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Abstract

Background: Protein dihedral angles provide a detailed description of protein local conformation. Predicted

dihedral angles can be used to narrow down the conformational space of the whole polypeptide chain significantly,

thus aiding protein tertiary structure prediction. However, direct angle prediction from sequence alone is challenging.

Results: In this article, we present a novel method (named RaptorX-Angle) to predict real-valued angles by combining

clustering and deep learning. Tested on a subset of PDB25 and the targets in the latest two Critical Assessment of

protein Structure Prediction (CASP), our method outperforms the existing state-of-art method SPIDER2 in terms of

Pearson Correlation Coefficient (PCC) and Mean Absolute Error (MAE). Our result also shows approximately linear

relationship between the real prediction errors and our estimated bounds. That is, the real prediction error can be well

approximated by our estimated bounds.

Conclusions: Our study provides an alternative and more accurate prediction of dihedral angles, which may facilitate

protein structure prediction and functional study.

Keywords: Dihedral angle prediction, Protein structure prediction, Clustering, Residual network, Deep learning

Background
It has been shown that sequences contain rich informa-

tion for protein tertiary structure prediction as well as

functional study [1, 2]. But it is challenging to directly

predict tertiary structure from primary sequence, so the

hierarchical approach has been widely accepted as one

of the most efficient methods. That means to transform

the ultimate goal into several sub-problems, such as sec-

ondary structure prediction, solvent accessibility predic-

tion, residue-residue contact prediction, etc. [3] reviewed

the progress in the field of intermediate state or one-

dimensional property prediction. It has been shown that

predicted secondary structure is useful in the prediction
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of disordered and flexible regions, fold recognition and

function prediction. However, secondary structure states

are described as discrete classes and there is no clear

boundary between coil and helical/strand states. It is a

significant step towards establishing the structure and

function of a protein to predict local conformation of the

polypeptide chain. The local structural bias information

restricts the possible conformations of a sequence seg-

ment and therefore narrows down the conformation space

of the whole polypeptide chain significantly. Thus, pre-

diction of dihedral angles is especially useful for protein

tertiary structure prediction.

On the whole, dihedral angle prediction may benefit

protein tertiary structure prediction in several aspects.

Firstly, dihedral angle prediction may act as substitute or

supplement for secondary structure prediction [4–6]. Sec-

ondly, It can be used in generation of sequence/structure

alignment. For one thing, it can be directly applied to
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structure alignment methods based on dihedral angles

[7, 8] and may aid refinement of target-template structure

alignment. For another, considering predicted angles to

refine multiple sequence alignment may narrow the gap

between sequence and structure alignment, thus aiding

de novo prediction of structural properties. In addition,

dihedral angle prediction may also find applications in

protein structure prediction that includes but not lim-

its to fold recognition approaches [9, 10], fragment-free

tertiary structure prediction [11], tertiary structure refine-

ment and structure quality assessment [12] and functional

study, such as ligand-binding site prediction [13].

There are mainly two kinds of problems in dihedral

angle prediction: angle region prediction and real value

prediction, which corresponds to two different represen-

tations of protein backbone local structural bias.

Initially, Ramachandran basin is an intuitive descrip-

tion of local structural bias [14]. A Ramachandran basin

is a specific region of a Ramachandran plot and illus-

trates the preference of torsion angle values. Each angle

pair can be assigned a basin label. With more basins, the

assignment would be harder but the representation would

be more accurate and vice versa. Colubri et al. tested

the ability to recover the native structure from a given

basin assignment for each residue to investigate the level

of representation required to simulate folding and pre-

dict structure, resulting in five basins [15]. Gong et al.

partitioned φ,ψ-space into a uniform grid of 36 squares,

each 60°× 60°, thus resulting in 36 basins, and showed

that they successfully reconstructed six proteins solely

from their mesostate (basin label) sequences [16]. There

are also some other methods to define basins and do

angle region prediction with different definitions of basins

[17–20]. Although it is vital to determine the proper

number of regions and clearly define the boundary, a uni-

versal algorithm to generate Ramachandran basins and

assign basin labels remains to be developed. In our study,

k-means clustering serves as the basin generator and label

assigner.

While Ramachandran basin provides an overall descrip-

tion of conformation, it is a coarse-grained representation

and lacks statistical explanations describing the torsion

angle distributions of each basin. In consideration of

the circular nature of angles, traditional parametric or

non-parametric density estimation methods cannot work

properly to approximate Ramachandran distributions.

Fortunately, directional distributions such as von Mises

distribution could solve the problem [21]. Bivariate von

Mises distribution (mixtures) has been used tomodel pro-

tein dihedral angle distribution [22, 23], which removes

arbitrariness in defining the boundary between discrete

states. In this study, we assume angle pairs in each basin

follow a bivariate von Mises distribution to derive the

log-likelihood of each clustering.

