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Abstract

This work presents a real-time video-based fire and smoke detection using YOLOv2 Convolutional Neural Network (CNN) 

in antifire surveillance systems. YOLOv2 is designed with light-weight neural network architecture to account the require-

ments of embedded platforms. The training stage is processed off-line with indoor and outdoor fire and smoke image sets in 

different indoor and outdoor scenarios. Ground truth labeler app is used to generate the ground truth data from the training 

set. The trained model was tested and compared to the other state-of-the-art methods. We used a large scale of fire/smoke 

and negative videos in different environments, both indoor (e.g., a railway carriage, container, bus wagon, or home/office) 

or outdoor (e.g., storage or parking area). YOLOv2 is a better option compared to the other approaches for real-time fire/

smoke detection. This work has been deployed in a low-cost embedded device (Jetson Nano), which is composed of a sin-

gle, fixed camera per scene, working in the visible spectral range. There are not specific requirements for the video camera. 

Hence, when the proposed solution is applied for safety on-board vehicles, or in transport infrastructures, or smart cities, 

the camera installed in closed-circuit television surveillance systems can be reused. The achieved experimental results show 

that the proposed solution is suitable for creating a smart and real-time video-surveillance system for fire/smoke detection.

Keywords Video fire/smoke detection · Ground truth labeler · YOLOv2 · Embedded video systems · Real-time · CNN

1 Introduction

Fire is one of the leading hazards endangering human life, 

the economy, and the environment [1]. Due to the rapid 

increase in fire accidents, every building or passenger vehi-

cle for public transportation is equipped with fire protection 

and fire prevention systems. These systems consist mainly 

of point-type thermal and smoke detectors that need to be 

installed in proximity of the fire; otherwise, they may eas-

ily fail without detecting the fire. In addition, these devices 

must be properly installed and positioned as they can be 

damaged during the fire itself. Video-based fire detection 

is currently a standard technology due to image processing, 

computer vision, and Artificial Intelligence. These systems 

have remarkable potential advantages over traditional meth-

ods, such as a fast response and wide detection areas.

Traditional smoke/fire sensors based on photometry, ther-

mal, or chemical detection can react within several minutes, 

requiring a large amount of fire/smoke to trigger an alarm. 

Moreover, they cannot provide information about fire loca-

tion and fire size, and they cannot work for outdoor scenes. 

The development of new camera-based solutions improves 

the robustness and reliability of smoke and fire detection 

by filling the gap of previous systems. Cameras and closed-

circuit television (CCTV) systems are already installed for 

surveillance purposes in most human environments, such 

as city streets, industry, public transportation. The existing 

infrastructure includes hundreds of video cameras, a com-

munication network, possible processing units, and monitor 

screens in a control room. Their utilization would allow a 

reduction in purchase and installation cost as there is no need 

for additional products. The fire detection algorithm can be 

easily integrated into this infrastructure with the installation 

of additional software. A possible low-cost alternative could 

be the installation of an ad-hoc architecture based on a dis-

tributed video camera IoT nodes system. Such IoT distribu-

tion system could provide a web platform for video stream-

ing and could be able to trigger a fire alarm by itself [2].
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With the rapid development of computer vision tech-

nology and digital camera technology, intelligent video 

fire detection methods have been proposed and applied in 

industry. At the beginning, color and shape characteristics 

of smoke were used to extract hand-designed features for 

detecting smoke and fire in a video stream. Recently we 

have witnessed the rapid dissemination of hardware accel-

erations, graphics processing units (GPUs), and high-per-

formance processors capable of handling a massive amount 

of computation, and hence to the development of artificial 

intelligence techniques. Deep learning models have dra-

matically improved the state-of-the-art in speech recogni-

tion, visual object recognition, object detection, and many 

other domains, outperforming human-level performance 

especially in a custom computer vision application, such as 

image classification [3]. Deep learning model has the abil-

ity to perform feature extraction and classification within 

one network. Consequently, the hand-crafted visual detec-

tion approaches have been progressively replaced by deep 

learning approaches due to their ability to extract features 

from raw images automatically.

