

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright
owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 Users may download and print one copy of any publication from the public portal for the purpose of private study or research.

 You may not further distribute the material or use it for any profit-making activity or commercial gain

 You may freely distribute the URL identifying the publication in the public portal

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Downloaded from orbit.dtu.dk on: Aug 27, 2022

Real-time Volumetric Synthetic Aperture Software Beamforming of Row-Column Probe
Data

Stuart, Matthias Bo; Jensen, Patrick Møller; Olsen, Julian Thomas Reckeweg; Kristensen, Alexander
Borch; Schou, Mikkel; Dammann, Bernd; Sørensen, Hans Henrik Brandenborg; Jensen, Jørgen Arendt

Published in:
IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

Link to article, DOI:
10.1109/TUFFC.2021.3071810

Publication date:
2021

Document Version
Peer reviewed version

Link back to DTU Orbit

Citation (APA):
Stuart, M. B., Jensen, P. M., Olsen, J. T. R., Kristensen, A. B., Schou, M., Dammann, B., Sørensen, H. H. B., &
Jensen, J. A. (2021). Real-time Volumetric Synthetic Aperture Software Beamforming of Row-Column Probe
Data. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, 68(8), 2608 - 2618.
https://doi.org/10.1109/TUFFC.2021.3071810

https://doi.org/10.1109/TUFFC.2021.3071810
https://orbit.dtu.dk/en/publications/8a16e154-3d0a-4cd1-ba78-a91ba253b30a
https://doi.org/10.1109/TUFFC.2021.3071810

0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3071810, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

1

Real-time Volumetric Synthetic Aperture Software
Beamforming of Row-Column Probe Data

Matthias Bo Stuart∗, Patrick Møller Jensen†, Julian Thomas Reckeweg Olsen†, Alexander Borch Kristensen∗,
Mikkel Schou∗, Bernd Dammann†‡, Hans Henrik Brandenborg Sørensen‡, and Jørgen Arendt Jensen∗
∗Center for Fast Ultrasound Imaging, DTU Health Technology, Technical University of Denmark

†DTU Compute, Technical University of Denmark
‡DTU Computing Center, Technical University of Denmark

Abstract—Two delay-and-sum beamformers for 3-D synthetic
aperture imaging with row-column addressed arrays are pre-
sented. Both beamformers are software implementations for
graphics processing unit (GPU) execution with dynamic apodiza-
tions and 3rd order polynomial subsample interpolation. The first
beamformer was written in the MATLAB programming language
and the second was written in C/C++ with the compute unified
device architecture (CUDA) extensions by NVIDIA. Performance
was measured as volume rate and sample throughput on three
different GPUs: a 1050 Ti, a 1080 Ti, and a TITAN V. The
beamformers were evaluated across 112 combinations of out-
put geometry, depth range, transducer array size, number of
virtual sources, floating point precision, and Nyquist rate or in-
phase/quadrature beamforming using analytic signals. Real-time
imaging defined as more than 30 volumes per second was attained
by the CUDA beamformer on the three GPUs for 13, 27, and 43
setups, respectively. The MATLAB beamformer did not attain
real-time imaging for any setup. The median, single precision
sample throughput of the CUDA beamformer was 4.9, 20.8, and
33.5 gigasamples per second on the three GPUs, respectively.
The CUDA beamformer’s throughput was an order of magnitude
higher than that of the MATLAB beamformer.

I. INTRODUCTION

Real-time volumetric imaging requires the ultrasound beam
to be steered electronically in both azimuth and elevation,
which was first accomplished using a matrix array with indi-
vidually addressed elements [1], [2]. Such arrays provide the
finest level of control of the acoustic beam, but with a highly
complicated interconnect. 1D (linear) arrays have around 200
elements to attain high-quality 2D imaging, which translates
to 40,000 individually connected elements in a 2D (matrix)
array for 3D imaging.

To simplify the interconnect, sparse arrays have been con-
sidered, where only a subset of the elements are connected
[3]. This increases the element pitch, which results in elevated
side- and grating-lobe levels, and reduces the active area and
thereby the emitted energy, degrading the signal-to-noise ratio
[4]. The sparseness also increases variations in the point-
spread function (PSF) – particularly side lobe levels – across
the field of view.

Other approaches integrate electronics in the probe handle.
Microbeamforming [5] performs delay-and-sum beamforming
on groups of elements inside the probe, reducing the number of
channels out of the probe. However, programmable electronics
are needed in the probe handle, and all element groups have
the same relative delays applied to them. More recently, an

ASIC for a 240× 80 element matrix array was presented [6].
Each row of 80 elements share a transmit and a receive bus
without relative delays on the elements’ signals before they
are summed. Another approach is to use synthetic aperture
sequential beamforming (SASB) [7], where low-power elec-
tronics apply a fixed focus in receive producing a single output
channel from the probe. A second stage beamformer outside
the probe then combines a number of these signals to form a
dynamically focused volume.

A third approach is to address the rows and columns of the
matrix using a crossed electrode design [8]. The interconnect
for a matrix array with N2 elements is thereby reduced to
2N channels without any electronics in the probe. Typically,
only half the channels are needed in transmit, while the other
half are used in receive [9], [10], which enables 3D imaging
with the same number of channels as 2D imaging. This
paper is based on such row-column (RC) addressed arrays,
and Section II gives an overview of and introduction to RC
imaging.

The data rate in diagnostic ultrasound imaging systems is
typically between one and tens of GB/s of raw radio-frequency
(RF) data depending primarily on imaging depth, pulse repeti-
tion frequency, and number of receive channels. Traditionally,
specialized hardware including field-programmable gate arrays
(FPGAs) and digital signal processors (DSPs) have been
needed to beamform this data as illustrated by the architectures
of research systems [11], [12].

Modern graphics processing units (GPUs) have interfaces
that support these data rates, and the first implementations
of GPU beamformers were presented in 2011 by Li and
Li [13] and by Yiu et al. [14]. At the time, the high-end
GPUs’ performance was considered acceptable for 2D plane
wave and synthetic aperture imaging, but “inadequate” when
also considering blood flow imaging and other aspects of a
complete ultrasound system [15]. For comparison, today, real-
time 2D B-mode and vector flow imaging can be performed
on portable consumer devices [16], [17].

