
Under review as a conference paper at ICLR 2018

REAL-VALUED (MEDICAL) TIME SERIES GENERA-
TION WITH RECURRENT CONDITIONAL GANS

Anonymous authors
Paper under double-blind review

ABSTRACT

Generative Adversarial Networks (GANs) have shown remarkable success as a
framework for training models to produce realistic-looking data. In this work, we
propose a Recurrent GAN (RGAN) and Recurrent Conditional GAN (RCGAN) to
produce realistic real-valued multi-dimensional time series, with an emphasis on
their application to medical data. RGANs make use of recurrent neural networks
(RNNs) in the generator and the discriminator. In the case of RCGANs, both of
these RNNs are conditioned on auxiliary information. We demonstrate our models
in a set of toy datasets, where we show visually and quantitatively (using sample
likelihood and maximum mean discrepancy) that they can successfully generate
realistic time-series. We also describe novel evaluation methods for GANs, where
we generate a synthetic labelled training dataset, and evaluate on a real test set
the performance of a model trained on the synthetic data, and vice-versa. We
illustrate with these metrics that RCGANs can generate time-series data useful
for supervised training, with only minor degradation in performance on real test
data. This is demonstrated on digit classification from ‘serialised’ MNIST and by
training an early warning system on a medical dataset of 17,000 patients from an
intensive care unit. We further discuss and analyse the privacy concerns that may
arise when using RCGANs to generate realistic synthetic medical time series data,
and demonstrate results from differentially private training of the RCGAN.

1 INTRODUCTION

Access to data is one of the bottlenecks in the development of machine learning solutions to domain-
specific problems. The availability of standard datasets (with associated tasks) has helped to advance
the capabilities of learning systems in multiple tasks. However, progress appears to lag in other fields,
such as medicine. It is tempting to suggest that tasks in medicine are simply harder - the data more
complex, more noisy, the prediction problems less clearly defined. Regardless of this, the dearth of
data accessible to researchers hinders model comparisons, reproducibility and ultimately scientific
progress. However, due to the highly sensitive nature of medical data, its access is typically highly
controlled, or require involved and likely imperfect de-identification. The motivation for this work
is therefore to exploit and develop the framework of generative adversarial networks (GANs) to
generate realistic synthetic medical data. This data could be shared and published without privacy
concerns, or even used to augment or enrich similar datasets collected in different or smaller cohorts
of patients. Moreover, building a system capable of synthesizing realistic medical data implies
modelling the processes that generates such information, and therefore it can represent the first step
towards developing a new approach for creating predictive systems in medical environments.

Beyond the utility to the machine learning research community, such a tool stands to benefit the
medical community for use in training simulators. In this work, we focus on synthesising real-valued
time-series data as from an Intensive Care Unit (ICU). In ICUs, doctors have to make snap decisions
under time pressure, where they cannot afford to hesitate. It is already standard in medical training
to use simulations to train doctors, but these simulations often rely on hand-engineered rules and
physical props. Thus, a model capable of generating diverse and realistic ICU situations could have
an immediate application, especially when given the ability to condition on underlying ‘states’ of the
patient.

1

Under review as a conference paper at ICLR 2018

The success of GANs in generating realistic-looking images (Radford et al., 2015; Ledig et al.,
2016; Gauthier, 2014; Reed et al., 2016) suggests their applicability for this task, however limited
work has exploited them for generating time-series data. In addition, evaluation of GANs remains a
largely-unsolved problem, with researchers often relying on visual evaluation of generated examples,
an approach which is both impractical and inappropriate for multi-dimensional medical time series.
For example (Vondrick et al., 2016) present a method to use convolutional GANs specifically designed
to generate video sequences, and the results were visually evaluated with Amazon Mechanical Turk.
In (Oord et al., 2016a), authors present a method for voice synthesis based on dilated convolutions,
which is also evaluated by humans. This voice synthesis model has been very recently improved by
introducing an RNN-based network that generates the spectrogram of the signal (Shen et al., 2017).

The primary contributions of this work are:

1. Demonstration of a method to generate multivariate real-valued sequences using adversarial
training and recurrent neural networks.

2. Showing novel approaches for evaluating GANs.

3. Generating synthetic medical time series data.

4. Empirical privacy analysis of both GANs and differential private GANs.

2 RELATED WORK

Since their inception in 2014 (Goodfellow et al., 2014), the GAN framework has attracted significant
attention from the research community, and much of this work has focused on image generation (Rad-
ford et al., 2015; Ledig et al., 2016; Gauthier, 2014; Reed et al., 2016). Notably, (Choi et al., 2017)
designed a GAN to generate synthetic electronic health record (EHR) datasets. These EHRs contain
binary and count variables, such as ICD-9 billing codes, medication, and procedure codes. Their focus
on discrete-valued data and generating snapshots of a patient is complementary to our real-valued,
time series focus. Future work could combine these approaches to generate multi-modal synthetic
medical time-series data.

The majority of sequential data generation with GANs has focused on discrete tokens useful for
natural language processing (Yu et al., 2016), where an alternative approach based on Reinforcement
Learning (RL) is used to train the GAN. We are aware of only one preliminary work using GANs to
generate continuous-valued sequences, which aims to produce polyphonic music using a GAN with
LSTM generator and discriminator (Mogren, 2016). The primary differences are architectural: we do
not use a bidirectional discriminator, and outputs of the generator are not fed back as inputs at the
next time step. Moreover, we introduce also a conditional version of this Recurrent GAN.

Conditional GANs (Mirza & Osindero, 2014; Gauthier, 2014) condition the model on additional
information and therefore allow us to direct the data generation process. This approach has been
mainly used for image generation tasks (Radford et al., 2015; Mirza & Osindero, 2014; Antipov et al.,
2017). Recently, Conditional GAN architectures have been also used in natural language processing,
including translation (Yang et al., 2017) and dialogue generation (Li et al., 2017), where none of
them uses an RNN as the preferred choice for the discriminator and, as previously mentioned, a RL
approach is used to train the models due to the discrete nature of the data.

In this work, we also introduce some novel approaches to evaluate GANs, using the capability of
the generated synthetic data to train supervised models. In a related fashion, a GAN-based semi-
supervised learning approach was introduced in (Salimans et al., 2016). However, our goal is to
generate data that can be used to train models for tasks that are unknown at the moment the GAN is
trained.

