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Abstract

This article shows that malicious traffic flows such as denial-of-service attacks and
various scanning activities can be visualized in an intuitive manner. A simple but
novel idea of plotting a packet using its source IP address, destination IP address,
and the destination port in a 3-dimensional space graphically reveals ongoing
attacks. Leveraging this property, combined with the fact that only three header
fields per each packet need to be examined, a fast attack detection and classifica-

tion algorithm can be devised.

ntuitive visualization of ongoing attacks is something

that network administrators can make good use of, pro-

viding quick perceptual clues before other more compli-

cated analyses kick in. We demonstrate in this article
that such attack visualization can be surprisingly straightfor-
ward yet highly informative. Although there are numerous
types of malicious attacks against or via the network, denial-
of-service (DoS) attacks and worm epidemics undoubtedly
have been the most notorious recently. The most popular
type of DoS or distributed DoS (DDoS) attack is flooding,
which simply bombards a victim with packets beyond the vic-
tim’s bandwidth or processing capacity. For instance, the
DDoS attack on root DNS servers on October 21, 2002
mobilized 100 to 200 kilo-packets per second against each
victim, blasting 50 to 100 Mb/s of traffic on it [1]. Such
degree of abuse shoves the victim into a state where it can
hardly respond to any legitimate request. Figure 1a shows a
typical DDoS scenario, in which the attacker hides behind
masters that compromise agents and let them attack the vic-
tim. As for a worm epidemic, it manifests itself in the form
of hostscan in terms of network traffic. In an attempt to
infect other hosts, it scans a wide range of IP addresses by
sending packets to them (Fig. 1b). Hostscan can also be used
by hackers to probe hosts, usually for a single vulnerability.
Somewhat less important is portscan, in which the attacker
probes open vulnerable ports (i.e., services) on a single vic-
tim machine. As we saw in recent episodes, DoS attacks and
global worm epidemics such as Code Red [2], Nimda, and
SQL Slammer [3], incur huge economic and social costs.
These attacks must be detected in their early phase and
blocked as much as possible.

Detecting suspicious network activities and providing early
warning to network administrators is an essential yet difficult
task. Especially when we go deeper into the network, the
speed and the sheer volume of legitimate traffic make the task
of pinpointing ongoing attacks look practically impossible.
However, in this article we demonstrate the feasibility of
devising such a method that simultaneously detects, calibrates,
and visualizes multiple ongoing attacks in real-time with great
precision.

Attack Visualization

Our idea for intuitive attack visualization is simple: use three head-
er values available from most Internet packets, namely, the source
IP address (I;), the destination IP address (I;), and the destination
port number (P,). Using these three values as the dimensions of a
Cartesian space, we map each packet into the three-dimensional
space according to their values. For a real example, we show a
visualization of packets from 90Mby/s trans-pacific backbone traffic
in Fig. 2 (for convenience, IP addresses are in decimal). This fig-
ure is plotting 2.2 million packets captured in an 85-second interval
on one typical day in December 2001.

Each dot in the figure represents a “flow,” which in this
article is defined as a set of packets sharing the same I, I,
and Py (e.g., the packets in the same TCP connection).

What is surprising in the figure is that unusually regular
geometric formations are found, striking out from an amor-
phous background. These geometric figures are, indeed, the
very manifestations of attacks. First, the rectangles parallel to
I, — P, plane are source-spoofed DoS attacks. We can see one
in the front, one in the back lying low, and barely visible in
front and up in the high port range. If the destination port is
not randomly filled, source-spoofed DoS attacks would appear
as a line parallel to the source IP address. Second, we can see
five distinct lines parallel to the destination IP address. These
are hostscans. (The two thick lines are in fact many lines.)
Third, the lines parallel to the destination port are portscans.
The schematic diagram in Fig. 3 summarizes the observation.

Why do attacks manifest themselves in such a visibly regu-
lar formation? The answer is threefold. First, in general, legit-
imate traffic is widely and irregularly dispersed in the
three-dimensional space. The size of the three-dimensional
space is huge — 232 x 232 x 216 — but the number of concur-
rent legitimate flows is expected to be much less even in back-
bones (typically less than one million) [4]. Therefore they
appear as amorphous and thin clouds. Second, in stark con-
trast each attack packet constitutes a separate flow under our
definition, and it makes each attack stream look highly inflat-
ed. While a single dot collectively represents all the packets in
legitimate flows, there are as many dots as there are packets
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M Figure 1. a) Distributed DoS attack by flooding; (b) worm epidemic.

in the attack flow. So even if there are a vastly larger number
of legitimate flows than attacks, attack flows strike out, as we
can clearly see in Fig. 2. (Notice how conspicuous a single
DoS attack flow, DoS1, is against the background.) In the
case of DoS, this spurious flow explosion is due to its spoofing
maneuver. It is well known that most DoS attacks randomly
fill the source IP address in the IP header in order to obfus-
cate traceback efforts [S]. Other header fields can also be ran-
domly filled along with the source IP address, as long as the
destination IP address is correctly aimed at the DoS victim. So
Iy =*1;,=1,, P; = [P,|*] where the subscript v represents
the victim and “*” denotes a wildcard. In Fig. 2 we can see
that DoS1 utilizes only half the source IP space and the entire
destination port range, whereas DoS2 uses the entire source
address space and only well known ports (< 1024).

In Fig. 4a we show a filtered real-life packet trace that
exemplifies the source spoofing behavior in a DoS attack
stream (for privacy reason we “sanitized” the victim’s address).
We can see that port numbers are being randomly filled,
which would result in the rectangle formation in the three-
dimensional visualization.