Delay-and-sum (DAS) software 3D beamformers have been
presented for ring arrays [18] and for individually addressed
matrices [19]. For the 64-element ring array, three cross-
sectional planes were reconstructed at 45 frames per second
(fps) with 24 ksamples per frame, while volumes could be re-
constructed at 0.58 volumes per second (vps) with 1.2 Msam-
ples per volume [18]. For a 32 × 32 individually addressed

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 03,2021 at 10:46:54 UTC from IEEE Xplore. Restrictions apply.

0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3071810, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

2

Fig. 1. A RC array is formed by connecting rows of a transducer matrix
along the bottom electrode (blue) and columns along the top electrode (red)
or vice versa. This conceptually results in two orthogonal linear arrays with
tall elements.

matrix array, only 384 channels were used to produce 512
scanlines. Considering only beamforming, a volume rate of
90 vps was attained1 [19].

This paper presents 3D software DAS beamforming for
RC addressed arrays at real-time volume rates. Two GPU
beamformers are compared: one written entirely in the MAT-
LAB programming language using the gpuarray class, and one
written using the CUDA extensions to the C/C++ program-
ming languages. Both beamformers have been described in
proceedings papers [20], [21], and this paper expands on the
evaluation and analysis.

Section II gives a brief introduction to beamforming with
RC arrays and presents the two beamformers, Section III de-
scribes the setup for evaluating the beamformers’ performance,
Section IV presents the results, Section V discusses the results,
and Section VI offers conclusions.

II. METHODS

This section first introduces RC arrays and imaging with a
brief description of synthetic aperture imaging with RC arrays.
Then the two beamformers that were implemented in this study
are described.

A. Row-Column Architecture and Imaging

Considering a matrix array of transducers, a RC array is
made by short circuiting the bottom electrodes along rows
and the top electrodes along columns or vice versa [8]. This
is illustrated in Fig. 1. A RC array has rectangular elements
with one side length equal to that of conventional arrays and
the other side length equal to the width of the entire array.
For flat RC arrays, these long elements produce cylindrical
waves [10] as opposed to the spherical waves produced by
individually addressed matrix elements.

1It is unclear how many samples were in a volume.

A number of approaches to RC imaging have been pro-
posed, including variations on DAS [9], [22], [23], [10], and
spatially matched filters [24]. Seo and Yen [9] did line-by-
line 3D imaging by sliding 64 element transmit and receive
windows across a 256×256 element RC array. Sampaleanu et
al. [23] excited individual matrix elements to attain synthetic
aperture focusing using the methods presented by Daher and
Yen [25]. However, on the order of N2 emissions were needed
to construct one volume, where N is the number of elements.
Rasmussen et al. [10] proposed a line-based delay model for
the DAS beamformer to account for the cylindrically shaped
waves generated by the long elements, and together with an
edge-apodization, previously observed range lobes or ghost
echoes [22] were suppressed [10], [26].

A consequence of this line-based delay model is that one
of the three spatial dimensions can be disregarded in all delay
calculations [10], [20] when the rows and columns are parallel
to the x- and y-axes in the imaging coordinate system, which
is the typical case. This is seen by considering a line element
described by its two end points

p1 = (x1, y1, z1) and p2 = (x2, y2, z2), (1)

where x1 = x2 and z1 = z2 for an element that is lengthwise
parallel to the y-axis. The line element is described by

l = p1 + uvy , u ∈
{

[0; y2 − y1] , y1 < y2
[y2 − y1; 0] , y1 > y2

, (2)

where vy is the unit vector parallel to the y-axis. The time-
of-flight between an imaging point ros = (xos, yos, zos) and
this element is [10]

T =
||(ros − p1)× vy||

c
, (3)

where ||·|| is the magnitude of a vector, × is the cross product,
and c is the speed of sound. This evaluates to

T =

√
(z1 − zos)2 + (x1 − xos)2

c
, (4)

from which it is seen that the output sample’s y-coordinate
has been eliminated.

A similar deduction can be made for elements parallel to
the x-axis, and for the calculation of dynamic apodizations
[20]. A geometrical illustration is given in Fig. 2, where it is
seen that the time-of-flight is independent of the image point’s
y-coordinate.

B. Synthetic Aperture Imaging

Ultrasonic synthetic aperture (SA) imaging [27] is well
described in the literature [28], and a brief description of its
adaptation to RC arrays [10] is given here.

In SA imaging, a full image or volume is reconstructed
from each transmit/receive event in 2D or 3D, respectively.
Each of these volumes is called a low-resolution volume
(LRV), and the sum of LRVs yields a high-resolution volume
(HRV), where dynamic focusing is attained in both transmit
and receive [28]. The emission may use a single element or
a set of elements producing a virtual source from a diverging
[29], a converging, or a plane wave. Dynamic apodization is

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 03,2021 at 10:46:54 UTC from IEEE Xplore. Restrictions apply.

0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3071810, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

3

Fig. 2. An illustration that the time-of-flight calculation is independent of the
image point’s y-coordinate. An element in an RC array is shown in green,
and an image point is shown by the black x. The dashed blue line shows the
shortest distance (the time-of-flight) between the line element and the image
point, and the dashed black lines are guidelines to properly locate the image
point in the 3-D coordinate system.

often used in both transmit and receive to lower side lobes
and maintain uniform resolution with depth.

SA imaging with RC arrays follows the same principle.
However, the cylindrical waves prohibit focusing in the length
direction of the line elements, and transmit and receive must
therefore be performed with orthogonal arrays, e.g., transmit
with rows and receive with columns [10]. Fig. 3 illustrates a
SA acquisition with three emissions with row elements and
three receiving column elements. Each emission insonifies
the region between the colored planes, and the corresponding
LRVs therefore only contain signal (as opposed to noise)
within these regions. Focusing in the y-direction is attained
by summing the LRVs from each of the three emissions, and
focusing is only attained in the overlapping regions between
LRVs. Focusing in the x-direction is attained by dynamically
focusing the receive elements in each LRV. This potentially
produces different PSFs in the x- and y-directions, if e.g.
the x-direction is focused by 64 receive elements, but the y-
direction is focused by only 16 emissions. An isotropic PSF
may be attained by combining LRVs created with row as well
as column emissions [10]. In this work, emissions were made
with rows only, while columns were used in receive.