Thanks to the rapid growth of Protein Data Bank and

computational and algorithmic development in machine

learning (especially deep learning), several supervised

machine learning methods have been proposed to pre-

dict real values of dihedral angles. As φ values in α-helices

and β-sheets are quite similar, ψ seems more informa-

tive. Wood et al. first developed a method DESTRUCT

for prediction of real-valued dihedral angle ψ and used

this information for prediction of the protein secondary

structure with high accuracy [4]. Wu et al.proposed a

composite machine-learning algorithm called ANGLOR

to predict real-value protein backbone torsion angles from

protein sequences [24]. The input features of ANGLOR

include sequence profiles, predicted secondary structure

and solvent accessibility. The mean absolute error (MAE)

of the φ/ψ prediction was reported to be 28°/ 46°. Later

Song et al. developed TANGLE based on a two-level sup-

port vector regression approach using a variety of features

derived from amino acid sequences, including the evolu-

tionary profiles and natively disordered region as well as

other global sequence features [25]. The MAE of the φ/ψ

was 27.8°/ 44.6°. Xue et al. established a neural network

method called Real-SPINE, with sequence profiles gen-

erated from multiple sequence alignment and predicted

secondary structures as inputs [26]. In 2015, they pre-

sented SPIDER2 [27] by improving SPIDER [28] through

iterative learning, which used a deep artificial neural net-

work (ANN) with three hidden layers of 150 nodes. They

fed the predicted torsion angles of last layer as the input

to the following generation and reported 19° and 30° for

mean absolute errors of backbone φ and ψ angles, respec-

tively. As it is impossible to introduce all methods here,

interested readers can refer to excellent reviews [29, 30].

Although there has been tremendous development,

their performance is still limited by their shallow archi-

tectures. Inspired by the excellent performance of convo-

lution neural network in predicting secondary structure

[31] and order/disorder regions [32] and also the success

of residual framework to do contact prediction [33], we

adopt the ultra deep residual framework of convolutional

neural network to do k-means basin label probability

prediction.

However, even though a protein backbone conforma-

tion can be highly accurately rebuilt from its respective

native dihedral angles, accumulation of errors in predicted

angles can lead to large deviation in three-dimensional

structures, which prevents angle prediction from its direct

use in building protein structures [27]. It is of great sig-

nificance to produce the corresponding confidence scores

for the real value predictions, i.e., we need to know the

confidence level of the predictions. Otherwise the effect

of predicted dihedral angles as restraints for three dimen-

sional structure prediction would be limited [34]. Zhou

et al. had developed SPIDER2 [27] to predict real-valued
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angles and then separately SPIDER2-Delta [35] to predict

error of those predicted structural properties. Here we

describe a simple hybrid technique to predict angles and

confidence scores simultaneously.

Another problem that need to be considered is the peri-

odicity of angles. For example, if an angle θ = 179°

is predicted to be −179°, the error would be treated

as 358° instead of 2°. There are some approaches pro-

posed to reduce the impact of cyclic nature of angles.

One was angle shifting to reduce confusion at 0° and

360° (or −180° and 180°), e.g., shifting ψ by 100° and φ

by −10° [26] or adding 100° to the angles between −100°

and 180° and adding 460° to the angles between −180°

and −100° [34]. But the improvement was limited and

strongly depended on the angle range. For amino acids

such as alanine that had minimal residues in the affected

range, angle shifting made little difference [29]. A bet-

ter choice was to take advantage of the inherent angle

periodicity of trigonometric functions, that is, mapping

the angles to their sine and cosine values [27], which has

achieved best performance so far. Inspired by this, we deal

with equivalent trigonometric representations of dihedral

angle pairs, rather than real value angles.

Considering dihedral angles share similar patterns in

alpha helix and beta strand, the acceptable (φ,ψ) patterns

are limited. Moreover, it is much easier to do classifica-

tion than regression. Also indebted to mixture models

and Expectation-maximization algorithm, we develop a

hybrid method of k-means clustering and deep learning to

do angle prediction, combining advantages of discrete and

continuous representation of dihedral angles. Specifically,

we firstly generate a set of clusters of (φ,ψ) from training

data, in which we could get the distribution of each clus-

ter; then we use deep learning methods to predict discrete

labels; lastly we predict real value angles by mixing empir-

ical clusters with their predicted probabilities. We employ

a residual framework of convolutional neuron network in

RaptorX-Angle to predict the cluster label probabilities.

