
REAL TIME VIDEO STITCHING IMPLEMENTATION ON A ZYNQ FPGA SOC

 By

 Dhimiter Qendri,
 B.Eng , University Of Ontario Institute of Technology 2017

A Major Research Project

presented to Ryerson University

in partial fulfillment of the

requirements for the degree of

Master of Engineering

in the program of

Electrical and Computer Engineering

© Dhimiter Qendri, Toronto, Ontario, Canada 2019

ii

Declaration of Authorship

I hereby declare that I am the sole author of this MRP. This is a true copy of the MRP,
including any required final revisions.

I authorize Ryerson University to lend this MRP to other institutions or individuals for the
purpose of scholarly research.

I further authorize Ryerson University to reproduce this MRP by photocopying or by other
means, in total or in part, at the request of other institutions or individuals for the purpose of
scholarly research.

I understand that my MRP may be made electronically available to the public.

iii

REAL TIME VIDEO STITCHING IMPLEMENTATION ON A ZYNQ FPGA SOC

DHIMITER QENDRI

Master of Engineering

Electrical and Computer Engineering

Ryerson University

2019

Abstract

This project details the design and implementation of an image processing pipeline that targets

real time video-stitching for semi-panoramic video synthesis. The scope of the project includes

the analysis of possible approaches, selection of processing algorithms and procedures, design of

experimental hardware set-up (including the schematic capture design of a custom catadioptric

panoramic imaging system) and firmware/software development of the vision processing system

components. The goal of the project is to develop a frame-stitching IP module as well as an

efficient video registration algorithm capable for synthesis of a semi-panoramic video-stream at

30 frames-per-second (fps) rate with minimal FPGA resource utilization. The developed

components have been validated in hardware. Finally, a number of hybrid architectures that

make use of the synergy between the CPU and FPGA section of the ZYNQ SoC have been

investigated and prototyped as alternatives to a complete hardware solution.

Keyword: Video stitching, Panoramic vision, FPGA, SoC, vision system, registration

iv

Table of Contents

Contents

List of Tables .. vii

List of Figures .. viii

List of Acronyms ... xi

Chapter 1 Panoramic vision .. 1

 Introduction .. 1

1.1 Objective ... 1

1.2 Motivation ... 1

1.3 Tasks ... 3

1.4 Panoramic Imaging ... 3

1.5 Project Organization ... 5

Chapter 2 Related works ... 6

 Panoramic Imaging .. 6

2.1 Problem Analysis .. 7

2.2 Publications ... 9

2.3 Patents ... 10

2.4 Feature based methods .. 10

2.4.1 SIFT .. 11

2.4.2 SURF ... 12

2.4.3 Harris Corner detector ... 12

2.5 Feature based stitching algorithms .. 15

2.6 Design decisions ... 15

Chapter 3 Proposed approach ... 17

 Proposed Approach .. 17

v

3.1 ZYNQ SOC Overview .. 17

3.2 Proposed Hardware ... 17

3.3 External peripherals .. 20

3.3.1 Camera sensors. .. 20

3.3.2 WIFI BLE module .. 20

3.3.3 VGA DAC .. 20

3.3.4 USB ... 20

3.3.5 JTAG and Serial Port. ... 21

3.4 System BOOT ... 21

3.5 Experimental Setup ... 22

3.6 Proposed Algorithm .. 25

3.7 Seam index identification ... 26

3.8 Automatic seam detection algorithm .. 27

3.9 Rectification .. 30

3.10 Proposed firmware modules ... 31

3.10.1 Camera controller .. 31

3.10.2 Line Buffer .. 32

3.10.3 Sobel Filter .. 32

3.10.4 Seam identification IP ... 32

3.10.5 Rectification IP ... 32

3.10.6 Image Stitching ... 33

3.11 OpenCV Implementation .. 33

3.12 OpenCV testing ... 34

Chapter 4 Implementation ... 37

 Implementation .. 37

4.1 Hardware setup ... 37

vi

4.2 Camera module ... 38

4.2.1 Camera Configuration ... 39

4.2.2 Pixel parsing .. 41

4.3 VGA Module .. 43

4.4 Camera Testing ... 48

4.5 PS implementation .. 53

4.6 Image stitching IP ... 56

4.7 Automatic seam registration ... 59

4.7.1 Sobel filter ... 60

4.8 Key-point detector .. 61

Chapter 5 Analysis .. 63

 Analysis of results .. 63

5.1 Performance analysis .. 63

5.2 Image Stitching IP ... 63

5.3 VGA .. 65

5.4 Seam identification HDL modules .. 66

5.4.1 Line buffer .. 66

5.4.2 Sobel Filter .. 68

5.5 Key-point detector .. 69

5.6 Comparison with OpenCV stitching ... 70

5.6.1 Comparison with streaming method ... 70

Chapter 6 Summary .. 71

6. Project summary ... 71

References ... 74

vii

List of Tables

Table 3-1 Frame stitching execution time .. 35

Table 4-1 OV7670 Camera sensor resolutions and FPS ... 38

Table 4-2 OV7670 Camera pinout interface ... 40

Table 4-3 First byte during first cycle ... 42

Table 4-4 Second byte during first cycle .. 42

Table 4-5 J4 PMOD on Minized ... 44

Table 4-6 J5 PMOD on Minized ... 45

Table 4-7 VGA resolution parameters .. 46

Table 4-8 Image stitching IP interface .. 58

viii

List of Figures

Figure 2-1 Algorithm only operating on tiles ... 16

Figure 3-1 Proposed block diagram of the custom hardware platform .. 18

Figure 3-2 Proposed placement for designed hardware .. 21

Figure 3-3 General case for epipolar projection ... 22

Figure 3-4 Simplified case of epipolar projection for lab setup ... 23

Figure 3-5 Catadioptric optical system for panoramic imaging ... 24

Figure 3-6 Two sample image matrices (1 left, 2 right) with overlapping columns 28

Figure 3-7 Stitched images ... 28

Figure 3-8 Calculated bins for each operation .. 29

Figure 3-9 Determining seam index by Euclidean norm .. 29

Figure 3-10 Unrectified Sobel filtered adjacent frames .. 30

Figure 3-11 Two different perspective images of the same scene .. 34

Figure 3-12 Matching features with SIFT .. 35

Figure 3-13 Synthesized panoramic image ... 35

Figure 4-1 Vision processing hardware setup ... 37

Figure 4-2 OV7670 camera module ... 38

Figure 4-3 Functional Block diagram of the camera sensor ... 41

Figure 4-4 Data transmission of a single pixel RGB565 pixel data ... 43

Figure 4-5 PMOD VGA interface connector .. 44

Figure 4-6 VGA timing diagram ... 46

ix

Figure 4-7 VGA setup with a test pattern and ILA ... 48

Figure 4-8 OV7670 Camera to VGA setup ... 49

Figure 4-9 Logic analyzer data for OV7670 camera input capture module 49

Figure 4-10 Logic analyzer output for VGA module operation. .. 50

Figure 4-11 OV7670 Camera to QVGA with soft IIC ... 51

Figure 4-12 Testing the camera interface. .. 52

Figure 4-13 OV7670 camera capture settings .. 52

Figure 4-14 Changing the gamma, brightness and saturation settings. .. 53

Figure 4-15 Simplified version of the VDMA system. ... 54

Figure 4-16 Testing VDMA to VGA with video test pattern generator 55

Figure 4-17 Image stitching module ... 56

Figure 4-18 Test setup for image stitching IP. .. 57

Figure 4-19 Block diagram for automatic seam registration .. 60

Figure 4-20 Line buffer interface .. 60

Figure 4-21 Key-point detector interface .. 62

Figure 5-1 Frame stitching core interface ... 64

Figure 5-2 Simulation of core stitching IP .. 65

Figure 5-3 Resource utilization of frame stitching core IP ... 65

Figure 5-4 Resource Utilization of VGA IP ... 66

Figure 5-5 Simulation of line buffer module .. 67

file:///C:/Users/Dhimiter/Documents/Masters/MENG_Project_DhimiterQendri.docx%23_Toc535858362

x

Figure 5-6 Simulation of line buffer module (continued) ... 67

Figure 5-7 Resource utilization of the synthesized line buffer. .. 68

Figure 5-8 Resource utilization of Sobel. ... 68

Figure 5-9 Test setup for basic key-point detector ... 69

Figure 5-10 Test bench results .. 69

Figure 5-11 Resource usage for Key point detector ... 70

xi

List of Acronyms

ASIC Application Specific Integrated Circuit

ADAS Advanced Driver Assistance System

APU Application Processor Unit

AXI Advanced eXtensible Interface

BRAM Block Random Access Memory

DAC Digital Analog Converter

DOG Difference of Gaussians

DDR Double Data Rate

EMIO External Multiplexed Input /Output

CMOS Complementary Metal-Oxide-Semiconductor

FIFO First in First Out

FPGA Field Programmable Gate Array

FMC FPGA Mezzanine Connector

FOV Field of View

FSBL First Stage Boot loader

HDL Hardware description Language

HLS High Level Synthesis

I2C Inter Integrated Circuit

ILA Integrated Logic Analyzer

xii

I/O Input / Output

JTAG Joint Test Access Group

LDO Linear Drop-Out Regulator

LED Light Emitting Diode

LSB Least Significant Bits

LUT Look Up Table

MIO Multiplexed Input / Output

MPU Micro Processor Unit

MP Mega Pixels

HDMI High-Definition Multimedia Interface

SIFT Scale Invariant Feature Transform

SURF Speeded up robust features

SPI Serial Peripheral Interface

SoC System on Chip

PCB Printed Circuit Board

PS Processing System

PL Programable Logic

PWM Pulse Width Modulation

PHY Physical Layer Interface

PMU Power Management Unit

xiii

TRM Technical Reference Manual

RANSAC Random sample consensus

VGA Video Graphic Array

VDMA Video Direct Memory Access

XADC Xilinx Analog to Digital Converter

1

Chapter 1
Panoramic vision

Machine vision is the capability of embedded systems with image sensors to extract useful

information from acquired image parameters such as depth, color, 3D shape and geometric

information in general. To extract the maximum amount of information from a scene, the vision

system needs to have a wide field of view hence the need for panoramic imaging systems. This

project focuses on the implementation and design of a real time video stitching system with

semi-panoramic imaging capabilities.

 Introduction

1.1 Objective

The main objective of this project is to explore the technical problems and find an efficient

implementation of run time video image stitching from multiple camera sensors. The goal of the

project is to implement on the fly merging of video streams from separate video sensors at a high

frame rate in order to allow for real time tracking. The main challenges addressed in the

implementation stage are the schematic capture design of a custom hardware platform with

hyper-stereoscopic panoramic video capabilities, the design of custom HDL IP that implements

run time video frame stitching as well as the design of IP modules used for automatic image

registration which includes both rectification and seam identification.

1.2 Motivation

Panoramic image stitching has several commercial applications in diverse fields such as medical

imaging, astrophotography, architecture, robotics, industrial inspection, advance driver

assistance systems (ADAS) and of course in panoramic photography and film. Panoramic image

mosaicking has already become a default feature on current mobile OS camera software.

Wide angle semi-panorama creation is based on image stitching. Image stitching is the process

of taking a number of images from different perspectives, transforming them so that the same

objects on all the images align with each other and then overlapping the images in such a way as

to form a panorama based on the number of different perspectives of the same scene. The main

2

issue faced when implementing image stitching is how to effectively remove the misalignments

due to parallax which results in visible image feature duplication as well as aligning the adjacent

images in such a manner so that there is no visible seam along the boundary between the two

images.

Vision processing systems work with specific frame rates subject to requirements of response

time. The response time is defined as the time interval to react to an external stimulus. The

response time is directly linked with the camera sensor frame rate which is an intrinsic property

of the sensor. The camera sensors used on this project allow the frame rate to be changed based

on the selected resolution.

The requirements for the reaction time depend directly on system constrains such as the platform

moving speed, the reaction time of any transducer interfaced with the vision system and the

execution time of the image processing algorithms. To maximize the reaction time, the algorithm

execution time has to be kept to a minimum.

The vision system pipeline makes use of CMOS camera sensors that incorporate a DSP image

processing engine. These sensors are provided either with external optics or with integrated

optics. The camera lens determines the optical properties of the sensors. The lens purpose is to

focus the lights that is reflected or emitted from the object under the FOV. This light forms the

image in the camera sensor. The lens size determines the FOV and the working distance.

