fig. 6a and b and overcomes all other

methodologies [12, 23, 25]. The fact that in Fig. 6a the alarm

confidence is above threshold, but it is far from 1 (i.e. 100%

confidence) is due to fact that, as explained in Sect. 4.C

(training), the model was trained with a proper number of

epochs to avoid overtraining. Indeed, overtraining would

lead to overfitting and would make the model overconfi-

dent in its predictions. If the model gets overconfident and

with high confidence scores, this will result in false positive

detection in non-fire/smoke videos.

Table 4 compares the classification accuracy of the pro-

posed method, which is 96.82%, with respect to state-of-

the-art methods whose accuracy ranges from 90 to 92.86%,

using Dataset_v1. In addition, the proposed approach shows

better accuracy when compared to R-CNN object detector.

YOLOv2 sees the whole image at once as opposed to look-

ing only at generated region proposals in R-CNN method.

YOLOv2 algorithm helps to reduce false positives problems

for fire and smoke detection. In addition to that, YOLOv2 is

by 25 times faster than R-CNN for real-time object detection

(see Sect. 5.b). Therefore, the proposed approach made an

improvement in the background mistakes for the videos with

no—fire/smoke objects.

5.1 Performance of our method with Dataset_v2

To evaluate the efficiency of the proposed approach, we

tested it also with Dataset_v2 [26]. The test bench consisted

of 160 non-fire images, 46 fire videos, and 16 non-fire vid-

eos. The dataset is limited, but it is challenging, e.g., it con-

sists of videos for no-fire/smoke, which contains sunset light,

see Fig. 7. Such a dataset was used for [26] method, also

(4)

Accuracy =
TP + TN

TP + FN + TN + FP

False - positive rate =
FP

FP + TN

False - negative rate =
FN

FN + TP

based on deep learning approach. It is important to note that

no videos from Dataset_v2 were utilized in training the pro-

posed architecture for fire and smoke detection. The results

for our method is compared with four different methods

reported in [26, 27], and [28]. We used metrics (Accuracy,

Recall, F-Score, and Precision) to evaluate the effectiveness

of our approach. According to the results from Dataset_v2,

our approach showed the best result for Accuracy compared

to the other state-of-the-art methods, see Table 5.

All experiments were carried on a personal computer

using MATLAB 2019b, a built-in application Neural Net-

work Designer, Ground Truth Labeler, and Intel® Core TM

I3-6006U CPU @ 2 GHz were utilized as support tools.

Jetson Nano, see details in Sect. 6, then was used as a Hard-

ware test platform.

5.2 Our method vs. other object detectors
for real-time fire and smoke detection

Fire and smoke detection have a vital role in protecting peo-

ple, the environment, and properties. The key aspect of fire

and smoke detection is to identify the accident occurrence

in a timely manner. Early fire/smoke detection is a major

element of disaster risk reduction [29].

To understand further, we carried experiments to com-

pare our proposed method to the other object detectors such

as R-CNN and Fast R-CNN. We used MATLAB with our

bench-test dataset of fire and smoke videos. We run the three

detectors simultaneously while calculating frames per sec-

ond for each detector. The experiment results demonstrate

that the proposed YOLOv2 approach is by 25 times faster

than R-CNN and by 23 times than the Fast R-CNN object

detectors, see Fig. 8.

6 Embedded system implementation

6.1 Jetson Nano embedded platform

Jetson Nano is a powerful but compact embedded com-

puter with low cost of approximately $100 [30]. Jetson

Nano runs multiple neural networks in parallel for object

detection. It is suitable device for applications that are

based on distributed networks. It consists of GPU 128-

core Maxwell. CPU is Quad-core ARM A57 at 1.43 GHz.

The memory for Jetson Nano is 4 GB, 64-bit, LPDDR4

25.6 GB/s. It has 4 × USB 3.0, USB 2.0 Micro-B. We used

a Raspberry Pi Camera Module V2 with 8 M pixel resolu-

tion as a testing camera. This camera can work with an

image resolution of 1080p @30 frames per second. We

connected the camera to the CSI (camera serial interface)

port in Jetson Nano. The trained YOLOv2 detector has

been deployed in NVIDIA Jetson Nano and run it as a

Table 3 Confusion matrix criteria

Fire/smoke No fire/smoke

Alarm TP FP

No alarm FN TN

896 Journal of Real-Time Image Processing (2021) 18:889–900

1 3

Fig. 6 a Sample Images from
videos with fire and smoke. b
Sample images from videos
with no fire and smoke

897Journal of Real-Time Image Processing (2021) 18:889–900

1 3

stand-alone application. We used MATLAB environ-

ments and third-party packages to generate the C code.

