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Real-World Applications for Brain–Computer
Interface Technology

Melody M. Moore

Abstract—The mission of the Georgia State University BrainLab is
to create and adapt methods of human–computer interaction that will
allow brain–computer interface (BCI) technologies to effectively control
real-world applications. Most of the existing BCI applications were
designed largely for training and demonstration purposes. Our goal is to
research ways of transitioning BCI control skills learned in training to
real-world scenarios. Our research explores some of the problems and
challenges of combining BCI outputs with human–computer interface
paradigms in order to achieve optimal interaction. We utilize a variety of
application domains to compare and validate BCI interactions, including
communication, environmental control, neural prosthetics, and creative
expression. The goal of this research is to improve quality of life for those
with severe disabilities.

Index Terms—Assistive technology, augmentive and assistive commu-
nication (AAC), brain–computer interface (BCI), direct-brain interface
(DBI), environmental control, locked-in syndrome, neural prosthetics.

I. INTRODUCTION

Although significant progress has been made in researching
brain–computer interface technologies in recent years, the applications
controlled by these interfaces have largely been designed for training
or demonstration purposes. The Georgia State University (GSU)
BrainLab is devoted to researching and developing interaction tech-
niques that will allow BCIs to be effective in real-world applications.
To this end, we employ and compare a variety of underlying BCI
signal-processing and translation techniques.

The overall goal of the GSU BrainLab is to determine which
paradigms of human–computer interaction are optimal for direct con-
trol of a computer using brain signals. We aim to provide a significant
quality-of-life improvement to users with severe disabilities as well
as studying ways to utilize BCIs for able-bodied users. The BrainLab
currently has ongoing projects in several BCI and assistive-technology
areas: user interface control paradigms, subject training and biofeed-
back, creative expression, and quality-of-life applications including
assistive communication and environmental control.

There are many challenges inherent in employing BCI control for
real-world tasks. These challenges can be generalized into several cat-
egories.

1) Information transfer rate(“bandwidth”)—Even the best av-
erage information transfer rates for experienced subjects and
well-tuned BCI systems are relatively low, in the vicinity of
24 b (roughly three characters)/min [1]. This is too slow for
natural interactive conversation, so we are researching ways of
optimizing selection techniques and incorporating prediction
mechanisms to speed communication.

2) High error rate—A significant complicating factor in the slow
information transfer rate of BCI users is the high probability of
errors. Brain signals are highly variable, and this problem is ex-
acerbated in severely disabled users by fatigue, medications, and
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medical conditions such as seizures or spasms. Self-reporting er-
rors is also extremely difficult, particularly if the subject has little
or no communication channel outside of the BCI system itself.
Devising methods of quickly resolving or preventing errors is
critical to successful BCI interaction.

3) Autonomy—Ideally, a communication system for a person with
severe disabilities should be completely controlled by its user.
Unfortunately BCI systems require extensive assistance from
caretakers who need to apply electrodes or signal-receiving de-
vices before a user can communicate. Furthermore, most BCI
systems aresystem-initiated, meaning that the user cannot turn
them on and off independently. This results in what is termed
the “Midas touch” problem—the BCI system interprets all brain
activity as input, so how can the user communicate the intent to
control the system? A BCI user may be able to perform a se-
lection to turn the BCI system off, but turning it back on again
is an issue. We are exploring the possibility of hybrid systems,
combinations of different BCI techniques, and other biometric
interfaces to address this problem.

4) Cognitive load—Most BCI systems are tested in quiet laboratory
environments, where users are able to concentrate on the task
at hand with minimal distractions. BCI users in the real world
have to deal with much more complex situations, including the
cognitive load of the task being performed, emotional responses,
interactions with other people, and possibly even safety consid-
erations. We are studying the effects of cognitive load on the effi-
cacy of BCI controls in order to determine whether BCI’s could
be used for in-home everyday living situations.

II. BACKGROUND AND RELATED WORK

The general intent of most BCIs is to operate a device or application
by detecting small differences in brain signals. Therefore, almost every
BCI system includes a set of tasks or capabilities that a user can influ-
ence by changing aspects of selected brain signals or from evoked re-
sponses. Typical tasks intended for subject training include positioning
a cursor, tracking a moving object, or selecting a target. Once these
skills are acquired, the subject can progress to applications that perform
real-world tasks such as communication, controlling the environment,
or moving prosthetic limbs.