In this paper, we present an intelligent fire/smoke detec-

tion approach based on YOLOv2 network, which aims to 

achieve high detection rate, low false alarm rate, and high 

speed. Such an algorithm has been tested with a state-of-

the-art dataset plus a set of other not public videos. Finally, 

the detector has been deployed on a single board embedded 

system, NVIDIA Jetson Nano, as a standalone application 

for real-time video processing.

Hereafter, the paper is organized as follows: Sects. 1 and 

2 deal with introduction and state-of-the-art video-based 

fire/smoke detectors. Section  3 presents the algorithm 

description. Section 4 discusses the global architecture and 

then each of the layers used in the video processing steps. 

Section 5 shows the experiment results and discussion. Sec-

tion 6 presents the algorithm implementation in the embed-

ded system. Conclusions are drawn in Section 7.

2  State-of-art video-based �re/smoke 
detectors

Conventional video smoke detection methods addressed the 

problem by extracting a multi-dimensional feature vector 

from the input smoke image [4], which may be the color, 

texture, shapes, irregularity, flutter, or frequency, and clas-

sifying the feature vector into “smoke” or “non-fire” class. 

Celik et al. [5] proposed a method based on different color 

models for both fire and smoke, obtained by statistical analy-

sis fuzzy-logic to achieve discrimination between fires and 

fire-like colored objects. Rafiee et al. [6] used static char-

acteristics (two-dimensional wavelet analysis) and dynamic 

characteristics like smoke disorder. The first for detecting 

the color and the motion while the second implements back-

ground subtraction using frame differentiation. However, the 

false-negative rate remains an issue here also due to the pres-

ence of other objects in the background with similar color 

properties as the fire pixels. A similar technique is used in 

work in [7] that generates the background subtraction using 

visual background estimation (ViBe). Recent work in [8] 

proposes a smoke detector based on Kalman estimator, color 

analysis, image segmentation, blob labeling, geometrical 

features analysis, and M of N decisor, to extract an alarm 

signal within a strict real-time deadline. Such presented 

methods can be deployed on embedded systems achiev-

ing good performance in terms of power consumption and 

frame rate. The drawback of these techniques lies in having 

to extract by hand the features from the video streams.

With the rapid development of artificial intelligence and 

deep learning, computer vision has achieved significant 

attention from academia and industry. On the other hand, 

deep learning techniques have the advantage of extract-

ing the features automatically, making this process more 

effective and dramatically improving the state-of-the-art 

in Image Classification and object detection methods [9]. 

Various deep learning methods have been proposed for fire 

and smoke detection. In [10], Wu et al. used popular object 

detection methods like R-CNN, YOLO, and SSD for real-

time forest fire detection. Sharma et al. [11] instead propose 

a CNN-based fire detection based on a pre-trained VGG16 

and Resnet50 as baseline architecture. In [12] and in [13], 

both authors used YOLO method for fire detection and flame 

detection respectively. In all cases, albeit they achieve good 

results in terms of accuracy, they do not provide a low-cost 

implementation on an embedded platform. This is due to the 

large disk size and the total number of parameters that make 

these models not suitable for that purpose.

In this paper, we used YOLOv2 algorithm to identify and 

locate fire and smoke objects using a video camera. Our 

target in this work is to create a light-weight deep learn-

ing model for embedded application, able to fit into low-

cost, low-performance hardware such as Jetson nano and 

can achieve good performance for real-time fire and smoke 

detection [14]. A Ground Truth Labeler application has been 

used for labeling and creating the training set of collected 

images for our benchmark. We used such dataset to iden-

tify and label the features of fire and smoke in which to be 

trained for YOLOv2 detector.

3  Algorithm description

3.1  Principle of YOLO

You look only once (YOLO) is a deep learning model for 

object detection. It was first explored by Redmon et al. 
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[15]. YOLO can detect the location of multiple classes at 

one time. It is accurate and fast, which meets the require-

ments for real-time processing, thus outperforming in speed 

object detection models based on region techniques, such as 

Regional convolutional neural network (R-CNN) models. 