We used GPU coder to convert MATLAB code into an

optimized CUDA code. CUDA stands for (Compute Uni-

fied Device Architecture). It is an extension of C program-

ming language which is designed for NVIDIA framework.

We connected Jetson Nano to a host computer using an

ethernet cable. Figure 9 shows the simplified diagram for

the deployment process of the proposed CNN model from

MATLAB to Jetson Nano.

MATLAB Coder is used to generate the C Code from

MATLAB to Jetson Nano. Parallel Computing Toolbox

is utilized to solve the computational and data problems

using a multicore processor and GPU. We also used Deep

Learning Toolbox, which provides a framework for imple-

menting the neural network with the algorithm. GPU

Coder Interface for Deep Learning Libraries customizes

the generated code by utilizing a specific library in Jetson

Nano. GPU Coder Support Package for NVIDIA GPU’s is

used to generate and deploy the CUDA code. It enabled the

communication remotely between MATLAB and NVIDIA

on the targeted hardware. We used Embedded Coder for

code generation to Jetson Nano. It is an optimized tool

that improves the code generation to the hardware pre-

cisely. We installed the required environment variables and

applications such as JetPack Developer AI tool in Jetson

Nano. This is to be applicable for code generation of our

CNN detector from MATLAB. We also installed Micro-

soft visual studio 2019 as complier support for generating

GPU code to Jetson Nano. We used CUDA Deep Neural

Network libraries to accelerate primitives for deep neural

networks.

Table 4 Performance of the proposed approach vs. state-of-the-art

Method False-posi-
tive (%)

False-nega-
tive (%)

Accuracy (%)

This work 3.4 2.9 96.82

R-CNN 8.5 0.0 96.5

De Lascio et al. [23] 13.33 0 92.86

Fu et al. [25] 14 8 91

YOLO [12] 5 5 90

Fig. 7 Sample examples of Dataset_v2, which shows sunset light in
non-fire videos

Table 5 The Performance of the proposed approach using Daraset_v2
vs. other methodologies (the F-score is the harmonic mean of the pre-
cision and recall)

Method Accuracy % Recall % F-Score % Precision %

Proposed method 96.58 97 95.4 97

Jadon et al. [26] 93.9 94 95 96.9

Filonenko et al.
[27]

85 96 90 85

Yuan et al. [28] 86 53 65.5 86

Fig. 8 The comparison of YOLOv2 detector vs. R-CNN and Fast
R-CNN models for Real-time fire/smoke detection

MATLAB

GPU CODER

CUDA

CUDA COMPLIER

HARDWARE (JETSON NANO)

Fig. 9 Diagram for the deployment process of the CNN code from
MATLAB to targeted hardware Jetson Nano

898 Journal of Real-Time Image Processing (2021) 18:889–900

1 3

6.2 Test of the proposed method on embedded
system

We tested the deployed detector as a stand-alone applica-

tion in Jetson Nano to evaluate its real-time performance.

Raspberry webcam model V2 was connected to Jetson Nano.

The camera was exposed to another computer, which was

simulating a number of videos of fire/smoke and negative

videos, see Fig. 10. While the proposed detector is running

in Jetson Nano, we recorded various parameters. The real-

time measured was 21 fps, which showed better real-time

detection in comparison to [31].

We also measured the time delay before our method

started to detect fire and smoke. When the camera is in video

mode, the time delay between the start of fire/smoke in vid-

eos and YOLOv2 detection is 1–2 s. It means that the algo-

rithm requires 1–2 s to trigger a smoke or fire alarm. Note

that our approach can produce better time decision for fire/

smoke detection in comparison to the method [32], which

proposed Faster R-CNN model. This is the advantage of

using our method for early fire and smoke detection. During

the test, we also measured the power consumption for Jetson

Nano. We removed all accessories such as keyboard, mouse,

and monitor from Jetson Nano. The power consumption of

Jetson Nano was 1.24 W when the detector is off. While our

method was executed, the power consumption measured was

4.19 W. Table 6 shows the power consumption measurement

for Jetson Nano in different scenarios.