We briefly explore the use of differentially private stochastic gradient descent (Abadi et al., 2016) to
produce a RGAN with stronger privacy guarantees, which is especially relevant for sensitive medical
data. An alternate method would be to use the PATE approach (Papernot et al., 2016) to train the
discriminator. In this case, rather than introducing noise into gradients (as in (Abadi et al., 2016)),
a student classifier is trained to predict the noisy votes of an ensemble of teachers, each trained on
disjoint sets of the data.

2

Under review as a conference paper at ICLR 2018

3 MODELS: RECURRENT GAN AND RECURRENT CONDITIONAL GAN

The model presented in this work follows the architecture of a regular GAN, where both the generator
and the discriminator have been substituted by recurrent neural networks. Therefore, we present
a Recurrent GAN (RGAN), which can generate sequences of real-valued data, and a Recurrent
Conditional GAN (RCGAN), which can generate sequences of real-value data subject to some
conditional inputs. As depicted in Figure 1a, the generator RNN takes a different random seed at each
time step, plus an additional input if we want to condition the generated sequence with additional
data. In Figure 1b, we show how the discriminator RNN takes the generated sequence, together with
an additional input if it is a RCGAN, and produces a classification as synthetic or real for each time
step of the input sequence.

Specifically, the discriminator is trained to minimise the average negative cross-entropy between its
predictions per time-step and the labels of the sequence. If we denote by RNN(X) the vector or
matrix comprising the T outputs from a RNN receiving a sequence of T vectors {xt}Tt=1 (xt ∈ Rd),
and by CE(a,b) the average cross-entropy between sequences a and b, then the discriminator loss
for a pair {Xn,yn} (with Xn ∈ RT×d and yn ∈ {1, 0}T) is:

Dloss(Xn,yn) = −CE(RNND(Xn),yn)

For real sequences, yn is a vector of 1s, or 0s for synthetic sequences. In each training minibatch, the
discriminator sees both real and synthetic sequences.

The objective for the generator is then to ‘trick’ the discriminator into classifying its outputs as
true, that is, it wishes to minimise the (average) negative cross-entropy between the discriminator’s
predictions on generated sequences and the ‘true’ label, the vector of 1s (we write as 1);

Gloss(Zn) = Dloss(RNNG(Zn), 1) = −CE(RNND(RNNG(Zn)), 1)
Here Zn is a sequence of T points {zt}Tt=1 sampled independently from the latent/noise space Z,
thus Zn ∈ RT×m since Z = Rm. Initial experimentation with non-independent sampling did not
indicate any obvious benefit, but would be a topic for further investigation.

In this work, the architecture selected for both discriminator and generator RNNs is the
LSTM (Hochreiter & Schmidhuber, 1997).

In the conditional case (RCGAN), the inputs to each RNN are augmented with some conditional
information cn (for sample n, say) by concatenation at each time-step;

znt → [znt; cn] xnt → [xnt; cn]

In this way the RNN cannot discount the conditional information through forgetting.

Promising research into alternative GAN objectives, such as the Wasserstein GAN (Arjovsky et al.,
2017; Gulrajani et al., 2017) unfortunately do not find easy application to RGANs in our experiments.
Enforcing the Lipschitz constraint on an RNN is a topic for further research, but may be aided by use
of unitary RNNs (Arjovsky et al., 2016; Hyland & Rätsch, 2017).

All models and experiments were implemented in python with scikit-learn (Pedregosa et al., 2011)
and Tensorflow (Abadi et al., 2015), and the code is available in a public git repository: ANON.

3.1 EVALUATION

Evaluating the performance of a GAN is challenging. As illustrated in (Theis et al., 2015) and (Wu
et al., 2016), evaluating likelihoods, with Parzen window estimates (Wu et al., 2016) or otherwise
can be deceptive, and the generator and discriminator losses do not readily correspond to ‘visual
quality’. This nebulous notion of quality is best assessed by a human judge, but it is impractical and
costly to do so. In the imaging domain, scores such as the Inception score (Salimans et al., 2016)
have been developed to aid in evaluation, and Mechanical Turk exploited to distribute the human
labour. However, in the case of real-valued sequential data, is not always easy or even possible to
visually evaluate the generated data. For example, the ICU signals with which we work in this paper,
could look completely random to a non-medical expert.

Therefore, in this work, we start by demonstrating our model with a number of toy datasets that can
be visually evaluated. Next, we use a set of quantifiable methods (description below) that can be used
as an indicator of the data quality.

3

ANON

Under review as a conference paper at ICLR 2018

ge
ne

ra
to

r

LS
TM

Z: latent/noise space
 latent/noise space
 latent/noise space
 latent/noise space
 latent/noise space
 latent/noise space

ge
ne

ra
te

d
sa

m
pl

e
conditional

inputs

(a) The generator RNN takes a different random seed
at each temporal input, and produces a synthetic signal.
In the case of the RCGAN, it also takes an additional
input on each time step that conditions the output.

di
sc

rim
in

at
or

LS
TM

re
al

 o
r

ge
ne

ra
te

d
sa

m
pl

e

vote

re
al

 o
r

fa
ke

?

conditional
inputs

(b) The discriminator RNN takes real/synthetic se-
quences and produces a classification into real/synthetic
for each time step. In the case of the RCGAN, it also
takes an additional input on each time step that condi-
tions the output.

Figure 1: Architecture of Recurrent GAN and Conditional Recurrent GAN models.

3.1.1 MAXIMUM MEAN DISCREPANCY

We consider a GAN successful if it implicitly learns the distribution of the true data. We assess
this by studying the samples it generates. This is the ideal setting for maximum mean discrepancy
(MMD) (Gretton et al., 2007), and has been used as a training objective for generative moment
matching networks (Li et al., 2015). MMD asks if two sets of samples - one from the GAN, and one
from the true data distribution, for example - were generated by the same distribution. It does this by
comparing statistics of the samples. In practice, we consider the squared difference of the statistics
between the two sets of samples (the MMD2), and replace inner products between (functions of)
the two samples by a kernel. Given a kernel K : X × Y → R, and samples {xi}Ni=1, {yj}Mj=1, an
unbiased estimate of MMD2 is:

M̂MD
2

u =
1

n(n− 1)

n∑
i=1

n∑
j 6=i

K(xi, xj)−
2

mn

n∑
i=1

m∑
j=1

K(xi, yj) +
1

m(m− 1)

m∑
i=1

m∑
j 6=i

K(yi, yj)