We test our method on filtered PDB25 dataset as well as

CASP (Critical Assessment of protein Structure Predic-

tion) targets and compare with other three state-of-art

methods. Tested on the subset of PDB25, our method

gains about 0.5°and 1.4°for φ and ψ better MAE than

SPIDER2, currently among the best backbone angle pre-

dictors. Our method also performs better than SPIDER2

on the CASP11 and CASP12 test targets. The advantage is

even more obvious when looking into detailed secondary

structural regions.

Methods

K-means clustering of angle vectors

Genearating k-means “centers” from angle vectors

For a dihedral angle pair (φ,ψ), we can equivalently

denote it by an angle vector

v = (cos(φ), sin(φ), cos(ψ), sin(ψ)) .

Conversely, given the vector representation v, we

can easily derive the corresponding angles φ and ψ

(Additional file 1: S1.1). We run k-means on angle

vectors to cluster dihedral angle pairs in training set

into K = 10, 20, . . . , 100 clusters. Then we normal-

ize the K centres {Ck}
K
k=1 and get the final “centers”

{
C̃k = (̃ck0, c̃k1, c̃k2, c̃k3)

}K
k=1

, so that each “centre” C̃k is

a valid representation for some angle pair (Additional

file 1: S1.2).

Predicting “true” labels from k-means

Given the K normalised vector “centres”
{
C̃k

}K
k=1

, we

could assign the “true” label for each dihedral angle pair as

the one whose corresponding normalised centre was clos-

est to its respective vector representation. Then the “true”

labels can be used as the training labels to build a deep

learning model as a classifier to predict labels for testing

data.

Deep learning model details

Deep Convolutional Neural Network (DCNN)

DCNN consists of multiple convolutional blocks. A con-

volutional block is a neural network that implements

a composite of linear convolution and nonlinear acti-

vation transformation. Convolution is used in place of

general matrix multiplication, which can better capture

local dependency. It has been widely accepted that pro-

tein torsion angles strongly depend on neighbour residues

[36–38]. So DCNN is ideal to abstract angle information

from sequence.

Residual Network (ResNet)

DCNN can integrate features in hierarchical levels and

some work has shown the significance of depth [39]. How-

ever, with the depth increasing, accuracy gets saturated

and even degraded. That is because adding more layers

may lead to higher training error as identity mapping is

difficult to fit with a stack of nonlinear layers [40]. ResNet

was proposed as a residual learning framework to ease the

training of substantially deeper networks [41]. Figure 1

demonstrates the basic architecture of ResNet in RaptorX-

Angle. Figure 1a is a residual block, which consists of 2

convolution layers and 2 activation layers, and the ResNet

consists of stacked residual blocks (Fig. 1b). The activa-

tion layer conducts a simple nonlinear transformation of

its input depending on the activation function with no

additional parameters. In this work, we used the ReLU

activation function [42].

Logistic regression layer

DCNN and ResNet can capture information from data

and output abstract features. To do classification for
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Fig. 1 Illustration of the ResNet model in RaptorX-Angle. a A building block of ResNet with xi and xi+1 being input and output, respectively. b The

ResNet model architecture as a classifier with stacked residual blocks and a logistic regression layer. Here L is the sequence length of the protein or

total number of residues under prediction and K is the number of clusters

residues, a logistic regression layer is added as the final

layer in RaptorX-Angle, which could output the marginal

probability of K labels (Fig. 1b).

Loss function

We trainmodel parameters throughmaximizing the prob-

ability of angle pairs belong to the “true” labels. Naturally,

the loss function is defined as the negative log-likelihood

averaged over all residues of the training proteins.

Regularization and optimization

As is widely used in machine learning, the log-likelihood

objective function is penalized with a L2-norm of the

model parameters to prevent overfitting. Thus, the

final objective function has two items: loss function

and regularization item, with a regularization factor λ

to balance the two items. That is, the final objective

function is:

max
θ

logPθ (Y |X) − λ‖θ‖2

where X is the input features, Y is the output labels, θ is

the model parameters and λ is the regularization factor

used to balance the log likelihood and regularization. We

use Adam [43] to minimize the objective function, which

usually can converge within 20 epochs. The whole algo-

rithm has been implemented by Theano [44] and mainly

run on a GPU card.

Input features

For each residue in each protein sequence, we generate a

total of 66 input features, of which 20 from position spe-

cific scoring matrix(PSSM) of PSI-BLAST [45], 20 from

position-specific frequency matrix (PSFM) of HHpred

[46, 47], 20 from primary sequence, 3 from predicted sol-

vent accessibility (ACC) and 3 from predicted secondary

structure(SS) probabilities (Additional file 1: S1.3).