The main limitation of current imaging systems is that most camera sensors have a very limited

field of view which is typically 55-65 degrees. While there exist special optical imaging

platforms with much wider field of view such setups are expensive and suffer from astigmatism.

This incurs deformations on the acquired images which have to be fixed either by additional

optics or by adding further steps in the image processing pipeline thereby decreasing reaction

time.

To solve the issue of limited FOV as well as minimize reaction time one needs to implement an

image stitching algorithm that executes fairly fast with regards to system reaction time in order

to meet real time requirements. In general, this requires making use of hardware implementations

which can parallelize calculations to speed up execution delays.

3

1.3 Tasks

The difference between a video imaging system and a vison system is that the former contains no

image processing. Vision systems on the other hand extract information from the acquired image

frames and find sense from them. This in effect requires integrating an algorithm in the image

processing pipeline. The main task of this project is the implementation of a vision image

processing pipeline capable of run time stitching of video frames at 30 frames per second.

The primary task of the project was the implementation of a custom IP that receives the

individual video streams from each camera and implements run time video stream stitching.

The second task was the schematic capture design of a custom hardware platform centered on the

ZYNQ 7020 SOC. The platform main novelty is the implementation of a custom catadioptric

system consisting of four separate cameras together with a mirror assembly forming a hyper-

stereoscopic imaging system.

The third project task was the investigation and implementation of automatic image registration

algorithm using a mixed approach by using a hybrid intensity and features-based approach. The

main challenge of this task was the development of the algorithms for identification of

correspondence points between adjacent image features. The registration process consists of

image rectification and seam identification. For each of these steps a number of custom HDL IP

modules were implemented. The simulation of each module as well as the Verilog code are

included in Appendix A. The last task was the analysis of the developed modules.

1.4 Panoramic Imaging
The imaging systems are generally classified as active or passive. Passive imaging systems

make use only of passive optical sensors and elements such as mirrors and lenses. Active

imaging systems on the other side make use of active elements such as projectors, collimated

light sources and active light sources. Active stereo system includes structured light systems

which make use of a single projector and camera or time of flight systems make use of a

4

collimated light source such as a laser and a monocular camera. The imaging systems in this

project fall under the passive systems since no use is made of any active light sources.

There exists a multitude of methods for creating panoramic images. These systems can be

categorized on the number of imaging sensors they use; such as monocular cameras, stereoscopic

cameras, hyper-stereoscopic cameras and so on.

Panoramic cameras in themselves are classified in two main categories, dioptric and catadioptric.

Dioptric imaging systems use only refractive elements such as lenses. This includes rotating

cameras, fish-eye based cameras and camera clusters. Catadioptric systems make use of single

curved mirrors or flat mirrors paired with multiple cameras.

Current smartphone monocular camera systems support the creation of panoramic images by

implementing on the fly software stitching of the acquired image. This requires that the user

manually moves the camera in the direction of the panorama. A similar setup can be automated

by using a motorized approach to manual movement. This approach however reduces the

reaction time as well as the system reliability. In addition, it adds a host of other issues such as

the need for image stabilization due to motion jitter.

As such preference is given to a catadioptric static imaging platforms that make use of multiple

video sensors and reflective elements. Integration of mirrors in the optical setup increases the

limited field of view of the camera sensors. If placed strategically, mirror elements can also

simplify the algorithmic complexity of the system.

Recovering spatial information from a single 2D image is in general an ill-posed problem

mathematically. To aid in the recovery of depth information stereo systems make use of the

differences in between image key-point features on the same view in order to infer a depth

disparity map. Inferring depth from a monocular camera is challenging so multiple camera

sensor are needed.

Passive panoramic stereo systems use two monocular cameras to infer a depth map from

difference in parallax. The setup of a stereo machine vision includes two cameras that are

separated by a distance d called the baseline of the system. The projection of the same view on

5

two different surfaces allows the underlying algorithm to estimate the depth of the objects in the

field of view. The baseline defines the depth resolution achieved by the system.

1.5 Project Organization

The remainder of this project report is organized as follows. Chapter II shows an exposition of

the most common methods and techniques used in video stitching. A general survey of past

image stitching implementations on FPGA platforms is included. The aim of this chapter is to

select the most efficient approach for the selected hardware platform subject to the engineering

constraints after analyzing the existing approaches. This section also presents an overview of the

main milestones of the project as well as the original work contribution.

Chapter III is focused on the algorithm presentation and explanation. The first part of Chapter III

presents an implementation of a software centric approach for image stitching. The main

deficiencies of this approach are analyzed and identified with respect to the requirements and

constraints. In the second part the architecture of the proposed HW image stitching algorithm is

presented, together with block diagrams. This section also gives a description of the designed

hardware platform.

Chapter IV describes the experimental setup and the specific implementation details on the

selected FPGA SOC. Furthermore, a detailed explanation of each module is described together

with simulation results. The experimental results together with the demonstration and

comparison of algorithm with prior approaches are shown in Chapter V. This chapter also shows

timing diagrams for each of the custom HDL modules. Finally, in Chapter VI, a summary of the

main results from the project is provided together with potential avenues that require further

optimization.

6

Chapter 2
Related works

This chapter presents the main theory behind semi-panoramic vision covering the main

techniques in use as well as a short survey of the field with applications to FPGA systems.

 Panoramic Imaging
A panoramic image can be synthesized by stitching together multiple images. The images can be

taken by a single rotating camera sensor, multiple camera sensors or special panoramic cameras.

In the most general case, when two images of the same scene are taken from two

different cameras placed at arbitrary angles with respect to each other the pixel corresponding to

the object 3D reference point gets mapped to different image coordinates. The pixel coordinate

can be mathematically described as a combination of a Euclidean transform and a perspective

transform.

The experimental setup designed for this project contains three cameras on a flat PCB

spaced a distance d apart from each other. The differences in parallax with respect to each

camera do not include changes in observation angle. For cameras placed on a flat plane such as

the PCB, there is no projective transform so the setup is simplified. This simplifies the

compositing surface since it’s a simple plane and no projective 3D camera rotation

transformations are needed so perspective transform can be removed from the calculations. In

turn this simplifies the homography matrix.

Image stitching is the process of taking a number of images from different perspectives,

transforming them so the features on all the images align with each other and then merging the

images in such a way as to form a panorama based on the number of different perspectives of the

same scene.

The main problem is the identification of the corresponding features on two adjacent images as

well as transforming one image with respect to the adjacent one so that

There are a number of steps required to obtain a panoramic image from individual images. The

cameras have to be line locked so that the same frame is acquired at the same moment from all

7

different cameras. The central procedure to image stitching is image registration. This is the

process of aligning the images so that stitching can be performed.

There are a number of approaches to image registration which can broadly be categorized as

direct that is intensity based or feature based [1].

Direct methods make use of an operator for image alignment. One example of direct methods are

wavelet transform based techniques which consider the multiresolution representation of each

image on different frequency sub-bands [18]. Feature based approaches are dominant in image

stitching techniques. All feature-based techniques make use of key-points. The key-point is

defined as a sparse set of features which is locally present on all the image perspectives. Key-

point matching is the procedure of finding a correspondence between these features from image

to image.

The homography matrix models the appropriate geometrical transformations to each respective

image that relates the location of a specific pixel coordinates between different image

perspectives. In this chapter a quick review of the two main methods is going to be covered.

Then a number of recent and previous works that focus on hardware implementations of image

stitching.

2.1 Problem Analysis

To stitch two images taken from different perspectives one has to determine the corresponding

features that both images share. Then one of the images has to be transformed so that the

perspective matches with the image that it will be stitched with. The two images then have to be

positioned so that the overlapping areas are fully removed and the seam between the two images

does not have any visible visual artifacts. To accomplish the above step a rectification procedure

has to be applied so that the same feature pixel on both images is at the same level. Even if the

rectification procedure is perfect and the images are aligned correctly, one can still observe

visual artifacts along the seam if the two cameras are focused differently.

8

Estimating the seam where the two images start to share object features can applying multiband

seam blending algorithms is one method of removing these visual artifacts. There are a number

of seam estimation algorithms. Algorithms that optimize the pixels based on energy functions

such as the color gradient along the seam. The naïve seam blending method uses the median

value and the average of the overlapping pixels. Another method is to use center weighting or

use multi band pixel blending. Automatic seam identification can be done independently from

rectification and it can also be integrated as a precursor step to determining the epi-polar line.

Rectifying the two images basically requires determining a couple of corresponding pixels on

both images. This can be accomplished by matching intensity features so that the two brightest

pixels on the rights side of image A, correspond to the two leftmost side brightest pixels on

image B.

These methods are classified as direct methods. The main disadvantage of intensity-based

methods is that they do not offer the required accuracy due to differences in lighting. As such a

naïve implementation will return many false positives which make the procedure inadequate.

The next approach is to determine features known as key-points. A key-point is defined as a

sparse set of features which is locally present on all the image perspectives. This requires pre-

processing of each image or at least sections of images in order to identify these descriptors.

A survey of the most common feature-based image stitching algorithms is given in the section

below. The main disadvantage of feature-based techniques is the computational complexity of

such approaches.

What can be observed by both aforementioned techniques is that there needs to be a balance

between computational complexity of the applied algorithms and the accuracy and execution

time that is required for the task at hand.

Another problem with cameras is lens distortion. This involves barrel distortion where

the pixel coordinates are displaced away from the center of pincushion distortion where the pixel

coordinates are displaced toward the center of the image. The approach taken in this thesis is to

avoid any warping transformations and simply shift the images along the x and y directions

relative to each other until they are fully aligned.

9

2.2 Publications

In [2] Popovic et al present an FPGA implementation of image blending using a hemispherical

polydioptric system. The work mainly focuses on comparison of the blending techniques. Results

show that the nearest neighbor technique results in visible artifacts. The linear blending

technique is partially better at removing the visual artifacts. The best performance is obtained by

applying a restricted Gaussian blending which applies a Gaussian filter only near the seam area.

In 2015 Disney Research [4] demonstrated an algorithm that uses local warping that allows for

robust stitching with minimal parallax artifacts. This method allows for spatiotemporally stable

panoramic video stitching. In [16] Lu et al. perform image warping using an efficient

implementation of line buffers.

In [5] Shieh et al, present a video stitching algorithm that makes use of the OpenCV framework

as well as applying the Difference of Gaussians method (DoG) to construct a scale space that

shows the extreme points. After identifying the image descriptors and applying affiant

transformation the stitched images are obtained.

In [7] Kawanishi et al make use of a six-camera setup coupled with a hexagonal pyramidal

mirror in order to acquire stereo views. The camera system makes use of Tsai's method in order

to restore the radial distortion of each camera image. In [8] Nayar presents a catadioptric

omnidirectional camera system while in [13] and [14] the authors show applications of

catadioptric system to robotic platforms.

In [12] Kar-han Tan et al present a panoramic camera that makes use of a mirror pyramid. The

novelty of this approach is the mirror pyramid which forms a virtual camera with a very wide

field of view.

10

2.3 Patents

There are plenty of patents that cover motion-based image stitching. While the patents are not

open with regards to the algorithmic techniques, they still provide information on the applied

methods. In [3] Apple shows how to implement motion-based image stitching. In addition, a

number of fabless silicon providers also offer custom image stitching IP. The implementation

details behind these IP cores however are not open. As an example, in [9] Omintek demonstrates

an IP capable of warping the individual frames to allow seamless stitching. The IP is cable of

dealing with a maximum of up to 8 different video sources.

2.4 Feature based methods

Fundamental to the procedure of image stitching in feature-based approaches is the

detection of key-points. Image key-points are image features that contain particular criteria such

as being invariant to image scaling, image rotation, 3D camera viewpoint, illumination of noise.

The special point about these features is that they are invariant under transformations hence they

are known as local invariant descriptors. Key-point matching is the procedure of finding a

correspondence between these features from image to image. A number of different algorithms

have been proposed for determining image key points.

Some of the most used techniques are a) Harris Corner Detector b) SIFT (Scale Invariant Feature

Transform) c) Speeded up Robust features. It should be noted that SIFT and SURF algorithms

are patented [24].