In the case of host scanning, the scanner (a scanning pro-
gram or a worm) does not know a priori which address is in
use and vulnerable, so it has to blindly scan the IP address
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space. This random address generation across a wide range
results in the line formation. In Fig. 2 hostscans all apparently
scour the entire IP address range except the Class D and E
spaces. The mode of search varies depending on the imple-
mentation. Figure 4b shows a real-life example of a hostscan
(again, the scanner’s identity is masked for privacy). In the
case of port scans, skimming through the port space inevitably
leaves the line mark parallel to the destination port axis.
Interested readers can find a sample minute-by-minute anima-
tion of visualized attack activities from our Web site [6].

System Behavior in Non-Backbone Environments

Our visualization method works best in backbone environment
where there are no particular prominent traffic sources or des-
tinations. However, if we use the method in an environment
where a dominant traffic source or sink is near, care should be
taken since legitimate traffic can also form regular geometry.
An example is a popular Web server with IP address I, in an
enterprise network. A large number of requests can be
launched from all over the IP address space toward I,,. If we
visualize the traffic at the boundary of the enterprise network,
the incoming request traffic can form a DoS-like line with [ =
* 1y =1I,, P; = 80. Note that only DoS has this ambiguity
problem, and hostscan and portscan do not.

One way to address the DoS ambiguity problem in edge
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M Figure 2. 3-d plotting of a trans-pacific traffic.

W Figure 3. Schematic diagram of attacks.
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Time Source address szrJtrce aDgétr?Sastlon Ilgg?;cmatlon
either the source address or the destination
09:35:03.319081 | 67.171.49.204 | 7804 |  xxxx | 16675 address should be from the downstream net-
09:35:03.319647 20.214.51.196 | 47582 X XXX 16675 work of the observation point. For instance, if
8332%31882% ggﬁigglgg g]gg% iiii 1223; the moqitor is situated at the bounda.ry of an
09:35:03.320607 | 89.130.59.164 | 10086 XXXX 16695 enterprise network, the packets coming into
09:35:03.321665 | 56.184.129.14 | 4787 |  xxxx | 16706 and going out of the network should have the
09:35:03.322084 | 117.152.194.136 | 51005 XX XX 16709 destination address and the source address
09:35:03.322098 3.164.5.250 5928 X XXX 16716 assigned to the enterprise network, respectively.
09:35:03.325331 | 25.123.15.210 | 8210 XXXX 16736 If the observation point is at an ISP, at least
09:35:03.326188 | 6.188.152.174 | 23371 XXX.X 16754 one of the addresses should be that of its sub-
09:35:03.326565 6.188.152.174 23371 X.X.X.X 16754 scriber network. In Fig. 2, for instance, we are
09:35:03.327048 87.231.154.166 63149 X.X.X.X 16768 certain that DoS1 is an attack since its source
09:35:03322?_‘_‘? 101 '242'22_%_'_2__? 18073 XX.X.X 16765 address spans the entire class A space. This
should not happen since the downstream net-
(a) work of the particular vantage point providing
the view of Fig. 2 happens to be the Korean
Internet, which has only a small fraction of class
Tina Source Source Destination Destination A.
address | port address port Figure 6 shows how these two techniques
........................................... can be used to confirm the attacks that have
09:35:23.955222 | X.X.X.X 64218 72.142.101.184 11 been identified by our geometry-based algo-
83;2%3822?;2 XXXX gg?% 7%9174%41 g;}% }H rithm. The figure is a two-dimensional projec-
09:35:23.965443 | x.XXX 64311 197.14.58.121 111 tion of Fig. 2 onto the I, - I; plane. Solid
09:35:23.966412 | xx.xx 64316 197.14.58.126 111 arrows mark DoS attacks evidenced by their
09:35:23.974520 | X.X.X.X 64322 197.14.58.132 11 illegitimate positions in terms of the local allo-
8832%28;?2;; X.X.X.X gﬁgl ;927?;1‘55563-1‘2” m cation. The dotted arrows mark the attacks
003234003271 | xaxx | €aa2s | 19331316126 i that are so classified due to the global IANA-
........................................... unallocated address usage, as depicted in Fig.
09:35:24.104956 | x.x.x.X 64438 19.231.216.141 111 5.
09:35:24.105238 | x.x.x.X 64437 19.231.216.140 111
09:35:24.106191 X.X.X.X 64433 19.231.216.136 111 . .
09:35:24.107471 | x.xx.X 64429 | 19.231.216.132 111 Automatic Extraction
09:35:24.125654 | x.x.x.x 64466 | 85.114.173.117 111 ] ) o
........................................... The three-dimensional visualization method
discussed above can certainly provide network
(b) administrators with “eye candy” — intuitively
recognizable signs of ongoing attacks. Howev-

W Figure 4. a) DoS attack trace; (b) Hostscan trace.

networks could be combining an address validity check with
our geometry-based algorithm. Below we discuss two address
validity check schemes. Note that not only do they reduce the
DoS ambiguity at edge networks, they also help ascertain the
hostscan and portscan attempts more quickly. Also, they are
applicable in backbone networks as well.

Exploiting the Global Address Allocation Map — A significant
portion of the IP address space is still unallocated by TANA
(Internet Assigned Numbers Authority) [7] or designated as
“Martian” [8]. The use of such illegal addresses in a flow strong-
ly suggests that the flow is an attack [9]. The barcode-like figure
in Fig. 5 shows the IP address allocation map as of Nov. 2003.
For one example, there is a big unallocated chunk in the latter
half of the Class A space (see arrow). Since no packet can origi-
nate from or be destined to these spaces, any regular geometric
formation rendered by legitimate traffic, if any, should be lack-
ing points in the spaces. In the figure the first example forma-
tion (dotted line in the middle) has points matching the
unallocated space. Such line formation can only be left by an
attack stream. Likewise, DoS1, DoS2, and hostscans in Fig. 2
have points corresponding to the unallocated spaces, so they
cannot be due to legitimate traffic. The second example (dotted
line at the bottom), on the other hand, lacks points in the unal-
located space, so it is likely that this is legitimate traffic.