Predicting real-value angles from predicted marginal

probability

From the last logistic regression layer of the deep learn-

ing model, we could predict the marginal probability P =

(p1, p2, . . . , pK ) of an angle pair for each label. We use

the marginal probability rather than the single predicted

label to reduce bias. Concretely, we calculate the weighted

mean by:

v̂ = (v0, v1, v2, v3) =

K∑

k=1

pkC̃k,

Finally, we normalise v̂ to get

ĉos(φ) =
v0√

v02 + v12
, ŝin(φ) =

v1√
v02 + v12

,

ĉos(ψ) =
v2√

v22 + v32
, ŝin(ψ) =

v3√
v22 + v32

.

and we could derive the predicted real values φ̂, ψ̂

from this angle vector (Additional file 1: S1.1). We also
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tried to predict real-value angles from labels with top

R(R < K ) probabilities when K is well chosen (Additional

file 1: S2.3).

Programs to compare and evaluation metrics

We compare our method with three available standalone

softwares SPIDER2 [27], SPINE X [11], and ANGLOR

[24]. All the programs are run with parameters suggested

in their respective papers.

We evaluate the performance by Pearson Correlation

Coefficient (PCC) and Mean Absolute Error (MAE) as

described by [48], for assessing the prediction of φ/ψ

angles. Considering the periodicity of angles, PCC is cal-

culated between the cosine (sine) values of predicted and

experimentally determined angles. MAE is the average

absolute difference between predicted and experimentally

determined angles. The periodicity of an angle has been

taken care of by utilizing the smaller value of the abso-

lute difference d
(
= |θpred − θexp|

)
and 360−d for average,

where θpred is the predicted angle and θexp is the true angle

value.

Results

Datasets

Weuse the targets fromPDB25 updated in February, 2016.

The set consists of 10820 non-redundant protein chains,

in which any two chains share nomore than 25% sequence

identity. To remove impact of disordered regions, we fil-

ter out proteins with internal disordered regions by DSSP

[49]. Finally we get 7604 proteins. We then randomly

select 5070 proteins as the candidate training set, 1267

as validation set (VL1267, see Additional file 2) and the

remaining 1267 as test set (TS1267, see Additional file 3).

We also test on 85 CASP11 targets (see Additional file 4)

and the latest 40 CASP12 targets (see Additional file 5)

with publicly released native structures. To remove redun-

dancy between training proteins and CASP targets, we

run MMseqs2 [50], which is similar but more sensitive

and faster than BLAST (PSI-BLAST) for protein sequence

homology search, with seqID cutoff 0.25 and also E-value

cutoff 0.001 to filter 5070 the candidate training pro-

teins, resulting in 5046 training proteins (TR5046, see

Additional file 6).

Choosing a proper number of clusters

A vital problem is how to select the number of clusters,

which can be reduced to defining measures for cluster-

ing evaluation. Here we adopt two measures: (i) entropy

loss based on discrete distribution; (ii) loglikelihood based

on continuous distribution to evaluate 10 different clus-

terings (K = 10, 20, . . . , 100). Firstly, we do k-means clus-

tering on TR5046 and get K empirical clusters. Secondly,

we train the deep learning models and do classification

on VL1267, then we can obtain the predicted marginal

probability of the K clusters Pi = (pi1, pi2, . . . , piK ) , i =

1, 2, . . . ,N , where i is the index of residue and N is the

total number of residues in VL1267.

Entropy loss

Entropy H(·) is always used to measure the infor-

mation of a distribution. From k-means clustering on

TR5046, the background distribution among clusters

P0 = (p01, p02, . . . , p0K ) could be derived. Then the

entropy loss of this clustering onVL1267 can be calculated

as the mean difference between entropy of background

distribution and predicted marginal distribution:

EL =
1

N

N∑

i=1

(H (P0) − H (Pi))

=
1

N

N∑

i=1

(
K∑

k=1

p0k log (p0k) −

K∑

k=1

pik log (pik)

)

which can roughly evaluate the information gain from the

clustering. Here N is the number of residues in VL1267.

Loglikelihood

To demonstrate the detailed information of each clus-

ter, we need a continuous angular(circular) distribution

defined on the torus. Mixture bivariate von Mises distri-

butions are successfully used to describe the local bias of

torsion angle pair (φ,ψ) [21–23], we assume that angle

pairs belong to the same cluster k obey a common bivari-

ate von Mises distribution fk with parameters �k =(
κk
1 , κ

k
2 , κ

k
3 ,μ

k , νk
)
. Here,

fk (φ,ψ) = c
(
κk
1 , κ

k
2 , κ

k
3

)
exp

{
κk
1 cos

(
φ − μk

)