Feature based approaches for image stitching share the same algorithmic steps. The main

differences reside in the types of algorithms that can be implemented in each step.

The primary step is the feature pointe detection. The next step is compiling the feature point

descriptors. The third step is feature point matching. The fourth step is the calculation of the

homography matrix. In general, this uses an algorithm that leverages the feature vectors to obtain

a homography matrix. The homography matrix models the appropriate geometrical

transformations to each respective image that relates the location of a specific pixel coordinates

11

between different image perspectives. It is used to apply transformations to the image so that the

features in different images are aligned on the same plane.

The fifth step is implementation of image stitching by joining the warped images obtained from

the previous step. The last step is image blending in order to remove any visual artifacts that are

present. The next phase is matching the key-points on images taken from different perspectives.

The sixth step is applying the homography matrix to each image apart from the reference image

and obtaining the warped images. The fifth step is rectifying the images so that each image is

aligned along the same epi-polar line. This will require moving the images along the vertical

direction until they are aligned.

The seventh step is merging the images so that on the generated panorama all the features in the

different perspectives are closely aligned in such a manner so that no overlap or visual artifacts

can be observed.

There are a number of methods used to obtain feature point descriptors. Corners, blobs, edges

and ridges can be used as features. A quick summary of the most common methods is shown

below.

2.4.1 SIFT

The Scale Invariant Feature Transform (SIFT) algorithm is invariant to image scale and

rotational transformations. This algorithm finds the scale space extremums and localizes the key-

point in an image frame. The algorithm is quite robust against changes in noise or image

distortions. An FPGA implementation is shown in [19].

After finding a set of key-points, a region is selected around each key-point. The next step is to

compute the gradient magnitudes and orientations around each key-point. From the computed

gradients a histogram is created with each sample weighted by the gradient magnitude.

The rotational invariance of each descriptor is obtained by rotating the descriptor coordinates and

the histogram orientation relatively to the dominant orientation. The key-points are then matched

to a database of key-points by using the nearest neighbor criterion based on the Euclidean

distance of the vector.

12

Four random points are selected and the Homography matrix is computed based on the solution

of the linear equations. Then the image points are projected on the image plan of image I2 using

the computed homography matrix Hi. The distance of inliers is then calculated based on a

selected threshold.

These calculations are repeated k times by selecting the best homography matrix with the

maximum number on inliers. An algorithm used for this computation is the RANSAC

algorithms. An FPGA implementation of RANSAC is given in [20].RANSAC stands for

Random Sampling with Consensus. The image stitching stage computes the homography

transformation between two adjacent frames Ij and Ik. After transforming Image Ij then the

images Ij and Ik are blended together. The main issue is to find the optimal boundary between the

regions of overlapped pixels between the two adjacent images that reduce the visual artifact.

2.4.2 SURF

The main problem with SIFT is that it’s fairly slow. Speeded Up Robust Features (SURF) is

another patented local feature descriptor that speeds up the detection of features [25].

SURF makes use of blob detectors to determine image key-points. The main disadvantage of

SIFT and SURF is the significant memory requirements and the fact they these algorithms are

under patents. SURF has been implemented on FPGA platforms [23], [24].

2.4.3 Harris Corner detector

The Harris corner detector is a mathematical procedure used to determine corresponding features

between two different images. The elements are determined from patches of fixed size. The task

essentially is to find the best similar patches on two frames that are taken from a different

perspective. An efficient implementation is shown in [10].

13

The Harris Corner detector leverages the use of corners which are defined as junctures of

contours. Corners are excellent feature key-points since they are very stable from changes of

viewpoints. They can be recognized easily by looking at intensity values of a small patch.

Any shift of the patch location should yield a change in appearance. The Harris corner detector is

given by Equation 2-1 below:

𝐸(𝑢, 𝑣) = ∑(𝑤(𝑥, 𝑦)[𝐼(𝑥 + 𝑢, 𝑦 + 𝑢) − 𝐼(𝑥, 𝑦)]2)∞
𝑥,𝑦 (𝐸𝑞 2 − 1)

Where W is the window function and the second term represent the difference between a shifted

version of Intensity and the original value.

The second term will be zero for constant patches while for distinctive patches this will be larger

so it can be seen that E(u,v) will be large for corners. The Harris detector can be framed as a

matrix multiplication operation between the windowing function and the components of the

intensity gradient.

For small shifts using a bilinear approximation one can obtain the form shown in equation 2-2:

 𝐸(𝑢, 𝑣) ≈ [𝑢, 𝑣]𝑀 [𝑢𝑣] (𝐸𝑞 2 − 2)

The matrix M is a 2x2 matrix computed from image derivatives as shown in equation 2-3:

 M = ∑ 𝑤(𝑥, 𝑦) [𝐼𝑥2 𝐼𝑥𝐼𝑦𝐼𝑥𝐼𝑦 𝐼𝑦2]𝑥,𝑦 (𝐸𝑞 2 − 3)

The gradients 𝐼𝑥 and 𝐼𝑦 are computed using the Sobel operator. In practice the windowing

function is Gaussian with sigma = 1. In algorithmic form the Harris corner detector is composed

of the following steps:

a) The first step is the computation of the gradients. This requires computing the x and y

derivatives of the image which is implemented by convolutions between the 3x3 pixel

14

window and the vertical and horizontal gradient mask. In this step the input image is

converted into an x and y derivative map as given in equation 2-4 below:

 𝐼𝑥 = 𝐺𝜎𝑥 ∗ 𝐼 𝐼𝑥 = 𝐺𝜎𝑦 ∗ 𝐼 (𝐸𝑞 2 − 4)

b) The second step is Gaussian smoothing. This is done by leveraging the gradient images

computed on the previous steps. Computing the products of the derivative at every pixel

as shown in equation set 2-5 below. 𝐼𝑥2 = 𝐼𝑥 ∗ 𝐼𝑥 𝐼𝑦2 = 𝐼𝑦 ∗ 𝐼𝑦 (𝐸𝑞 2−5) 𝐼𝑥𝑦 = 𝐼𝑥 ∗ 𝐼𝑦

c) The third step is computing the Harris measure which serves as an indicator of which

pixel may be a corner pixel. This requires computing the sums of the products of the

derivatives at each pixel as shown in equation 2-6. 𝑆𝑥2 = 𝐺𝜎′ ∗ 𝐼𝑥2 𝑆𝑦2 = 𝐺𝜎′ ∗ 𝐼𝑦2 (𝐸𝑞 2−6) 𝑆𝑥𝑦 = 𝐺𝜎′ ∗ 𝐼𝑥𝑦

For each pixel a Harris measure matrix H(x,y) is defined as in equation 2-7. 𝐻(𝑥, 𝑦) = [𝑆𝑥2(𝑥, 𝑦) 𝑆𝑥𝑦(𝑥, 𝑦)𝑆𝑥𝑦(𝑥, 𝑦) 𝑆𝑦2(𝑥, 𝑦)] (𝐸𝑞 2 − 7)

d) The fourth step is the application of thresholding. The Harris Corner Detector uses the

determinant and trace to find a factor R which represents the “corner score” for each

pixel as given in equation 2-8. R = 𝐷𝑒𝑡(𝐻) − 𝑘(𝑇𝑟𝑎𝑐𝑒(𝐻))2 (𝐸𝑞 2 − 8)

e) The last step is the application of non-maximum suppression criterion. Based on the

threshold of the computed R value one can compute the non-max suppression.

Implementations of Harris corner detector on FPGA platforms can be found in [1] and [2]. The

main disadvantage of the algorithm is that it’s computationally expensive due to its sequential

nature. Since it is not known beforehand where the corners may be located on a captured image

the algorithms need to run. On the other side this algorithm offers the most accurate detection of

key-points even when images are noisy.

15

2.5 Feature based stitching algorithms

Feature based algorithms for synthesis of panoramic image from individual frames require a

number of sequential steps. First the cameras have to be line locked so that the same frame is

acquired at the same moment from all different cameras. The second step is to identify features

in these images known as key-points. The special point about these features is that they are

invariant under transformations hence they are known as local invariant descriptors. The next

step is to match the key-points on images taken from different perspectives. The third step is to

use an algorithm that leverages the obtained feature vectors to obtain a homography matrix. The

homography matrix is used to apply transformations to the image so that the features in different

images are aligned on the same plane. The fourth step is applying the homography matrix to each

image apart from the reference image and obtaining the warped images.

The fifth step is rectifying the images so that each image is aligned along the same epi-polar line.

This will require moving the images along the vertical direction until they are aligned.

The sixth step is to merge the images so that the generated panorama all the features in the

different perspectives are closely aligned in such a manner so that no overlap or visual artifacts

can be observed.

2.6 Design decisions
The main requirement for the implementation of frame stitching in this project is to meet

reaction time constrains and real time operation.

The main issue with feature-based techniques is that they take considerable resources and

execution time. Resource usage is directly related with power consumption which does not bode

well for mobile implementations. On the other side execution time would violate the real time

operation requirements of the system.

One idea is to pursue a mixed approach where one can calculate feature only on specific regions

to decrease the computational complexity. Imagine both images are partitioned into tiles as

shown in the Figure 2-1 below.

16

Figure 2-1 Algorithm only operating on tiles

The algorithm can then run only on specific tiles on both images. To avoid implementing

feature-based algorithms such as SIFT, SIRF or equivalents one can borrow steps from the

feature-based approach and then use intensity-based algorithm to perform the process.

As an example, one can apply an energy gradient filter to specific adjacent tiles of each image.

Then a key-point search can be performed only on these tiles. Based on the detected highest

energy gradient, key-points one can then perform rectification.

This removes the need for direct intensity-based key-point search which is suspect to erroneous

results due to lighting conditions. On the other side this also removes the need to rely on resource

intensive algorithms such as Harris corner detector and represents a middle ground that uses the

least amount of resources while still operating within the real time requirements.

17

Chapter 3
Proposed approach

 Proposed Approach

3.1 ZYNQ SOC Overview
The lab prototyping system is based around a Zedboard development board which uses a ZYNQ

7010 SoC. The ZYNQ SoC couples a dual core ARM Cortex A9 denoted as the Processing

System (PS) with the FPGA subsystem known as the Programming Logic (PL) in a single die.

The ARM Cortex A-9 CPU includes 256 KB of On Chip Memory (OCM), including a number

of peripherals as well as external memory interfaces such as DDR3L, NOR flash and SD-card.

The PS has a number of multiplexed I/O denoted as MIO and grouped in banks that start with a

50x designation. Some of the MIO can be routed to the PL I/O side via EMIO. The MIO are

used to connect the ARM core to external peripheral and devices such as a) Serial Flash, b)

NAND Flash c) UART d) I2C sensors e) USB PHY OTG f) Gigabit Ethernet PHY g) SD card.

The location of all these peripherals is pre-determined by the I/O map and specified in the ZYNQ

TRM. The PL section itself provides a lot of I/O that are grouped in Banks denoted as BANKx

where x is any of (13,34,35, 55).

The processor on the PS section always boots first and can be used independently from the PL

section. The PL can be configured as part of the boot process using the First Stage Bootloader

(FSBL) or it can be configured later from the PS. The PL supports partial reconfiguration.

3.2 Proposed Hardware
The lab hardware uses three OVM7690 cameras which interface with the ZYNQ via the FMC

connector. The spacing of the cameras is close to 8 cm. This spacing was dictated by the size of

the mirrors mounted between the cameras. The distance however represents a problem due to

changes in parallax between adjacent cameras. In addition, this spacing incurs changes in

intensity. A custom hardware platform was designed to overcome these limitations of the current

hardware. The idea was to place the cameras much closer and use smaller mirrors.

18

Since the Zedboard is a relatively big development board it was required to design a custom

solution that incorporated all the required hardware while taking the least amount of space.

The hardware is designed around a ZYNQ XC7020 in a 10CLG484 package. This is the same

SOC package that is located on the Zedboard. The block diagram in Figure 3-1 shows the main

schematic design blocks of the system.