Using the local Address Assignment Information — Another visu-
al confirmation of an attack can be obtained from the fact that

er, simply mapping each and every arriving

packet onto the three-dimensional space has

practical problems. While plotting every pack-
et in the three-dimensional space in real time is already diffi-
cult, this approach has the more important limitation that low
intensity attacks and the attacks in the proximity of dominant
legitimate traffic may not be visible enough in the three-
dimensional plot. In order to present only meaningful (i.e.,
attack) information to the network administrators, extracting
the attacks from legitimate background traffic is crucial.
Therefore from now on we will focus on how to extract only
the attack information from the high-speed packet flow in
real-time.

The idea of the extraction algorithm starts from the obser-
vation from Fig. 4: attacks fast “pivot” one or more values of
the flow information. In hostscan, for instance, I; and P; are
fixed, while I; pivots on them. In portscan, P, pivots on I, and
1;. In source-spoofed DoS, 1, is fixed, while either only /; or
both I and P, pivots on it. Instead of employing complex
(thus slow) pattern recognition techniques such as three-
dimensional edge detection, we apply an original algorithm
that captures the “pivoted movement” in one or more of the
three coordinates. This is because, from a graphical perspec-
tive, such movement forms the aforementioned regular geom-
etry along the axis of the pivoted dimension(s).

In order to detect the presence of pivoting in the traffic
stream, our scheme first generates a signature for each incom-
ing packet. The signature is simply a tuple consisting of three
binary values: <Kj, Ky, K,>. The coordinates in the signature
correspond one-to-one to the flow coordinates. Each coordi-
nate value in the signature tells us whether the corresponding
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W Figure 5. IPv4 address allocation vs. example line formations.

value in the flow (to which the packet in hand belongs) was
seen “recently” or not. (The degree of recentness for different
coordinates could vary, and we will deal with it later.) For
example, suppose the following two flows pass through the
monitor that executes our scheme.

Arrival time Flow Flow ID
t: <3.4.5.6,5.6.7.8, 90> 1
t+ 1: <1.2.3.4,5.6.7.8, 80> 2

For convenience, throughout the article we will call the moni-
tor RADAR monitor (for Real-time Attack Detection And
Report); the algorithm that it executes we will call the RADAR
algorithm. The RADAR remembers these two flows for a
finite time duration L. For the sake of explanation we will
assume for now that the time duration is the same for every
coordinate, for example, L = 2. When a packet with source
IP = 1.2.3.4, destination IP = 3.4.5.6, destination port = 90
appears at time ¢ + 2, the RADAR determines that this pack-
et’s signature is <K, K4, K,> = <1, 0, 1>. This is because
source IP address 1.2.3.4 appeared in flow (2) and port 90, in
flow (1). But 3.4.5.6 was not used in either flow (1) or flow (2)
as the destination address, so K; = “0”. If L = 1, flow (1)
would have been purged from the RADAR at the time of the
packet arrival, and the signature would be <1, 0, 0>.

In principle this per-packet signature determines whether
the packet is part of a “pivoted movement,” and if so, what
type it is. In Fig. 4b, for instance, the pivoted coordinate is 1,
and each packet presents a new value: 72.142.101.84 —
72.142.101.197 — 197.14.58.120 — ... . Hence the RADAR
will keep generating the <1, 0, 1> signature for hostscan. In
this manner the RADAR yields the signatures <1, 0, 1>, <1,
1, 0>, or <0, 1, *> rather frequently in the presence of
hostscan portscan or source-spoofed DoS, respectively. (“*” is
a wildcard, i.e., “0” or “17). These signatures are what we call
attack signatures, and the corresponding flow goes through fur-
ther examination. Sometimes legitimate traffic can get attack
signatures, and vice versa, or one attack might be mistaken for
another, all due to hapless modification of one or
more coordinates in the signature. For instance,
in Fig. 4b if a previously unobserved legitimate
flow destined to 197.14.58.121 passes through the
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W Figure 6. 2-d projection of Fig. 2 onto 15— 14 plane

enumerates all attack signatures and their conceivable implied
attack types. As we described earlier, “0” in a signature means
that the monitor has not recently seen the value in the given
coordinate. Thus, if a packet belongs to an attack stream, “0”
value in a coordinate most probably means that the coordi-
nate is pivoting. The leftmost column lists the number of
dimensions that are pivoting. The second column lists how the
attacks might manifest themselves geometrically when the
attack is mapped onto the three-dimensional space as in Fig.

Most of the signatures in Table 1 are fairly straightforward,
but there are three that we reject as unlikely on a technical
basis [6] (shaded in the table). Also, distributed DoS (DDoS)
does not appear in Table 1. We can consider two cases. If
DDoS sources spoof a source IP address, they will collectively
be detected as a single DoS attack <0, 1, *>. If spoofing is
not used, since individual DoS streams resemble legitimate
flows from the RADAR'’s viewpoint, they will not be detected
as an attack. Usually, however, DDoS mobilizes a large DoS
network of agent hosts to maximize the impact. For example,
more than 359,000 machines were made an agent by Code
Red version 2 [2] in an attempt to bombard the White House
Web site. Therefore when the attack commences the RADAR
will suddenly begin to see a great many source IP addresses.
This will produce a noticeable amount of <0, 1, *> signatures
at a fast pace, and draw the attention of the RADAR.
Although this is not an intended operation of the RADAR,
DDoS attacks with no spoofing will trigger an alert provided

Graphical Implied attack
manifestation

RADAR immediately after this hostscan, it would
get “1” in the destination address coordinate. The <1, 1, 1> | Single-source-spoofed DoS
accuracy of the proposed algorithm thus depends
on the likelihood of these unwanted changes in . . =1,1,0> | Portscan
the signature. The analysis of the statistical aspect 1 Straight line | <1,0, 1> | Hostscan
of the algorithm is rather tedious, so it is omitted <0,1,1> | Source-spoofed DoS (destination port fixed)
here. But the conclusion of our study [6] is that
unwanted transformations can be suppressed by <1,0,0> | Kamikaze
C'f‘fef‘ﬂ treatment of L and other simple tech- 2 Rectangle <0, 1, 0> | Source-spoofed DoS (destination port varied)
niques. —
q <0, 0, 1> | Distributed hostscan
Attack Signofures 3 Hexahedron <0, 0, 0> | Network-directed DoS