+κk
2 cos

(
ψ − νk

)
+κk

3 cos
(
φ − μk − ψ + νk

)}

where μk and νk are the mean value of φ and ψ , respec-

tively; κk
1 , κ

k
2 are the concentrations, κk

3 allows for the

dependency between the two angles and c
(
κk
1 , κ

k
2 , κ

k
3

)
is a

normalization constant:

c
(
κk
1 , κ

k
2 , κ

k
3

)
=(2π)2

⎧
⎨
⎩I0

(
κk
1

)
I0

(
κk
2

)
I0

(
κk
3

)
+2

∞∑

p=1

Ip

(
κk
1

)
Ip

(
κk
2

)
Ip

(
κk
3

)
⎫
⎬
⎭

in which Ip(κ) is the modified Bessel func-

tion of the first kind and order p. Parameters{
�k =

(
κk
1 , κ

k
2 , κ

k
3 ,μ

k , νk
)}K

k=1
can be intuitively esti-

mated from the empirical clusters {(φ,ψ)k}
K
k=1 [51]. Then

the density function for the torsion angle pair (φ,ψ) can

be approximately described as:

f (φ,ψ) =

K∑

k=1

pk fk(φ,ψ)



Gao et al. BMC Bioinformatics 2018, 19(Suppl 4):100 Page 78 of 119

where pk is the predicted marginal probability of (φ,ψ)

belongs to cluster k. Then the log-likelihhod for the

VL1267 can be calculated as:

LL =
1

N

N∑

i=1

log f (φi,ψi) =
1

N

N∑

i=1

log

K∑

k=1

pik fk(φi,ψi)

Selecting proper K

Figure 2 shows the result of entropy loss and loglikeli-

hood with respect to the number of clusters. As expected,

the loglikelihood increases along with K, which means it

can better describe the data with more clusters. But when

K goes larger than 30, there is an obvious decrease in

entropy loss. Maybe that is because the more clusters are

used, the more challenging it would be to do angle predic-

tion. As there is a soaring information gain when K goes

from 10 to 20 and little difference when K increases from

20 to 30, we test every single clustering between 20 and 30

and there is no significant benefit with more clusters. So

we just choose K = 20 to do following studies.

Feature contribution study

The features can be divided into three categories:

sequence information including amino acid (aa) and pro-

file, predicted secondary structure (SS) and solvent acces-

sibility (ACC). Sequence profile information are generated

from PSI-BLAST (PSSM) and HHpred (PSFM) (See

Additional file 1: S1.3 for more details). To test the impact

of different feature combinations, we design six experi-

ments: (1) basic1 = 20 PSSM + 20 aa; (2) basic2 = 20

PSFM + 20 aa; (3) basic = 20 PSSM + 20 PSFM + 20 aa;

(4) basic + 3 ACC; (5) basic + 3 SS; (6) basic + 3 ACC

+ 3 SS. The network architecture is fixed as Nlayers =

5,Nnodes = 100, halfWinSize = 3 (ResNet 5-100-3), and

the regularization factor is fixed to be 0.0001.

Table 1 shows theMAE performance of different feature

combinations on TS1267. From the first three experi-

ments with only sequence information involved, there is

little performance difference between PSSM and PSFM,

and the combination of PSSM and PSFM gains the best

accuracy. So PSSM and PSFM are complementary and

both unignorable. ACC and SS both contribute signifi-

cantly and also the combination gain the best accuracy.

Finally we use the whole set of features.

Overall PCC performance of cosine values compared with

other methods

To tune proper regularization factor and also network

architectures, we perform 5-fold cross validation on

TR5046 (Additional file 1: S2.1 and S2.2). Finally, we

choose an ensemble of 6 networks (Additional file 1:

S2.2). We test our method on TS1267 and also the pop-

ular CASP targets, including 85 CASP11 targets and 40

CASP12 targets. Table 2 shows the PCC performance of

cosine values on the three benchmarks. RaptorX-Angle

has gained the highest PCC on all datasets. We also evalu-

ate PCC performance of sine values (See Additional file 1:

S2.4) and get similar results.

Overall MAE performance compared with other methods

Table 3 shows the MAE performance on the three bench-

marks in different secondary structural regions of our

RaptorX-Angle comparing with other three methods. All

methods have larger MAE on CASP targets than on

TS1267. It is reasonable since CASP targets are usually

hard to predict. It can be seen that RaptorX-Angle per-

forms the best on all benchmarks, with about 0.5° and

1.4° for φ andψ betterMAE on both TS1267 and CASP12

and slightly better performance on CASP11 than the sec-

ond best method SPIDER2. We perform Student’s t test of

absolute errors between RaptorX-Angle and SPIDER2. As

a result, the p-values for φ/ψ are 8.65e − 12/2.79e − 33,

5.13e − 2/8.36e − 2 and 1.28e − 5/2.59e − 8 on TS1267,

CASP11 and CASP12, respectively. That is , the advantage

of RaptorX-Angle over SPIDER2 on TS1267 and CASP12

is statistically more significant than on CASP11. These

results demonstrate the rationality of representing the

Ramachandran plot with a limited number of clusters, say

Fig. 2 Selecting proper number of clusters K. Left: relationship between entropy loss of discrete label probabilities and number of clusters K ; Right:

relationship between loglikelihood of mixture bivariate von Mises distribution and number of clusters K
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Table 1 The mean absolute error of different feature combinations with ResNet 5-100-3 on TS1267