C. Beamformers

This section describes the two beamformer implementations
that were evaluated. The first beamformer was implemented in
the MATLAB programming language and uses the gpuarray
class provided by the programming language to executed on

Fig. 3. A SA acquisition with three emissions using the row array and
three receiving elements in the column array. The colored planes indicate
the opening angle of each emission. The RC array corresponds to the one in
Fig. 1, only with three elements in each direction.

the GPU. The other beamformer was implemented in C/C++
with CUDA extensions and a MATLAB MEX interface.

Both beamformers calculated delays and apodizations in 2D
as described in Section II-A. They both accepted single or
double precision, real or complex valued inputs, and the output
values were of the same type as the input. Subsample delays
were attained through interpolation.

Preliminary results [20], [21] indicate that the CUDA beam-
former clearly outperforms the MATLAB beamformer. They
are, however, both included here to quantify the difference in
performance and thereby provide an indication of the expected
performance improvement when moving from MATLAB to
CUDA.

1) MATLAB Beamformer: The MATLAB programming
language provides a class named gpuarray that stores nu-
meric variables and performs operations on them on the GPU.
The class supports both single and double precision floating
point data types, and many of the programming language’s
built-in functions have GPU implementations.

The beamformer was implemented with matrix operations,
e.g., delay and apodization values of all output samples were
calculated in one matrix before being applied. This minimized
the use of loops to take advantage of the optimized matrix
operations provided by the programming language. The disad-
vantage was the need to store large matrices with intermediate
results in main memory.

Output sample coordinates were provided as a matrix of co-
ordinates, and dynamic and user-specified apodizations could
be enabled in both transmit and receive. In the evaluation,
dynamic apodizations were enabled, while the user-specified
apodizations were set to matrices of all ones. Subsample delay
interpolation was performed using cubic convolution provided
by the programming language. Matrix dimensions were chosen
to optimize parallel access, e.g., output sample coordinates
were stored in memory with all the x-coordinates first followed

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 03,2021 at 10:46:54 UTC from IEEE Xplore. Restrictions apply.

0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3071810, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

4

by all the y-coordinates and finally the z-coordinates.

2) CUDA Beamformer: The CUDA extensions to the
C/C++ programming language provide an application pro-
gramming interface to nvidia GPUs [30]. CUDA is a single-
instruction multiple-thread (SIMT) architecture, where many
threads execute the same instructions, but on different data.
A program must specify the division of its data on a set
of thread blocks, and threads should have equal (or similar)
workload and a minimum of synchronization for efficient exe-
cution. The general beamforming problem has two immediate
approaches for distribution across threads: 1) for a window of
input samples, calculate the output values these input samples
contribute to, and 2) for a given output sample, load the
corresponding input samples and calculate the output value.
The first approach is likely to result in uneven workloads
between threads and requires synchronization for summing
the different contributions to each output value. The second
approach has equal workload for all threads and requires no
synchronization. The CUDA beamformer therefore calculates
one output sample per thread, i.e., each thread calculates the
sum across all receive channels.

The threads in a block share hardware including memory
caches. It is therefore beneficial to group threads in blocks
that operate on the same data. The degree to which this can
be attained depends on the output geometry. In 2D, an input
sample contributes to output samples along an ellipse, so a reg-
ular output grid could be partitioned in subgrids that minimize
the difference in time-of-flight within the subgrid, thereby
minimizing the input data size to the subgrid. This concept can
readily be extended to 3D. However, the beamformer presented
here was designed for more general use including directional
beamforming for synthetic aperture vector flow imaging [31],
where the output samples do not lie on a regular grid. Instead,
the output geometry was specified as a set of lines with an
origin and a step vector containing both direction and step
size. To minimize overhead in distributing output samples on
threads, the number of samples was the same for all lines.
Each thread block corresponded to an output line, and output
lines with more than the maximum number of threads per
block (1,024) were split in multiple blocks. This is illustrated
in Fig. 4.

Each thread computed the sum across receive channels to
form a voxel in a low-resolution volume. This voxel needed to
be summed with those from the other low-resolution voxels.
To support concurrent acquisition and processing this running
sum was stored in main memory: once a thread calculated its
low-resolution voxel, the corresponding high-resolution voxel
was read from memory, added to the low-resolution voxel
that was just calculated, and the result written back to main
memory. The overall algorithm and its memory accesses are
illustrated in Fig. 5. Alternatively, the sum could be computed
locally, but that would require data from all emissions to be
available before beamforming was started.

Subsample interpolation is needed to attain low side-lobes
[32] and was attained by third order Lagrange polynomial

Fig. 4. An illustration of beamformed geometries and mapping to CUDA
blocks and threads. (a) shows the typical geometry for a 2-D B-mode image,
and (b) shows the typical geometry for synthetic aperture velocity estimation.
Lines are defined by an origin, O, shown by a black marker and a step vector
dr. Samples along the lines are shown with grey markers. (c) shows the
mapping of a line to CUDA blocks, where several blocks are needed only for
lines with more than 1, 024 samples. (d) shows that each sample in a line is
mapped to a CUDA thread.

Fig. 5. An illustration of the algorithm and memory accesses by a single
thread for each emission. The RAM contains separate arrays with image
geometry, input data, sampled apodization windows, and beamformed data.
Each thread calculates the coordinates of its output sample, calculates low-
resolution voxel contributions iteratively across receive elements, and finally
reads the high-resolution voxel from memory, adds the contribution, and writes
the updated value back. Each thread only writes to RAM once in its lifetime.
The transmit apodization array and a single read from it are omitted from the
illustration.

interpolation [33]2. Dynamic apodization required apodization
values to be computed according to a user-specified window
function. Here, linear interpolation in a sampled window was
used to avoid a number of GPU-related issues including

2This interpolation method was originally published by Waring in 1779,
but it is named after Lagrange, who published it in 1795.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 03,2021 at 10:46:54 UTC from IEEE Xplore. Restrictions apply.