Based on the above idea Table 1 exhaustively

B Table 1. Attack signatures.
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—— vdos
fdos

M Figure 7. Presenting only the attacks embedded in Fig. 2.

the intensity exceeds the threshold used on a spoofed DoS
attack from a single attacker. Finally, DDoS or DoS attacks
without spoofing, although there are few [5], can be detected
by the traditional IDS method of packet counting, and can be
entirely blocked and even traced back. Therefore we do not
treat the non-spoofing DoS scenario in this article.

The remaining five cases are of practical importance. First,
“Kamikaze” is odd since a single source spews packets at a
high rate toward random destination hosts at random ports.
Apparently it cannot be an effective attack, and it seems
rather suicidal. The origin of this type of “attack” is not clear,
but it does appear in our traces [6]. One explanation could be
a bug in the DoS attack code — pivoting on the destination
address instead of on the source. But a more plausible theory

incidental signature modifications, therefore, there is little
chance for a legitimate flow to accumulate enough flow
counts and eventually lead to a false positive. This is in stark
contrast with attacks that for their inherent needs (e.g., maxi-
mizing impact in DoS or speeding up the worm’s spread)
rapidly accumulate the count.

Execution Result

Figure 7 shows the results of applying the RADAR algorithm
to Fig. 2. We set the attack thresholds at 5/s for scans and
50/s for DoS. The setting is intentionally low to put the
RADAR’s sensitivity to the test. In the figure ‘vdos’ means
DoS with P; =*, while “fdos” means P, is fixed (which was
apparently not found). We notice that the faint DoS attack of
Fig. 2 is clearly classified here (solid arrow). DoS2 is reported
to occupy larger space than the real attack (dotted arrow).
This is due to an outlier flow(s) that happens to lie on the
same plane as DoS2 but at a high port range. The current
implementation does not address this minor problem yet.
Also, we find that more hostscans are now visible, much more
than the prominent five in Fig. 2.

Figure 7 was created from textual reports on the attacks,
two of which can be confirmed in the trace as shown in Fig. 8
(privacy masking still applies). The report in Fig. 8a tells us
that the attack has a rate of 1,277 pkts/s. The corresponding
trace in Fig. 8b tells us that it is a 40-byte TCP SYN flood
attack (“6” = IP protocol number, “2” = TCP flag). The
spoofed source address range (0.55.237.128 to 128.61.29.32)
and the source port range (1 to 65534) verifies that this is
DoS1 of Fig. 2.

The report in Fig. 8c signals a hostscan for the secure shell
port (22). It starts from 71 network and ends at 115 network.
Currently the RADAR does not graphically represent the
intensity of a given attack, so this strongest hostscan in the

is that it is the backscatter [10] from the DoS victim
toward spoofed attack sources. Next in Table 1 we
list two DoS types, but the distinction is only for the
convenience of analysis — it does not bear any prac-
tical significance. Finally, in case hostscan searches
for several vulnerabilities (e.g., represented by port
numbers pi, ps, ... p,) at the same time, the
RADAR is designed to deal with the attack as n
separate hostscans (albeit perpetrated by the same
source). Namely, the fixed port number assumption
still applies to individual component hostscans.

Legitimate Signatures

Having discussed the attack signatures, we now ask
ourselves what will legitimate traffic receive as the
signature? In principle the signature should be
either <0, 0, 0> or <1, 1, 1>. The former is given
to the first packet in the flow, since the RADAR
sees this flow for the first time. For the subsequent
packets in the same flow the latter should be the sig-
nature since the s, d, p values have already been
observed in the first packet. Fortunately, these two
are not likely signatures of attacks in Table 1. There-
fore, legitimate packets ideally get past the RADAR
with little obstruction, only three hash table lookups.
No further analysis is necessary.

Although our study shows that the chance of
unwanted signature modification in real-life traffic is
thin and even controllable to a large degree [6],
occasional misinterpretation can occur. As discussed
above, when an attack signature is generated the
RADAR is supposed to check the per-source (per-
destination) frequency in the back-end. With only

34572.24 (0.55.237.128, 128.61.29.32) -> 66.xxx (1, 65534) 60985  47.755 (1277.03)
(a)
093612244565 56.189.204.205 12339 66.x.x.x 35366 40 6 2
093612247255  30.51.143.67 45678 66.x.x.x 35371 40 6 2
093612254666 31.191.216.157 54399 66.x.x.Xx 35390 40 6 2
093612254936 31.191.216.157 54399 66.x.x.X 35390 40 6 2
093612258342  86.96.157.11 61980 66.x.x.x 35399 40 6 2
093622455306 117.179.241.193 36834 66.x.x.X 18399 40 6 2
093622456673 11.138.251.153 39116 66.xxx 18419 40 6 2
093622460791 2.36.148.53 44821 66.x.xx 18469 40 6 2
(b)
34523.80 210.xxx-> (71.118.0.4, 115.83.255.253) 22 10935 96.201 (113.67)

(c)

093600023828 210.x.x.x 22 115.83.154.172 22 40 6 2
093600025149 210.x.xx 22 115.83.154.178 22 40 6 2
093600026286 210.x.x.x 22 115.83.154.180 22 40 6 2
093600026885 210.x.x.x 22 115.83.154.183 22 40 6 2
093600028027 210.x.x.x 22 115.83.154.187 22 40 6 2
093622556421 210.x.x.x 22 115.83.247.64 22 40 6 2
093622556493 210.x.x.x 22 115.83.247.66 22 40 6 2
093622557695 210.x.x.x 22 115.83.247.71 22 40 6 2

(d)

M Figure 8. a) TCP SYN flooding indication by RADAR; b) TCP SYN
flooding in the trace (in part); c) Hostscan on ssh port indication by
RADAR; d) Hostscan on ssh port in the trace (in part).
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textual output is not easily seen in Fig. 7. This is going to be
addressed in our future work.