R-CNN detectors create bounding boxes in the image and 

then classify these proposed boxes. After the classification, 

R-CNN refines these boxes and initiate the scores for the 

objects to be detected. These processes are hard and slow to 

optimize because each stage needs to be trained separately 

[16]. Instead, YOLO network uses a single-stage architecture 

with less neural network layers and fewer filters to these 

layers. For the proposed YOLOv2 technique, we used full 

images to train and test the network: the algorithm takes 

the input image and splits it into S × S grids. It extracts the 

features from each grid and predicts the bounding boxes 

and the confidence score for the detected objects in these 

boxes, see Fig. 1.

There are five values for predictions in the algorithm: the 

rectangle box is represented with (x, y, w, h), plus there is 

the confidence score that defines the probability of the class 

presence in the box. Only one class will be predicted in each 

grid. A specific confidence score is obtained for each box. 

The confidence score is defined as seen in Eq. (1). If there 

is an object in the cell, the confidence score will be equal to 

the Intersection over Union (IoU) value between the ground 

truth and the bounding boxes. Otherwise, the confidence 

score will be zero if no object exists in the cell.

where Pr(Object) is the probability that the box contains 

the object. IoU is the (Intersection over Union) between the 

ground truth and predicted boxes.

IoU is an evaluation algorithm used in object detection 

benchmarks. It determines the overlap between two areas 

and measures how these two areas are equal in terms of 

location and size. It is an indicator that judges the distance 

between Ground truth bounding boxes and the predicted 

bounding box from the module in object detection. The for-

mula of IoU is defined as the following Eq. (2):

(1)
Pr (Classi|Object) × Pr (Object) × IOU = Pr (Classi) × IoU

where A is the prediction boxes. B is the ground truth boxes.

3.2  YOLOv2

YOLOv2 is the second version, which has several enhance-

ments to YOLO, as presented in YOLO9000 [17]. Indeed, 

YOLO has two drawbacks for object detection. The first 

weakness is that it is inaccurate to locate and position the 

classes to be detected in the images. The second problem 

is a low recall rate when it compares to the regional based 

detectors. YOLOv2 resolved these issues, thus increasing the 

accuracy and the speed of the architecture. This algorithm is 

suitable for GPU-based embedded computing modules for 

real-time processing [18]. YOLOv2 used batch normaliza-

tion layers in all convolutional layers to normalize the value 

distribution from one layer to another. Batch normalization 

improved the regularization for YOLOv2 neural network 

model. It reduced the requirement for a dropout layer to 

overcome the overfitting problems. It normalizes its input 

by calculating the mean and variance values over the mini-

batch, and it calculates the activation, as seen in Eq. (3).

where � is the property Epsilon and improves the mini-batch 

when the variance is small.

Fully connected layers were removed in YOLOv2, and 

instead, anchor boxes were used to predict bounding boxes. 

This idea was drawn from the state of art Faster R-CNN 

detector. YOLOv2 uses these anchors to detect the objects 

in the images. YOLOv2 anchor boxes are a set of rectangle 

boxes predefined with a specific height and width. These 

boxes are used to capture the specific scale for the object 

to be detected. The size of anchor boxes is chosen based on 

the scale of bounding boxes in the training dataset. YOLOv2 

with anchor boxes increases the output resolution for the 

networks’ convolutional layers. Anchor boxes can evaluate 

(2)IoU =
|A ∩ B|

|A ∪ B|
,

(3)
x̂

i
=

xi − �
B

√

�2

B
+ �

,

Fig. 1  YOLO model: input 
images split into S × S grid cell, 
each grid predicts the bounding 
boxes and the confidence scores 
and finally, the score encodes 
the probability with enclosed 
bounding box on the detected 
object
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the prediction of all classes at once. It can also eliminate the 

requirement of scanning the image with a sliding window 

such as the detectors based on regional R-CNN and Fast 

R-CNN Algorithms.