0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3071810, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

5

thread-divergence and limited computational units for tran-
scendental functions often used in windowing functions.

III. PERFORMANCE EVALUATION SETUP

This section first presents the different acquisition sequences
and corresponding beamforming used in the evaluation. Next,
the different GPUs used in the evaluation and their key
features are described. Lastly, the performance metrics used
are explained.

A. Scan Sequences and Beamforming Setups

The beamformers were evaluated on all combinations of
two simulated phantoms, two RC arrays, two beamformed
geometries, single or double precision calculations, real or
complex input data, four different scan sequences, and three
GPUs. These seven categories of variations result in a matrix
of performance metrics for each beamformer with seven
dimensions, most of which are binary.

The first phantom was a single point target at (0,0,50) mm,
and the second phantom were point targets at x = y = 0 and z
varying from 10 to 150 mm in steps of 10 mm. The simulated
RC arrays were a 64+64 and a 192+192 element, 3 MHz array
with 270 µm pitch and integrated edge-apodization to suppress
range lobes [10].

The two geometries were 1) two cross planes with x = 0
and y = 0 respectively, and 2) a full volume. The z range
depended on the phantom. For phantom 1, beamforming was
performed in the range 40 to 60 mm, for phantom 2, it was
done from 0 to 160 mm. The sampling density in x and y
was equal the array pitch with line origins located between
the element centers, i.e., 63 lines were made in each direction
for the 64+64 array. The sampling density in z depended on
whether real or analytic signals were beamformed. For real
signals, the Nyquist limit must be observed in the beamformed
output, and the sampling density was therefore λ/8. For
analytic signals, the sampling density was λ/2.

The four scan sequences used 4, 16, 64, and 192 single
element emissions for both arrays, except the 64+64 element
array was not evaluated for 192 emissions. The transmitting el-
ements were uniformly distributed over the array. The number
of calculations are independent of whether a single element
is used or a virtual line source is created by using multiple
elements in transmit. Short sequences are desirable for, e.g.,
blood flow imaging, while longer sequences improve contrast
for higher B-mode image quality.

For the MATLAB beamformer, the storage of intermediate
results in GPU RAM necessitated that the output volume
be split in two or more subvolumes in many evaluations.
The number of subvolumes needed for a given setup was
not readily predictable since it depended on any additional
memory allocations within MATLAB functions. Initially, the
beamforming was run on one subvolume equal to the full
volume. If an out-of-memory error occurred, the number of
subvolumes were doubled. This process was iterated until the
beamforming succeeded or until more than 64 subvolumes
were needed. The amount of GPU RAM was the limiting
factor, when the processing needed to be split in any number

of subvolumes. The threshold of 64 subvolumes was chosen
to include performance evaluations for some of these cases
while avoiding execution times in excess of 1 hour in extreme
cases.

Simulations were made with Field II [34], [35], and the sim-
ulated data was matched filtered and decimated to a sampling
frequency of 12 MHz, i.e., four times the transducers’ center
frequency.

While single precision floating point numbers provide suffi-
cient precision for most real-time ultrasound imaging applica-
tions, double precision was included in the investigation, since
it may be required in some applications. It can also be useful
in the early stages of development to not need to consider the
potential effects caused by loss of precision. Ultimately, the
trade-off in performance (execution time), precision (including
floating and fixed point), and development and verification
time must be considered for the system being developed.

B. GPUs

The beamformers were evaluated on three different nvidia
GPUs: a 1050 Ti, a 1080 Ti, and a TITAN V. Here, the main
architectural aspects which impact the GPU beamformers are
highlighted. Other implementations may be made to use other
aspects of the architectures.

The TITAN V is of the Volta architecture [36] and made
for scientific computing, while the 1050 Ti and 1080 Ti are
of the Pascal architecture [37] and made for general purpose
computing. The main difference is that the TITAN V has twice
the number of single precision floating point computational
cores as double precision cores, while the ratio is 32 to 1 for
the other two GPUs.

Each GPU contains a number of streaming multiprocessors
(SM) that are assigned blocks of threads to execute. Several
architectural and implementation aspects combine to limit the
number of threads per SM, and the relevant aspects will be
discussed in Section V. The 1050 Ti has 6 SMs, the 1080 TI
has 28, and the TITAN V has 80.

The GPUs also differ with respect to memory. The 1050 Ti
has 4 GB memory with a theoretical bandwidth of 112 GB/s,
the 1080 Ti has 11 GB with 484 GB/s bandwidth, and the
TITAN V has 12 GB with 652.8 GB/s bandwidth.

C. Performance Metrics

The beamformers were evaluated on both the number of
samples beamformed per second and on the corresponding
volumetric imaging rate for the different setups. The number of
lines, Nl, were 2×63 = 126 and 63×63 = 3, 969 for the cross-
plane and volume geometries respectively for the 64 + 64-
element probe and 2 × 191 = 382 and 191 × 191 = 36, 481
for the 192 + 192-element probe. The number of samples per
line, Nsl, were 298 and 76 for phantom 1 with real and analytic
signals, respectively, and 2,224 and 557 for phantom 2.

The performance was measured as the average execution
time, tm, of up to seven repetitions of the same setup. A
total of ten repetitions were run with the first three ignored
in the timing measurements to eliminate effects of, e.g., GPU-
and cache-initialization. Input data was preloaded in system

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 03,2021 at 10:46:54 UTC from IEEE Xplore. Restrictions apply.

0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3071810, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

6

(not GPU) memory to avoid any effect of disk accesses.
Transfers in to and out of GPU memory were included in
the timing. Outliers may occur from interrupts and other
operating system events in the test setups. This is a general
problem of predictable software execution times and may be
handled by using a real-time operating system that provides
guaranteed services. Outliers were defined as an execution
time greater than two standard deviations above the mean and
were removed. No more than one outlier was found in any
test case.

The beamformer throughput in samples per second was
calculated as

B =
NlNslNLRVNrx

tm
, (5)

where NLRV is the number of LRVs and Nrx is the number
of receive elements. The frame or volume rates (collective
denoted volume rates) were calculated as

V =
1

tm
(6)

The performance across different setups followed a non-
Gaussian distribution, and aggregated results are presented on
the form (25-pct, med, 75-pct), where med is the median and
25-pct and 75-pct are the quartiles.