Defining appropriate kernels between time series is an area of active research. However, much
of the challenge arises from the need to align time series. In our case, the generated and real
samples are already aligned by our fixing of the ‘time’ axis. We opt then to treat our time series
as vectors (or matrices, in the multidimensional case) for comparisons, and use the radial basis
function (RBF) kernel using the squared `2-norm or Frobenius norm between vectors/matrices;
K(x, y) = exp(−‖x− y‖2/(2σ2)). To select an appropriate kernel bandwidth σ we maximise the
estimator of the t-statistic of the power of the MMD test between two distributions (Sutherland et al.,

2016); t̂ = M̂MD
2

√
V̂

, where V is the asymptotic variance of the estimator of MMD2. We do this using

a split of the validation set during training - the rest of the set is used to calculate the MMD2 using
the optimised bandwidth. Following (Sutherland et al., 2016), we define a mixed kernel as a sum
of RBF kernels with two different σs, which we optimise simultaneously. We find the MMD2 to
be more informative than either generator or discriminator loss, and correlates well with quality as
assessed by visualising.

3.1.2 TRAIN ON SYNTHETIC, TEST ON REAL (TSTR)

We propose a novel method for evaluating the output of a GAN when a supervised task can be defined
on the domain of the training data. We call it “Train on Synthetic, Test on Real” (TSTR). Simply
put, we use a dataset generated by the GAN to train a model, which is then tested on a held-out set
of true examples. This requires the generated data to have labels - we can either provide these to a
conditional GAN, or use a standard GAN to generate them in addition to the data features. In this
work we opted for the former, as we describe below. For using GANs to share synthetic ‘de-identified’

4

Under review as a conference paper at ICLR 2018

data, this evaluation metric is ideal, because it demonstrates the ability of the synthetic data to be used
for real applications. We present the pseudocode for this GAN evaluation strategy in Algorithm 1.

Algorithm 1 (TSTR) Train on Synthetic, Test on Real

1: train, test = split(data)
2: discriminator, generator = train_GAN(train)
3: with labels from train:
4: synthetic = generator.generate_synthetic(labels)
5: classifier = train_classifier(synthetic, labels)
6: If validation set available, optionally optimise GAN over classifier performance.
7: with labels and features from test:
8: predictions = classifier.predict(features)
9: TSTR_score = score(predictions, labels)

Train on Real, Test on Synthetic (TRTS): Similar to the TSTR method proposed above, we can
consider the reverse case, called “Train on Real, Test on Synthetic” (TRTS). In this approach, we
use real data to train a supervised model on a set of tasks. Then, we use the RCGAN to generate a
synthetic test set for evaluation. In the case (as for MNIST) where the true classifier achieves high
accuracy, this serves to act as an evaluation of the RCGAN’s ability to generate convincing examples
of the labels, and that the features it generates are realistic. Unlike the TSTR setting however, if the
GAN suffers mode collapse, TRTS performance will not degrade accordingly, so we consider TSTR
the more interesting evaluation.

4 LEARNING TO GENERATE REALISTIC SEQUENCES

To demonstrate the model’s ability to generate ‘realistic-looking’ sequences in controlled environ-
ments, we consider several experiments on synthetic data. In the experiments that follow, unless
otherwise specified, the synthetic data consists of sequences of length 30. We focus on the non-
conditional model RGAN in this section.

4.1 SINE WAVES

The quality of generated sine waves are easily confirmed by visual inspection, but by varying the
amplitudes and frequencies of the real data, we can create a dataset with nonlinear variations. We
generate waves with frequencies in [1.0, 5.0], amplitudes in [0.1, 0.9], and random phases between
[−π, π]. The left of Figure 2a shows examples of these signals, both real and generated (although
they are hard to distinguish).

We found that, despite the absence of constraints to enforce semantics in the latent space (as in (Chen
et al., 2016)), we could alter the frequency and phase of generated samples by varying the latent
dimensions, although the representation was not ‘disentangled’, and one dimension of the latent space
influenced multiple aspects of the signal.

At this point, we tried to train a recurrent version of the Variational Autoencoder (VAE) (Kingma &
Welling, 2013) with the goal of comparing its performance with the RGAN. We tried the implemen-
tation proposed in (Fabius & van Amersfoort, 2014), which is arguably the most straightforward
solution to implement a Recurrent Variational Autoencoder (RVAE). It consists of replacing the
encoder and decoder of a VAE with RNNs, and then using the last hidden state of the encoder RNN
as the encoded representation of the input sequence. After performing the reparametrization trick,
the resulting encoded representation is used to initialize the hidden state of the decoder RNN. Since
in this simple dataset all sequences are of the same length, we also tried an alternative approach in
which the encoding of the input sequence is computed as the concatenation of all the hidden states of
the encoder RNN. Using these architechtures, we were only capable of generating sine waves with
inconsistent amplitudes and frequencies, with a quality clearly inferior than the ones produced by the
RGAN. The source code to reproduce these experiments is included in the git repository mentioned
before. We believe that this approach needs further research, specially for the task of generating

5

Under review as a conference paper at ICLR 2018

Accuracy
Real 0.991 ± 0.001
TSTR 0.975 ± 0.002
TRTS 0.988 ± 0.005

Table 1: Scores obtained by a convolutional neural network when: a)
trained and tested on real data, b) trained on synthetic and tested on
real data, and c) trained on real and tested on synthetic. In all cases,
early stopping and (in the case of the synthetic data) epoch selection
were determined using a validation set.

labeled data that will be presented later in this paper, which we also failed to accomplish with the
RVAE so far.

4.2 SMOOTH FUNCTIONS

Sine waves are simple signals, easily reproduced by the model. In our ultimate medical application,
we wish the model to reproduce complex physiological signals which may not follow simple dynamics.
We therefore consider the harder task of learning arbitrary smooth signals. Gaussian processes offer a
method to sample values of such smooth functions. We use a RBF kernel with to specify a GP with
zero-valued mean function. We then draw 30 equally-spaced samples. This amounts to a single draw
from a multivariate normal distribution with covariance function given by the RBF kernel evaluated
on a grid of equally-spaced points. In doing so, we have specified exactly the probability distribution
generated the true data, which enables us to evaluate generated samples under this distribution. The
right of Figure 2a shows examples (real and generated) of this experiment. The main feature of the
real and generated time series is that they exhibit smoothness with local correlations, and this is
rapidly captured by the RGAN.