Feature combination Phi Psi Phi_H Psi_H Phi_E Psi_E Phi_C Psi_C

basic1=PSSM+aa 19.97 31.97 9.82 17.57 20.70 26.97 29.84 49.66

basic2=PSFM+aa 20.02 31.78 9.86 17.68 20.46 26.38 30.10 49.39

basic=PSSM+PSFM+aa 19.27 30.04 9.11 15.58 19.70 24.64 29.35 48.02

basic+ACC 19.08 29.30 9.07 15.44 19.36 23.18 29.11 47.10

basic+SS 19.19 28.73 8.56 13.76 19.29 22.43 31.00 47.95

basic+ACC+SS 18.58 27.98 8.45 13.37 19.03 22.14 28.61 46.21

Phi and Psi denote MAE for all residues

Phi_H and Psi_H denote MAE for residues in helix region

Phi_E and Psi_E denote MAE for residues in beta strand region

Phi_C and Psi_C denote MAE for residues in coil region

20 clusters, and also reflect the power of deep learning

methods.

Mean absolute error performance study in VL1267

In methodology, the conversion from angle pair to

trigonometric vector is nonlinear, the prediction error

may depend on angles. And in biology, prediction error

may differ for different amino acids with different micro-

scopic biochemical properties, and also for different pro-

tein classes with different macroscopic structures. So we

perform detailed studies on prediction error in VL1267.

Studymean absolute error performance for different clusters

As each cluster corresponds to a certain angle region, we

calculate theMAE for each cluster in VL1267.We observe

that the 20 clusters are well consistent with Ramachan-

dran plot and also the two peaks for φ and ψ [11] (Fig. 3

Left). And the prediction errors differ a lot between clus-

ters. It turns out that clusters with more residues in coil

region tend to result in larger prediction errors. Moreover,

prediction error for φ is smaller than for ψ . But there are

three uncommon clusters with larger MAE for φ, i.e., 5, 6

and 10 (Fig. 3 Right). Clusters 5 and 6 are totally in one of

the peak areas in Ramachandran plot, which may indicate

some interesting biological discoveries.

Mean absolute error performance for each amino acid type

As different amino acids have different stereochemical

and physiochemical properties, they are anticipated to

Table 2 Pearson correlation coefficient of cosine values between

predicted and true angles

TS1267 CASP11 CASP12

cos(φ)/ cos(ψ) cos(φ)/ cos(ψ) cos(φ)/ cos(ψ)

RaptorX-Angle 0.7111/0.7576 0.6585/0.7103 0.6539/0.6979

SPIDER2 0.6893/0.7427 0.6485/0.7095 0.6299/0.6761

SPINE X 0.6410/0.6543 0.5015/0.4891 0.4990/0.5039

ANGLOR 0.4775/0.6226 0.4437/0.5868 0.4431/0.5772

have different degrees of difficulty for the torsion angle

prediction. In Table 4, we examine the MAE performance

for each of 20 amino acid types. Glycine, with no side-

chain atom except for a proton, has least steric restric-

tion to backbone dihedral angle motions. As a result,

it has the largest prediction error (43.32° / 39.59° for

φ/ψ). In contrast, Proline has the least MAE (8.84°) for

φ but has an unusually large MAE (33.00°) for ψ pre-

diction due to its special side-chain structure, which is

consistent with [24]. In addition, three of the amino

acids (Ile, Leu and Val) with the smallest MAE are all

hydrophobic.

Mean absolute error performance for different protein classes

After studying on MAE performance in microcosmic

view, we intend to study the performance for different

macroscopical structures. We abstract 99, 117, 171, 117

proteins from VL1267 (resulted in 17696, 24874, 47304

and 19645 residues) in all α, all β , α/β and α + β

classes, respectively. We calculate the absolute error for

every residue in each class. Figure 4 shows the vio-

lin plot of prediction error for φ (Left) and ψ (Right).

A violin plot is similar to box plot except that it also

shows the probability density of the data. We can see

although the MAE for φ are smaller for all protein

classes, prediction errors belong to each protein class have

their own distribution pattern and the pattern is similar

between φ and ψ . Overall, prediction errors are small-

est in all α proteins and largest in all β for both φ and ψ

predictions.

