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Abstract

Video super-resolution has recently become one of the

most important mobile-related problems due to the rise of

video communication and streaming services. While many

solutions have been proposed for this task, the majority of

them are too computationally expensive to run on portable

devices with limited hardware resources. To address this

problem, we introduce the first Mobile AI challenge, where

the target is to develop an end-to-end deep learning-based

video super-resolution solutions that can achieve a real-

time performance on mobile GPUs. The participants were

provided with the REDS dataset and trained their models to

do an efficient 4X video upscaling. The runtime of all mod-

els was evaluated on the OPPO Find X2 smartphone with

the Snapdragon 865 SoC capable of accelerating floating-

point networks on its Adreno GPU. The proposed solutions

are fully compatible with any mobile GPU and can upscale

videos to HD resolution at up to 80 FPS while demonstrat-

ing high fidelity results. A detailed description of all models

developed in the challenge is provided in this paper.

1. Introduction

An increased popularity of various video streaming ser-

vices and a widespread of mobile devices have created a

strong need for efficient and mobile-friendly video super-

resolution approaches. Over the past years, many accurate

deep learning-based solutions have been proposed for this

∗Andrey Ignatov, Andres Romero, Heewon Kim and Radu Timo-

fte (andrey@vision.ee.ethz.ch, roandres@ethz.ch, ghimhw@gmail.com,

radu.timofte@vision.ee.ethz.ch) are the main Mobile AI 2021 challenge

organizers. The other authors participated in the challenge.

Appendix A contains the authors’ team names and affiliations.

Mobile AI 2021 Workshop website:

https://ai-benchmark.com/workshops/mai/2021/

problem [46, 48, 57, 37, 51, 50, 12]. The biggest lim-

itation of these methods is that they were primarily tar-

geted at achieving high fidelity scores while not optimized

for computational efficiency and mobile-related constraints,

which is essential for tasks related to image [18, 19, 32] and

video [47] enhancement on mobile devices. In this chal-

lenge, we take one step further in solving this problem by

using a popular REDS [46] video super-resolution dataset

and by imposing additional efficiency-related constraints on

the developed solutions.

When it comes to the deployment of AI-based solutions

on mobile devices, one needs to take care of the particu-

larities of mobile NPUs and DSPs to design an efficient

model. An extensive overview of smartphone AI acceler-

ation hardware and its performance is provided in [28, 25].

According to the results reported in these papers, the latest

mobile NPUs are already approaching the results of mid-

range desktop GPUs released not long ago. However, there

are still two major issues that prevent a straightforward de-

ployment of neural networks on mobile devices: a restricted

amount of RAM, and a limited and not always efficient sup-

port for many common deep learning layers and operators.

These two problems make it impossible to process high

resolution data with standard NN models, thus requiring a

careful adaptation of each architecture to the restrictions of

mobile AI hardware. Such optimizations can include net-

work pruning and compression [8, 22, 41, 43, 49], 16-bit /

8-bit [8, 36, 35, 59] and low-bit [6, 55, 33, 44] quantization,

device- or NPU-specific adaptations, platform-aware neural

architecture search [14, 52, 58, 56], etc.

While many challenges and works targeted at efficient

deep learning models have been proposed recently, the eval-

uation of the obtained solutions is generally performed on

desktop CPUs and GPUs, making the developed solutions

not practical due to the above mentioned issues. To address

this problem, we introduce the first Mobile AI Workshop and
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Figure 1. Sample crops from the original video frames, results obtained by challenge participants and the target high-resolution frames.

Challenges, where all deep learning solutions are developed

for and evaluated on real mobile devices. In this competi-

tion, the participating teams were provided with the original

high-quality and downscaled by a factor of 4 videos from

the REDS [46] dataset to train their networks. Within the

challenge, the participants were evaluating the runtime and

tuning their models on the OPPO Find X2 smartphone fea-

turing the Qualcomm Adreno 650 GPU that can efficiently

accelerate floating-point neural networks. The final score

of each submitted solution was based on the runtime and fi-

delity results, thus balancing between the image reconstruc-

tion quality and efficiency of the proposed model. Finally,

all developed solutions are fully compatible with the Ten-

sorFlow Lite framework [53], thus can be deployed and ac-

celerated on any mobile platform providing AI acceleration

through the Android Neural Networks API (NNAPI) [3] or

custom TFLite delegates [10].