The GPUs were compared by normalizing the performance
metrics to those of the 1050 Ti. The beamformers were
compared by normalizing to the MATLAB beamformer.

IV. RESULTS

Fig. 6 shows B-mode images of the cross-planes for the
phantom with large depth range imaged with 64 emissions
from the 192-element array and contour plots of the point
target at 50 mm depth. The grating lobes in the YZ plane are
caused by spatial undersampling of the transmit array, since
64 uniformly distributed single-element emissions were used
giving an effective pitch of 1.5λ or three times the array pitch.

It was verified that all combinations of GPUs, numerical
precision, and beamformer produced identical PSFs within
acceptable tolerances.

Below, the MATLAB beamformer’s memory use is first
presented, and then the volume rates and throughput are
presented for each GPU and beamformer. Finally, the GPUs
and beamformers are compared.

A. MATLAB Memory Use

The MATLAB beamformer required the output to be par-
titioned in more than 64 subvolumes for the deep phantom
with full volumes and the large array when using real-valued
signals (1080 Ti and TITAN V) and either real- or complex-
valued signals (1050 Ti). No results are thus reported for these
setups.

B. Volume Rates

Fig. 7 shows the volume rates of the CUDA beamformer
with single precision calculations. The horizontal line is at 30
Hz, which is commonly used as the real-time imaging limit.
The volume rates spanned seven orders of magnitude from

mHz to kHz depending on imaging depth, geometry, number
of probe elements, number of LRVs, numeric precision, real-
or complex-valued samples, and GPU.

In general, beamforming complex samples yielded higher
volume rates than real samples by a factor (2.0, 2.4, 2.9) for
the 1050 Ti, (1.5, 2.1, 2.7) for the 1080 Ti, and (1.2, 2.0, 2.4)
for the TITAN V. Even though each complex sample had two
components, the axial sampling rate was lower by a factor
four compared to real samples. When using real samples, the
Nyquist limit must be satisfied for the output RF signals, while
complex samples provided the instantaneous envelope in each
sample and only needed to satisfy the Nyquist limit for the
envelope, which was of much lower frequency.

Out of the 56 single precision setups investigated, the 1050
Ti attained real-time synthetic aperture beamforming for 11
setups, the 1080 Ti for 18 setups, and the TITAN V for
22 setups. All GPUs satisfied the real-time limit for cross-
planes at shallow depths using the 64 element probe with
64 emissions for high-quality B-mode imaging. The TITAN
V additionally satisfied this limit for full volumetric imaging
and for shallow depth cross-planes with the 192 element
probe. This depth-range is suitable for a range of applications
including various rodent organs (kidneys, brain) and human
thyroids that are of interest in current super-resolution research
as well as major blood vessels including a range-limited view
of the aorta.

At large depth ranges, the 1080 Ti and TITAN V provided
real-time beamforming of cross-planes with 16 emissions on
the 64-element probe or four emissions on the 192-element
probe. Only the TITAN V attained real-time beamforming of
full volumes at large depth ranges and then only with four
emissions on the 64-element probe.

Similar trends were found for double precision calculations,
albeit at lower volume rates for the 1050 Ti and 1080 Ti: Real-
time volume rates were attained in two setups for the 1050
Ti, 9 setups for the 1080 Ti, and 21 setups for the TITAN V.
The difference to single precision is partially explained by the
different number of single and double precision computational
units as described in Section III-B.

The MATLAB beamformer did not attain real-time beam-
forming for any setup on any GPU. The maximum volume
rates were 8, 7, and 11 Hz for the 1050 Ti, 1080 Ti, and TITAN
V, respectively. The MATLAB beamformer’s performance is
discussed in terms of throughput below.

C. Throughput

Throughputs are reported in 109 samples per second (Gs).
The highest throughputs were found for the CUDA beam-
former on the TITAN V GPU, which had the highest computa-
tional power and memory bandwidth of the tested GPUs. Fig. 8
shows the TITAN V single precision throughput of all setups.
A small dependence on the number of low-resolution images
was seen: as more emissions contributed to a volume, a smaller
portion of the total time was spent on reading out results. This
translated to higher throughputs. For the same reason, larger
numbers of output samples (Fig. 8b and d compared to a and
c) resulted in higher throughputs.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 03,2021 at 10:46:54 UTC from IEEE Xplore. Restrictions apply.

0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3071810, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

7

Fig. 6. B-mode images of the XZ (left) and YZ (center) cross-planes of the phantom with large depth range for the 192-element array with 64 emissions.
Contour plots (right) of the point target at 50 mm depth with -6, -20, and -40 dB contours.

Using real-valued samples, the TITAN V throughputs were
(26.6, 33.8, 39.4) Gs (double) and (29.6, 33.5, 45.9) Gs (sin-
gle). The single precision samples required half as much data
to be transferred, but in the same amount of transfers. Since
the throughput was independent of numeric precision, memory
bandwidth did not limit the CUDA beamformer on the TITAN
V. The throughput was lower for complex-valued samples at
(10.0, 13.5, 20.6) Gs (double) and (9.5, 18.0, 28.9) Gs (single)
even though the volume rate was higher as described above.

The ratio between single and double precision was greater
on the 1050 Ti and 1080 Ti GPUs. Using real-valued samples,
the 1080 Ti throughputs were (2.7, 3.0, 3.1) (double) and
(19.0, 20.8, 26.8) (single), and the corresponding 1050 Ti
throughputs were (0.6, 0.6, 0.6) (double) and (4.1, 4.9, 6.0)
(single). The ratios of single to double precision throughput
were (6.7, 8.3, 10.4) (1050 Ti) and (6.3, 6.8, 9.5) (1080 Ti).
These results indicate that the double precision throughput
was limited by arithmetic units, while the single precision
throughput was limited by other factors as discussed in section
V.

Fig. 9 shows the MATLAB beamformer’s throughputs on
the TITAN V. A larger dependence on number of low-
resolution images was seen. This corresponds well with the
greater reuse of precalculated receive delays and apodizations.
A larger dependence was also seen on problem size with low
performance for small problems (Fig. 9a) and a limit was
quickly reached as seen by the near identical graphs in 9b
and d.