Estimating confidence score of predicted angles

Generally, variance σ 2 includes variance within cluster σ 2
w

and variance between cluster σ 2
b . To produce the con-

fidence score of our predicted angles, we calculate the

standard deviation from variances within a cluster. Specif-

ically, for each cluster k, we can get the in-cluster variance

σ 2
k
(θ) from training data, where θ = φ or ψ . Then we

derive the variance of prediction by:
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Table 3 Mean absolute error of four methods for different secondary structural regions on three benchmarks: TS1267, 85 CASP11

targets and 40 CASP12 targets

(°) Phi Psi Phi_H Psi_H Phi_E Psi_E Phi_C Psi_C

TS1267

RaptorX-Angle 18.08 26.68 8.35 12.98 18.24 20.94 27.88 44.11

SPIDER2 18.57 28.02 8.59 14.52 19.28 23.09 28.28 44.73

SPINE X 20.31 34.05 9.32 16.69 22.23 31.23 30.32 53.42

ANGLOR 24.01 43.59 9.29 26.41 27.47 40.88 36.89 62.72

CASP11

RaptorX-Angle 20.00 30.14 9.49 15.65 18.82 23.58 29.87 46.89

SPIDER2 20.18 30.32 9.53 16.05 19.77 24.50 29.88 46.84

SPINE X 24.85 46.58 13.57 29.65 26.25 43.65 33.88 63.49

ANGLOR 25.69 46.17 9.99 27.72 28.08 43.85 37.96 64.03

CASP12

RaptorX-Angle 20.69 32.73 9.28 16.73 19.94 26.06 31.22 51.02

SPIDER2 21.13 34.17 9.13 17.19 21.35 28.56 31.95 52.76

SPINE X 24.85 46.57 11.52 26.34 26.98 46.04 35.85 65.33

ANGLOR 25.79 47.37 9.69 28.81 29.11 44.79 38.65 65.74

Same notations with Table 1

var(θ) = σ 2(θ) =

K∑

k=1

pkσ
2
k (θ)

Figure 5 shows the mean standard deviation for φ and

ψ in different regions. As expected, the smallest variance

appears in helix region, and then strand and lastly coil

region. The standard deviation in disordered regions are

rather large and quite similar to coil regions, which is con-

sistent with our prior knowledge that disordered region

resembles loop region and is rather flexible.

Figure 6 demonstrates the relationship between MAE

and mean standard deviation for φ and ψ in different

regions on VL1267. Roughly, the relationship is linear

(R2 = 0.8911). So the MAE can be bounded well by

the standard deviation. We predict the error for each

residue in each target from TS1267 and calculate corre-

sponding Pearson and Spearman correlation coefficients

(PCC and SCC) between prediction errors and true errors,

and also the mean absolute error for prediction errors

(MAEPE). Finally, we obtain PCC = 0.3109, SSC =

0.5427,MAEPE = 13.94 for φ and PCC = 0.2597, SCC =

0.4751,MAEPE = 26.21 for ψ . We also try to fit two

linear models for φ and ψ separately on the all data

points in VL1267 and get similar testing results. This

indicates that the mean for different secondary struc-

tural regions almost contains enough information about

the relationship between the estimated standard deviation

and prediction error (Additional file 1: S2.6).

Fig. 3Mean absolute error performance for different clusters in VL1267. Left: visualization of 20 cluster centers on the Ramachandran plot with

smaller number indicating smaller size. Right: mean absolute error for different clusters
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Table 4 Mean absolute error performance for each amino acid

type in VL1267

Amino acids Abundance Frequency(%) φ( ° ) ψ ( ° )

A (Ala) 22527 8.46 13.87 22.92

C (Cys) 3151 1.18 20.50 28.66

D (Asp) 15946 5.99 20.71 30.80

E (Glu) 18326 6.89 14.75 23.97

F (Phe) 10812 4.06 18.13 26.10

G (Gly) 19133 7.19 43.32 39.59

H (His) 5989 2.25 22.04 31.12

I (Ile) 15302 5.75 12.79 20.12

K (Lys) 15299 5.75 16.71 25.83

L (Leu) 24731 9.29 12.49 21.37

M (Met) 5833 2.19 16.71 24.86

N (Asn) 11383 4.28 27.38 32.04

P (Pro) 11977 4.50 8.84 33.00

Q (Gln) 10163 3.82 15.96 24.72

R (Arg) 13529 5.08 16.81 25.45

S (Ser) 15991 6.01 20.83 33.92

T (Thr) 14309 5.38 17.12 30.92

V (Val) 18612 6.99 13.70 20.94

W (Trp) 3854 1.45 18.05 27.61

Y (Tyr) 9287 3.49 18.83 27.02

Total 266154 100 18.32 27.15

Computational cost analysis

All mentioned methods could do angle prediction target

by target, so the computational cost is bounded by the

longest protein (i.e., protein with the largest number of

residues). To generate angle predictions for 1xdoA, the

largest protein in TS1267 with 685 residues, it takes 726s,

123s, 370s and 524s for ANGLOR, spineX, SPIDER2 and

RaptorX-Angle, respectively.