This challenge is a part of the MAI 2021 Workshop and

Challenges consisting of the following competitions:

• Learned Smartphone ISP on Mobile NPUs [17]

• Real Image Denoising on Mobile GPUs [16]

• Quantized Image Super-Resolution on Mobile NPUs [26]

• Real-Time Video Super-Resolution on Mobile GPUs

• Single-Image Depth Estimation on Mobile Devices [20]

• Quantized Camera Scene Detection on Smartphones [21]

• High Dynamic Range Image Processing on Mobile NPUs

The results obtained in the other competitions and the de-

scription of the proposed solutions can be found in the cor-

responding challenge papers.

2. Challenge

To develop an efficient and practical solution for mobile-

related tasks, one needs the following major components:

1. A high-quality and large-scale dataset that can be used

to train and evaluate the solution;

2. An efficient way to check the runtime and debug the

model locally without any constraints;

3. An ability to regularly test the runtime of the designed

neural network on the target mobile platform or device.
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Figure 2. Loading and running custom TensorFlow Lite models with AI Benchmark application. The currently supported acceleration

options include Android NNAPI, TFLite GPU, Hexagon NN, Samsung Eden and MediaTek Neuron delegates as well as CPU inference

through TFLite or XNNPACK backends. The latest app version can be downloaded at https://ai-benchmark.com/download

This challenge addresses all the above issues. Real train-

ing data, tools, and runtime evaluation options provided to

the challenge participants are described in the next sections.

2.1. Dataset

In this challenge, we use the REDS [46] dataset that

serves as a benchmark for traditional video super-resolution

task as it contains a large diversity of content and dynamic

scenes. Following the standard procedure, we use 240

videos for training, 30 videos for validation, and 30 videos

for testing. Each video has sequences of length 100, where

every sequence contains video frames of 1280×720 resolu-

tion at 24 fps. To generate low-resolution data, the videos

were bicubically downsampled with a factor of 4. The low-

resolution video data is then considered as input, and the

high-resolution — are the target.

2.2. Local Runtime Evaluation

When developing AI solutions for mobile devices, it is

vital to be able to test the designed models and debug all

emerging issues locally on available devices. For this, the

participants were provided with the AI Benchmark applica-

tion [25, 28] that allows to load any custom TensorFlow Lite

model and run it on any Android device with all supported

acceleration options. This tool contains the latest versions

of Android NNAPI, TFLite GPU, Hexagon NN, Samsung

Eden and MediaTek Neuron delegates, therefore supporting

all current mobile platforms and providing the users with

the ability to execute neural networks on smartphone NPUs,

APUs, DSPs, GPUs and CPUs.

To load and run a custom TensorFlow Lite model, one

needs to follow the next steps:

1. Download AI Benchmark from the official website1 or

from the Google Play2 and run its standard tests.

2. After the end of the tests, enter the PRO Mode and

select the Custom Model tab there.

3. Rename the exported TFLite model to model.tflite and

put it into the Download folder of the device.

4. Select mode type (INT8, FP16, or FP32), the desired

acceleration/inference options and run the model.

These steps are also illustrated in Fig. 2.

2.3. Runtime Evaluation on the Target Platform

In this challenge, we use the OPPO Find X2 smartphone

with the Qualcomm Snapdragon 865 mobile SoC as our

target runtime evaluation platform. The considered chipset

demonstrates very decent AI Benchmark scores [4] and can

be found in the majority of flagship Android smartphones

released in 2020. It can efficiently accelerate floating-point

networks on its Adreno 650 GPU with a theoretical FP16

performance of 2.4 TFLOPS. Within the challenge, the par-

ticipants were able to upload their TFLite models to an ex-

ternal server and get a feedback regarding the speed of their

model: the runtime of their solution on the above men-

tioned OPPO device or an error log if the network contains

1https://ai-benchmark.com/download
2https://play.google.com/store/apps/details?id=

org.benchmark.demo
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Team Author Framework Model Size, PSNR↑ SSIM↑ Runtime per 10 frames ↓ Speed-Up Final Score

KB CPU, ms GPU, ms

Diggers chenyuxiang Keras / TensorFlow 230 28.33 0.8112 916 199 4.6 8.13

ZTE VIP jieson zheng PyTorch / TensorFlow 50 27.85 0.7983 163 113 1.4 7.36

Rainbow Zheng222 TensorFlow 204 27.99 0.8021 429 180 2.4 5.61

Noah TerminalVision JeremieG TensorFlow 30 27.97 0.8017 448 Error ∗ - 2.19

Bicubic Upscaling Baseline 26.50 0.7508 -

Table 1. Mobile AI 2021 Real-Time Video Super-Resolution challenge results and final rankings. During the runtime measurements, the

models were upscaling 10 subsequent video frames from 180×320 to 1280×720 pixels on the OPPO Find X2 smartphone. Team Diggers

is the challenge winner. ∗ The solution from Noah TerminalVision was not parsed correctly by the TFLite GPU delegate.

some incompatible operations. The models were parsed and

accelerated using the TensorFlow Lite GPU delegate [40]

demonstrating the best performance on this platform ac-

cording to AI Benchmark results. The same setup was also

used for the final runtime evaluation.