Because we have access to the data distribution, in Figure 3 we show how the average (log) likelihood
of a set of generated samples increases under the data distribution during training. This is an imperfect
measure, as it is blind to the diversity of the generated samples - the oft-observed mode collapse, or
‘Helvetica Scenario’ (Goodfellow et al., 2014) of GANs - hence we prefer the MMD2 measure (see
Figure 3). It is nonetheless encouraging to observe that, although the GAN objective is unaware of
the underlying data distribution, the likelihood of the generated samples improves with training.

4.3 MNIST AS A TIME SERIES

The MNIST hand-written digit dataset is ubiquitous in machine learning research. Accuracy on
MNIST digit classification is high enough to consider the problem ‘solved’, and generating MNIST
digits seems an almost trivial task for traditional GANs. However, generating MNIST sequentially is
less commonly done (notable examples are PixelRNN (Oord et al., 2016b), and the serialisation of
MNIST in the long-memory RNN literature (Le et al., 2015)). To serialise MNIST, each 28 × 28
digit forms a 784-dimensional vector, which is a sequence we can aim to generate with the RGAN.
This gives the added benefit of producing samples we can easily assess visually.

To make the task more tractable and to explore the RGAN’s ability to generate multivariate sequences,
we treat each 28x28 image as a sequence of 28, 28-dimensional outputs. We show two types of

sine waves smooth signals

(a) Examples of real (coloured, top) and generated
(black, lower two lines) samples.

re
al

 M
N

IS
T

ba
d

RG
AN

 s
am

pl
es

go
od

 R
G

AN
 s

am
pl

es

(b) Left top: real MNIST digits. Left bottom: unrealistic
digits generated at epoch 27. Right: digits with minimal
distortion generated at epoch 100.

Figure 2: RGAN is capable of generating realistic-looking examples.

6

Under review as a conference paper at ICLR 2018

lo
g-

lik
el

ih
oo

d

Figure 3: Trace of generator (dotted), dis-
criminator (solid) loss, MMD2 score and log
likelihood of generated samples under the
data distribution during training for RGAN
generating smooth sequences (output in Fig-
ure 2a.)

Figure 4: Back-projecting
training examples into the
latent space and linearly in-
terpolating them produces
smooth variation in the sam-
ple space. Top plot shows
sample-space distance from
top (green, dashed) sample
to bottom (orange, dotted).
Distance measure is RBF
kernel with bandwidth cho-
sen as median pairwise dis-
tance between training sam-
ples. The original training
examples are shown in dot-
ted lines in the bottom and
second-from-top plots.

experiment with this dataset. In the first one, we train a RGAN to generate MNIST digits in this
sequential manner. Figure 2b demonstrates how realistic the generated digits appear.

For the second experiment, we downsample the MNIST digits to 14x14 pixels, and consider the first
three digits (0, 1, and 2). With this data we train a RCGAN and subsequently perform the TSTR
(and TRTS) evaluations explained above, for the task of classifying the digits. That is, for the TSTR
evaluation, we generate a synthetic dataset using the GAN, using the real training labels as input. We
then train a classifier (a convolutional neural network) on this data, and evaluate its performance on
the real held-out test set. Conversely, for TRTS we train a classifier on the real data, and evaluate it
on a synthetic test dataset generated by the GAN. Results of this experiment are show in Table 1. To
obtain error bars on the accuracies reported, we trained the RCGAN five times with different random
initialisations. The TSTR result shows that the RCGAN generates synthetic datasets realistic enough
to train a classifier which then achieves high performance on real test data. The TRTS result shows
that the synthetic examples in the test set match their labels to a high degree, given the accuracy of
the classifier trained on real data is very high.

5 LEARNING TO GENERATE REALISTIC ICU DATA

One of the main goals of this paper is to build a model capable of generating realistic medical datasets,
and specifically ICU data. For this purpose, we based our work on the recently-released Philips eICU
database1. This dataset was collected by the critical care telehealth program provided by Philips.
It contains around 200,000 patients from 208 care units across the US, with a total of 224,026,866
entries divided in 33 tables.

From this data, we focus on generating the four most frequently recorded, regularly-sampled variables
measured by bedside monitors: oxygen saturation measured by pulse oximeter (SpO2), heart rate
(HR), respiratory rate (RR) and mean arterial pressure (MAP). In the eICU dataset, these variables
are measured every five minutes. To reduce the length of the sequences we consider, we downsample
to one measurement every fifteen minutes, taking the median value in each window. This greatly
speeds up the training of our LSTM-based GAN while still capturing the relevant dynamics of the
data (see Figure 6 in the appendix.)

In the following experiments, we consider the beginning of the patient’s stay in the ICU, considering
this a critical time in their care. We focus on the first 4 hours of their stay, which results in 16
measurements of each variable. While medical data is typically fraught with missing values, in this
work we circumvented the issue by discarding patients with missing data (after downsampling). After
preprocessing the data this way, we end up with a cohort of 17,693 patients. Most restrictive was the
requirement for non-missing MAP values, as these measurements are taken invasively.

1https://eicu-crd.mit.edu/

7

https://eicu-crd.mit.edu/

Under review as a conference paper at ICLR 2018

5.1 TSTR TASKS IN EICU

The data generated in a ICU is complex, so it is challenging for non-medical experts to spot patterns
or trends on it. Thus, one plot showing synthetic ICU data would not provide enough information
to evaluate its actual similarity to the real data. Therefore, we evaluate the performance of the ICU
RCGAN using the TSTR method.

To perform the TSTR evaluation, we need a supervised task (or tasks) on the data. A relevant question
in the ICU is whether or not a patient will become ‘critical’ in the near future - a kind of early
warning system. For a model generating dynamic time-series data, this is especially appropriate, as
trends in the data are likely most predictive. Based on our four variables (SpO2, HR, RR, MAP) we
define ‘critical thresholds’ and generate binary labels of whether or not that variable will exceed the
threshold in the next hour of the patient’s stay - that is, between hour 4 and 5, since we consider
the first four hours ‘observed’. The thresholds are shown in the columns of Table 2a. There is no
upper threshold for SpO2, as it is a percentage with 100% denoting ideal conditions. These critical
thresholds were selected as follows: starting from rough healthy ranges for adults, we compared with
the distributions in our data (ICU patients are not healthy), selected several candidate values for each
cutoff, and then ran a grid search over these cutoffs to determine tasks which were sufficiently easy
for a random forest (assessed using F1 score). The reasoning here was to ensure that the task would
be possible given real data, and to provide a strong baseline against the synthetic data.