4  Fire and smoke detection methodology

Many researches were focused on the traditional method of 

feature extraction for fire and smoke detection. The main 

problem for such techniques was time consumption for com-

puting these feature extractions. This resulted in low per-

formance and slow real-time for fire and smoke detection. 

These methods also generated a number of false positives 

and mistakes in the detection of background.

Motivated to the new development on the deep learning 

models, we proposed Fire and smoke detection based on a 

video camera using YOLOv2 model. Fire and smoke detec-

tion have a higher speed in imaging processing. In such a 

case, YOLOv2 is the best technique to encounter the detec-

tion of these objects. This detection is essential for firefight-

ers because it will give an early alerting sign for fire and 

smoke accidents to take remedial actions accordingly.

Figure 2 shows the workflow for building up our architec-

ture for fire and smoke detection. It started with creating the 

ground truth data by labeling the training images. Then we 

designed the model with neural network and YOLOv2 lay-

ers. Furthermore, we trained, validated, and tested YOLOv2 

technique to assess its performance and accuracy. Finally, 

the proposed technique is deployed to the target node (Jetson 

Nano) to run as a stand-alone application in this embedded 

device.

4.1  The proposed YOLOv2 neural network design

In this section, we will discuss the design for our YOLOv2 

model. We used Deep Neural Designer tool in MATLAB 

to build YOLOv2 neural network layers. To establish a 

light-weight deep learning model to fit the embedded sys-

tem, we constructed CNN with 21 layers, see Fig. 3. This 

light-weight model is suitable for real-time performance, 

and it is worthy enough to be deployable on low-cost IoT 

devices. The proposed approach includes the input layer, 

middle layers, and subnetwork of YOLOv2 layers.

Our proposed model starts with the input image layer. 

We set the image input layer with a minimum image size 

of 128 × 128 × 3 for the proposed model. Then we used 

middle layers, which contain a cascade of convolutional, 

batch normalization, ReLU (rectified linear unit), and 

max-pooling layers. Convolutional layers were used to 

map the features for the input images. The filter size on 

the convolutional layers is set to [3 × 3]. This size is com-

monly used for the convolutional neural network architec-

ture. Filter size defines the width and height of the regions 

in which the neurons connect in the input. Batch normali-

zation layers are used to regularize the model, normalize 

the training, and speed up the convergence. Batch nor-

malization layers reduce the sensitivity of the initialization 

of the network. Then we used ReLU activation function 

to introduce the non-linearity to the neural network. We 

utilized max-pooling layers to downsample the images into 

pooling regions. We applied 2 × 2 for size of pooling with 

a stride of 2 × 2 for all pooling layers in our network.

We used ‘Batch normalization_4′ as the feature extrac-

tion layer. The features extracted from this layer are 

given as input to YOLOv2 object detection subnetwork. 

YOLO2Layer subnetwork is used in this model, which 

creates YOLOv2 detection network. YOLOv2 Transform 

layer is used in our model to enhance the network stabil-

ity for object localization. Finally, YOLOv2 output layer 

is used to refine the location of bounding boxes to the 

targeted objects. The architecture was examined with deep 

network analyzer in MATLAB, which reported zero errors.

4.2  Data pre-processing

We prepared a dataset of 400 images for fire and smoke 

to train YOLOv2 detector in our experiments. The images 

were collected from Kaggle website [19]. These images 

were selected from different realistic situations for fire and 

smoke accidents. Ground truth application was used to 

label the images in MATLAB. The following steps were 

carried to pre-process the proposed model:

• Load the collection of images of fire and smoke into 

ground truth application.

• Label the objects of interest for fire and smoke with 

(rectangular boxes) in the selected images using a cus-

tom algorithm tool in the ground truth labeler [20].