A. Communication

Restoring communication is a top priority for people with severe
disabilities such as locked-in syndrome, in which the person is com-
pletely paralyzed and unable to speak. Consequently, BCI researchers
have experimented with several methods of assistive communica-
tion, ranging from simple binary (yes/no) capabilities [2] and iconic
selection applications such as TalkAssist [3], to virtual keyboards
that support spelling. Several approaches to spelling have been de-
veloped. Birbaumeret al. [4], [5] describe a binary speller, dividing
the alphabet in successive halves until the desired letter is selected.
This speller has been used by a locked-in person to compose letters
in a real-world home environment. Wolpawet al. [2] describe a
similar speller, dividing the alphabet into successive fourths instead
of halves. Donchinet al. [6] have developed a method based on the
P300 component of event-related potentials, which allows the user
to select a letter by flashing rows and columns of a two-dimensional
(2-D) alphabet grid to determine the desired letter. Kennedyet al.
have provided locked-in subjects with 2-D cursor navigation to se-
lect letters from a WiViK virtual keyboard [3]. Although each of
these spellers has been shown to work, communication is still slow,
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averaging three letters per minute. The spellers have largely been
used for training by providing prepared words or phrases for the
subject to spell, called copy-spelling. Several of these spellers have
also been used for free-spelling, although measuring the accuracy
of BCI output is difficult and relies on user self-reporting.

B. Environmental Control and Virtual Worlds

Virtual reality has been employed in BCI training systems because
of its relative safety and motivational factors. Bayless [7] describes a
virtual driving environment that tested P300 responses when subjects
encountered a stoplight. Later work includes a virtual apartment which
allows the user to interact with virtual people and objects. Birch and
Mason [8] have used the LS-AFD device to allow users to navigate a
maze by making turning decisions at intersections. Virtual reality can
provide a safe environment for training and tuning neurally controlled
interfaces to real-world devices, such as a power wheelchair. More ex-
perimentation is necessary to determine if skills learned in a virtual-re-
ality setting transfer to real-world scenarios.

C. Neural Prosthetics

Another key application for BCI technology is restoring movement
for people with motor disabilities. Cortical signals have been used to
control a hand orthosis [9], essentially restoring the connection from
the brain to a paralyzed arm. A locked-in subject has also used neural
signals to control a virtual hand [3] in the hopes that simulation would
provide clues to potentially incorporating functional electrical stimula-
tion (FES) into a BCI system to restore movement.

III. M ETHODS

To answer the challenge of adapting BCI technologies for real-world
applications, the GSU BrainLab focuses on studying and creating new
human–computer interaction techniques to improve BCI system per-
formance. The BrainLab currently supports a variety of projects in the
areas of control paradigms, communication and environmental con-
trol, subject training and biofeedback, creative expression, and internet
access.

A. Neural Screen Navigation—New User Interface Control
Paradigms

The aim of this research is to explore the field human–computer
interactions and to identify possibilities for alternate paradigms of
navigating a computer screen using brain signals, in addition to
traditional 2-D spatial navigation (such as cursor movement controlled
by a mouse). One option for increasing accuracy and reducing errors
is logical control, which is movement between targets triggered by a
discrete control signal. We implemented logical control with signals
from a neurotrophic-electrode that had been implanted in the cortex
of a patient [3]. This control was based on frequency thresholding,
or “nudge-and-shove” control [10], which allows several discrete
control signals to be generated from the more or less continuous
neural signal using thresholding. In this scheme, a small increase in
frequency generates one control signal, which may move to the next
icon in a choice list (a “nudge”), whereas a large increase in frequency
generates a different control signal that could move to a completely
different menu or application component (a “shove”). Fig. 1 shows
an offline analysis visualization of neural firing rates during a several
nudges Fig. 1(a) and a shove Fig. 1(b). Thex axis represents time, and
they axis represents increases in the frequency of neural firing rate by
the length of the bar. The light and dark colors represent two different
signal firing patterns.

(a)

(b)

Fig. 1. (a) Small frequency increases (“nudge”). (b) Large frequency increase
(“shove”).

Another approach that we have combined with the nudge-and-shove
paradigm to decrease target selection time and error rate is area cursors
[11]. A large translucent cursor is moved over the screen, and selection
is accomplished when the target is within the boundaries of the cursor.
If more than one target is selected, the area under the cursor is mag-
nified and the cursor can then be moved to the appropriate target. We
have tested area-cursor navigation with offline data and brain-signal
emulation, and the next step is to test it in real time.