As far as we see, the computational cost is mainly deter-

mined by method outline, network complexity, feature

engineering and technical resources. ANGLOR is a com-

posite method and the technology was not so developed

at that time, it needs the most time. While spineX just

adopted a simple network, SPIDER2 used more features

iteratively in a more complex network and it takes longer

than spineX.

Compared with the second best SPIDER2, RaptorX-

Angle used much deeper networks and also adopted

profile information from hhblits (PSFM), besides PSSM

from PSI-BLAST harnessed by spineX and SPIDER2. As

a result, it takes SPIDER2 360s to generate features with 4

CPUs and 20s to predict angles using a CPU, while it takes

RaptorX-Angle 385s to generate features with 4 CPUs, and

200s to predict angles from the features using a GPU card.

However, we can integrate the features of a total

batch of proteins and run them all at once. Actually,

it just takes 750s to do angle prediction for all pro-

teins in TS1267, while other methods needs many CPUs

in parallel. Overall, our method is faster for predic-

tion of many proteins and has gained better prediction

accuracy.

Discussion
We have transformed the hard real-valued prediction

problem into a discrete label assignment problem, which

has simplified the problem and also gained better results.

Overall, our RaptorX-Angle gains the best PCC in terms

of cosine and sine of angles on all datasets. It has

about 0.5° and 1.4° for φ and ψ better MAE than the

second best method SPIDER2 on a subset of PDB25.

We have also calculated the two-state accuracy to see

how much improvement there would be in large angle

errors. RaptorX-Angle performs the best and has about

0.15 and 1 percent improvement over SPIDER2 for φ

and ψ on TS1267(See Additional file 1: S2.5). Our

method also works very well on the CASP targets.

Fig. 4Mean absolute error performance for different protein classes in VL1267. Left: for φ prediction. Right: for ψ prediction
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Fig. 5Mean standard deviation for different secondary structural

regions in TS1267

Moreover, we have estimated the prediction errors at

each residue by a mixture of the clusters with their

predicted probabilities. It has been shown that there is

approximately linear relationship between the real pre-

diction error and in-cluster standard deviation. That is

a unique feature of our method. In addition, we check

the prediction for disordered regions. As there is no

angle information, we just analyze the standard devia-

tion and get quite large values and similar patterns to

coil region. It is consistent with our prior knowledge

that disordered region is rather flexible and resembles

loop region. We also do comprehensive studies on pre-

diction performance in VL1267, both in microscopic and

macroscopic view.

This simple technique has gained better performance

than other state-of-art methods. It demonstrates that for

Fig. 6 Relationship betwee n prediction error and standard deviation.

Eight points are for two kinds of angles (φ,ψ) in four secondary

structural regions (total, helix, strand, coil)

protein structures, the 20 clusters contain enough infor-

mation for (φ,ψ) , which is an efficient compression of

information. The idea that to predict dihedral angles from

clustering has turned out to be successful due to three

aspects. The first is the continuous growth of the solved

structures [52], so we have enough training data. The

second is the novel idea to predict real-value angles by

mixing a set of clusters with their respective predicted

probabilities. Conversely, such good performance demon-

strated that the distribution of protein backbone dihedral

angles can be described through a set of clusters. Last

but not the least, the everlasting development of deep

learning models and optimization methods proves to be

a powerful tool to promote new ideas and exploit new

methods.

But there is still room for improvement. RaptorX-Angle

just used one-dimensional features and adopted 1D CNN.

It cannot extract information of long range interaction.

Heffernan et al. has developed more accurate SPIDER3

employing Long Short-Term Memory (LSTM) Bidirec-

tional Recurrent Neural Networks (BRNNs), which are

capable of capturing long range interactions [53]. That

is, considering pairwise interaction can further increase

prediction accuracy.We will include two-dimensional fea-

tures and exploit 2D CNN to see how much improvement

could be achieved.

Moreover, as mentioned before, accumulation of pre-

diction errors has buried the usefulness of torsion angles

to construct 3D models. There is a great demand to

develop a proper technique to deal with the errors. A gen-

eral pipeline to add angle restraints and confidence to

improve protein tertiary structure prediction need to be

developed.

Conclusions
In conclusion, this study has made a more reliable predic-

tion of dihedral angles and may facilitate protein struc-

ture prediction and functional study. In the near future,

we can use the angle restraints to do tertiary struc-

ture prediction, which should be considered carefully

to deal with errors and flexibility. We can also adopt

the angle prediction to aid structure alignment and fold

recognition.
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