Another trace-based test appears in Fig. 9. Figure 9a is the
result of the RADAR’s analysis for a one-minute trace from a
campus network in 2003. The RADAR reports two hostscans,
and from the trace we confirm that the scanning sources are
Code Red II worms. The 3818-byte payload is one of its signa-
tures (Fig. 9b), but we also found that these identified sources
performed more than 1500 SYN infection attempts during
the one-minute interval (most of which are futile, as expected).

Implementation

Figure 10a shows the construction of the front end of the
RADAR monitor, called “the main filter.” It is composed of
three hash tables, and collectively these hash tables generate
the signature for each incoming packet. A single, separate
lookup is made against the source IP address, the destination
IP address, and the destination port number table, respective-
ly. When a value (address or port) is “not found,” that is,
recently unobserved, it is registered in the corresponding hash
table as a new sighting. Any hash function can be used as long
as it has good distributional properties and can be quickly cal-
culated. Among these two properties, however, the speed is
more important for the front end. For instance, MDS5 and
SHA-1 may have good distributional properties, but the com-
putation they require is too complicated, so they would not fit
our environment. Our experience shows that using the least
significant 24 bits from the IP address suffices for casual oper-
ation. Against the backbone trace we have, it resulted in
1.0072 comparisons, on average (most are 0 and 1, where 0
means an empty hash bucket), with only a few reaching up to
eight comparisons. For the port hash table the hash function
is identity, because there are only 64K port number values.
Since the hash lookups are used, the complexity of the main
filter can be engineered at O(1).

The reason we perform a separate lookup for each coordi-
nate should be clear. If we maintained each flow entry indexed
by <s, d, p> collectively, we would not know which coordi-
nate is responsible for a failed flow lookup. Thus we would
not know immediately which coordinate is being pivoted, that
is, what type of attack is being mounted. Then some addition-
al processing would be necessary on these new flows in order
to achieve classification. Therefore, for real-time classification
separate hash lookups are essential.

Hash Table Entry lifetimes in the Front End

Associated with each entry is the last accessed time #;,;;. We
maintain a moving time window L beyond which registered IP
addresses or port numbers age out. Namely, if ,,,, — L > t;,4,
we remove the entry from the corresponding hash table. We
call the time window a lifetime, and we use two lifetimes as
follows:

e Ly the lifetime for Iy and I

* L,: the lifetime for Py,

Ly must have a larger value than the inter-packet gap for
most flows. If not, the address value in every packet in many
flows will be considered new, generate “0” in the correspond-
ing signature coordinate, and the flow will be suspected of
performing pivoting in that coordinate. This is about the only
guideline in the configuration of Ly, and we can set it to a
fairly large value without any substantial adverse effects [4].
The reason is simple: the only packet in a legitimate flow that
could be adversely affected by too large Ly is the first packet.
This single packet signature transformation from “0” to “1” in
an address coordinate will only push the flow count by one in
the back end. Therefore the probability of false positive alarm

Destination port
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80
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11:37:45.510023 210.x.x.x.3076>210.29.116.135.80: S
11:37:45.510452 210.x.x.x.3077>210.107.189.2.80: S
11:37:45.523172 210.x.x.x.3080>210.y.y.y.80: S

11:37:45.528316 210.x.x.X.3080>210.y.y.y.80: .ack

11:37:45.529263 210.x.x.x.3080>210.y.y.y.80: .0:1460(1460) ack
11:37:45.536545 210.x.x.x.3080>210.y.y.y.80: .1460:2920(1460) ack
11:37:45.536689 210.x.x.x.3080>210.y.y.y.80: P 2920:3818(898) ack
11:37:45.540208 210.x.x.x.3081>210.3.172.80.80: S
11:37:45.540281 210.x.x.x.3082>210.158.208.106.80: S
11:37:45.542877 210.x.x.x.2786>210.107.221.234.80: S

(b)

W Figure 9. a) RADAR graphical report of hostscans; b). code
Red 11 in action (tcpdump, in part).

in the back end is low. Likewise the false negative probability
is also low since attacks pivoting an address coordinate will
encounter a relatively small number of active and legitimately
used host addresses during address pivoting. The IP address
space is vast and the probability of incidental “0” to “1” trans-
formations is relatively low. The interesting scenario is when
there are multiple address pivoting attacks. Since each of the
attacks registers numerous addresses in the monitor, the prob-
ability of encounters between different attacks at an address
may not be negligible. Suppose there are 4 concurrent attacks
with V pivots (scans or spoofs) per second each. Then the
number of host address entries will be AV Ly. When an attack
randomly picks an address for the next pivoted address, the
probability of picking up an already registered value (that
leads to “0” — “1” transformation) will be roughly AV L /232,
For example, if there are 1,000 concurrent attacks with 10,000
pivots per second each, and Ly = 10s, the transformation
probability is approximately 1/400. This seems tolerably low
for such a large number of high-intensity attacks, but the pre-
cise selection should depend on the value of 4, V, and the tar-
get probability of tolerable signature transformation. In our
current implementation we use the value of 10s. As to L, we
have a different situation. The port number space is only 64K,
and the chance of “0” — ”1” transformation under a large L,
is not negligible. But fortunately it has little impact on the
detection of more important, global attacks such as DoS or
hostscan (by a worm or by a scanner) because the hostscan
signature already has “1” in the port number coordinate, and
the port-varied DoS attack <0, 1, 0> being transformed to a
port-fixed DoS attack <0, 1, 1> is of no practical concern.
However, it can boost the false negative rate for portscans
(ie., <1,1,0> — <1, 1, 1>). If one wants to reduce the false
negative rate for portscans, a small L, should be used. It has
no adverse effect on detecting DoS because, again, <0, 1, 1>
— <0, 1, 0> is a DoS-to-DoS transformation. For hostscans,
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M Figure 10. a) Signature generation by the front end ("main filter"); b) back end ("post filter") and the whole RADAR monitor organiza-

tion.