• Export the ground truth data to the MATLAB work-

space to obtain the arrays of labeled features.Fig. 2  Workflow for building up our architecture for fire and smoke 
detection
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4.3  Training

We trained the proposed detector on MATLAB script and 

saved the model at the end of the training process. The 

image size of training dataset images has been resized from 

416 × 416 × 3to 128 × 128 × 3 to account the requirement of 

YOLOv2 model. We trained the network with stochastic gra-

dient descent (sdgm) [21] see Table 1. The number of epochs 

was set to 160. These epochs define the number of times 

that the learning algorithm will work through the training 

dataset. The model was trained with an optimal number of 

epochs. This is to avoid overtraining, which could lead to 

overfitting and overconfident the model in its predictions. 

We used a learning rate parameter in the training option to 

control the model change in response to the error [22]. We 

started the learning rate with  10–2. However, we observed 

that the network was unstable during the training process. 

We fine-tuned the learning rate at  10–3, and we obtained the 

best result of 0.2. The mini-batch loss curve was stable with 

small fluctuation, see Fig. 4.

For anchor boxes, we run k-mean clustering in MATLAB 

to select a good set of labeled boxes in the training dataset. It 

is important to have the correct sizes of these boxes (width, 

height) for YOLOv2 to detect the objects accurately. We 

measured the IoU score of k-means to define the required 

number of these boxes for the model. This is to avoid using 

more anchor boxes, which could result in overfitting and 

poor performance of the detector.

Fig. 3  Architecture of the pro-
posed YOLOv2 Neural Network

Table 1  Training hyper-
parameters for YOLOv2

Parameter Method

Training options sdgm

L2 regularization 0.06

Number of epochs 160

Verbose frequency 50

Mini-batch size 16

Learning rate 0.001
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4.4  Validation

We validated the proposed model with 200 images (100 

images with fire/smoke, and 100 images with NO fire /

smoke). This is an independent test bench, which is dif-

ferent from the training dataset. As per the results from 

receiver operating characteristic (ROC) analysis, the accu-

racy for this validation was 93%. See Table 2 and Fig. 5.

5  Experiment results and discussion

In literature, methods used for testing data are still images 

instead of videos. In method [23], there is a lack of diver-

sity for using videos to encounter various realistic situ-

ations for fire/smoke and normal conditions. In method 

[24], the work refers to monitor the fire only in forest 

areas. However, our model will be exploited in different 

indoor and outdoor conditions. The experiments were car-

ried out on a large scale of videos as testing dataset. In 

our exploration, we used two testing datasets from dif-

ferent sources in our proposed approach. Dataset_v1 is 

our test bench; it consists of 287 videos from different 

environments (indoor, outdoor, forest, railways, parking, 

and public area). 117 videos contained a non-smoke/fire 

condition, and 170 videos contained smoke and fire. This 

dataset has been made challenging for motion-based and 

color-based objects. This has been obtained by capturing 

videos which include objects like smoke, such as clouds. 

This is one of the motivations for selecting this dataset for 

our experiments. Dataset_v2 is used from method [26] to 

evaluate our model, which will be illustrated in the fol-

lowing sub-section.

As a further experiment, we designed and trained R-CNN 

object detector for fire and smoke detection based on a 

regional method. We compared this R-CNN to our proposed 

model using the same Dataset_v1.

We used confusion matrix criteria to analyze different 

matrices in terms of (false positive rate, false-negative rate, 

and accuracy) see Eq. (4) and Table 3. This is to evaluate 

the performance of the proposed approach in comparison to 

the other methodologies,

Fig. 4  a Mini-batch loss curve before fine-tuning b mini-batch loss 
curve after fine-tuning

Table 2  Summary for validation 
results by ROC tool analysis

Matrices Valida-
tion 
values

Number of images 200

Accuracy 93%

Sensitivity 94%

Specificity 80%

Fig. 5  Results obtained by the proposed system in terms of ROC 
curve for validation Dataset
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where we mark the result as: TP if the model detects fire/

smoke objects in positive videos. FP if the model detects 

fire/smoke objects in negative videos. TN if the model does 

not detect fire/smoke in negative videos. FN if the model 

does not detect fire/smoke in positive videos.