Figure 3-1 Proposed block diagram of the custom hardware platform

Bank 0 of the SOC contains the JTAG programming signals connected to the PS side, the XADC

pins and the programming indicator pins. All JTAG signals use pull-up resistor and transient

suppressing diodes. Bank 13 of the ZYNQ on the PL side is equipped with a number of pins

which can be used to interface with differential signals. Both Banks 13 and 33 are used to

interface with the external VGA DAC peripheral. Bank 34 and 35 of the ZYNQ are used to

interface with the OVM7690 cameras. To simplify the hardware the voltage level for these banks

19

was set to 2.5V since this is within the operating limits of the camera I/O pins which specify

from 1.8V to 2.8V.

Bank 502 is used to interface the DDR3L RAM with the PS side. Bank 500/501 contains user

pins as well as the bootstrap pins. The bootstrap pins are sampled during bootup and allows the

ZYNQ to boot from Quad SPI flash (QSPI) , SD card or JTAG. SD card memory is connected to

SDIO 0, pins 40-47.

A 33.33 MHz crystal oscillator is used to source the PS Clock. A 24 MHz clock is used to

source the USB OTG PHY. A USB3320C PHY is used to add USB OTG to the system.

The I2C peripheral are used to configure the cameras and the PMU chips. Both I2C1 and I2C2

pins use 0ohm jumpers between each SDA and SCL line. Both lines then are pull up to VDDIO

by 10 K resistors.

Two push-buttons are included, one is the PS reset push-button. The other is a PS switch. There

are 2 external reset pins. PS_SRTS_B pin for soft reset. Bootstrap pins are not sampled and

device is aware of previous status. PS_POR_B pin for reset. Bootstrap pins are sampled and

BootROM runs from the APU. There are 7 boot mode strapping pins using MIO pins. Each of

these pins are connected using 20K pull-ups or pull-downs. Pins [4:0] are used to select the

BOOT mode.

Pins [1:0] VMODE are used to select the I/O voltage levels for the MIO voltage Banks.

VMODE[0] controls MIO pins 15:0 while VMODE[1] controls MIO pins 53:16. A pull-up

resistor selects the LVCMOS18 while pulldown selects LVCMOS25 which is compatible with

LVCMOS33.

The PS section makes use of a DDR3L memory bank that is composed of one 16-bit width chip.

The chip has a size of 2 GB and operates at a frequency of 533 MHz The DDR3L SDRAM is

connected to the PS section via BANK 502. The termination resistors and a termination voltage

LDO are also included as part of the schematic design.

20

The power management unit is composed of two highly integrated chipsets from Infineon

specifically designed for ZYNQ SOC’s. The power sequencing of the various PS and PL power

rails is done automatically and can be configured via the I2C bus.

3.3 External peripherals

The rest of the design blocks describe the external peripheral of the system.

3.3.1 Camera sensors.

The camera sensors make use of 4 OVM7690 cameras that are interfaced directly with the SOC.

Configuration of the cameras is done directly from ZYNQ using an I2C switch. The camera has

two power domains. The analog rail domain is fed by a 2.8V LDO with a current capacity of

200mA. The digital domain can run from 1.7V to 3V. Since the ZYNQ banks already run at

1.8V the camera I/O are also set to operate at 1.8V. Each camera is fed AVDD rail is connected

to the filtered output of a single 2.8V LDO. The OVM7690 is controlled by an SCCB bus, which

is functionally equivalent to the I2C bus. Since all cameras have the same I2C address an I2C

switch is used to allows independent programming of each camera.

3.3.2 WIFI BLE module

An WIFI / BLE combo module is used to allow the ZYNQ SOC to send images wirelessly via

WIFI. The chip interfaces via the SDIO protocol with the ZYNQ. Configuration is done using a

serial port with flow control. The schematic of this peripheral is comprised of the analog

frontend with the antenna matching circuit and the digital section comprising the IC and two

LED’s used for activity notification.

3.3.3 VGA DAC

Two VGA DAC with an 8-bit resolution were used. The DAC’s are connected to DB15 VGA

connectors. The decision to use VGA as opposed to HDMI was made simply on cost.

3.3.4 USB

A USB PHY was added allowing the ZYNQ to interface will external USB 2.0 peripherals.

21

3.3.5 JTAG and Serial Port.

The ZYNQ SOC is programmed from an FTDI2232 JTAG programmer. Port A of the FTDI

chipset is configured as a JTAG programmer while port C is configured as a serial port. Port B

and D are left un-used. The FTDI2232 is connected to an external EEPROM which is used to

store configuration settings.

Figure 3-2 Proposed placement for designed hardware

The part placement for the PCB layout is suggested to follow the diagram shown in Figure 3-2

above.

3.4 System BOOT

The ZYNQ SOC follows a multi stage boot. The primary stage is the BOOT ROM that is not

user accessible. The BOOT ROM reads the bootstrap MODE pins to determine from which

memory device to boot, then it determines if the boot is secure or not and performs system

cleanup and initialization. BOOTROM is executed from internal ROM code memory.

It copies the FSBL from external NOR flash memory to the internal SRAM. When the boot code

is not available in SPI NOR FLASH the BOOTROM tries to boot from the JTAG. The next step

is to jump to the FSBL which is executed from the on-chip SRAM.

22

3.5 Experimental Setup

The most basic setup consists of two video camera sensors denoted as C1 and C2 placed a

distance d apart as given in Figure 3-3. In the most general case the cameras occupy a position in

3D space which defines their angular relation with respect to one another. The projection of a 3D

point in each camera plane corresponds to different points M1 and M2. Rectification consists of

finding a common line through E1 and E2 called the epipole. Points R1 and R2 are the focal

places of the camera and line R1R2 is called the baseline. When the baseline is parallel to the X

axis in an XY coordinate system epipolar lines are horizontal and parallel with respect to each

other.

Figure 3-3 General case for epipolar projection

To simplify the analysis from the general case, the setup dictates that both cameras are placed on

a flat surface as shown in Figure 3-4. The distance d is typically in the range of 10-15 cm.

Provided that the separation distance falls within the FOV of the camera sensor one can observe

that the images taken by the two cameras at any time share some common parts.

23

Figure 3-4 Simplified case of epipolar projection for lab setup

Assuming camera C1 is positioned to the left and camera C2 is positioned to the right one can

observe that the right side of camera C1 shares similar image features with the lefts side of

camera C2. In panoramic video stitching, the problem is how to combine the two images in a

single image so that the overlapping sections are merged in a single video frame. In addition, to

properly implement rectification the same point must also have the same vertical coordinate in

both projections.

Due to parallax, the location of the same feature as seen from the two cameras is different. The

advantage offered by parallax is that the overlapping visual field is used to extract scene depth

perception. Since the angle of projection of the same object is different for each of the two

cameras, a number of image features such as intensity of pixels, light exposures and object

alignment are also different.

In this project the main aim is to stitch the images without addressing issues like pixel intensity

and light exposure and camera synchronization. The goal of the project is to implement image

stitching so that the synthesized panoramic image does not exhibit any visual artifact.

The experimental setup designed in the lab contains three cameras on a flat PCB spaced 10 cm

apart from each other as shown in Figure 3-5. The parallax is defined as the angle between the

two cameras FOV.

24

Figure 3-5 Catadioptric optical system for panoramic imaging

The sketch in Figure 3.5 presents the main idea behind the proposed catadioptric system. Three

camera sensors are located on a planar surface equally spaced among each other. All cameras on

the above setup are precisely positioned with respect to one another. The cameras operate at the

same pixel clock and are sourced from clocks which are in phase with each other.

Between each camera there is a mirror slanted at an angle α with respect to the normal. The angle

is chosen in such a way as to minimize the overlapping features between the adjacent images but

not completely remove them. The overlapping visual fields from each camera are used to extract

features for stitching the images as well as extracting depth information.

 In the most general case, when two images of the same object are taken from two different

cameras placed at arbitrary angles with respect to each other, the pixel corresponding to the

object 3D point gets mapped to different image coordinates. The pixel coordinate can be

mathematically described as a combination of a Euclidean transform and a perspective

transform. For cameras placed on a flat plane such as the PCB, there is no projective transform

since the homography matrix is much simples compared to the general case which includes

rotations so the setup is simplified. This simplifies the compositing surface since it’s a simple

plane and no perspective transform, i.e projective 3D camera rotation transformations are needed

when implementing the algorithm. The differences in parallax with respect to each camera do not

include changes in observation angle.

25

Another problem with cameras is lens distortion. This involves barrel distortion where the pixel

coordinates are displaced away from the center or pincushion distortion where the pixel

coordinates are displaced toward the center of the image. The approach taken in this thesis is to

avoid any warping transformations and simply shift the images along the x and y directions

relative to each other until they are fully aligned.

The task of the proposed image stitching algorithm is to create a panoramic image based on the

above setup. To do so the image stitching IP has to discard part of sides images and join the

remaining part with the central frame.

To implement the above task, the image stitching IP needs to have a-priori knowledge of the

index location of the seam. This is the line that demarcates the overlapping features on the side

images with the parts that need to be flipped from the part that needs to be discarded. This

requires that the column index of the seam is provided as input to the module.

In addition, the left and right images need to be rectified with respect to the center image. All

images must be rectified so that the same feature overlapping two images shows on the same

scan line. The rectification procedure mitigates the vertical shift that is induced on the camera’s

sensors due to misalignments and from perspective changes.

3.6 Proposed Algorithm

The proposed image registration techniques for implementing image stitching are based on a

hybrid approach making use of efficiently calculating image features by filtering the frames and

using intensity changes to localize them. Due to the presence of mirrors, it is suggested to

decouple the registration process in two separate steps. The first step is the determination of the

seam index location. The second step is the rectification process which aligns the adjacent

frames in the vertical position with respect to one another. While the above steps can be merged

into one single module which outputs the x and y coordinates of a single feature shared between

two adjacent images, the current work follows a decoupled approach. FPGA image rectification

has been implemented in various forms as in [24], [25], [26], [27].

26

3.7 Seam index identification

The optimal boundary location for overlapping two adjacent image frames is defined as the

seam. For cameras placed on a flat horizontal surface we assume that the seam is a vertical line

that demarcates overlapping features between the two adjacent images. In the most general case,

the cameras are undergoing relative motion so the seam index has to be recalculated to account

for small differences due to vibration at periodic intervals. Image registration algorithm

implemented in FPGA are shown in [17], [21], [22].

Other approaches include dynamic programming, graph cuts and Dijkstra shortest path

algorithm. All these approaches however require significant resource utilization.

The proposed method implements seam index identification automatically on the FPGA. The

idea is to implement an IP module that provides column indices that corresponds to the seam

location on the corner frames. In addition, the seam column index of the right and the left frame

is provided as an input to the image stitching IP. This allows the IP to be dynamically configured

at runtime by using an AXI-Lite Wrapper around the image stitching IP. The PS can then write

to the respective registers and update the seam index of each of the cameras.

One option that requires minimal resource utilization is to place an LED between the two

cameras, mounted on the mirror. The LED serves as a key-point by being the brightest pixel in

the FOV of each camera. Key-point detector modules are used to determine the brightest key-

point on each frame. In theory, the column index of the feature should correspond to the seam

index. The output of the key-point detector is the line and column of the key-point. This can be

used for both rectification and seam coordinates estimation. In practice the implementation of

this techniques has multiple shortcomings.

First, the light source should be mounted in the field of view of two cameras. Since a mirror is

placed between the two cameras one needs to either mount the LED on the corner of the mirror

so that it is still visible in both frames or on a horizontal bar that does not impede the FOV of

either camera.

27

Second, while the LED intensity can be regulated by using a PWM, using a single key-point in

practice proves inadequate since different image features on the two frames may have greater

intensity than the LED. Third, the LED may obscure visual features.

Nevertheless, an HDL IP was implemented that searches for the brightest key-point in a frame

area and returns the key-point column coordinates. A testbench and the IP code are shown in the

Appendix A.

A second option for automatic seam column index identification is to pursue a pixel energy-

based approach. An energy map can be implemented using different methods such as the

gradient magnitude or entropy. The pixel energy map is given by equation 3-1:

 𝑒(𝑥, 𝑦) = |𝜕𝐼𝜕𝑥| + |𝜕𝐼𝜕𝑦| (𝐸𝑞 3 − 1)

Each pixel is assigned an energy measure as given by the gradient operator. This can be any of

the well-known filters such as Robert, Prewitt, Sobel, Laplacian coupled with erosion or dilation

of the obtained features or using a more sophisticated edge detector such as the Canny edge

detector. An efficient Sobel implementation is shown in warping.