The TITAN V single precision throughput for the MATLAB

beamformer was (0.2, 1.0, 1.6) (complex) and (0.7, 1.8, 3.4)
(real). The ratio of single to double precision throughput was
(0.9, 1.0, 1.3) (complex) and (0.9, 1.0, 1.1) (real) showing that
performance was independent of precision. The single to dou-
ble ratio was similar on the 1080 Ti and only slightly higher on
the 1050 Ti with (1.0, 1.3, 1.4) (complex) and (1.2, 1.3, 1.4)
(real). This indicates that the MATLAB beamformer’s perfor-
mance was not limited by the number of computational units,
but rather by the need to move intermediate results of each
basic operation in and out of RAM.

D. GPU Comparison

The median speed-up of the 1080 Ti over the 1050 Ti for
the CUDA beamformer was 4 to 5 across both precision and
real or complex-valued samples with quartiles within ±1 of
the median. A larger speed-up was seen for the TITAN V
at (45.0, 55.2, 65.1) (double real) and (5.7, 8.0, 9.0) (single
real). The large double precision speed-up primarily stemmed
from micro-architectural differences as described above. At
the extremes, the TITAN V’s single precision speed-up was
no less than 1.6 and up to 10 times.

The speed-ups were smaller for the MATLAB beamformer.
The 1080 Ti median speed-up ranged from 1.9 to 3.6, while
the TITAN V speed-ups were (2.2, 6.5, 7.9) (double real) and
(1.6, 5.6, 6.2) (single real). The similar speed-ups between
double and single precision indicate that the MATLAB beam-
former was unable to utilize the greater theoretical double
precision performance of the TITAN V.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 03,2021 at 10:46:54 UTC from IEEE Xplore. Restrictions apply.

0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3071810, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

8

Fig. 7. Volume rate of the CUDA beamformer with single precision
calculations on the 1050 Ti (top), 1080 Ti (middle), and TITAN V (bottom).
(a) and (b) show throughputs for the shallow phantom, and (c) and (d) show
for the deep phantom. (a) and (c) show for cross planes, and (b) and (d) show
for full volumes. The horizontal line shows a volume rate of 30 Hz, often
considered the limit for real-time imaging.

Fig. 8. Throughput as function of number of low resolution images for the
CUDA beamformer on the TITAN V GPU with single precision calculations.
(a) and (b) show throughputs for the shallow phantom, and (c) and (d) show
for the deep phantom. (a) and (c) show for cross planes, and (b) and (d) show
for full volumes.

Fig. 9. Throughput of the MATLAB beamformer on the TITAN V GPU with
single precision calculations. Subfigures labeled as in Fig. 8.

E. Beamformer Comparison

The CUDA beamformer attained a much greater throughput
than the MATLAB beamformer. The single precision median
speed-up ranged from 12 for the 1050 Ti to 24 times for the
1080 Ti and TITAN V. The minimum speed-up was 8 times
for the TITAN V across all setups, and the maximum speed-
up across all setups and GPUs was in excess of 200 times.
The CUDA beamformer, thus, attained one to two orders
of magnitude higher throughput and volume rates than the
MATLAB beamformer.

V. DISCUSSION

The MATLAB beamformer’s performance was an order-of-
magnitude lower than the CUDA beamformer. The MATLAB
gpuarray type provides a simple entry point to GPU execu-
tion with implementations of individual operations. However,
this does not consider the algorithm consituted by sequences

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 03,2021 at 10:46:54 UTC from IEEE Xplore. Restrictions apply.

0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3071810, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

9

of operations, and intermediate results are written to and
read back from memory. Delay-and-sum beamforming mainly
consists of basic arithmetic operations, and the ratio of non-
memory to memory instructions is very low. Since the latency
of memory accesses is very high compared to that of sim-
ple arithmetic operations, the memory latency dominates the
execution time. This is also known as the “memory wall” [38].

GPUs address this problem by sharing the arithmetic units
between groups of threads. Two grouping levels exist: ”blocks”
are specified by the programmer, and ”warps” are subdivisions
of blocks to better map varying block sizes to the SM mi-
croarchitecture. The idea is that, while one or more warps are
waiting for memory, other warps may use the computational
units. If sufficiently many warps are allocated to the same
SM, the memory access latency experienced by one warp is
masked by other warps using the arithmetic units during this
time. The number of warps allocated to one SM is affected by
– among others – the number and sizes of thread blocks and
the number of registers (input and intermediate results) used
by each thread block.

The CUDA beamformer is limited by the number of reg-
isters per thread, which is high in part due to the third
order interpolation. This requires four samples and coefficients
that take up between 8 and 24 32-bit registers depending on
precision and complexity. On top of this, element and image
coordinates, pointers to input and output memory, and various
bookkeeping counters must also be stored. The end result is
that each thread uses many registers, which limits the number
of warps that may be assigned to each SM, which again limits
the possibility of latency masking. The main bottleneck of the
CUDA beamformer is thus the latency of individual memory
accesses.

Several possibilities for performance optimization may be
explored. If each thread computes more than one consecutive
output values, the input samples may be reused depending
on in- and output sampling frequencies. Another option could
be to design thread blocks to maximize overlap in the input
sample range and thereby minimize the input size and thereby
minimize the number of memory reads and maximize spatial
cache locality. This may be further combined with the use
of local shared memory as a fast-access software managed
cache to minimize the number of registers used to store
samples without introducing the need to request each sample
individually from the memory system as was also done by Yiu
et al. [14]. It is also possible to exploit the GPU’s specialized
texture memory that has special caching structures and incor-
porates linear interpolation [14], [39]. This is better suited for
demodulated input data, however, since linear interpolation of
signals sampled close to the Nyquist limit increases side-lobe
levels reducing contrast in the image. [32]

Best volume rates were attained for single precision, com-
plex valued data, which corresponds to the lowest number of
output samples with the lowest number of bits per sample. A
prerequisite for this is the use of either quadrature sampling
[40], which requires an additional phase rotation in the beam-
forming calculations for broadband signals, or analytic signals,
which requires the Hilbert transform to be calculated for the
input signals. This has previously been demonstrated in GPUs

by Yiu et al [14].