Based to the results from these experiments, the proposed 

method achieves good classification performance for fire and 

smoke detection, see Fig. 6a and b and overcomes all other 

methodologies [12, 23, 25]. The fact that in Fig. 6a the alarm 

confidence is above threshold, but it is far from 1 (i.e. 100% 

confidence) is due to fact that, as explained in Sect. 4.C 

(training), the model was trained with a proper number of 

epochs to avoid overtraining. Indeed, overtraining would 

lead to overfitting and would make the model overconfi-

dent in its predictions. If the model gets overconfident and 

with high confidence scores, this will result in false positive 

detection in non-fire/smoke videos.

Table 4 compares the classification accuracy of the pro-

posed method, which is 96.82%, with respect to state-of-

the-art methods whose accuracy ranges from 90 to 92.86%, 

using Dataset_v1. In addition, the proposed approach shows 

better accuracy when compared to R-CNN object detector. 

YOLOv2 sees the whole image at once as opposed to look-

ing only at generated region proposals in R-CNN method. 

YOLOv2 algorithm helps to reduce false positives problems 

for fire and smoke detection. In addition to that, YOLOv2 is 

by 25 times faster than R-CNN for real-time object detection 

(see Sect. 5.b). Therefore, the proposed approach made an 

improvement in the background mistakes for the videos with 

no—fire/smoke objects.

5.1  Performance of our method with Dataset_v2

To evaluate the efficiency of the proposed approach, we 

tested it also with Dataset_v2 [26]. The test bench consisted 

of 160 non-fire images, 46 fire videos, and 16 non-fire vid-

eos. The dataset is limited, but it is challenging, e.g., it con-

sists of videos for no-fire/smoke, which contains sunset light, 

see Fig. 7. Such a dataset was used for [26] method, also 

(4)

Accuracy =
TP + TN

TP + FN + TN + FP

False - positive rate =
FP

FP + TN

False - negative rate =
FN

FN + TP

based on deep learning approach. It is important to note that 

no videos from Dataset_v2 were utilized in training the pro-

posed architecture for fire and smoke detection. The results 

for our method is compared with four different methods 

reported in [26, 27], and [28]. We used metrics (Accuracy, 

Recall, F-Score, and Precision) to evaluate the effectiveness 

of our approach. According to the results from Dataset_v2, 

our approach showed the best result for Accuracy compared 

to the other state-of-the-art methods, see Table 5.

All experiments were carried on a personal computer 

using MATLAB 2019b, a built-in application Neural Net-

work Designer, Ground Truth Labeler, and  Intel® Core TM 

I3-6006U CPU @ 2 GHz were utilized as support tools. 

Jetson Nano, see details in Sect. 6, then was used as a Hard-

ware test platform.

5.2  Our method vs. other object detectors 
for real-time fire and smoke detection

Fire and smoke detection have a vital role in protecting peo-

ple, the environment, and properties. The key aspect of fire 

and smoke detection is to identify the accident occurrence 

in a timely manner. Early fire/smoke detection is a major 

element of disaster risk reduction [29].

To understand further, we carried experiments to com-

pare our proposed method to the other object detectors such 

as R-CNN and Fast R-CNN. We used MATLAB with our 

bench-test dataset of fire and smoke videos. We run the three 

detectors simultaneously while calculating frames per sec-

ond for each detector. The experiment results demonstrate 

that the proposed YOLOv2 approach is by 25 times faster 

than R-CNN and by 23 times than the Fast R-CNN object 

detectors, see Fig. 8.

6  Embedded system implementation

6.1  Jetson Nano embedded platform

Jetson Nano is a powerful but compact embedded com-

puter with low cost of approximately $100 [30]. Jetson 

Nano runs multiple neural networks in parallel for object 

detection. It is suitable device for applications that are 

based on distributed networks. It consists of GPU 128-

core Maxwell. CPU is Quad-core ARM A57 at 1.43 GHz. 

