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A b s t r a c t .  In this paper we report progress towards a flexible, visually 
driven, object manipulation system. The aim is that a robot arm with a 
camera and gripper mounted on its tip should be able to transport objects 
across an obstacle-strewn environment. Our system is based on the anal- 
ysis of moving image contours, which can provide direct estimates of the 
shape of curved surfaces. Recently we have elaborated on this basis in two 
respects. First we have developed real-time visual tracking methods using 
"dynamic contours" with Lagrangian Dynamics allowing direct generation 
of approximations to geodesic paths around obstacles. Secondly we have 
built a 2�89 system for incremental, active exploration of free-space. 

1 I n t r o d u c t i o n  

Over the last few years, significant advances have been made in estimation of surface 
shape from visual motion, that is from image sequences obtained from a moving camera. 
By combining differential geometry [6] with spatio-temporal analysis of visual motion [9, 
10, 7] it has been shown that local surface curvature can be computed from moving images 
[8, 3, 4, 11, 1]. The computation is robust with respect to surface shape, configuration 
of the surface relative to the camera and the nature of the camera motion. For example 
the ability to discriminate qualitatively between rigid features and silhouettes on smooth 
surfaces has been demonstrated [3]. Particularly important for collision-free motion, the 
"sidedness" of silhouettes is computed, that is, which side is solid surface and which is 
free space. 

This paper reports on progress in building a robot with active vision that can ma- 
nipulate objects in the presence of obstacles. Our Adept robot has a camera and gripper 
on board and is able to make exploratory "dithering" movements around its workspace. 
As it moves, it monitors the image motion and deformation of contours in real-time us- 
ing parallel dynamic contours. Real-time performance depends on appropriate internal 
dynamical modelling with adaptive control of scale. As in earlier versions of our system 
[3, 4], contour motion is used to interpret occlusion and surface curvature. More recently 
we have built on further features: incremental building of a free-space model, incremental 
planning of robot motion and search strategies for navigation. 

2 Visual Tracking 

The curvature analysis described above relies on the ability to track moving curved 
image-contours. We have implemented a series of deformable cubic B-spline "dynamic 
contours" that run at video rates using a Transputer network. Points along the dynamic 
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contour are programmed to have an affinity for image features such as brightness or high 
intensity-gradient. The contour can now be used to make curvature estimates in a few 
seconds. Substantial improvements in tracking performance are r'ealised when Lagrangian 
dynamics formalisms are used to model mass distributed along a dynamic contour which 
moves in a viscous medium. We have found that use of large Gaussian blur is unnecessary, 
a crucial factor in achieving real-time performance. 

2.1 C o u p l e d  B-sp l ine  m o d e l  

Defining a dynamic contour with inertia [5], implies a model in which the image velocity 
of features is assumed uniform. However, stronger assumptions about the feature can 
be incorporated when appropriate, to considerable effect. This is done by making the 
further assumption that the feature shape will change only slowly. As an illustration, 
with no shape assumption, the contour flows around corners (Fig. la).  When the shape 
assumption is incorporated it moves almost rigidly with the corner feature (Fig. lb). 

Fig. 1. Dynamic contours tracking a corner. In (a) the dynamic contour is flexible, and slides 
round the corner as the object moves to the left, whereas the "coupled" dynamic contour in (b) 
follows the true motion of the corner. 

The shape assumption is imposed by using a pair of coupled B-splines. The first can 
be trained by taking the original (uncoupled) dynamic contour and allowing it to relax 
onto a feature. Its shape is then frozen and becomes the "template" shape (see also Yuille 
et. al. [12]) in the new model. A second B-spline curve, initially an exact copy of the first, 
is then spawned and coupled to the template B-spline. The coupling is defined, naturally, 
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by a new elastic energy term. In the case of first derivative coupling energy, the dynamic 
contour behaves like a one-dimensional membrane or string. Second derivative coupling 
produces a contour which acts like a one-dimensional thin plate or rod. Suppose the 
template contour has control point vector Q,, then the equations of motion, derived by 
an analysis similar to the uncoupled model [5]), are: 

= w 0 ( U -  Q) - 2/~oQ + HolH1 [wl(Qs - Q) - 2/~1Q] (1) 

where H0 and H1 are constant matrices, simply compositions of B-spline coefficients, and 
U is the least squares B-spline approximation to the feature vector. The constants w0, 
fl0 govern elastic attraction towards the feature and velocity damping respectively. The 
constants wl and t31 govern elastic restoring forces and internal damping respectively. 

2.2 Para l le l  i m p l e m e n t a t i o n  

The equations of motion are integrated using an implicit Euler scheme for speed on a 
network of transputers. The dynamic contours are allocated to worker transputers a span 
at a time. The individual spans of a contour communicate their contribution to V in (1) 
to the rest of the contour at each Euler step. With six worker transputers, Euler steps 
can be performed at frame rate (25Hz). To overcome this problem, three separate frame 
grabbers are used, sampling the sample video input. Figure 2 shows a sample of frames 
from a multiple contour tracking sequence using coupled dynamic contours. 

The dynamic contour can successfully track features whose velocity is such that the 
lag caused by viscous drag does not exceed the radius of the tracking window. With a 
tracking window radius of approximately 35 mrad (in a field of view of 0.3 tad) maximum 
tracking velocity is about 1.4 rad/sec, for our system. Note that varying the tracking 
window radius is our mechanism for control of scale. For example, a large window is used 
during feature capture, getting smaller as the contour locks on. 

3 A c t i v e  E x p l o r a t i o n  o f  F r e e  S p a c e  

Following the first version of our manipulation system [2], we have investigated a more 
complex version of the manipulation problem in which the workspace is cluttered with 
several obstacles. In addition to visual and spatial geometry, we now need to add Arti- 
ficial Intelligence search techniques (A* search). Path-planning works in an incremental 
fashion, repeating a cycle of exploratory motion, clearing a triangular chunk of freespace 
(figure 3), and viewpoint prediction. After several of these cycles, over which the robot 
"jostles" for the best view of the goal (box lid), it may find itself jammed between ob- 
stacles and the edge of its workspace. In that case it backtracks to an earlier point in 
its search of freespace and investigates a new path. So far we have demonstrated these 
techniques with up to three different, unmodelled obstacles in the workspace. 

4 C o n c l u s i o n s  

We have discussed the principles and practice of visual manipulation of objects in clutter 
from several points of view: tracking, dynamics, spatial geometry and geometry of grasp. 
We are currently working to extend this in a variety of ways, including: 
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Fig. 2. Dynamic contours tracking objects in a scene (raster order). All dynamic contours are 
"coupled". Note the top left hand contour falling off its feature as the object moves over the 
image boundary. 

- Developing more powerful internal models for tracking to improve ability to ignore 
clutter. This would enable the robot to perform efficiently with obstacles in the 
background as well as in the foreground. 

- Employ more sophisticated geometric modelling to allow fine-motion planning that 
takes account of the shape of the gripped object, and the fact that the workspace is 
3D not 2�89 
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