Another approach to gradient energy is to compute the map of histogram of oriented gradients

for each image area adjacent to each other and locate the indices of the highest energy. To

implement this method, one need to add a streaming gradient operator at the output of two

adjacent frames and search for the highest energy pixel on the output.

3.8 Automatic seam detection algorithm

To automatically determine the seam column index, the following algorithm is proposed to be

implemented in the PL as a custom IP. Assuming two cameras C1 and C2, the first column of the

C2 camera frame is taken as the reference template. From prior knowledge from mirror

positioning we know that the overlap between camera C1 and C2 is 20-30% starting from

rightmost side of frame C1 as shown in Figure 3-6.

The proposed algorithm steps are as follows:

1. Compute energy gradient of columns x to FRAME_WIDTH for frame C1.

28

2. Compute energy gradient of column 1-2 for frame C2.

3. Calculate Euclidean norm between all column pixels of template and column i of C1

4. Calculate sum for each step i above and save it in memory

5. Implement a state machine that searches for the minimum value for each of the columns i

to FRAME_WIDTH.

Theoretically the entry for a match would be zero assuming the frames are vertically rectified. In

practice one picks the histogram entry with the smallest value assuming a minor shift in the y

direction. The bin index with the lowest value is the seam index where the frames from A1 and

B1 start overlapping. Figure 3-7 shows how the two image matrices are stitched together

assuming they are already rectified.

Figure 3-6 Two sample image matrices (1 left, 2 right) with overlapping columns

Figure 3-7 Stitched images

29

Figure 3-8 Calculated bins for each operation

Figure 3-8 above shows that the second entry has the lowest value hence it is identified as the

seam index. The index of the seam is identified as I = IM_W – 2. This gives the index of the

seam with respect to the image column itself.

Figure 3-9 Determining seam index by Euclidean norm

A simulation was implemented in MATLAB. Matrix B and BB are used as the target and

template matrices respectively as given in Figure 3-9. The bar plot is a histogram representing

the index of the column where the seam appears. The simulation above assumes that the images

are fully rectified so that there is not discrepancy in the vertical direction.

30

3.9 Rectification

The lab hardware consists of three cameras soldered on the PCB. Each camera carries intrinsic

distortions due to minor differences in lens geometry. In addition, there are extrinsic distortions

arising from small mis-alignments from the PCB assembly. FPGA image rectification for stereo

setups has been shown previously in [28].

This results in a mismatch of the epi-polar lines which in practice results in adjacent image

features which are shifted vertically when transitioning from one camera view to the adjacent as

shown in Figure 3-10 Aligning the epipolar lines needs to be implemented automatically during

runtime at periodic intervals to account for motion induced artifacts.

Figure 3-10 Unrectified Sobel filtered adjacent frames

The algorithm needs to determine a key-point feature and align the images such that the feature

shows up on the same vertical dimension on the overlapped areas. The main idea behind the

online rectification is to determine the coordinates and height of the key-point on two adjacent

frames and shift the frame coordinates vertically automatically so that the epipolar lines are

aligned along the y direction.

The procedure requires implementing a module that outputs the row coordinates of the key-point

feature as well as the height of the key-point feature for both left, right and center images. The

left and right frames are then shifted vertically to match with the center frame.

31

As seen on the diagram above the same image is shown on the left and center cameras as well as

on the right and center camera. Two tasks need to be implemented to properly stitch the reflected

images. First one needs to rectify the image so that the same features show up on the same scan

line. This requires vertically translating the left and the right image with respect to the features

on the center image.

Second one needs to determine the seam column index of the left and the right cameras where

the image features overlap. This index is calculated separately for the left and the right cam. The

image rectification task is considered independently from the seam index identification.

The IP assumes a camera assembly with three sensors as seen in the lab. In a camera assembly

with four video sensors, the column index is calculated with respect the adjacent cameras as seen

from left to right.

3.10 Proposed firmware modules

The main architecture of the image stitching system is shown on the block diagram below. The

current system is designed for three cameras. The main firmware modules are:

a) Camera input capture module

b) Line buffer module

c) Sobel filter

d) Image stitching IP

e) Seam identification IP

f) Rectification IP

g) VGA controller IP

The VGA controller IP will take the input from a BRAM and interface with an external DAC.

The DAC has a resolution of 12 bits with format RGB444 so the image format has to be

converted from RGB565 to RGB444 by pruning the (Least Significant Bits) LSB.

3.10.1 Camera controller

The camera controller was prototyped using an OV7670 camera module. The main difference

compared to the OVM7690 used in the lab is the lack of integrated optics since the sensors come

with external lenses. The rest of the camera memory map and functionality is similar to the

32

OVM7690 since they belong to the same family. Description of the camera firmware is given in

the next chapter.

3.10.2 Line Buffer

The pixel stream from the camera is sent sequentially so each of the pixel is received in a serial

fashion. To make use of multiple pixels and apply image processing operations to the received

data one needs to store multiple pixels temporarily. A line buffer is the mechanism that

implement this. For a 3x3 filter, the module creates 2-line buffers that store up to IMG_LEN

pixels, where IMG_LEN is the image length. In addition, it also stores a 3-element buffer. Upon

start of the pixel stream, the 3x3 windows starts to slide once the pixel index gets incremented.

3.10.3 Sobel Filter

The line buffer is a sub-module used as the first stage when applying a 3x3 convolutional filter.

To accommodate the small amount of BRAM used on the Minized development the filters were

implemented as streaming modules. The Sobel filter uses the masks shown below.

3.10.4 Seam identification IP

The proposed algorithm is to store the calculated energy gradient obtained from the Sobel filter

in two BRAM units. BRAM one will store the last third of image 1 while BRAM 2 will store the

energy gradient of the first two columns of the adjacent image. The seam identification IP will

read the two BRAM and calculate a Euclidean distance between the first columns of the second

image and the columns of the first frame. Foreach column the sum of the Euclidean distances

will be calculated and stored in an array. A state machine will continuously update the index of

the column with the shortest Euclidean distance. The seam identification module takes as

arbitrary inputs the start column index of the first image.

3.10.5 Rectification IP

The next module is the rectification IP. The idea is to compare the pixel energy density of the

overlapping columns of the two frames in order to determine if they are shifted vertically. This

IP module requires that the result of the seam identification IP specifying the column index is

already available. This informs the module of the start column index where the two images

33

overlap. The modules perform a linear search for the brightest pixel along the index column of

the seam on image one and a linear search of the Sobel filtered column of Image two.

3.10.6 Image Stitching

The next step is to use the image stitching to merge the mirrored images. The module takes as

input the frame images from all three cameras. Each camera frame is stored on a separate

BRAM. The IP also takes as input the seam column index for frame one and seam column index

for frame three. It also takes as input the rectifier output index for image 1 and image 3. This

allows the module to stitch all three images in a panoramic image by stopping the row read at the

seam index and vertically shifting both sides images with respect to image 2 which is the center

image.

3.11 OpenCV Implementation

OpenCV is a high-level image processing library which also contains a number of algorithms

used for feature-based image stitching. To make use of the patented algorithms one has to install

the contribution package by issuing:

pip install opencv-python==3.3.0.10 opencv-contrib-python==3.3.0.10

A panorama image class was created. This class has a number of methods. First one has to detect

the features and key-points. To do so the images are converted from BGR color scheme to gray

scale images. A list of descriptors is then created using the SIFT method. Then a dictionary pair

of keypoints and features is created. The key-points are converted to floating point numbers. The

compute_Homography() method makes use of the RANSAC method explained before to

compute the homography matrix using the determined points. The details of the methods are

shown in reference [5]. The method takes a threshold value as argument which is used to

represent the error according to equation 3-2: ‖𝑑𝑠𝑡𝑃𝑜𝑖𝑛𝑡𝑠 − 𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑃𝑜𝑖𝑛𝑡𝑠𝐻𝑜𝑚𝑜𝑔𝑒𝑛𝑜𝑢𝑠(𝐻 ∗ 𝑠𝑟𝑐𝑃𝑜𝑖𝑛𝑡𝑠)‖> 𝑟𝑎𝑛𝑠𝑎𝑐𝑅𝑒𝑝𝑟𝑜𝑗𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 (𝐸𝑞 3 − 2

34

The determined key-points are matched using the method called matchKeypoints(). This method

creates a list of valid matches and if the points from images A and B are larger than fours it starts

creating the homography matrix.

The main method of the class is the image_sticth() method. This function takes as input both

images that are to be stitched, a constant known as Lowe’s ratio and the threshold. The Lowe’s

ratio is used to perform a nearest neighbor ratio test to determine pixel similarity.

 After detecting the features and key-points the next step is to obtain the valid key-point

matches. One the homography matrix is calculated based on the returned values, it is passed to a

function which warps the perspective of the images and joins them together in a single

panoramic image.

3.12 OpenCV testing

The above program was implemented in Python leveraging a third party open-source script and

the OpenCV library. The execution time of the script depends directly on the size of the images.

The Python program is given in Appendix B. The program reads two input images as shown in

Figure 3-11 and outputs a key image as given in Figure 3-12 and the final stitched image as

shown in Figure 3-13.

Figure 3-11 Two different perspective images of the same scene

35

Figure 3-12 Matching features with SIFT

Figure 3-13 Synthesized panoramic image

Table 3-1 below shows the running times and the maximum achievable frame per second for

varying resolutions. It should be noted that running times are not 100% identical in different

systems due to differences in cache size and CPU speed.

Table 3-1 Frame stitching execution time

Resolution Time

320x480 0.42 sec

640x480 0x56 sec

36

2304x4096 0.88 sec

It is clear from the table above that the SIFT algorithm is very slow for real time panoramic

image stitching. While there have been attempts to port the SIFT algorithm for panoramic image

stitching to a FPGA platform as explained in [6] this algorithm takes a significant amount of

resources. Since the aim of this work is to find and implement a resource efficient

implementation of image stitching [29] it was decided not to pursue this implementation further.

37

Chapter 4
Implementation

 Implementation

4.1 Hardware setup

The vision processing hardware setup and the developed IP modules were prototyped on a

Minized ZYNQ SoC development platform. The Minized uses a XC7Z007S SOC which couples

a single core ARM A9 MPU with a 7-th series architecture FPGA which has equivalent

functionality with Artix-7 FPGA’s. The programmable logic (PL) section of this SoC has 23K

Logic cells and 1.8 Mb of BRAM.

The initial task of the project was the implementation of an image pipeline using a VGA

resolution camera based around the OV7670 CameraChip module from Omnivision. The

acquired images are then directly piped to a VGA IP module which drives an external VGA

DAC connected to the Minized via two PMOD connectors. The developed OV7670 HDL IP

modules were ported from VHDL to Verilog based on work done from [11]. The complete

prototyping hardware environment is shown in Figure 4-1 below:

Figure 4-1 Vision processing hardware setup

38

Apart from the SoC development board, the two main hardware components are the camera

module and the VGA interface. The implementation of the camera interface firmware and

hardware IP modules constituted a major portion of the work on this project.

4.2 Camera module

The OV7670 camera module is a low-cost camera sensor with a parallel interface and external

optical lenses as shown in Figure 4-2. The camera supports VGA resolution up to 0.3 MP.

Figure 4-2 OV7670 camera module

The camera supports multiple resolutions with support for up to 60 frames per second for sub-

VGA resolutions as shown in Table 4-1. To accommodate the constrained amount of BRAM on

the selected FPGA SoC all the experiments were performed using QVGA resolution. The

advantage of this choice being that one can test vision processing algorithms at 60 fps.

Table 4-1 OV7670 Camera sensor resolutions and FPS

Format Resolution Frame per second

VGA 640x480 30 fps

QVGA 320x240 60 fps

CIF 350 x 240 60 fps

QCIF 176 x 144 60 fps

39

From a functional perspective, interfacing the OV7670 camera sensor with the PL requires

implementing the pixel data capture logic as well as a module responsible for the camera

configuration.

4.2.1 Camera Configuration

The configuration module is responsible for sending the configuration commands to the camera.