B. Aware ’Chair—Communication and Environmental Control

The quality of life of locked-in patients can substantially improve if
they are provided with a way to communicate with friends, family, and
medical personnel, as well as control devices in their environment,
such as the television and radio. In addition to the WiViK keyboard and
the TalkAssist iconic voice synthesis program described in Kennedy
et al. [3], we are exploring the possibilities of prediction to enhance
performance of BCI-controlled applications. TheAware ’Chair
is a context-aware intelligent power wheelchair which integrates
environmental control, communication, and multilevel prediction
based on context and user history. The communication and environ-
mental control systems are informed by environmental sensors, user
history, time of day, medical status, and other information in order
to predictively narrow the selection space, thereby improving user
performance. Fig. 2 shows the environmental control interface from
theAware ’Chair, adapted for nudge-and-shove neural control.

We are currently adapting theAware ’Chair for neural control and
incorporating word, sentence, and life-event prediction algorithms.

C. BrainTrainer—Subject Training

The BrainTrainer project researches the most effective ways of
teaching a person the brain-signal control needed to interact with a
device. The BrainTrainer toolset allows researchers to compose trials
by providing simple tasks, such as targeting, navigation, selection, and
timing, that can be combined to produce an appropriate-level task for a
particular subject. It also allows the researcher to incorporate different
forms of visual and auditory biofeedback. BrainTrainer automatically
instruments the resulting application for data recording such as error
rates, speed, and accuracy of task performance. We are working with
the Neil Squire Foundation [8] on a survey and study to determine
the atomic tasks, benchmarks, and standardized data formats that
BrainTrainer will support.
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Fig. 2. Aware ’Chaircontrol interface.

Fig. 3. Neurally controlled web browser.

D. Neural Art—Biofeedback

The Neural Art project explores different methods of representing
brain signals, both for biofeedback and training purposes and for cre-
ative expression and recreation. The Neural Music program we have
developed translates brain signal and brain-signal patterns directly
to musical instrument device interface (MIDI), allowing for a tonal
representation of the signal. This has been tested in offline analysis
with single unit brain-signal recordings from neurotrophic electrode
patients, mapping the signal frequency to tone. It has also been ported
to Wadsworth’s BCI2000 [12], and we are preparing to test it with
noninvasive (EEG) recording techniques, mapping amplitude changes
in the mu rhythm to tonal changes. We have also incorporated a signal
visualizer, which allows the brain signal to be represented graphically
according to configurable signal characteristics.

E. Neural Internet

Access to the internet opens a myriad of opportunities for those with
severe disabilities, including shopping, entertainment, education, and
possibly even employment. Neural control users cannot control a cursor
with a great degree of precision, so, therefore, the challenge of adapting
a web browser for neural control is in making links—which are spa-
tially organized—accessible. The University of Tuebingen developed a
web browser controller to be used with their thought translation device
[5], but it requires the user to select from an alphabetized list of links,

causing problems if the link names are identical. We have developed a
neurally controlled web browser that serializes the spatial internet in-
terface and allows logical control of a web application [13], [14]. Fig. 3
shows the GSU BrainLab implementation of a neurally controlled web
browser.

IV. CONCLUSION AND FUTURE WORK

The key to moving BCI technology beyond the demonstration stage
is to determine which methods of interaction are the most effective and
to incorporate these into real-world applications. All of the applications
and interaction techniques described have been tested with brain-signal
emulation and offline data, which is sufficient for assuring correct func-
tionality but not sufficient to draw conclusions about the efficacy of the
user interface paradigms. Previously, we worked with invasive tech-
nique (neurotrophic electrode) locked-in patients [3], but their avail-
ability is very low due to illnesses and rapid fatigue. Therefore, we
have expanded our research agenda to include noninvasive techniques,
which will allow us to include other subject populations with disabili-
ties and also able-bodied subjects. Together with the Wolpaw group, we
have begun to study porting these applications to the BCI2000 system
[2] in order to support the use of signals recorded with noninvasive
techniques, e.g., mu and related beta rhythms. We are also collaborating
with researchers at the Neil Squire Foundation to perform experiments
with Mason’s LF-ASD switch [8]. We are in the process of addressing
the following research questions.