however, the <1, 0, 1> — <1, 0, 0> transformation can
cause a false negative problem in the back end. To prevent
this from happening it should be L, > 1/ry,, where ry; is the
hostscan detection threshold in the back end. Such L, will not
cause a “1” — 70”7 transformation in the destination port
coordinate for the hostscans that need to be detected. To
meet such constraints the minimum L, that we can have is
1/rps. In our implementation we use 0.2s for L.

When we purge stale entries (with ¢,,,, — L > t;,,,) we may
choose one of two approaches. First, we can periodically clear
them altogether. Second, we can embed the purge operation in
the lookup procedure. We take the latter approach in our cur-
rent implementation, since the front end requires uninterrupt-
ed operation. Specifically, in the matching operation in the
hash tables we first check if the entry under comparison is
stale. If so, we purge the entry before continuing the matching.
This requires one additional comparison for each entry for a
timestamp check, and a list update operation upon encounter-
ing each stale entry. With the example of the source address
table, we can roughly compute the probability of encountering
a stale entry in a lookup operation. Suppose N is the number
of new source addresses registered every second. With the
same lifetime applied to the entries, stale entries are generated
asymptotically at the same rate. If there are B buckets in the
hash table each bucket will generate N/B stale entries per sec-
ond. When K packets pass the RADAR monitor in a second,
each bucket will be subject to K/B lookups per second, so each
lookup (i.e. arriving packet) encounters a stale entry with a
probability of N/K. Since usually K >> N, the probability is
fairly small and so is the per-packet cost of removing stale
entries. In the worst case all arriving packets can be attack
packets, creating a new entry. Then K ~ N and each lookup
will accompany a single purge operation, which is the upper
bound for the overhead.

Back End Operation

Figure 10b shows the whole structure of the RADAR. In
addition to the main filter we have discussed so far, there is a
back end called “the post filter.” The main filter performs the
detection and preliminary classification while the post filter
verifies if the classification is correct and measures the attack.
Table 2 shows the minimum information maintained at each
post-filter module.

Each post-filter table is also a hash table, indexed by either the
destination IP hash or the source IP hash. The design is modular
enough, so we could add or remove analyzer modules. Also, each

module can be augmented with other more complex functions
than we describe here. For one important example, if suddenly a
large number of hostscans on the same port begin to be reported
and the host scanning packets carry the same payload, the
hostscan analyzer might decide to look into the payload for a
worm using a virus scanner.

As shown in the table the post filter has enough informa-
tion to report either who the attacker is (scans) or who the
victim is (DoS). It also maintains the packet count which,
combined with the duration of flow activity since it was
“booked” in the post filter (¢, — tinir), 1S used to estimate the
average attack rate that in turn is compared with the detec-
tion threshold. Here, #, is the time instance of the tracked
flow’s last recorded packet arrival. As to the DoS and hostscan
detection thresholds, we can drastically lower them by aug-
menting the analyzers with the address checker that we dis-
cussed earlier. Specifically, if a suspected attack is found to
use illegitimate addresses we could declare the attack earlier
even before it reaches the normal threshold.

Other values are used to calibrate the dimension(s) of the
attack: the range of spoofed addresses and port number(s)
(DoS), the range of scanned IP addresses and the port num-

Analyzer DoS DoS Portscan
(fixed) | (varied)

Indexed by s (perpetrator)

tinit ° ° °

Hyast . . . .
Smin ° °

smaX * *

dmin 0 .
dmax *

Prmin . . . .
Pmax ° °
Pkt count . . . .

M Table 2. Calibration information maintained at analyzers.
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ber (hostscan), or the scanned address and the range of
scanned port numbers (portscan). These are only used for
generating coordinates in the graphical representation of the
attack. Without having to spray hundreds of thousands of dots
on the three-dimensional plot, we use this trimmed down rep-
resentation in summarizing attacks to the administrator,
thereby saving memory and drastically reducing the plotting
time. This is how Fig. 7 was generated.

The partition of the RADAR into a front end and a back
end fits better with the high-speed link environment for two
reasons. First, we have an extremely tight time budget and so
cannot afford to apply a per-packet examination thorough
enough to reach a final judgment. Second, even in the face of
the most intense attacks, the majority of the traffic is still legiti-
mate. Thoroughly examining all packets is inefficient; the front
end needs to pan out only suspicious packets through simple
signature tests, passing the legitimate packets with the least
obstructions. Only suspicious packets matching an attack signa-
ture are handed over to the back end for closer examination.

Evaluation

Field Test

We plugged the unoptimized, prototype RADAR into the cam-
pus network gateway at Seoul National University. The incom-
ing packets were optically tapped from the gateway router on
two Gigabit Ethernet interfaces [6]. A Pentium-4 2.4GHz
machine with 512MB Rambus memory, Intel PRO/1000MF
dual port LAN card, and PCI 2.2 (32bit) bus simultaneously
run a separate instance of the RADAR algorithm on each Eth-
ernet port. The total traffic rate was roughly 330Mb/s (65Kp/s)
at the time of the experiments. The algorithm is lightweight
enough so that there was no packet loss at the kernel [6].