VI. CONCLUSION

Two delay-and-sum beamformers for row-column addressed
arrays were evaluated on three GPUs. The CUDA beamformer
attained an order-of-magnitude higher performance than the
MATLAB beamformer. The beamformers appeared to be
primarily limited by memory access latencies. The median
sample throughputs were 4.9, 20.8, and 33.5 gigasamples per
second for a 1050 Ti, 1080 Ti, and TITAN V GPU, respec-
tively. Out of 112 setups, real-time, volumetric imaging was
attained in 13, 27, and 43 setups for the three GPUs, showing
that even the low-end GPU (1050 Ti) can provide real-time
3D imaging. The use of single precision, analytic input signals
yielded the highest frame rates albeit the cost of calculating
analytic signals was not included in this investigation.

REFERENCES

[1] S. W. Smith, H. G. Pavy, and O. T. von Ramm, “High speed ultrasound
volumetric imaging system – Part I: Transducer design and beam
steering,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 38, pp.
100–108, 1991.

[2] O. T. von Ramm, S. W. Smith, and H. G. Pavy, “High speed ultrasound
volumetric imaging system – Part II: Parallel processing and image
display,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 38, pp.
109–115, 1991.

[3] D. H. Turnbull and F. S. Foster, “Beam steering with pulsed two-
dimensional transducer arrays,” IEEE Trans. Ultrason., Ferroelec., Freq.
Contr., vol. 38, no. 4, pp. 320–333, July 1991.

[4] E. Roux, F. Varray, L. Petrusca, C. Cachard, P. Tortoli, and H. Liebgott,
“Experimental 3-d ultrasound imaging with 2-d sparse arrays using
focused and diverging waves,” Scientific Reports, vol. 8, no. 9108, 2018.

[5] S. Blaak, Z. Yu, G. C. M. Meijer, C. Prins, C. T. Lancee, J. G. Bosch,
and N. de Jong, “Design of a micro-beamformer for a 2D piezoelectric
ultrasound transducer,” in Proc. IEEE Ultrason. Symp., sep 2009, pp.
1338–1341.

[6] E. Kang, Q. Ding, M. Shabanimotlagh, P. Kruizinga, Z. Y. Chang,
E. Noothout, H. J. Vos, J. G. Bosch, M. D. Verweij, N. D. Jong, and
M. A. Pertijs, “A reconfigurable ultrasound transceiver ASIC with 24x40
elements for 3D carotid artery imaging,” IEEE J. Solid-State Circuits,
vol. 53, no. 7, pp. 2065–2075, 2018.

[7] M. C. Hemmsen, M. F. Rasmussen, M. B. Stuart, and J. A. Jensen,
“Simulation study of real time 3D synthetic aperture sequential beam-
forming for ultrasound imaging,” in Proc. SPIE Med. Imag., vol. 9040,
2014, pp. 90 401K–1–90 401K–9.

[8] C. E. Morton and G. R. Lockwood, “Theoretical assessment of a crossed
electrode 2-D array for 3-D imaging,” in Proc. IEEE Ultrason. Symp.,
2003, pp. 968–971.

[9] C. H. Seo and J. T. Yen, “A 256 x 256 2-D array transducer with row-
column addressing for 3-D rectilinear imaging,” IEEE Trans. Ultrason.,
Ferroelec., Freq. Contr., vol. 56, no. 4, pp. 837–847, April 2009.

[10] M. F. Rasmussen, T. L. Christiansen, E. V. Thomsen, and J. A.
Jensen, “3-D imaging using row–column-addressed arrays with inte-
grated apodization — Part I: Apodization design and line element
beamforming,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 62,
no. 5, pp. 947–958, 2015.

[11] J. A. Jensen, H. Holten-Lund, R. T. Nilsson, M. Hansen, U. D. Larsen,
R. P. Domsten, B. G. Tomov, M. B. Stuart, S. I. Nikolov, M. J. Pihl,
Y. Du, J. H. Rasmussen, and M. F. Rasmussen, “SARUS: A synthetic
aperture real-time ultrasound system,” IEEE Trans. Ultrason., Ferroelec.,
Freq. Contr., vol. 60, no. 9, pp. 1838–1852, 2013.

[12] E. Boni, L. Bassi, A. Dallai, F. Guidi, V. Meacci, A. Ramalli, S. Ricci,
and P. Tortoli, “ULA-OP 256: A 256-channel open scanner for develop-
ment and real-time implementation of new ultrasound methods,” IEEE
Trans. Ultrason., Ferroelec., Freq. Contr., vol. 63, no. 10, pp. 1488–
1495, 2016.

[13] Y. F. Li and P. C. Li, “Software beamforming: Comparison between
a phased array and synthetic transmit aperture,” Ultrason. Imaging,
vol. 33, no. 2, pp. 109–118, 2011.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 03,2021 at 10:46:54 UTC from IEEE Xplore. Restrictions apply.

0885-3010 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TUFFC.2021.3071810, IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control

10

[14] B. Y. S. Yiu, I. K. H. Tsang, and A. C. H. Yu, “GPU-based beamformer:
Fast realization of plane wave compounding and synthetic aperture
imaging,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 58, no. 7,
pp. 1698–1705, 2011.

[15] H. K. H. So, J. Chen, B. Y. S. Yiu, and A. C. H. Yu, “Medical ultrasound
imaging: to GPU or not to GPU?” IEEE Micro, vol. 31, no. 5, pp. 54–65,
2011.

[16] T. Di Ianni, C. Villagomez-Hoyos, C. Ewertsen, T. Kjeldsen,
J. Mosegaard, and J. A. Jensen, “A vector flow imaging method for
portable ultrasound using synthetic aperture sequential beamforming,”
IEEE Trans. Ultrason., Ferroelec., Freq. Contr., vol. 64, no. 11, pp.
1655–1665, 2017.

[17] C. L. Palmer and O. M. H. Rindal, “Wireless, real-time plane-wave
coherent compounding on an iPhone: A feasibility study,” IEEE Trans.
Ultrason., Ferroelec., Freq. Contr., vol. 66, no. 7, pp. 1222–1231, 2019.