2.4. Challenge Phases

The challenge consisted of the following phases:

I. Development: the participants get access to the data

and AI Benchmark app, and are able to train the mod-

els and evaluate their runtime locally;

II. Validation: the participants can upload their models to

the remote server to check the fidelity scores on the

validation dataset, to get the runtime on the target plat-

form, and to compare their results on the validation

leaderboard;

III. Testing: the participants submit their final results,

codes, TensorFlow Lite models, and factsheets.

2.5. Scoring System

All solutions were evaluated using the following metrics:

• Peak Signal-to-Noise Ratio (PSNR) measuring fidelity

score,

• Structural Similarity Index Measure (SSIM), a proxy

for perceptual score,

• The runtime on the target OPPO Find X2 smartphone.

The goal of this challenge was to produce an efficient

solution balancing between the fidelity scores and latency.

For the fidelity evaluation, we compute the PSNR and SSIM

measures between the target sharp high-resolution and the

produced super-resolved videos, both scores were averaged

over the entire sequence of frames. Different to common

VSR methods [57, 7] where the input of the model is a

5-dimensional tensor including the video sequence infor-

mation, this challenge encouraged the participants to build

models that receive mobile-friendly 4-dimensional tensors.

The input model tensor should accept 10 subsequent video

frames and have a size of [1× 180× 320× 30], where the

first dimension is the batch size, the second and third dimen-

sions are the height and width of the input frames, and the

last dimension is the number of channels (3 color channels

× 10 frames). The size of the output tensor of the model

should be [1× 720× 1280× 30].

The score of each final submission was evaluated based

on the next formula (C is a constant normalization factor):

Final Score =
2
2·PSNR

C · runtime
,

During the final challenge phase, the participants did not

have access to the test dataset. Instead, they had to submit

their final TensorFlow Lite models that were subsequently

used by the challenge organizers to check both the runtime

and the fidelity results of each submission under identical

conditions. This approach solved all the issues related to

model overfitting, reproducibility of the results, and consis-

tency of the obtained runtime/accuracy values.

3. Challenge Results

From above 125 registered participants, 4 teams entered

the final phase and submitted valid results, TFLite models,

codes, executables and factsheets. Table 1 summarizes the

final challenge results and reports PSNR, SSIM and runtime

numbers for each submitted solution on the final test dataset

and on the target evaluation platform, while Fig. 1 shows the

obtained qualitative results. The proposed methods are de-

scribed in section 4, and the team members and affiliations

are listed in Appendix A.

3.1. Results and Discussion

All submitted solutions demonstrated a very high effi-

ciency: the first three models can upscale video frames from

180×320 to 1280×720 resolution at more than 50 FPS on

the target Snapdragon 865 chipset. The solution proposed

by team Noah TerminalVision can potentially achieve even

higher frame rates, though it is currently not compatible

with the TFLite GPU delegate due to split operations and

thus was tested on Snapdragon’s CPU only. Team Dig-

gers is the challenge winner — the model proposed by
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Figure 3. Team Diggers proposes a bidirectional RNN with efficient feature extractors (FEB) to exploit the temporal dependencies.

the authors achieves the best fidelity results while demon-

strating good runtime values. This is the only solution in

this challenge that applied recurrent connections to make

use of inter-frame dependencies for getting better recon-

struction results. While the other methods were performing

only a standard per-frame upscaling, the image crops shown

in Fig. 1 demonstrate that the visual quality of the recon-

structed video frames obtained in their cases is just slightly

behind the one of the winning solution, while all results are

significantly better compared to the simple bicubic video

interpolation. Therefore, we can conclude that, from the

practical aspect, all proposed solutions can be applied for

video super-resolution task on real mobile devices — the

final choice will depend on the set of supported ops (e.g.,

the first model might not be compatible with some mobile

NPUs [26]) and the target FPS and runtime values.

4. Challenge Methods

This section describes solutions submitted by all teams par-

ticipating in the final stage of the MAI 2021 Real-Time

Video Super-Resolution challenge.