Simulation

Except for the speed test, the field trial against live traffic is
hardly helpful. Since we do not know a priori how much attack
is contained in the traffic, we cannot test the RADAR in terms
of sensitivity, precision, and false positive rates. So for the
evaluation in a more controlled environment we resorted to
simulation. The simulation methodology goes as follows. First
synthesize background traffic and inject a prescribed attack
therein. Next the resulting contaminated traffic runs through
the RADAR, which pans out the attack. Finally, compare the
attack calibration reported by the RADAR monitor with the
attack prescription. For the synthetic background traffic the
address and port distributions and flow arrival process were
statistically modeled [6]. By default the parameters are set as
follows: Ly = 10s, L, = 0.2s, rjs = 1,3 = 5/8, rgos = 50/s. The
flow arrival rate is set to A = 10,000/s. The detection thresh-
olds are intentionally set extremely low in order to put the sen-
sitivity of the RADAR algorithm to the test.

Now we define the performance metrics. First sensitivity is
defined to be the ratio of detected attack instances to injected
instances. Suppose the attack exceeding the threshold persist-
ed for M observation intervals. If the RADAR monitor is sen-
sitive enough it should have picked up the attack in all M
intervals. But if it detected it in only D, intervals the sensitivity
S is given by:

sl

M

Second, the relative error E is given as:

oo

Am

0.6

Sensitivity
o
wv

04 ! .
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1
03 _
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0 L L L L L L
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Attack rate/threshold

M Figure 11. Sensitivity, default setting.

where Ay, is the mounted attack intensity and Ap is the detect-
ed attack intensity. For instance, if the attack rate is 100/s and
the detected rate is 120 (or 80) the relative error is 0.2. Obvi-
ously the relative error is measured only on detected attacks.
Third, the false positive rate Py is given by:

I
7" D, +D;

where Dy is the number of instances of attacks that are not
injected (i.e., they are from the background traffic).

Sensitivity — Figure 11a shows the sensitivity in the default
setting. The horizontal axis is the ratio of the attack rate to
the threshold for each attack type. The figure shows that the
RADAR algorithm is extremely sensitive to hostscan and
port-fixed DoS, while portscan and port-varied DoS detection
is more disrupted by the background traffic. This is under-
standable since for portscan, the <1, 1, 0> —» <1, 1, 1>
transformation probability is quite high for L, = 0.2s. Like-
wise, for port-varied DoS, the <0, 1, 0> — <0, 1, 1> trans-
formation probability is high, but recall that the distinction
between the two DoS types is only for the sake of analysis. If
we count together the port-varied DoS (i.e., the original) and
port-fixed DoS (i.e., the transformation) the sensitivity prob-
lem disappears [6].

Relative Error — Figure 12 shows the relative error for the
default setting. Again, portscan and port-varied DoS suffer
from the port signature transformation problem. Portscan is
not a global threat we are interested in here, so we are not
overly concerned. Again, for the port-varied DoS, when
counted together with the port-fixed DoS it has a near-zero
relative error [6].

False Positive Rate — We used unrealistically low thresholds
for the scans and DoS above merely to demonstrate that the
RADAR is sensitive and accurate enough to pinpoint even
very low-intensity attacks. In this experiment, however, we
attempt to make them a little more practical by multiplying
them by five. Namely, we set rjg = 1,5 = 25/8, rgos = 250/s.
Considering the average rate of 4,000 scans/s per infected host
in SQL Slammer, the scan threshold of 25 is still only minis-
cule. As to DoS, the aggregated attack rate that we assume
here still cannot constitute an effective attack on any major
target. In terms of bandwidth, it amounts to 160 kb/s to
480 kb/s, assuming TCP SYN flood. In contrast, the DDoS
attack on root DNS servers mobilized 100 to 200 Kilo-packets
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per second per victim (root server), blasting 50 to 100 Mb/s of
traffic on it [1]. The parameters in our simulations are set very
low simply to emphasize the high sensitivity and low error and
false positive rate of the RADAR algorithm. Note that when
we scale the thresholds the attack intensity is also proportion-
ally scaled up. Throughout these experiments Ly remains at
10s, and only L, is set to the reciprocal of the scan thresholds,
as we discussed earlier.

Figure 13 shows that the false positive rate quickly
approaches near zero values for all types of attacks as the
attack intensity goes over the thresholds by a factor of 1.2. We
still see the effect of port signature transformation in variable-
port DoS and portscan, but it is quickly overcome as the
attack intensifies. Although we do not show the result, we also
tested 10-fold scaling of the thresholds, where the false posi-
tive rate drops to 0 for all attack types from the beginning.

Memory Requirement

The memory requirement of the hash tables in the main filter
and the post filter is moderate. Assuming we use a 24-bit hash
for the source and destination IP tables, we need at least 225
hash buckets whose heads are a pointer (usually four octets).
This alone is 128MB. Over and above that we need to store
each flow in these tables, where a flow has at least two IP
addresses, one port number, and a timestamp. Also, each entry
needs a pointer to the next entry, so each flow entry requires at
least 17B. Assuming there are one million flows being tracked
simultaneously, 34MB should be used. Then one million flows
in the main filter IP table translates to approximately 10Gb/s
(OC-192) based on our flow arrival rate constant, since we have
by default Ly = 10s. Over and above that we have the port
table in the main filter. However, there are only 64K entries,
thus it adds little to the memory requirement. In the post filter
we do not have large tables since concurrent attacks must be
small in number. We do not expect to see, for example, 64,000
attacks all simultaneously under way even it is on a backbone
link. Therefore we use 16-bit hash for all tables. Again, the
memory requirement will be insignificant, most likely less than
2MB. In sum, more than half the memory of the RADAR is
used to construct the IP tables in the main filter. If memory is a
critical resource we could use 23-bit hash, halving the require-
ment, and then 22-bit hash, etc. But on a high-speed link we
assume that speed is the primary object, not memory.

Related VWork

Visualization
There is an array of academic and commercial work underway

on DoS detection and countermeasure, as well as initial
attempts at modeling worm spreading dynamics [11, 12]. As
for attack visualization, however, there is a dearth of tools,
not to mention those that are specifically focused on intuitive
presentation of ongoing attacks in real time. Following is a
short list of related work, including both academic and com-
mercial packages.