As for MNIST, we ‘sample’ labels by drawing them from the real data labels, and use these as
conditioning inputs for the RCGAN. This ensures the label distribution in the synthetic dataset and
the real dataset is the same, respecting the fact that the labels are not independent (a patient is unlikely
to simultaneously suffer from high and low blood pressure).

Following Algorithm 1, we train the RCGAN for 1000 epochs, saving one version of the dataset every
50 epochs. Afterwards, we evaluate the synthetic data using TSTR. We use cross validation to select
the best synthetic dataset based on the classifier performance, but since we assume that it might be
also used for unknown tasks, we use only 3 of the 7 tasks of interest to perform this cross validation
step (denoted in italics in Table 2a). The results of this experiment are presented in Table 2a, which
compares the performance achieved by a random forest classifier that has been trained to predict the 7
tasks of interest, in one experiment with real data and in a different experiment with the synthetically
generated data.

6 IS THE GAN JUST MEMORISING THE TRAINING DATA?

One explanation for the TSTR performance in MNIST and eICU could be that the GAN is simply
"memorising" the training data and reproducing it. If this were the case, then the (potentially private)
data used to train the GAN would be leaked, raising privacy concerns when used on sensitive medical
data. It is key that the training data for the model should not be recoverable by an adversary. In
addition, while the typical GAN objective incentivises the generator to reproduce training examples,
we hope that it does not overfit to the training data, and learn an implicit distribution which is peaked
at training examples, and negligible elsewhere.

To answer this question we perform three tests - one qualitative, two statistical, outlined in the
following subsections. While these evaluations are empirical in nature, we still believe that the
proposed and tested privacy evaluation measures can be very useful to quickly check privacy properties
of RGAN generated data – but without strong privacy guarantees.

6.1 COMPARING THE DISTRIBUTION OF RECONSTRUCTION ERRORS

To test if the generated samples look "too similar" to the training set, we could generate a large
number of samples and calculate the distance to the nearest neighbour (in the training set) to each
generated sample. We could compare the distribution of these distances with those comparing the
generated samples and a held-out test set. However, to get an accurate estimate of the distances, we
may need to generate many samples, and correspondingly calculate many pairwise distances. Instead,
we intentionally generate the nearest neighbour to each training (or test) set point, and then compare
the distances.

8

Under review as a conference paper at ICLR 2018

SpO2 < 95 HR < 70 HR > 100

AUROC
real 0.9587± 0.0004 0.9908± 0.0005 0.9919± 0.0002

TSTR 0.88± 0.01 0.96± 0.01 0.95± 0.01

AUPRC
real 0.9059± 0.0005 0.9855± 0.0002 0.9778± 0.0002

TSTR 0.66± 0.02 0.90± 0.02 0.84± 0.03
random 0.16 0.26 0.18

RR < 13 RR > 20 MAP < 70 MAP > 110

AUROC
real 0.9735± 0.0001 0.963± 0.001 0.9717± 0.0001 0.960± 0.001

TSTR 0.86± 0.01 0.84± 0.02 0.875± 0.007 0.87± 0.04

AUPRC
real 0.9557± 0.0002 0.891± 0.001 0.9653± 0.0001 0.8629± 0.0007

TSTR 0.73± 0.02 0.50± 0.06 0.82± 0.02 0.42± 0.07
random 0.26 0.1 0.39 0.05

(a) Performance of random forest classifier for eICU tasks when trained with real data and when trained with
synthetic data (test set is real), including random prediction baselines. AUPRC stands for area under the
precision-recall curve, and AUROC stands for area under ROC curve.

SpO2 < 95 HR < 70 HR > 100
AUROC TSTR (DP) 0.861± 0.006 0.86± 0.02 0.90± 0.01

AUPRC
TSTR (DP) 0.61± 0.01 0.76± 0.04 0.76± 0.03

random 0.16 0.27 0.16

RR < 13 RR > 20 MAP < 70 MAP > 110
AUROC TSTR (DP) 0.85± 0.01 0.85± 0.02 0.789± 0.005 0.85± 0.02

AUPRC
TSTR (DP) 0.71± 0.02 0.46± 0.03 0.70± 0.01 0.28± 0.03

random 0.26 0.09 0.39 0.05

(b) Performance of random forest classifier trained on synthetic data generated by differentially private GAN,
tested on real data. In each replicate, the GAN was trained with (ε, δ) differential privacy for ε = 1 and
δ ∈ [3.55× 10−12, 2.26× 10−9]

Table 2: TSTR results on eICU tasks using normal (a) and differentially private (b) training. In
both cases, epoch from which data is generated was selected using a validation set, considering
performance on a subset of the tasks (SpO2 < 95, HR > 100, and RR < 13, denoted in italics). For
details on the differentially private setting, see section 7.

We generate these nearest neighbours by minimising the reconstruction error between target y and
the generated point; Lrecon(y)(Z) = 1 − K(G(Z), y) where K is the RBF kernel described in
Section 3.1.1, with bandwidth σ chosen using the median heuristic (Bounliphone et al., 2015). We
find Z by minimising the error until approximate convergence (when the gradient norm drops below
a threshold).

We can then ask if we can distinguish the distribution of reconstruction errors for different input
data. Specifically, we ask if we can distinguish the distribution of errors between the training set
and the test set. The intuition is that if the model has "memorised" training data, it will achieve
identifiably lower reconstruction errors than with the test set. We use the Kolmogorov-Smirnov
two-sample test to test if these distributions differ. For the RGAN generating sine waves, the p-value
is 0.2± 0.1, for smooth signals it is 0.09± 0.04, and for the MNIST experiment shown in Figure 2b
it is 0.38 ± 0.06. For the MNIST trained with RCGAN (TSTR results in Table 1), the p-value is
0.57± 0.18. We conclude that the distribution of reconstruction errors is not significantly different
between training and test sets in any of these cases, and that the model does not appear to be biased
towards reconstructing training set examples.

6.2 INTERPOLATION

Suppose that the model has overfit (the implicit distribution is highly peaked in the region of training
examples), and most points in latent space map to (or near) training examples. If we take a smooth
path in the latent space, we expect that at each point, the corresponding generated sample will have
the appearance of the "closest" (in latent space) training example, with little variation until we reach
the attractor basin of another training example, at which point the samples switch appearance.