The memory for Jetson Nano is 4 GB, 64-bit, LPDDR4 

25.6 GB/s. It has 4 × USB 3.0, USB 2.0 Micro-B. We used 

a Raspberry Pi Camera Module V2 with 8 M pixel resolu-

tion as a testing camera. This camera can work with an 

image resolution of 1080p @30 frames per second. We 

connected the camera to the CSI (camera serial interface) 

port in Jetson Nano. The trained YOLOv2 detector has 

been deployed in NVIDIA Jetson Nano and run it as a 

Table 3  Confusion matrix criteria

Fire/smoke No fire/smoke

Alarm TP FP

No alarm FN TN
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Fig. 6  a Sample Images from 
videos with fire and smoke. b 
Sample images from videos 
with no fire and smoke
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stand-alone application. We used MATLAB environ-

ments and third-party packages to generate the C code. 

We used GPU coder to convert MATLAB code into an 

optimized CUDA code. CUDA stands for (Compute Uni-

fied Device Architecture). It is an extension of C program-

ming language which is designed for NVIDIA framework. 

We connected Jetson Nano to a host computer using an 

ethernet cable. Figure 9 shows the simplified diagram for 

the deployment process of the proposed CNN model from 

MATLAB to Jetson Nano.

MATLAB Coder is used to generate the C Code from 

MATLAB to Jetson Nano. Parallel Computing Toolbox 

is utilized to solve the computational and data problems 

using a multicore processor and GPU. We also used Deep 

Learning Toolbox, which provides a framework for imple-

menting the neural network with the algorithm. GPU 

Coder Interface for Deep Learning Libraries customizes 

the generated code by utilizing a specific library in Jetson 

Nano. GPU Coder Support Package for NVIDIA GPU’s is 

used to generate and deploy the CUDA code. It enabled the 

communication remotely between MATLAB and NVIDIA 

on the targeted hardware. We used Embedded Coder for 

code generation to Jetson Nano. It is an optimized tool 

that improves the code generation to the hardware pre-

cisely. We installed the required environment variables and 

applications such as JetPack Developer AI tool in Jetson 

Nano. This is to be applicable for code generation of our 

CNN detector from MATLAB. We also installed Micro-

soft visual studio 2019 as complier support for generating 

GPU code to Jetson Nano. We used CUDA Deep Neural 

Network libraries to accelerate primitives for deep neural 

networks.

Table 4  Performance of the proposed approach vs. state-of-the-art

Method False-posi-
tive (%)

False-nega-
tive (%)

Accuracy (%)

This work 3.4 2.9 96.82

R-CNN 8.5 0.0 96.5

De Lascio et al. [23] 13.33 0 92.86

Fu et al. [25] 14 8 91

YOLO [12] 5 5 90

Fig. 7  Sample examples of Dataset_v2, which shows sunset light in 
non-fire videos

Table 5  The Performance of the proposed approach using Daraset_v2 
vs. other methodologies (the F-score is the harmonic mean of the pre-
cision and recall)

Method Accuracy % Recall % F-Score % Precision %

Proposed method 96.58 97 95.4 97

Jadon et al. [26] 93.9 94 95 96.9

Filonenko et al. 
[27]

85 96 90 85

Yuan et al. [28] 86 53 65.5 86

Fig. 8  The comparison of YOLOv2 detector vs. R-CNN and Fast 
R-CNN models for Real-time fire/smoke detection

MATLAB

GPU CODER

CUDA

CUDA COMPLIER

HARDWARE (JETSON NANO) 

Fig. 9  Diagram for the deployment process of the CNN code from 
MATLAB to targeted hardware Jetson Nano
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6.2  Test of the proposed method on embedded 
system

We tested the deployed detector as a stand-alone applica-

tion in Jetson Nano to evaluate its real-time performance. 

Raspberry webcam model V2 was connected to Jetson Nano. 

The camera was exposed to another computer, which was 

simulating a number of videos of fire/smoke and negative 

videos, see Fig. 10. While the proposed detector is running 

in Jetson Nano, we recorded various parameters. The real-

time measured was 21 fps, which showed better real-time 

detection in comparison to [31].