We performed the measurement of CPU (Central Pro-

cessing Unit) and the GPU (Graphics Processing Unit) %

resource utilization in Jetson Nano. The CPU runs the oper-

ating system and applications. The GPU is designed to han-

dle graphic operations. These characteristics are important

to evaluate its computation processing. The table shows the

recorded values for the CPU and GPU processors while our

proposed detector is executed in Jetson Nano. In addition to

that, the temperature of Jetson Nano was measured while

our method was in processing mode. The temperature was

recorded for CPU at 53.1 °C, and for GPU at 54 °C see

Table 7.

As a further advantage of our approach, we measured its

final memory size when deployed on Jetson Nano, which is

7.1 MB. In literature, other methodologies used large CNN

layers such as Alexnet, VGG16, and Resnet50 for approaches

in methods [33, 34]. These massive CNNs layers require a

large disk size for deployment on the hardware. This could

influence the real-time detection and low performance while

running on low-cost embedded devices. Therefore, this is

an advantage of our architecture in comparison to the other

state-of-the-art methods and it can be superior for real-time

fire and smoke detection.

7 Conclusions

This paper proposed a real-time and embedded implementa-

tion of a fire and smoke detection technique that can reuse

standard video cameras of surveillance systems. The tar-

get of this work is to develop smart IoT devices for fire/

smoke detection in indoor and outdoor environments. The

Fig. 10 Testing the proposed Detector with real state of fire and
smoke. Hardware setup consists of: a proposed detector running as a
stand-alone application in Jetson Nano b Raspberry Camera V2 c fire
d monitor shows the detected objects which are enclosed with bound-
ing box

Table 6 Power consumption
measurement in different
scenarios

YOLOv2 status Power
measure-
ment (W)

Jetson Nano without monitor, keyboard, mouse Off 1.24

Jetson Nano without monitor, keyboard, mouse Running 4.19

Jetson Nano with monitor, keyboard, mouse Off 2.24

Jetson Nano with monitor, keyboard, mouse Running 5.19

Table 7 The % resource utilization and temperature measurement for
the GPU and CPU in Jetson Nano while our method is running on it

Performance (%) Tem-
perature
(°C)

Jetson Nano (GPU) 99 54

Jetson Nano (CPU) 53.1 53.1

899Journal of Real-Time Image Processing (2021) 18:889–900

1 3

algorithm is simple to design and can be trained fast. The

proposed solution achieved promising results for accuracy

in comparison to the state-of-the-art. In terms of false posi-

tive, it reduced the background mistakes in non-fire/smoke

videos. Indeed, the proposed method performed very well,

even with videos containing challenging features such as

sun and clouds. The proposed detection solution stands for

its low-latency and real-time performance when compared

to the other regional-based detectors. Indeed, it can detect

fire and smoke in 1 or 2 s as an early alerting alarm for the

occurrence of fire and smoke accidents. In the future, we

will extend our research to connect the proposed system to

iCloud facilities for providing visual status and feedback of

fire/smoke remotely. Moreover, recently released YOLOv4

models [35] will also be considered.

Acknowledgements Work partially supported by Dipartimento di
Eccellenza Crosslab Project by MIUR. We thank the Islamic Devel-
opment Bank for their support to the Ph.D. work of A. Elhanashi.

Funding Open access funding provided by Università di Pisa within
the CRUI-CARE Agreement.

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adapta-
tion, distribution and reproduction in any medium or format, as long
as you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article are
included in the article’s Creative Commons licence, unless indicated
otherwise in a credit line to the material. If material is not included in
the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will
need to obtain permission directly from the copyright holder. To view a
copy of this licence, visit http://creat iveco mmons .org/licen ses/by/4.0/.

References

 1. Hall, J.R.: The total cost of fire in the United States. National Fire
Protection Association, Quincy (2014)

 2. Gagliardi, A., Saponara, S.: Distributed video antifire surveillance
system based on IoT embedded computing nodes. Springer LNEE
627, 405–411 (2020a)

 3. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature
521(7553), 436–444 (2015)

 4. Saponara, S., Pilato, L., Fanucci, L.: Early video smoke detection
system to improve fire protection in rolling stocks. SPIE Real
Time Image Video Process 9139, 913903 (2014)

 5. Celik, T., ¨Ozkaramanlı, H., Demirel, H.: Fire and smoke detec-
tion without sensors: image processing based approach. In: 2007
15th European signal processing conference, IEEE, pp. 1794–
1798 (2007).