We test this qualitatively as follows: we sample a pair of training examples (we confirm by eye that
they don’t look "too similar"), and then "back-project" them into the latent space to find the closest
corresponding latent point, as described above. We then linearly interpolate between those latent
points, and produce samples from the generator at each point. Figure 4 shows an example of this

9

Under review as a conference paper at ICLR 2018

procedure using the "smooth function" dataset. The samples show a clear incremental variation
between start and input sequences, contrary to what we would expect if the model had simply
memorised the data.

6.3 COMPARING THE GENERATED SAMPLES

Rather than using a nearest-neighbours approach (as in Section 6.1), we can use the MMD three-
sample test (Bounliphone et al., 2015) to compare the full set of generated samples. With X being the
generated samples, Y and Z being the test and training set respectively, we ask if the MMD between
X and Y is less than the MMD between X and Z. The test is constructed in this way because we
expect that if the model has memorised the training data, that the MMD between the synthetic data
and the training data will be significantly lower than the MMD between the synthetic data and test
data. In this case, the hypothesis that MMD(synthetic, test) ≤MMD(synthetic, train) will be false.
We are therefore testing (as in Section 6.1) if our null hypothesis (that the model has not memorised
the training data) can be rejected. The average p-values we observed were: for the eICU data in
Section 5.1: 0.40±0.05, for MNIST data in Section 4.3: 0.47±0.16, for sine waves: 0.41±0.07, for
smooth signals: 0.07± 0.04, and for the higher-resolution MNIST RGAN experiments in Section 4:
0.59± 0.12 (before correction for multiple hypothesis testing). We conclude that we cannot reject
the null hypothesis that the MMD between the synthetic set and test set is at most as large as the
MMD between the synthetic set and training set, indicating that the synthetic samples do not look
more similar to the training set than they do to the test set.

7 TRAINING RGANS WITH DIFFERENTIAL PRIVACY

Although the analyses described in Section 6 indicate that the GAN is not preferentially generating
training data points, we are conscious that medical data is often highly sensitive, and that privacy
breaches are costly. To move towards stronger guarantees of privacy for synthetic medical data, we
investigated the use of a differentially private training procedure for the GAN. Differential privacy is
concerned with the influence of the presence or absence of individual records in a database. Intuitively,
differential privacy places bounds on the probability of obtaining the same result (in our case, an
instance of a trained GAN) given a small perturbation to the underlying dataset. If the training
procedure guarantees (ε, δ) differential privacy, then given two ‘adjacent’ datasets (differing in one
record) D, D′,

P [M(D) ∈ S] ≤ eεP [M(D′) ∈ S] + δ (1)
whereM(D) is the GAN obtained from training on D, S is any subset of possible outputs of the
training procedure (any subset of possible GANs), and the probability P takes into account the
randomness in the procedureM(D). Thus, differential privacy requires that the distribution over
GANs produced byM must vary ‘slowly’ as D varies, where ε and δ bound this ‘slowness’. Inspired
by a recent preprint (Beaulieu-Jones et al., 2017), we apply the differential private stochastic gradient
descent (DP-SGD) algorithm of (Abadi et al., 2016) to the discriminator (as the generator does not
‘see’ the private data directly). For further details on the algorithm (and the above definition of
differential privacy), we refer to (Abadi et al., 2016) and (Dwork et al., 2006).

In practice, DP-SGD operates by clipping per-example gradients and adding noise in batches. This
means the signal obtained from any individual example is limited, providing differential privacy. Some
privacy budget is ‘spent’ every time the training procedure calculates gradients for the discriminator,
which enables us to evaluate the effective values of ε and δ throughout training. We use the moments
accountant method from (Abadi et al., 2016) to track this privacy spending. Finding hyperparameters
which yield both acceptable privacy and realistic GAN samples proved challenging. We focused on
the MNIST and eICU tasks with RCGAN, using the TSTR evaluation.

For MNIST, we clipped gradients to 0.05 and added Gaussian noise with mean zero and standard
deviation 0.05×2. For ε = 1 and δ ≤ 1.8×10−3, we achieved an accuracy of 0.75±0.03. Sacrificing
more privacy, with ε = 2 and δ ≤ 2.5× 10−4, the accuracy is 0.77±0.03. These results are far below
the performance reported by the non-private GAN (Table 1), highlighting the compounded difficulty
of generating a realistic dataset while maintaining privacy. For comparison, in (Abadi et al., 2016)
they report an accuracy of 0.95 for training an MNIST classifier (on the full task) on a real dataset in
a differentially private manner. (Please note, however, that our GAN model had to solve the more
challenging task of modeling digits as a time series.)

10

Under review as a conference paper at ICLR 2018

1e−23

1e−16

1e−09

1e−02

0 50 100 150 200
epoch

de
lta

epsilon

0.125

0.25

0.5

1

2

Figure 5: Probability of violating ε-
differential privacy (δ) during training,
for different values of ε. Gaussian noise
is added with mean zero and standard
deviation 0.1 × 2. Dotted line shows
δ = 1/|D|, where |D| is the number of
training examples.

For eICU, the results are shown in Table 2b. For this case,
we clipped gradients to 0.1 and added noise with standard
deviation 0.1 × 2. In surprising contrast to our findings
on MNIST, we observe that performance on the eICU
tasks remains high with differentially private training. We
fixed δ < 1/|D|(= 5.65× 10−5) (where |D| = 17693 is
the number of training examples in eICU) for ε = 1 by
limiting to epochs before 64 (see Figure 5). While the
best values for ε and δ ultimately depend on the use-case,
setting δ < 1/|D| is a common heuristic Dwork et al.
(2014).

The true value of δ for the results in Table 2b is lower
because the optimal epoch (assessed using the validation
set) for most replicates was below 30.

Visual assessment of samples generated by the
differentially-private GAN indicate that while it is prone
to producing less-realistic sequences, the mistakes it intro-
duces appear to be unimportant for the tasks we consider.
In particular, the DP-GAN produces more extreme-valued
sequences, but as the tasks are to predict extreme values,
it may be that the most salient part of the sequence is preserved. The possibility to introduce privacy-
preserving noise which nonetheless allows for the training of downstream models suggests interesting
directions of research in the intersection of privacy and GANs.