We also measured the time delay before our method 

started to detect fire and smoke. When the camera is in video 

mode, the time delay between the start of fire/smoke in vid-

eos and YOLOv2 detection is 1–2 s. It means that the algo-

rithm requires 1–2 s to trigger a smoke or fire alarm. Note 

that our approach can produce better time decision for fire/

smoke detection in comparison to the method [32], which 

proposed Faster R-CNN model. This is the advantage of 

using our method for early fire and smoke detection. During 

the test, we also measured the power consumption for Jetson 

Nano. We removed all accessories such as keyboard, mouse, 

and monitor from Jetson Nano. The power consumption of 

Jetson Nano was 1.24 W when the detector is off. While our 

method was executed, the power consumption measured was 

4.19 W. Table 6 shows the power consumption measurement 

for Jetson Nano in different scenarios.

We performed the measurement of CPU (Central Pro-

cessing Unit) and the GPU (Graphics Processing Unit) % 

resource utilization in Jetson Nano. The CPU runs the oper-

ating system and applications. The GPU is designed to han-

dle graphic operations. These characteristics are important 

to evaluate its computation processing. The table shows the 

recorded values for the CPU and GPU processors while our 

proposed detector is executed in Jetson Nano. In addition to 

that, the temperature of Jetson Nano was measured while 

our method was in processing mode. The temperature was 

recorded for CPU at 53.1 °C, and for GPU at 54 °C see 

Table 7.

As a further advantage of our approach, we measured its 

final memory size when deployed on Jetson Nano, which is 

7.1 MB. In literature, other methodologies used large CNN 

layers such as Alexnet, VGG16, and Resnet50 for approaches 

in methods [33, 34]. These massive CNNs layers require a 

large disk size for deployment on the hardware. This could 

influence the real-time detection and low performance while 

running on low-cost embedded devices. Therefore, this is 

an advantage of our architecture in comparison to the other 

state-of-the-art methods and it can be superior for real-time 

fire and smoke detection.

7  Conclusions

This paper proposed a real-time and embedded implementa-

tion of a fire and smoke detection technique that can reuse 

standard video cameras of surveillance systems. The tar-

get of this work is to develop smart IoT devices for fire/

smoke detection in indoor and outdoor environments. The 

Fig. 10  Testing the proposed Detector with real state of fire and 
smoke. Hardware setup consists of: a proposed detector running as a 
stand-alone application in Jetson Nano b Raspberry Camera V2 c fire 
d monitor shows the detected objects which are enclosed with bound-
ing box

Table 6  Power consumption 
measurement in different 
scenarios

YOLOv2 status Power 
measure-
ment (W)

Jetson Nano without monitor, keyboard, mouse Off 1.24

Jetson Nano without monitor, keyboard, mouse Running 4.19

Jetson Nano with monitor, keyboard, mouse Off 2.24

Jetson Nano with monitor, keyboard, mouse Running 5.19

Table 7  The % resource utilization and temperature measurement for 
the GPU and CPU in Jetson Nano while our method is running on it

Performance (%) Tem-
perature 
(°C)

Jetson Nano (GPU) 99 54

Jetson Nano (CPU) 53.1 53.1
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algorithm is simple to design and can be trained fast. The 

proposed solution achieved promising results for accuracy 

in comparison to the state-of-the-art. In terms of false posi-

tive, it reduced the background mistakes in non-fire/smoke 

videos. Indeed, the proposed method performed very well, 

even with videos containing challenging features such as 

sun and clouds. The proposed detection solution stands for 

its low-latency and real-time performance when compared 

to the other regional-based detectors. Indeed, it can detect 

fire and smoke in 1 or 2 s as an early alerting alarm for the 

occurrence of fire and smoke accidents. In the future, we 

will extend our research to connect the proposed system to 

iCloud facilities for providing visual status and feedback of 

fire/smoke remotely. Moreover, recently released YOLOv4 

models [35] will also be considered.
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