[18] J. W. Choe, A. Nikoozadeh, O. Oralkan, and B. T. Khuri-Yakub, “GPU-
based real-time volumetric ultrasound image reconstruction for a ring
array,” IEEE Trans. Med. Imag., vol. 32, no. 7, pp. 1258–1264, 2013.

[19] R. Göbl, N. Navab, and C. Hennersperger, “SUPRA: open-source
software-defined ultrasound processing for real-time applications: A 2D
and 3D pipeline from beamforming to B-mode,” International Journal of
Computer Assisted Radiology and Surgery, vol. 13, no. 6, pp. 759–767,
2018.

[20] M. B. Stuart, M. Schou, and J. A. Jensen, “Row-column beamforming
with dynamic apodizations on a GPU,” in Proc. SPIE Med. Imag., 2019,
pp. 1–7, paper number 10955-20.

[21] M. B. Stuart, P. M. Jensen, J. T. R. Olsen, A. B. Kristensen, M. Schou,
B. Dammann, H. H. B. Sørensen, and J. A. Jensen, “Fast GPU-
beamforming of row-column addressed probe data,” in Proc. IEEE
Ultrason. Symp., 2019, pp. 1–4.

[22] C. E. M. Démoré, A. W. Joyce, K. Wall, and G. R. Lockwood, “Real-
time volume imaging using a crossed electrode array,” IEEE Trans.
Ultrason., Ferroelec., Freq. Contr., vol. 56, no. 6, pp. 1252–1261, 2009.

[23] A. Sampaleanu, P. Zhang, A. Kshirsagar, W. Moussa, and R. Zemp,
“Top-orthogonal-to-bottom-electrode (TOBE) CMUT arrays for 3-D
ultrasound imaging.” IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,
vol. 61, no. 2, pp. 266–276, 2014.

[24] J. T. Yen, “Beamforming of sound from two-dimensional arrays using
spatial matched filters,” J. Acoust. Soc. Am., vol. 134, no. 5, pp. 3697–
3704, 2013.

[25] N. M. Daher and J. T. Yen, “2-D array for 3-D ultrasound imaging using
synthetic aperture techniques,” IEEE Trans. Ultrason., Ferroelec., Freq.
Contr., vol. 53, no. 5, pp. 912–924, 2006.

[26] T. L. Christiansen, M. F. Rasmussen, J. P. Bagge, L. N. Moesner, J. A.
Jensen, and E. V. Thomsen, “3-D imaging using row–column-addressed
arrays with integrated apodization — part II: Transducer fabrication and
experimental results,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,
vol. 62, no. 5, pp. 959–971, 2015.

[27] J. J. Flaherty, K. R. Erikson, and V. M. Lund, “Synthetic aperture
ultrasound imaging systems,” United States Patent, US 3,548,642, 1967,
united States Patent, US 3,548,642, 1967, Published 22 Dec 1970.

[28] J. A. Jensen, S. Nikolov, K. L. Gammelmark, and M. H. Pedersen,
“Synthetic aperture ultrasound imaging,” Ultrasonics, vol. 44, pp. e5–
e15, 2006.

[29] M. Karaman, P. C. Li, and M. O’Donnell, “Synthetic aperture imaging
for small scale systems,” IEEE Trans. Ultrason., Ferroelec., Freq. Contr.,
vol. 42, pp. 429–442, 1995.

[30] J. Nickolls, I. Buck, M. Garland, and K. Skadron, “Scalable parallel
programming with CUDA,” Queue, vol. 6, no. 2, pp. 40–53, 2008.

[31] J. A. Jensen and N. Oddershede, “Estimation of velocity vectors in
synthetic aperture ultrasound imaging,” IEEE Trans. Med. Imag., vol. 25,
pp. 1637–1644, 2006.

[32] H. Andresen, S. I. Nikolov, and J. A. Jensen, “Precise time-of-flight
calculation for 3D synthetic aperture focusing,” IEEE Trans. Ultrason.,
Ferroelec., Freq. Contr., vol. 56, no. 9, pp. 1880–1887, 2009.

[33] E. Waring, “Problems concerning interpolations. by Edward Waring,
M. D. F. R. S. and of the Institute of Bononia, Lucasian Professor
of mathematics in the University of Cambridge,” Philosophical
Transactions of the Royal Society of London, vol. 69, pp. 59–67, 1779.
[Online]. Available: http://www.jstor.org/stable/106408

[34] J. A. Jensen and N. B. Svendsen, “Calculation of pressure fields from
arbitrarily shaped, apodized, and excited ultrasound transducers,” IEEE
Trans. Ultrason., Ferroelec., Freq. Contr., vol. 39, no. 2, pp. 262–267,
1992.

[35] J. A. Jensen, “Field: A program for simulating ultrasound systems,” Med.
Biol. Eng. Comp., vol. 10th Nordic-Baltic Conference on Biomedical
Imaging, Vol. 4, Supplement 1, Part 1, pp. 351–353, 1996.

[36] NVIDIA, “Nvidia Tesla V100 GPU architecture,” Whitepaper, 2017,
wP-08608-001 v1.1.

[37] ——, “NVIDIA Tesla P100,” Whitepaper, 2017, wP-08019-001 v01.2.
[38] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications

of the obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp.
20–24, mar 1995.

[39] D. Hyun, Y. Li, I. Steinberg, M. Jakovljevic, T. Klap, and J. J. Dahl, “An
open source gpu-based beamformer for real-time ultrasound imaging and
applications,” in Proc. IEEE Ultrason. Symp., vol. 2019-October, 2019,
pp. 20–23.

[40] J. E. Powers, D. J. Phillips, M. A. Brandestini, and R. A. Sigelmann,
“Ultrasound phased array delay lines based on quadrature sampling
techniques,” IEEE Trans. Son. Ultrason., vol. SU-27, pp. 287–294, 1980.

Authorized licensed use limited to: Danmarks Tekniske Informationscenter. Downloaded on May 03,2021 at 10:46:54 UTC from IEEE Xplore. Restrictions apply.