8 CONCLUSION

We have described, trained and evaluated a recurrent GAN architecture for generating real-valued
sequential data, which we call RGAN. We have additionally developed a conditional variant (RCGAN)
to generate synthetic datasets, consisting of real-valued time-series data with associated labels. As this
task poses new challenges, we have presented novel solutions to deal with evaluation and questions
of privacy. By generating labelled training data - by conditioning on the labels and generating
the corresponding samples, we can evaluate the quality of the model using the ‘TSTR technique‘,
where we train a model on the synthetic data, and evaluate it on a real, held-out test set. We have
demonstrated this approach using ‘serialised’ multivariate MNIST, and on a dataset of real ICU
patients, where models trained on the synthetic dataset achieved performance at times comparable to
that of the real data. In domains such as medicine, where privacy concerns hinder the sharing of data,
this implies that with refinement of these techniques, models could be developed on synthetic data
that are still valuable for real tasks. This could enable the development of synthetic ‘benchmarking’
datasets for medicine (or other sensitive domains), of the kind which have enabled great progress in
other areas. We have additionally illustrated that such a synthetic dataset does not pose a major privacy
concern or constitute a data leak for the original sensitive training data, and that for stricter privacy
guarantees, differential privacy can be used in training the RCGAN with some loss to performance.

REFERENCES

Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig Citro, Greg S.
Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew
Harp, Geoffrey Irving, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath
Kudlur, Josh Levenberg, Dan Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike
Schuster, Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent
Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden, Martin Wattenberg,
Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. URL http://tensorflow.org/. Software available from
tensorflow.org.

Martín Abadi, Andy Chu, Ian Goodfellow, H Brendan McMahan, Ilya Mironov, Kunal Talwar, and
Li Zhang. Deep learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC

11

http://tensorflow.org/

Under review as a conference paper at ICLR 2018

Conference on Computer and Communications Security, pp. 308–318. ACM, 2016.

Grigory Antipov, Moez Baccouche, and Jean-Luc Dugelay. Face aging with conditional generative
adversarial networks. arXiv preprint arXiv:1702.01983, 2017.

Martin Arjovsky, Amar Shah, and Yoshua Bengio. Unitary evolution recurrent neural networks. In
International Conference on Machine Learning, pp. 1120–1128, 2016.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. 26 January 2017.

Brett K. Beaulieu-Jones, Zhiwei Steven Wu, Chris Williams, and Casey S. Greene. Privacy-preserving
generative deep neural networks support clinical data sharing. bioRxiv, 2017. doi: 10.1101/159756.
URL https://www.biorxiv.org/content/early/2017/07/05/159756.

Wacha Bounliphone, Eugene Belilovsky, Matthew B Blaschko, Ioannis Antonoglou, and Arthur
Gretton. A test of relative similarity for model selection in generative models. 14 November 2015.

Xi Chen, Yan Duan, Rein Houthooft, John Schulman, Ilya Sutskever, and Pieter Abbeel. InfoGAN: In-
terpretable representation learning by information maximizing generative adversarial nets. 12 June
2016.

Edward Choi, Siddharth Biswal, Bradley Malin, Jon Duke, Walter F Stewart, and Jimeng Sun.
Generating multi-label discrete electronic health records using generative adversarial networks.
19 March 2017.

Cynthia Dwork, Krishnaram Kenthapadi, Frank McSherry, Ilya Mironov, and Moni Naor. Our data,
ourselves: Privacy via distributed noise generation. In Eurocrypt, volume 4004, pp. 486–503.
Springer, 2006.

Cynthia Dwork, Aaron Roth, et al. The algorithmic foundations of differential privacy. Foundations
and Trends R© in Theoretical Computer Science, 9(3–4):211–407, 2014.

Otto Fabius and Joost R van Amersfoort. Variational recurrent auto-encoders. arXiv preprint
arXiv:1412.6581, 2014.

Jon Gauthier. Conditional generative adversarial nets for convolutional face generation. Class Project
for Stanford CS231N: Convolutional Neural Networks for Visual Recognition, Winter semester,
2014(5):2, 2014.

Ian J Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial networks. 10 June 2014.

Arthur Gretton, Karsten M Borgwardt, Malte Rasch, Bernhard Schölkopf, and Alex J Smola. A
kernel method for the two-sample-problem. In Advances in neural information processing systems,
pp. 513–520, 2007.

Ishaan Gulrajani, Faruk Ahmed, Martin Arjovsky, Vincent Dumoulin, and Aaron Courville. Improved
training of wasserstein GANs. 31 March 2017.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Stephanie L Hyland and Gunnar Rätsch. Learning unitary operators with help from u (n). In AAAI
2017, 2017.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Quoc V Le, Navdeep Jaitly, and Geoffrey E Hinton. A simple way to initialize recurrent networks of
rectified linear units. arXiv preprint arXiv:1504.00941, 2015.

Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic single
image super-resolution using a generative adversarial network. arXiv preprint arXiv:1609.04802,
2016.

12

https://www.biorxiv.org/content/early/2017/07/05/159756

Under review as a conference paper at ICLR 2018

Jiwei Li, Will Monroe, Tianlin Shi, Alan Ritter, and Dan Jurafsky. Adversarial learning for neural
dialogue generation. arXiv preprint arXiv:1701.06547, 2017.

Yujia Li, Kevin Swersky, and Richard Zemel. Generative moment matching networks. 10 February
2015.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Olof Mogren. C-RNN-GAN: Continuous recurrent neural networks with adversarial training.
29 November 2016.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves,
Nal Kalchbrenner, Andrew Senior, and Kavukcuoglus Koray. Wavenet: A generative model for
raw audio. arXiv preprint arXiv:1609.03499, 2016a.

Aaron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural networks.
arXiv preprint arXiv:1601.06759, 2016b.

Nicolas Papernot, Martín Abadi, Úlfar Erlingsson, Ian Goodfellow, and Kunal Talwar. Semi-
supervised knowledge transfer for deep learning from private training data. arXiv preprint
arXiv:1610.05755, 2016.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay. Scikit-learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825–2830, 2011.

Alec Radford, Luke Metz, and Soumith Chintala. Unsupervised representation learning with deep
convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434, 2015.

Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt Schiele, and Honglak
Lee. Generative adversarial text to image synthesis. In Proceedings of The 33rd International
Conference on Machine Learning, volume 3, 2016.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Radford, and Xi Chen.
Improved techniques for training GANs. 10 June 2016.