4.1. Diggers

Team Diggers proposed a bi-directional recurrent model

for the considered video super-resolution task that uses

feature maps computed for the previous and future video

frames as an additional information while super-resolving

the current frame (Fig. 3). The model architecture is gener-

ally based on the ideas proposed in [34] and [15]: for each

input frame, two feature extraction blocks (FEBs) are ap-

plied to generate the corresponding feature maps: forward

[blue] and backward [orange]. The forward feature maps

of the current and previous frames are then combined and

passed to another feature extraction block to generate the

final forward feature map for the current frame. As for the

backward frames, the procedure is exactly the same, though

the sequence is reversed. The obtained final forward and

backward features are fed to the selection units layer (SEL)

module [9], one IMDB [15] module and two convolutional

and image resizing layers performing final frame upscaling.

During the training process, sequences of 21 subsequent

low- and high-resolution video frames were used as model’s

inputs and targets. First, the model was trained for 31

epochs with a batch size of 16 and an initial learning rate

of 4e− 3 multiplied by 0.7 each 2 epochs starting from the

7th one. Next, it was trained for another 31 epochs with a

batch size of 32 and the same learning rate policy. L2 loss

was used as a target loss function, model parameters were

optimized with Adam [39]. The images were additionally

flipped randomly during the training for data augmentation.

4.2. ZTE VIP

Figure 4. Feed-forward CNN proposed by ZTE VIP team. Each

basic module (BM) consists of a residual block with two convolu-

tional layers.

Team ZTE VIP proposed a model performing per-frame

upscaling without taking into account any inter-frame de-

pendencies (Fig. 4) which can significantly speed-up the in-

ference. In its first layer, the input is resized so that the batch

size is equal to the number of video frames, and then they

are processed separately by several residual blocks [13] and

a depth-to-space layer performing final frame upsampling.

The number of residual blocks and their size was found us-
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ing the Neural Architecture Search (NAS) [38], where the

target metric was composed of the fidelity loss and the num-

ber of model FLOPS. The final model contains five residual

blocks, each one consisting of two 3×3 convolutions with

eight feature maps. The network was trained to minimize

L1 loss with a batch size of 4 for 1000 epochs using Adam

optimizer with a learning rate of 2e − 4 down-scaled by a

factor of 0.5 till 400 epochs. A more detailed description

of the model, design choices and training procedure is pro-

vided in [42].
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Figure 5. The overall model architecture proposed by Rainbow

team (left). The structure of the information multi-distillation

blocks (IMDB s) is presented on the right side; 12, 9 and 3 de-

note the size of the output channels of each convolutional layer.

Similarly to the previous solution, Rainbow team has de-

veloped a pure CNN model performing per-frame video

upscaling (Fig. 5). The authors presented a network

consisting of three information multi-distillation blocks

(IMDB s) [15] followed by a depth-to-space upsampling

layer processing each video frame separately. A global

skip connection is used to improve the fidelity results of the

model. L1 loss was used as a target fidelity measure, net-

work parameters were optimized using Adam with an initial

learning rate of 2e− 4 halved every 50K iterations. A batch

size of 8 was used during the training, horizontal and verti-

cal flipping was used to augment the training data.

Figure 6. The solution proposed by Noah TerminalVision consists

of a light-weight architecture with three residual blocks and asym-

metric convolutions.

4.4. Noah TerminalVision

Team Noah TerminalVision presented a TinyVSRNet ar-

chitecture that contains three residual blocks (each consist-

ing of 2 convolutions with 16 channels) followed by depth-

to-space upsampling layer and one global skip connection

performing bilinear image upscaling (Fig. 6). The authors

have also proposed a “single-frame” solution by converting

10 video frames from the channel dimension to the batch

dimension with split and concat layers. To boost the model

performance, they adopted the approach developed in [11],

where three asymmetric convolution kernels (of size 3×3,

1×3, and 3×1) are used during the training and then fused

into one single convolution op during the inference. With

this modification, the results of the TinyVSRNet were im-

proved by around 0.05 dB. The network was trained to min-

imize L1 loss, its parameters were optimized using Adam

for one million iterations with a cyclic learning rate starting

from 5e− 4 and decreased to 1e− 6 each 200K iterations.

5. Additional Literature

An overview of the past challenges on mobile-related

tasks together with the proposed solutions can be found in

the following papers:

• Video Super-Resolution: [48, 47]

• Image Super-Resolution: [30, 45, 5, 54]

• Learned End-to-End ISP: [27, 31]

• Perceptual Image Enhancement: [30, 24]

• Bokeh Effect Rendering: [23, 29]

• Image Denoising: [1, 2]
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