1) What existing human-computer interaction paradigms are most
adaptable for brain-signal control? Are there new paradigms that
are even more effective?

2) What are the best mappings for control signals to interaction
techniques or devices?

3) How can we compare the performance of different BCI systems
for use with real-world applications? Can we develop benchmark
applications?

4) What are the best methods of feedback for neural control in a
real-world scenario?

5) To what extent can assistive techniques such as prediction be
incorporated into a BCI to increase performance?

6) How do we assess the usability of a BCI? What factors affect
usability?

Together with our collaborators, we hope to make significant
progress on these questions in the coming years.
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Linear and Nonlinear Methods for
Brain–Computer Interfaces

Klaus-Robert Müller, Charles W. Anderson, and Gary E. Birch

Abstract—At the recent Second International Meeting on Brain–Com-
puter Interfaces (BCIs) held in June 2002 in Rensselaerville, NY, a formal
debate was held on the pros and cons of linear and nonlinear methods in
BCI research. Specific examples applying EEG data sets to linear and non-
linear methods are given and an overview of the various pros and cons
of each approach is summarized. Overall, it was agreed that simplicity is
generally best and, therefore, the use of linear methods is recommended
wherever possible. It was also agreed that nonlinear methods in some appli-
cations can provide better results, particularly with complex and/or other
very large data sets.

Index Terms—Feature spaces, Fisher’s discriminant, linear methods,
mathematical programming machines, support vector machines (SVMs).

I. INTRODUCTION

At the First International Meeting on Brain-Computer Interfaces
(BCIs) held in June 1999 in Rensselaerville, NY [26], there was a
significant amount of discussion around the relative advantages and
disadvantages of using linear and nonlinear methods in the develop-
ment of BCI systems. Therefore, at the recent Second International
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Fig. 1. Simplified functional model of a BCI System adapted from [14].

Meeting on BCIs held in June 2002 in Rensselaerville, NY, a 45-min
debate was held on linear versus nonlinear methods in BCI research.
The debate format involved a moderator and two discussants. K.-R.
Müller from Fraunhofer FIRST.IDA, Berlin, Germany, was the first
discussant and he was assigned the task of representing the point of
view that linear methods should be used. The other discussant, C. W.
Anderson from Colorado State University, Fort Collins, CO, was
assigned the counter position that nonlinear approaches should be
favored.

The Moderator, G. E. Birch from the Neil Squire Foundation, Van-
couver, BC, Canada, started the debate by making a few contextual
observations. In particular, the discussants were asked to clarify which
aspect or component of the BCI system they were referring to when
discussing the pros and cons of a particular method. For instance, in
the simplified model of a BCI system given in Fig. 1, it should be
clear whether a given method was to be used in the feature extractor
or the feature classifier. For instance, an autoregressive (AR) modeling
method might be used in the process of extracting features from the
electroencephalogram (EEG) signal (for example, see [20]). On the
other hand, a nearest neighbor classifier method could be applied in
the feature classification process (for example, see [15]). Whichever
the case, the context in which a given method is being used should be
clearly understood.

In the following two sections, a summary of the discussion related
to the use of linear and nonlinear methods in BCI systems is provided.

II. L INEAR METHODS FORCLASSIFICATION

In BCI research, it is very common to use linear classifiers and this
section argues in favor of them. Although linear classification already
uses a very simple model, things can still go terribly wrong if the under-
lying assumptions do not hold, e.g. in the presence of outliers or strong
noise which are situations very typically encountered in BCI data anal-
ysis. We will discuss these pitfalls and point out ways around them.

Let us first fix the notation and introduce the linear hyperplane clas-
sification model upon which we will rely mostly in the following (cf.
Fig. 2, see e.g. [7]). In a BCI setup, we measurek = 1 . . .N samples
xk, wherex are some appropriate feature vectors inn dimensional
space. In the training data, we have a class label, e.g.yk 2 �1 for each
sample pointxk. To obtain a linear hyperplane classifier

y = sign(w � x+ b) (1)

we need to estimate the normal vector of the hyperplanew and a
thresholdb from the training data by some optimization technique [7].
On unseen datax, i.e., in a BCI session, we fix the parameters (w, b)
and compute a projection of the new data sample onto the direction of
the normalw � x via (1), thus determining what class labely should
be given tox according to our linear model.
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