Jonathan Shen, Ruoming Pang, Ron J. Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, RJ Skerry-Ryan, Rif A. Saurous, Yannis Agiomyrgiannakis, and
Yonghui Wu. Natural tts synthesis by conditioning wavenet on mel spectrogram predictions, 2017.

Dougal J Sutherland, Hsiao-Yu Tung, Heiko Strathmann, Soumyajit De, Aaditya Ramdas, Alex
Smola, and Arthur Gretton. Generative models and model criticism via optimized maximum mean
discrepancy. 14 November 2016.

Lucas Theis, Aäron van den Oord, and Matthias Bethge. A note on the evaluation of generative
models. 5 November 2015.

Carl Vondrick, Hamed Pirsiavash, and Antonio Torralba. Generating videos with scene dynamics. In
Advances In Neural Information Processing Systems, pp. 613–621, 2016.

Yuhuai Wu, Yuri Burda, Ruslan Salakhutdinov, and Roger Grosse. On the quantitative analysis of
Decoder-Based generative models. 14 November 2016.

Zhen Yang, Wei Chen, Feng Wang, and Bo Xu. Improving neural machine translation with conditional
sequence generative adversarial nets. arXiv preprint arXiv:1703.04887, 2017.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu. SeqGAN: Sequence generative adversarial nets
with policy gradient. 18 September 2016.

13

Under review as a conference paper at ICLR 2018

APPENDIX

90

95

100
Sp

O2
original data 15min resolution 30min resolution

50

100

HR

10
20
30

RR

15 75 135 195 255

50

100

M
AP

15 75 135 195 255 15 75 135 195 255
minutes after admission

Figure 6: Data from three real
eICU patients (purple, blue, gold)
of the first five hours after admis-
sion. Noise from N (0, σ2

e) for
σe = 0.1σ has been added to pro-
tect privacy, where σ is the stan-
dard deviation of the true data (for
that variable). We compare the data
at its original sampling resolution
with downsampled to one measure-
ment every 15 minutes (the setting
used in this paper) and 30 min-
utes. High-frequency fluctuations
are lost through downsampling, but
general trends and some variabil-
ity are preserved in the 15 minute
case. These patients were selected
randomly from the set of patients
with minimal missing data during
the time period and so are represen-
tative of the cohort used to generate
the training data.

90

100

Sp
O2

50

100

HR

10
20
30

RR

15 75 135 195
50

100

M
AP

synthetic samples

minutes after admission

Figure 7: Three random samples from the
generator trained on eICU data. These sam-
ples are from the synthetic datasets used in the
TSTR experiments in section 5.1. The gen-
erator produces data in [−1, 1], so to obtain
medically relevant values, the inverse of the
scaling transformation used on the training
data has been applied. This transformation
was to scale each variable at each time-point
independently to the range [−1, 1]. An unusu-
ally high value (likely an artefact) in the mean
arterial pressure at 135 minutes after admis-
sion is responsible for the apparent downward
spike in the generated data.

14

Under review as a conference paper at ICLR 2018

-0.9
-0.3
0.3
0.9

Sp
O2

real synthetic

-0.9
-0.3
0.3
0.9

HR

-0.9
-0.3
0.3
0.9

RR

15 75 135195
-0.9
-0.3
0.3
0.9

M
AP

15 75 135195
minutes after admission

data in [-1, 1]

(a) Real and synthetic data in the
range [−1, 1]. A scaling transforma-
tion T is applied to the real data (in-
dependently for each variable at each
timepoint), and the synthetic data is
as produced by the generator.

5.0
35.0
65.0
95.0

Sp
O2

real synthetic

9.0
63.0

117.0
171.0

HR

7.8
55.0

102.0
149.2

RR

15 75 135195
-29.6
92.8

215.2
337.6

M
AP

15 75 135195
minutes after admission

medical scale

(b) Real and synthetic data in medi-
cally meaningful units. For the real
data, this is its original form. The
synthetic data receives the inverse
of the transformation T , producing
some apparent discontinuities.

88.6
92.2
95.8
99.4

Sp
O2

real synthetic

35.0
65.0
95.0

125.0

HR

6.5
15.5
24.5
33.5

RR

15 75 135195
35.2
66.8
98.2

129.8

M
AP

15 75 135195
minutes after admission

medical scale, zoomed

(c) Figure 8b zoomed into the re-
gions of most variation. That SpO2
is integer-valued in the original data
is now apparent.

Figure 8: Marginal distributions for each variable at each timepoint: Colour intensity shows the
fraction of samples at that time point falling within a bin of values (25 bins over the full range)
for that variable. Each subfigure shows the same data under different transformations (to and from
[−1, 1]), and zooming in. The synthetic data consists of the generated datasets from all five replicates
of the TSTR experiment in eICU described in section 5.1 with TSTR results reported in Table 2a.
The real data is the training set for those expeirments.

0 50 100
SpO2

0.0

0.1

0.2

0.3

de
ns

ity

real
synthetic

0 100
HR

0.000

0.005

0.010

0.015

0.020

0.025

0 100
RR

0.00

0.02

0.04

0.06

0.08

0 200
MAP

0.000

0.005

0.010

0.015

0.020

0.025
(a) Over the full
range of real val-
ues.

90 95 100
SpO2

0.0

0.1

0.2

0.3

0.4

0.5

de
ns

ity

real
synthetic

50 100
HR

0.00

0.01

0.02

0.03

10 20 30
RR

0.00

0.05

0.10

0.15

50 100
MAP

0.00

0.01

0.02

0.03

0.04 (b) Zoomed in
on the regions of
most variation.

Figure 9: Histograms comparing the marginal distributions of each eICU variable (over all timepoints)
between synthetic and real data. The synthetic data is that used in the TSTR experiments (five
replicates) in section 5.1.

15

	Introduction
	Related Work
	Models: Recurrent GAN and Recurrent Conditional GAN
	Evaluation
	Maximum Mean Discrepancy
	Train on Synthetic, Test on Real (TSTR)

	Learning to generate realistic sequences
	Sine waves
	Smooth functions
	MNIST as a Time Series

	Learning to generate realistic ICU data
	TSTR tasks in eICU

	Is the GAN just memorising the training data?
	Comparing the distribution of reconstruction errors
	Interpolation
	Comparing the generated samples

	Training RGANs with differential privacy
	Conclusion