 6. Rafiee, A., Dianat, R., Jamshidi, M., Tavakoli, R., Abbaspour,
S.: Fire and smoke detection using wavelet analysis and disorder
characteristics. IEEE 3rd international conferance on computer
research and development, vol. 3, pp. 262–265 (2011)

 7. Vijayalakshmi, S.R., Muruganand, S.: Smoke detection in video
images using background subtraction method for early fire alarm

system. In: IEEE 2nd international conference on communication
and electronics system (ICCES), pp. 167–171 (2017)

 8. Gagliardi, A., Saponara, S.: AdViSED: advanced video SmokE
detection for real-time measurements in antifire indoor and out-
door systems. Energies 13(8), 2098 (2020b)

 9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classifica-
tion with deep convolutional neural networks. In: Advances in
neural information processing systems, pp. 1097–1105. MIT
Press, Cambridge (2012)

 10. Wu, S., Zhang, L.: Using popular object detection methods for
real time forest fire detection. In: IEEE 11th ISCID, vol. 1, pp.
280–284 (2018)

 11. Sharma, J., Granmo, O.C., Goodwin, M., Fidje, J.T.: Deep convo-
lutional neural networks for fire detection in images. In: Interna-
tional conference on engineering applications of neural networks,
pp. 183–193, Springer, Cham.

 12. Lestari, D., et al.: Fire hotspots detection system on CCTV videos
using you only look once (YOLO) method and Tiny YOLO model
for high buildings evacuation. In: 2nd international conference of
computer and informatics engineering (IC2IE2019), Banyuwangi,
Indonesia, pp. 87–92 (2019)

 13. Shen, D., Chen, X., Nguyen, M., Yan, W.Q.: Flame detection
using deep learning. In: IEEE 4th ICCAR, pp. 416–420 (2018)

 14. Barmpoutis, P., Dimitropoulos, K., Grammalidis, N.: Real time
video fire detection using spatio-temporal consistency energy. In:
10th IEEE international conference on advanced video and signal
based surveillance, pp. 365–370 (2013).

 15. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look
once: unified, real-time object detection. In: IEEE conference on
computer vision and pattern recognition (CVPR), Las Vegas, NV:
CVPR, pp. 779–788 (2016)

 16. Girshick, R., et al.: Rich feature hierarchies for accurate object
detection and semantic segmentation. In: IEEE CVPR, pp. 580–
587 (2014)

 17. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In:
IEEE CVPR, pp. 6517–6525 (2017)

 18. Hossain, S., Lee, D.J.: Deep learning-based real-time multiple-
object detection and tracking from aerial imagery via a flying
robot with GPU-based embedded devices. Sensors 19(15), 3371
(2019)

 19. Fire and Smoke dataset.: Kaggle.Com. https ://www.kaggl e.com/
ashut osh69 /fire-and-smoke -datas et?. Accessed 20 Aug 2020.

 20. MathWorks Team.: Using ground truth for object detection.
MATLAB central file exchange. https ://www.mathw orks.com/
matla bcent ral/filee xchan ge/69180 -using -groun d-truth -for-objec
t-detec tion (2019). Accessed 24 Oct 2019.

 21. Glorot, X., et al.: Understanding the difficulty of training deep
feedforward neural networks. IEEE Trans Instrum Meas 54(4),
249–256 (2005)

 22. Brownlee, J.: Deep learning with python. Machine Learning Mas-
tery, Vermont (2017)

 23. Di Lascio, R., Greco, A., Saggese, A., Vento, M.: Improving fire
detection reliability by a combination of video analytics. In: Inter-
national conference image analysis and recognition, Vilamoura,
Portugal, Springer: Cham, CH (2014)

 24. Wang, G., Zhang, Y., Qu, Y., Chen, Y., Maqsood, H.: Early for-
est fire region segmentation based on deep learning. In: Chinese
control and decision conference (CCDC2019), Nanchang, China,
pp. 6237-6241 (2019)

 25. Fu, T.J., Zheng, C.E., Tian, Y., Qiu, Q.M., Lin, S.J.: Forest fire
recognition based on deep convolutional neural network under
complex background. Comput. Mod. 3, 52–57 (2016)