This is done via the Serial Camera Configuration Bus (SCCB). The SCCB is a two-wire interface

which is mostly compatible with the I2C protocol, the main difference being that the logic levels

are LVTTL compatible. The SIOC pin outputs a clock which operates at a typical frequency of

100KHz -400KHz. The configuration data is sent via the SIOD pin. Configuration of the camera

by the SCCB bus can be implemented in multiple ways. One can either implement the SCCB as

a state machine in the PL section, use an AXI IIC IP core, use the embedded I2C peripheral on

the PS section or implement the protocol in firmware by using a bit banging technique using AXI

GPIO and the EMIO pins. Another flexible approach is to use the I2C detect suite from a Linux

environment in conjunction with a PL IIC peripheral. The last option requires deployment of a

Linux OS on the MPU as well as a custom device tree.

Camera configuration via an SCCB HDL module does not allow for a flexible configuration

since changing the setting will require recompiling the design. This is needed in order to

dynamically modify the camera settings during testing of the frame stitching algorithm. The next

option is to use an IIC core in the PL to control the camera via I2C like commands from the PS

section. This has the disadvantage of consuming LUTS from the fabric.

The second option is to leverage the built in I2C peripheral of the PS. The ARM side of ZYNQ

contains two embedded I2C peripherals. Ultimately, this was the approach followed since it

allows making use of the least amount of resources. The only pins that have external pull-ups on

the dev-board are the SDA and SCL pins.

40

The complete pinout of the camera sensor is shown on Table 4-2 below.

Table 4-2 OV7670 Camera pinout interface

PIN Direction Functionality

VDD INPUT 3.3 V Power Supply

GND INPUT Digital GND

SIOC OUTPUT Two-wire Serial Interface

clock

SIOD INOUT Two-wire Serial Interface

data

VSYNC OUTPUT Active High, Valid frame,

Vertical Sync denoting active

frame

HREF OUTPUT Active High, Line/Data valid

Indicates active pixels

PCLK OUTPUT Pixel clock output from

Sensor

XCLK INPUT Master Camera Clock

D[7:0] OUTPUT Data bus

RESET INPUT Active HIGH, Reset

PWDN INPUT Power Down Active Low

As seen on the pinout table the camera has two additional control pins apart from the SCCB bus

pins. The RESET pin is active low and should be held high during operation. The power down

(PWDN) pin is active high and can be left un-connected or tied low to remove the camera out of

idle mode. Next is the XCLK pin which must be fed from a clock source with a frequency in the

12-25 MHz range. A very important note is that the SCCB bus won’t acknowledge requests if

the camera is not fed with this clock signal.

41

This clock source can be either generated on the FPGA using a PLL from a clocking wizard or

from an external crystal. The last pin is the pixel clock PCLK signal which is output directly

from the external sensor. This is a free running clock which operates in sync with the HSYNC

signal. The functional block diagram of the camera is shown on Figure 4-3 below.

Figure 4-3 Functional Block diagram of the camera sensor

The OV7670 uses an 8-bit parallel bus interface in conjunction with synchronization strobes

VSYNC and HSYNC which denote active row and active frame respectively.

4.2.2 Pixel parsing

The data capture module is responsible for capturing the pixel data from the parallel bus

interface at the rising edge of the pixel clock. The pixel transfer output starts with an HREF

transition. The first pixel takes 3 cycles while the rest of the pixels take 2 cycles as shown in

Figure 4-4. The parsed data is encapsulated in a single 16-bit pixel.

42

The OV7670 camera supports multiple image formats such as Raw Bayer, Processed Raw Bayer,

YUV mode, YCbCr 4:2:2, RGB555, RGB565, RGB444 and GRB. The pixel parsing code is

implemented to decode only RGB565. Each pixel has 16 bits of data with green color being

encoded in 6 bits while red and blue take 5 bits respectively as shown in Tables 4-3 and 4-4.

Table 4-3 First byte during first cycle

DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

R4 R3 R2 R1 R0 G5 G4 G3

Table 4-4 Second byte during first cycle

DATA7 DATA6 DATA5 DATA4 DATA3 DATA2 DATA1 DATA0

G2 G1 G0 B4 B3 B2 B1 B0

The OV7670 contains a DSP engine inside the chip which support some basic image

processing. The camera allows mirroring the image by respectively flipping the scan order. To

mirror the image horizontally, bit [5] of register MVFP (address 0x1E) has to be set to 1. This

functionality is very important for the image stitching IP in order to avoid flipping the received

pixels along the Y axis on the FPGA.

The main problem with the OV7670 camera is that the datasheet contains inaccurate and absent

information so a complete register value set needs an NDA from the supplier. The current

register configuration settings were taken from the open-source Linux driver of the camera.

43

Figure 4-4 Data transmission of a single pixel RGB565 pixel data

The HSYNC signals a new frame; default values for this signal are active high. VSYNC signals

a new frame, pixels are read only when VSYNC is low. The default setting for VSYNC is active

high.

4.3 VGA Module

An external R2R DAC VGA PMOD module was used to interface the Minized development

platform with a VGA display. The PMOD connector interface is given in Figure 4-5. The DAC

has a resolution of 12 bits with 4 bits for each of the red, green and blue pixel bits respectively.

To use the RGB565 pixel format with the DAC requires pruning each pixel to an RGB444

format. The VGA controller generates the HSYNC and VSYNC timing pulses that determines

the row and frame refresh rate of the image. When the HSYNC signal is high the pixel values are

displayed on the current row on the monitor.

44

Figure 4-5 PMOD VGA interface connector

Tables 4.5 and 4.6 show the pinout of the DAC with respect to the dual PMOD connector used

on the Minized. A custom XDC constraint file was generated to interface the DAC. The

architecture of the VGA IP module relies on the generation of the synchronization signals shown

in Figure 4.6.

Table 4-5 J4 PMOD on Minized

Minized GPIO Pinout Pin Number Function

K13 D2_P 1 Red0

L13 D2_N 2 Red1

N13 D3_P 3 Red2

N14 D3_N 4 Red3

L15 D0_P 7 Blue0

M15 D0_N 8 Blue1

L14 D1_P 9 Blue2

M14 D1_N 10 Blue3

45

During this operation from the first row to last row the VSYNC signal is high. This signal then

stays low for two-pixel clock cycles until the next frame start to display. The pinout for the VGA

peripheral is shown on the table below.

Table 4-6 J5 PMOD on Minized

Minized GPIO Pinout Pin Number Function

P13 D0_P 1 Green0

R14 D0_N 2 Green1

N11 D1_P 3 Green2

N12 D1_N 4 Green3

P15 D2_P 7 HS

R15 D2_N 8 VS

R12 D3_P 9 NC

R13 D3_N 10 NC

Two free running counters were used to determine the VSYNC and HSYNC pulses. The two

counters also determine the current address for the video RAM. In the setup above this is the

address of PORT B of the dual port BRAM. The VGA module was implemented to allow for

VGA, QVGA and QQVGA resolutions. The industry standard timing for VGA resolution

running at 60Hz is given by the Tables below. The constants specify the front porch, sync pulse

and back porch for both horizontal and vertical signaling. The IP uses the following parameters

and clock. The VGA resolution parameters are given in Table 4-7 below while the VGA timing

diagram is given in Figure 4-6.

46

Table 4-7 VGA resolution parameters

SCREEN REFRESH RATE 60 HZ

VERTICAL REFRESH 31.46875 kHz

PIXEL FREQ. 25.175 MHz

SCANLINE PART PIXELS TIME [µS]

VISIBLE AREA 640 25.422045680238 480 15.253227408143

FRONT PORCH 16 0.63555114200596 10 0.31777557100298

SYNC PULSE 96 3.8133068520357 2 0.063555114200596

BACK PORCH 48 1.9066534260179 33 1.0486593843098

WHOLE LINE 800 31.777557100298 525 16.683217477656

Figure 4-6 VGA timing diagram

47

The VGA module is fed from a 25.175 MHz clock allowing a 60Hz refresh rate. The clock is

sourced from a clocking wizard which in turn is sourced from the FCLK_CLK0 output of the

ZYNQ SOC clocked at 50MHz.

The pixel clock frequency is calculated as given by equation 4-1: 𝑃𝑖𝑥𝑒𝑙 𝐶𝑙𝑜𝑐𝑘 = 𝐹𝑟𝑎𝑚𝑒 𝐶𝑙𝑜𝑐𝑘 𝐶𝑦𝑐𝑙𝑒 ∗ 𝐹𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒 (𝐸𝑞 4 − 1)= 𝐿𝑖𝑛𝑒 𝑃𝑒𝑟 𝐶𝑙𝑘 𝐶𝑦𝑐𝑙𝑒 ∗ 𝐿𝑖𝑛𝑒𝑠 𝑃𝑒𝑟 𝐹𝑟𝑎𝑚𝑒 ∗ 𝐹𝑟𝑎𝑚𝑒 𝑟𝑎𝑡𝑒= 525 ∗ 800 ∗ 60 𝑓𝑝𝑠 = 25 𝑀𝐻𝑧

The DAC takes the 12-bit digital signal and converts it into an analog signal. Since an R2R DAC

with 12bit resolution only 4096 possible colors can be displayed. The VGA physical layer is an

analog protocol so the output signals from the DAC are 0-0.7V analog signals. 0V represents

black while 0.7V represent white. The DAC uses a DB15 connector to interface with the display.

The VGA IP module was configured to output QVGA on a VGA screen by keeping the same

timing constants for a 640x480 resolution but modifying the output window.

A simple test was performed by using the ZYNQ block diagram shown in Figure 4-7 which

outputs a standard test-pattern on the screen. An Integrated Logic Analyzer was added to verify

the timing of the protocol.

48

Figure 4-7 VGA setup with a test pattern and ILA

4.4 Camera Testing

To test the image pipeline a block diagram was implemented where the camera would stream

data to an output display as shown in Figure 4-8. The OV7670 capture module is interfaced

directly with a dual port BRAM. Port A of the BRAM is clocked from the pixel clock PCLK.

On every incoming pixel the address is incremented. Port B of BRAM is clocked by the VGA

module which consumes the generated pixel stream. An Integrated Logic Analyzer (ILA) IP was

used to capture and verify the camera data as shown in Figure 4-9. The same procedure was also

used to verify the operation of the VGA module as shown in Figure 4-10.

49

Figure 4-8 OV7670 Camera to VGA setup

Since the VGA module operates at 25 MHz another method is to implement a streaming

architecture that does not require storing the pixels. The only constraint to do that is to operate

both the VGA and image capture module at the same clock frequency.

Figure 4-9 Logic analyzer data for OV7670 camera input capture module

50

In programmable logic hardware images are represented as a stream of pixels coming in a raster

scan order (top left to bottom right). The pixel clock should be the same as the VGA operating

frequency in order not to overflow the BRAM.

Figure 4-10 Logic analyzer output for VGA module operation.

The OV7670 is capable of outputting VGA, QVGA, QQVGA and CIF sized images. The

Minized development platforms contains a XC7Z007S chip which has only 1.8Mb of BRAM.

This is equivalent to fifty 30Kb Blocks, which in itself is insufficient to store a full VGA

resolution frame. Since the XC7Z007S SoC does not have enough BRAM to store a full-size

VGA image so the settings were modified to allow storage of a full sized QVGA image. VGA

has a resolution of 640 (H) by 480 (V) = 30720 pixels.

One VGA frame contains 30720 pixels. Assuming pixel format of RGB (444), this implies 12

bits per pixel. The RAM will have an input data width of 12 bits and an input data depth of

307200 which is the same as the number of pixels for one full frame.

The address register length for the BRAM is computed by equation 4-2:

 𝐴𝑑𝑑𝑟𝑒𝑠𝑠 𝐿𝑒𝑛𝑔𝑡ℎ = 𝑙𝑛(307200)𝑙𝑛(2) = ⌈18.2⌉ = 19 (𝐸𝑞 4 − 2)
The total memory needed for 1 VGA frame is computed as 307200*12 bit = 3686400 bits as

given in equation 4-3.

51

3686400 8 = 460800 1024 = 450 kB (Eq 4 − 3)

Figure 4-11 OV7670 Camera to QVGA with soft IIC

The OV7670 camera has a test pattern which is used to test the output as given in Figure 4-12.

During troubleshooting it was identified that the QVGA timing parameters were incorrect,

resulting in a shifted video test pattern. Revising the interface resulted in fixing the test pattern

test.

52

Figure 4-12 Testing the camera interface.