There is an open source project called the Shoki Packet
Hustler that uses similar two-dimensional or three-dimension-
al visualization techniques as ours [13]. It was originally writ-
ten as a diagnostic widget for a network intrusion detection
system (NIDS). Currently the tool implements only the graph-
ical front end for manual analysis of IP network data. The
addition of automatic analysis codes is planned.

FlowScan [14] analyzes NetFlow data and can provide visu-
alization in the units of five-minute intervals. It can plot flow
and packet count by IP protocol, port number, IP prefixes, or
AS pairs. Given this functionality, it can reveal a DoS attack
by an abrupt increase in the number of flows unaccompanied
by an increase in bandwidth usage or packet count. (There is
no mention in the original FlowScan paper as to whether it
can detect hostscans or portscans based on the flow count.)
One concern with FlowScan is that under attack its stateful
inspection feature suffers from the explosion of flow entries
since the flow export rate is equal to the packet forwarding
rate, as pointed out in our early discussion.

Estan et al. propose a new method of traffic characterization
that automatically and dynamically groups traffic into minimal
clusters of conspicuous consumption [15]. The automatic group-
ing is a means of balancing insufficient dimensionality and
excessive detail, thus making the traffic data more amenable to
the network administrator’s consumption. This functionality can
prove useful when there is a pressing need to understand and
respond to sudden traffic spikes such as network worms or DoS
attacks, being able to identify malicious aggregates. This can be
achieved by using so called multidimensional clustering, through
which multidimensional cluster plots are created.

Although not focused on visualizing attacks the Etherape
tool [16] distinguishes itself from other tools such as tcpdump
and Ethereal in that it graphically reports network traffic.

There are also commercial products that provide graphical
representation of network traffic. However, even when they
do they are not specialized for attacks. Rather, attacks are
supposed to be inferred by network administrators from traf-
fic behavior aberrations reported by the tool. Mazu Network’s
Profiler™ [17] has graphical profiling capability for network
traffic in terms of IP addresses, protocols, ports, and flow vol-
ume. The profiling depicts noticeable events and relative
anomalies rather than attacks per se. The detection of such
events and anomalies is done every 60 seconds, based on the
latest statistics, so there is much latency. OpenService’s Secu-
rity Threat Manager™ [18] can show noticeable events or cor-
relations of events as a topology. The graphical view is
available as an interactive chart, and it contains the summary
of involved IP addresses (source and target), observer’s IP
address, attack category, port numbers, and correlation factor.
The reporting time frame ranges from minutes to months.
Peakflow™ is an anomaly detection tool from Arbor Networks
[19]. Among its capabilties it can build granular, dynamic
graphs that display traffic and routing information, both real-
time and historical, by AS, router, interface, and protocol.

IDS vs. RADAR

Since the functionality of an IDS is much broader, it would be
unfair to put IDSs and the RADAR in direct comparison. We
will only discuss how traditional IDSs and the RADAR are
related. The RADAR is composed of the front end and the
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back end. In a sense what the RADAR performs in the back
end can overlap with what IDS does, but it would be more
accurate to say that the back-end behavior is intentionally
underdefined (except for visualization). So the back-end func-
tionality can range from simple calibration to complex anti-
virus scans against those packets that were classified as
suspicious by the front end. However, the RADAR front end
is not what a traditional IDS can simply replace. First of all,
IDSs are difficult to deploy on very high-speed links, with their
heavy rule base and complex matching requirements. More
importantly the separate s/d/p lookup (not counting) enables a
single RADAR front end to simultaneously track the charac-
teristic movement of DoS, hostscan, and portscan in the graph-
ical sense. In contrast, traditional IDSs count packets. For
instance, a high packet count from a particular source could
indicate the possibility of a hostscan. However, this inevitably
leads to a high false positive rate. Lacking the capability to
exactly characterize and filter out legitimate packets from the
count, the IDS is likely to lose sensitivity on attack behavior, so
an innocent but sufficiently active source or destination can be
misjudged to be hostscanning or under DoS attack, respective-
ly. On the other hand, if the IDS counts each s-d or s-d-p
tuple, the false positive problem can be mitigated, and an
attack can be identified by a sudden explosion of the tuple
count. However, it will sharply increase the required number
of observed flow entries due to the increased dimension(s).
Such multi-dimensional flow table explosion and consequent
lookup penalty are exactly what the RADAR tries to avoid by
checking the packet against s, d, p separately in the front end.

Summary

Network attacks such as DoS and scans manifest themselves as
a regular geometric entity in a three-dimensional space whose
dimensions are source IP address, destination IP address, and
destination port number. These attacks appear highly inflated
(i.e., occupying a visibly significant portion) in this three-
dimensional space due to the inherent need of evasion maneu-
ver (in case of DoS) or wide scanning in a short amount of
time (host/port scanning), whereas legitimate flows only occu-
py a single point. Thus this representation can visually assist
network operators to easily recognize ongoing attacks.

One technical issue with the representation, though, is that
it is not scalable and in some cases provides poor discrimina-
tion between attacks and ambient legitimate traffic. Hence
there is a need to extract only the embedded attacks and pre-
sent them while maintaining the intuitive grace of the original

presentation. Instead of employing complex pattern recogni-
tion algorithms to detect such regular patterns, our RADAR
algorithm captures the “pivoting” behavior of attack packets,
which directly translates to the forming of the abovemen-
tioned regular geometry in the three-dimensional space. The
RADAR algorithm requires only a few memory lookups per
packet, yet the classification error is minimal. This algorithm
pans out only suspicious packets matching the pivoting behav-
ior, buying enough time for a more sophisticated back-end
processing that significantly reduces the false positives. The
simulation and real implementation experiments have been
done, and the algorithm indeed performs up to our expecta-
tion on high-speed links.
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