 26. Jadon, A. et al.: FireNet: a specialized lightweight fire and smoke
detection model for real-time IoT applications (2019). https ://arxiv
.org/abs/1905.11922 . Accessed 7 Nov 2020

http://creativecommons.org/licenses/by/4.0/
https://www.kaggle.com/ashutosh69/fire-and-smoke-dataset?
https://www.kaggle.com/ashutosh69/fire-and-smoke-dataset?
https://www.mathworks.com/matlabcentral/fileexchange/69180-using-ground-truth-for-object-detection
https://www.mathworks.com/matlabcentral/fileexchange/69180-using-ground-truth-for-object-detection
https://www.mathworks.com/matlabcentral/fileexchange/69180-using-ground-truth-for-object-detection
https://arxiv.org/abs/1905.11922
https://arxiv.org/abs/1905.11922

900 Journal of Real-Time Image Processing (2021) 18:889–900

1 3

 27. Filonenko, A., et al.: Fast smoke detection for video surveillance
using CUDA. IEEE Trans. Ind. Inform. 14(2), 725–733 (2018)

 28. Yuan, F., Fang, Z., Wu, S., Yang, Y., Fang, Y.: Real-time image
smoke detection using staircase searching-based dual threshold
AdaBoost and dynamic analysis. IET Image Process. 9(10), 849–
856 (2015)

 29. Fire Safety Search.: Very early warning fire detection—fire safety
search. https ://www.fires afety searc h.com/very-early -warni ng-fire-
detec tion/ (2020). Accessed 26 April 2020.

 30. Jetson Nano Developer Kit. https ://devel oper.nvidi a.com/embed
ded/jetso n-nano-devel oper-kit (2020). Accessed 25 Feb

 31. Habiboğlu, Y., et al.: Covariance matrix-based fire and flame
detection method in video. Mach. Vis. Appl. 23, 1103–1113
(2012)

 32. Kim, B., Lee, J.: A video-based fire detection using deep learning
models. Appl. Sci. 9, 2862 (2019). https ://doi.org/10.3390/app91
42862

 33. Barmpoutis, P., Dimitropoulos, K., Kaza, K., Grammalidis, N.:
Fire detection from images using faster R-CNN and multidimen-
sional texture analysis. In: IEEE ICASSP2019, Brighton, UK, pp.
8301–8305 (2019)

 34. Li, Pu., Zhao, W.: Image fire detection algorithms based on con-
volutional neural networks. Case Stud. Thermal Eng. 19, 100625
(2020). https ://doi.org/10.1016/j.csite .2020.10062 5

 35. Bochkovskiy, A. et al.: YOLOv4: optimal speed and accuracy
of object detection (2020). https ://arxiv .org/pdf/2004.10934 .
Accessed 7 Nov 2020

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Sergio Saponara is a Full Professor of Electronics and leader of the
I-CAS (Integrated and embedded Circuits and Systems) lab, at Dipar-
timento di Ingegneria della Informazione, Università di Pisa, via G.
Caruso 16, 56122, Pisa, Italia.

Abdussalam Elhanashi is a PhD student at the I-CAS (Integrated and
embedded Circuits and Systems) lab, Dipartimento di Ingegneria della
Informazione, Università di Pisa, via G. Caruso 16, 56122, Pisa, Italia.

Alessio Gagliardi is a PhD student at at the I-CAS (Integrated and
embedded Circuits and Systems) lab, Dipartimento di Ingegneria della
Informazione, Università di Pisa, via G. Caruso 16, 56122, Pisa, Italia.

https://www.firesafetysearch.com/very-early-warning-fire-detection/
https://www.firesafetysearch.com/very-early-warning-fire-detection/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://doi.org/10.3390/app9142862
https://doi.org/10.3390/app9142862
https://doi.org/10.1016/j.csite.2020.100625
https://arxiv.org/pdf/2004.10934

	Real-time video firesmoke detection based on CNN in antifire surveillance systems
	Abstract
	1 Introduction
	2 State-of-art video-based firesmoke detectors
	3 Algorithm description
	3.1 Principle of YOLO
	3.2 YOLOv2

	4 Fire and smoke detection methodology
	4.1 The proposed YOLOv2 neural network design
	4.2 Data pre-processing
	4.3 Training
	4.4 Validation

	5 Experiment results and discussion
	5.1 Performance of our method with Dataset_v2
	5.2 Our method vs. other object detectors for real-time fire and smoke detection

	6 Embedded system implementation
	6.1 Jetson Nano embedded platform
	6.2 Test of the proposed method on embedded system

	7 Conclusions
	Acknowledgements
	References