The AXI GPIO were used to bit-bang the I2C protocol as shown in Figure 4-11. After testing the

camera with the test pattern, the configuration settings were changed from the default version via

a Linux tool. The i2cdetect utilities suite were used to configure the camera with the proper

setting in VGA mode.

The results shown in Figures 4-13 and 4-14 show the initial and after the configuration capture

modes of the camera after the control sequence was updated.

Figure 4-13 OV7670 camera capture settings

53

Figure 4-14 Changing the gamma, brightness and saturation settings.

4.5 PS implementation

Image stitching can also be implemented in the PS section of the SOC. To do so requires

transferring the acquired pixels from the camera sensor to the SDRAM so that the ARM A9 CPU

can access it. After processing on the PS section, the image can then be written back to the VGA

display via VDMA.

This implementation requires a number of Xilinx data-mover IP’s which are platform specific.

The main disadvantage of such an approach is the large resource utilization which incurs a

penalty with regards to power usage as well the fact that such a design is not platform agnostic

compared to a pure HDL approach.

A test platform was implemented by using the VDMA IP core to transfer a test pattern from a

video source to the VGA display as shown in Figures 4-15 and 4-16. This implementation

requires that all the custom modules adopt the Xilinx AXI stream interface.

To make use of the OV7670 IP one has to revise the interface so that the streamed data conform

to this format. Since the modifications to the IP are non-trivial this approach was abandoned in

favor of moving the complete vision processing pipeline on the PL section.

54

Figure 4-15 Simplified version of the VDMA system.

55

Figure 4-16 Testing VDMA to VGA with video test pattern generator

56

4.6 Image stitching IP

The image stitching IP was designed based on the engineering requirements from the lab. The IP

was developed to be part of another image processing pipeline. The requirements are specified in

the IP block diagram below in Figure 4-17.

Figure 4-17 Image stitching module

The output of each camera sensor is stored on three separate simple dual port RAM, one for each

camera. Port A of each simple dual port BRAM connected to each camera is fed by the pixel

clock (PCLK) signal sourced directly from the camera. This clock runs at a frequency f1 =

25MHz allowing for 30-60 fps depending on the resolution. The BRAM can store the images

captured directly from the camera or it can store filtered version of the images. Each camera

sensor BRAM can store a full frame image at color QVGA resolution.

The write enable signal (WE) of port A for each DP RAM is fed by the data valid signal. The

start of line (HSYNC) and start of frame signals (VSYNC) for each camera are fed to an address

generator tied to each dual port image BRAM. The RAM addresses as explained above were

generated from the PCLK, HSYNC and VSYNC inputs to the main module.

57

Port B is used by the image stitching Finite State Machine (FSM) to merge the consecutive

image lines from all three cameras as given in Figure 4-18. The merged image is then stored on

an output simple dual port BRAM. The top-level interface of the camera image stitching IP is

shown below.

Figure 4-18 Test setup for image stitching IP.

As explained above the presence of the mirrors between each of the three cameras on the system

allows for overlapped and mirrored visual fields. The OV7670 can be configured to mirror the

image via the SCCB bus. This simplifies the IP since there is no need to mirror the pixels output

stream.

The task of the image stitching IP is to read the pixels for all three separate dual port BRAM and

merge their data into a single output BRAM so that each consecutive row of all three

independent cameras are stitched together in a single output image.

The side frame views should be partitioned due to the presence of mirrors between the center and

left cameras as well as the right and center camera. One side of the frame is discarded while the

other side is flipped along the Y axis. The frame rows are then copied consecutively on an

output BRAM.

58

The controller task is to read the port B of each dual port BRAM and write to PORT A of the

output dual port BRAM. Port B of the output dual port BRAM is connected to the VGA circuit

for display.

For each input camera, there are two counters which track the current line and column pixel

index. Based on the current line and column pixel counters the output address of the merged dual

port BRAM is calculated.

The address of the output dual port BRAM is the sum of the current index of all three input

BRAM addresses. The read process occurs sequentially, meaning after the first row of BRAM1

is read the controller proceeds to read row one of the second BRAM and so on until all the rows

are read in a consecutive fashion following a round robin scheme. To accommodate this the

operating frequency of controller is more than three times as fast as the sensor PCLK. This

allows the controller to read all lines while meeting the timing constrains imposed by the running

pixel clock for each camera.

The controller operates as a finite state machine which cycles between read states for the input

BRAM and write state for the output BRAM. Table 4-8 describes the input and output of the

FSM controller.

Table 4-8 Image stitching IP interface

Signal Name Direction Width Description

CLK_IN IN 1 Input clock to the image stitching IP

RST_N IN 1 Active Low Reset

EN IN 1 Active HIGH enable input

WE1 OUT 1 Write enable for BRAM1

WE2 OUT 1 Write enable for BRAM2

WE3 OUT 1 Write enable for BRAM3

WE4 OUT 1 Write enable for BRAM4

Addr1 OUT 16 Address Bus for BRAM1

Addr2 OUT 16 Address Bus for BRAM2

59

Addr3 OUT 16 Address Bus for BRAM3

Addrmerge4 OUT 17 Address Bus for Output BRAM

DataOut1 IN 8 Data Bus input from BRAM1

DataOut2 IN 8 Data Bus input from BRAM2

DataOut3 IN 8 Data Bus input from BRAM3

DataInMerge4 OUT 8 Data Bus output to output BRAM

ActiveCam OUT 1 Active Camera signal

state OUT 3 State machine state

CLK_OUT OUT 1 Clock output to output BRAM

To accommodate for reading all three input camera buffers, the FSM runs at a higher frequency

so the clock input of all three dual port input RAM as well as the output RAM which contains

the merged frames are not the same as the PCLK clock which feeds port A of each dual port

RAM.

The difference in clock speeds is such as to account for

a) the delay due to the latency of the BRAM read state and

b) the delay due to the latency incurred by having to read all 3 BRAM

c) the delay needed to account for the time it takes to fill all three buffers such that no underflow

read scenario occurs.

4.7 Automatic seam registration

The block diagram of the algorithm for automatically determining the seam between the two

adjacent frames is shown below in Figure 4-19. The IP runs externally to the image stitching

module and

60

outputs the column index of the detected seam which is used during the registration process.

4.7.1 Sobel filter

There are a number of edge detection methods such as Sobel detector, Canny edge detector,

Roberts detector, Prewitt detector. To apply these convolutional filters, a mask is applied to a

rectangular pixel neighborhood. The selected size can 3x3, 5x5, 7x7 and so on. This requires that

the specific pixel region is available even as incoming pixels are streamed in.

The module that implements this is the line buffer. The output of the line buffer is passed to the

Sobel core which implements convolution with the filter mask. The final output is a filtered pixel

stream which is stored on a BRAM. A line buffer for a 3x3 window is shown below in Figure 4-

20. This module is connected directly to the pixel stream before the data is passed to the

convolutional Sobel kernel.

Figure 4-20 Line buffer interface

Sobel
Euclidean

distance

Histogram Line

Figure 4-19 Block diagram for automatic seam registration

61

The Sobel filter is used to produce a gradient energy map of the pixels. The gradients are

calculated using the following two kernel masks and equations as given by equations 4-4, 4-5

and 4-6.

𝐺𝑥 = [−1 0 +1−2 0 +2−1 0 +1] 𝐺𝑦 = [+1 +2 +10 0 0−1 −2 −1] (𝐸𝑞 4.4)

𝐺𝑥 = ((𝑝2 − 𝑝0) + (𝑝5 − 𝑝3) + (𝑝8 − 𝑝6) (𝐸𝑞 4.5) 𝐺𝑦 = ((𝑝0 − 𝑝6) + (𝑝1 − 𝑝7) + (𝑝2 − 𝑝8) (𝐸𝑞 4.6)

 The next step is the computation of the Euclidean distance between the filtered first column’s

pixels of image B and filtered column pixels of image A. This is given by the equation 4-7:

𝐸(𝑖, 𝑗) = |𝑝𝑖𝑥(𝑖,𝑗)𝐴 − 𝑝𝑖𝑥(𝑖,𝑗)𝐵 | (𝐸𝑞 4.7)

The third step is the histogram calculation which sums the absolute value of all the difference

value for each column. The output of the seam identification module is the column index of the

seam between the two images.

4.8 Key-point detector
The module in Figure 4-21 shows the block diagram of the key-point detector. It is implemented

as a state machine that searches the BRAM that stores a gradient section of the image for the

point with the highest energy. The key-point detector is used as a submodule during the

rectification process which occurs after the seam registration procedure.

62

Figure 4-21 Key-point detector interface

Test-benches were implemented for all the IP modules developed in this chapter. The next

chapter presents an analysis of the developed modules from a resource and timing perspective.

63

Chapter 5
Analysis

 Analysis of results

5.1 Performance analysis

Implementation of image stitching on FPGA platforms is subject to multiple constrains which

can be categorized as timing constrains, synthesis constrains and placement constrains.

Timing constrains that relate to individual and global clock paths, setup times for each input and

clock periods. Synthesis constrains which relate to the FPGA resources such as LUT , BRAM,

DSP element utilization. Placement constrains for every type of logic element such as I/Os clock

logic, BRAM, DSP’s IOB and global buffers.

From a timing perspective the main requirement is to have a system that allows real time object

tracking at 60 frame per second (FPS). From a synthesis perspective the selected FPGA platform

needs to have enough logic elements to accommodate the algorithm to be implemented.

The placement constrains directly affect the power budget of the logic implementation. Resource

utilization and placement constrains are directly linked to the power budget.

5.2 Image Stitching IP

The majority of the work was focused on the image stitching IP controller. The block diagram

interface of the image stitching IP is shown on figure 5.5 shows the top-level interface of the IP.

The interface was part of the requirements specifications.

The next step was to implement the submodules. The pixel stream from each camera is stored on

a BRAM. The datavalid output of each cam serves as the write enable for the Port A of the

BRAM. The pixel clock sources the clock input of the BRAM. The address of each BRAM is

calculated based on the VSYNC and HSYNC outputs which are represented by the stL and stF

signals for each camera sensor.

Three BRAM’s one for each camera are instantiated inside the module. Port A of each camera

BRAM interfaces with the input signals and address generator module.

64

The main module of the image stitching IP is the frame stitching module whose interface is

shown in Figure 5-1. This module is implemented as an FSM that controls the read and write

cycles between the input and output BRAM units. Since the pixel clock determines the camera

frame rate, the frame stitching IP should operate at a higher frequency in order to cope with the

data being produced.

To operate at 30fps, each camera needs a 20 MHz XLKC master clock. The frame stitching IP

operates at 61 MHz which is more than three times the individual pixel clock in order to account

for the delays incurred from BRAM access. This is still below 100MHz.

Figure 5-1 Frame stitching core interface

The simulation for a 3x3 image is shown on the test bench in Figure 5-2. The columns indices

are accessed sequentially for each consecutive rows.

65

Figure 5-2 Simulation of core stitching IP

The frame stitching IP engine resource utilization was taken from the Vivado report as shown in

Figure 5-3. The state machine is implemented using one hot encoding.

Figure 5-3 Resource utilization of frame stitching core IP

5.3 VGA
The VGA HDL module consumes very little resources due to the efficient implementation of the

timing synchronization circuit. The report utilization is shown in Figure 5-4.

66

Figure 5-4 Resource Utilization of VGA IP

5.4 Seam identification HDL modules

5.4.1 Line buffer

A test bench was written for the 3x3 window line buffer as shown in Figure 5-5. An image with a

line length of 16 pixel was used. Each pixel is 8 bits. The two test results below show the results

from the test-bench.

The line-buffer module takes as inputs a clock, an active high reset pin, an input pixel stream and

has as outputs a 3 by 3 window. The pixel length and the line buffer length are fully

parametrizable.

Once the reset line is asserted low, the module starts to process the incoming pixel stream.

67

Figure 5-5 Simulation of line buffer module

As can be seen on Figure 5-6 below the first 3x3 window is obtained after the first 19 pixels have

already streamed in. With the arrival of the 20-th pixel the 3x3 window slides 1 pixel to the right.

Figure 5-6 Simulation of line buffer module (continued)

68

Figure 5-7 Resource utilization of the synthesized line buffer.

The report utilization from Vivado is given in Figure 5-7. The IO utilization is not taken into

account since the inputs are internal to the FPGA. The resource utilization of a line buffer

module depends on the image line length. Extrapolating for a VGA resolution image takes

around 640 LUTRAM.

5.4.2 Sobel Filter

 The utilization of the Sobel filter module is shown on Figure 5-8 below.

Figure 5-8 Resource utilization of Sobel.

69

 An HLS implementation of the Sobel filter was also tested in hardware. This implementation

requires significantly more resources compared to the pure Verilog HDL version since it infers

BRAM for all inputs.

5.5 Key-point detector
The setup in Figure 5-9 shows the module that were used to test the basic implementation of the

key-point detector. This was simulated on hardware on Vivado using the ILA to monitor the

data.

Figure 5-9 Test setup for basic key-point detector

Figure 5-10 Test bench results

The test-bench in Figure 5-10 and the resource usage in Figure 5-11 conclude the analysis of the

key-point detector IP.

70

Figure 5-11 Resource usage for Key point detector

5.6 Comparison with OpenCV stitching
The developed IP can operate at more than 160 MHz which allows for run time operation of

frame stitching from all three cameras at 30 fps. In comparison with the OpenCV

implementation running on a single core CPU this is significantly faster. In addition,

implementation of the image registration algorithm also supports run time operation, contrary to

the feature-based approaches.

5.6.1 Comparison with streaming method

The main disadvantage of the current implementation is the need to store one complete frame for

each camera. This implementation does not allow using low end ZYNQ SOC which do not have

enough BRAM. The solution is to implement on-the fly image stitching by storing only the

regions where they may be image feature overlap. Typically, this would be the last 50 columns

of image A and the first 5 columns of image B. This will require revising the frame stitching

interface as well as the image stitching IP.

71

Chapter 6
Summary

6. Project summary

This project focused on the implementation of an image stitching algorithm on a ZYNQ FPGA

SoC. The main contributions of the projects were the schematic design of a custom hardware

platform for a hyper-stereoscopic catadioptric vison system and the design of HDL IP modules

for image stitching from multiple video sensors as well as the proposal of an algorithm for

automatic image rectification using low resource utilization.

The primary objective of the project was the implementation of run time video frame stitching on

an FPGA SoC from multiple camera sensors. Demand for real time panoramic imaging vision

systems requires that the frame stitching stage from separate video sensors should be

accomplished with a very short execution time to satisfy the system reaction time requirements.

Initial work on the project started by evaluating current image stitching algorithms for run time

panoramic video mosaicking. The results showed that current CPU implementation cannot

satisfy real time requirements so the focus was to move the algorithm on hardware. Image

registration is the precursor step that need to occur before image stitching.

The main steps during the image registration procedure identified in frame stitching are the

rectification procedure and the seam blending stage. Rectification is the process of bringing each

frame along the same epipolar line so that there is no discernible vertical shift among adjacent

frames. While seam blending requires determining the column index where the features from

adjacent images start to overlap. The seam identification procedure is based on the calculation of

a histogram that uses the Euclidean distance between the first column of the first image and the

adjacent images in order to determine the overlapping column index. The output of the seam ID

module is then passed to the frame stitching IP together with the rectification module.

72

Both the seam identification module and the rectification module are augmented with an AXI lite

interface which allows reading and writing the output data from the PS section. This also allows

manually rectifying the images from the PS section.

The implemented frame stitching IP is split into multiple functional modules. The main IP also

leverages the smart functionality of the camera sensors to flip the images horizontally.

To maintain low resource utilization the proposed algorithm followed a direct approach which

compares key- points of the energy gradients on adjacent images. The IP module then searches

for corresponding highest energy gradients on adjacent image patches.

All IP modules were implemented and their respective testbenches were implemented in Vivado

2018.2. using Verilog 2001 HDL.

The initial challenge encountered during the project was the lack of access to an FPGA image

processing platform so all of the firmware and hardware prototypes had to be prototyped outside

of the lab on a low-cost development platform. An image processing platform was prototyped

on a Minized ZYNQ development platform. A significant amount of time was dedicated to

implementing the camera firmware. Due to the limited amount of BRAM available on the

selected FPGA the firmware was designed with a reduced resolution. The majority of the effort

was focused on the implementation of the schematic design and the image stitching IP.

The schematic capture for the custom hardware was implemented on Altium18 based on the

requirements identified during the analysis stage. The 484-pin package of the ZYNQ 7020 was

used. This allows for plenty of spare I/O for future expansion. The current design uses a highly

integrated PMU, however if the peripheral power budget is updated the PMU will have to be

upgraded. The schematics of the custom developed board are included in Appendix C.

Validation of the implemented IP’s were done by using the integrated logic analyzer on the

ZYNQ as well as writing test benches. Comparison with the OpenCV implementation shows that

the frame stitching IP is able to run at 120 MHz which allows run time operation at 30 frames

per second for VGA resolution.

73

The main issue with the current implementation is the excessive use of internal BRAM on the

image stitching IP. All the sub-modules of the rectification IP module were implemented and

tested. The seam stitching algorithm was not fully implemented so the input to the image

merging IP are entered manually during compilation as constants or written via the AXI lite

peripheral.

In summary the main goal of the project was implemented. Original contributions include the

design of a custom hardware platform, design of an image stitching IP and the design of an

automatic seam estimation algorithm used for automatic image registration.

74

References

[1] Richard Szeliski. Image alignment and stitching: A tutorial. Foundations and Trends in

Computer Graphics and Vision Vol. 2, No 1 (2006) 1–104, 2006 R. Szeliski

[2] Image Blending in a High Frame Rate FPGA-based Multi-Camera System, Popovic, V.,

Seyid, K., Akin, A. et al. J Sign Process Syst (2014) 76: 169

[3] L. Juan and G. Oubong, "SURF applied in panorama image stitching," 2010 2nd

International Conference on Image Processing Theory, Tools and Applications, Paris, 2010, pp.

495-499. doi: 10.1109/IPTA.2010.5586723

[4] Panoramic Video from Unstructured Camera Arrays,” Disney Research. [Online]. Available:

https://www.disneyresearch.com/publication/panoramic-video-from-unstructured-camera-

arrays/. [Accessed: 16-Dec-2018].

[5] J.-Y. Shieh, Y.-C. Liao, G.-J. Lioao, and Y.-T. Liou, “Dynamic Image Stitching for

Panoramic Video”, IJETI, vol. 4, no. 4, pp. 260-268, Oct. 2014.

[6] L. Yao, H. Feng, Y. Zhu, Z. Jiang, D. Zhao and W. Feng, "An architecture of optimized SIFT

feature detection for an FPGA implementation of an image matcher," 2009 International

Conference on Field-Programmable Technology, Sydney, NSW, 2009, pp. 30-37.

[7] T. Kawanishi, K. Yamazawa, H. Iwasa, H. Takemura and N. Yokoya, "Generation of high-

resolution stereo panoramic images by omnidirectional imaging sensor using hexagonal

pyramidal mirrors," Proceedings. Fourteenth International Conference on Pattern Recognition

(Cat. No.98EX170), Brisbane, Queensland, Australia, 1998, pp. 485-489 vol.1.

[8] S. K. Nayar, "Catadioptric omnidirectional camera," Proceedings of IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, San Juan, Puerto Rico, USA, 1997,

pp. 482-488.

[9] Lobo, Simon. “Video Stitch.” Omnitek, Omnitek, 27 July 2018, www.omnitek.tv/image-

stitch-subsystem.

75

[10] T. L. Chao and K. H. Wong, "An efficient FPGA implementation of the Harris corner

feature detector," 2015 14th IAPR International Conference on Machine Vision Applications

(MVA), Tokyo, 2015, pp. 89-93.

[11] OV7670 camera - Hamsterworks Wiki!", Hamsterworks.co.nz, 2019. [Online]. Available:

http://hamsterworks.co.nz/mediawiki/index.php/OV7670_camera. [Accessed: 1- Dec- 2018].

[12] Kar-Han Tan, H. Hua and N. Ahuja, "Multiview panoramic cameras using a mirror

pyramid," Proceedings of the IEEE Workshop on Omnidirectional Vision 2002. Held in

conjunction with ECCV'02, Copenhagen, Denmark, 2002, pp. 87-93.

[13] D. Cho, J. Park, Y. Tai and I. Kweon, "Asymmetric stereo with catadioptric lens: High

quality image generation for intelligent robot," 2016 13th International Conference on

Ubiquitous Robots and Ambient Intelligence (URAI), Xi'an, 2016, pp. 240-242.

[14] J. Kim, K. Yoon, J. Kim and I. Kweon, "Visual SLAM by Single-Camera Catadioptric

Stereo," 2006 SICE-ICASE International Joint Conference, Busan, 2006, pp. 2005-2009.

[15] S. K. Mohapatra, B. R. Swain and S. K. Mahapatra, "Optimized approach of sobel edge

detection technique using Xilinx system generator," 2015 2nd International Conference on

Electronics and Communication Systems (ICECS), Coimbatore, 2015, pp. 338-341.

[16] Yufeng Lu, Xiaohua Luo, Yimu Wang and L. Claesen, "Line buffer reduction for LUT-

based real-time image inverse warping," 2016 14th IEEE International New Circuits and

Systems Conference (NEWCAS), Vancouver, BC, 2016, pp. 1-4.

[17] A. H. Nguyen, M. Pickering and A. Lambert, "The FPGA implementation of an image

registration algorithm using binary images," 2014 International Conference on ReConFigurable

Computing and FPGAs (ReConFig14), Cancun, 2014, pp. 1-4.

[18] G. Mamatha, V. Sumalatha and M. V. Lakshmaiah, "FPGA implementation of satellite

image fusion using wavelet substitution method," 2015 Science and Information Conference

(SAI), London, 2015, pp. 1155-1159.

[19] K. Agrawal and S. R. Chowdhury, "FPGA based accelerated orientation calculation in SIFT

using luts," 2013 IEEE Asia Pacific Conference on Postgraduate Research in Microelectronics

and Electronics (PrimeAsia), Visakhapatnam, 2013, pp. 225-227.

[20] I. Zouhir, L. Abdelhai, S. Samir, N. Abdelkrim and H. Mustapha, "FPGA implementation of

the RANSAC based image mosaicing algorithm using the Nios II softcore," 2016 International

76

Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, 2016, pp. 1-4.

[21] M. Sen, Y. Hemaraj, S. S. Bhattacharyya and R. Shekhar, "Reconfigurable image

registration on FPGA platforms," 2006 IEEE Biomedical Circuits and Systems Conference,

London, 2006, pp. 154-157.

[22] M. Huang, O. Serres, T. El-Ghazawi and G. Newby, "Parameterized hardware design on

reconfigurable computers: An image registration case study," 2009 5th Southern Conference on

Programmable Logic (SPL), Sao Carlos, 2009, pp. 71-76.

[23] Y. Do and Y. Jeong, "A new area efficient SURF hardware structure and its application to

Object tracking," 2013 IEEE International Conference of IEEE Region 10 (TENCON 2013),

Xi'an, 2013, pp. 1-4.

[24] Y. Zhang, Y. Huang, J. Han and X. Zeng, "FPGA-based efficient implementation of SURF

algorithm," 2017 IEEE 12th International Conference on ASIC (ASICON), Guiyang, 2017, pp.

315-318.

[25] J. Mun and J. Kim, "Real-time FPGA rectification implementation combined with stereo

camera," 2015 International Symposium on Consumer Electronics (ISCE), Madrid, 2015, pp. 1-

2.

[26] J. G. P. Rodrigues and J. C. Ferreira, "FPGA-based rectification of stereo images," 2010

Conference on Design and Architectures for Signal and Image Processing (DASIP), Edinburgh,

2010, pp. 199-206.

[27] A. Akin, I. Baz, L. M. Gaemperle, A. Schmid and Y. Leblebici, "Compressed look-up-table

based real-time rectification hardware," 2013 IFIP/IEEE 21st International Conference on Very

Large Scale Integration (VLSI-SoC), Istanbul, 2013, pp. 272-277.

[28] M. Pohl, M. Schaeferling, G. Kiefer, P. Petrow, E. Woitzel and F. Papenfub, "An efficient

and scalable architecture for real-time distortion removal and rectification of live camera

images," 2012 International Conference on Reconfigurable Computing and FPGAs, Cancun,

2012, pp. 1-7.

