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Abstract

Conventional cancer clinical trials can be slow and costly, often produce results with limited external validity, and are
difficult for patients to participate in. Recent technological advances and a dynamic policy landscape in the United States
have created a fertile ground for the use of real-world data (RWD) to improve current methods of clinical evidence generation.
Sources of RWD include electronic health records, insurance claims, patient registries, and digital health solutions outside of
conventional clinical trials. A definition focused on the original intent of data collected at the point of care can distinguish
RWD from conventional clinical trial data. When the intent of data collection at the point of care is research, RWD can be gen-
erated using experimental designs similar to those employed in conventional clinical trials, but with several advantages that
include gains in efficient execution of studies with an appropriate balance between internal and external validity. RWD can
support active pharmacovigilance, insights into the natural history of disease, and the development of external control arms.
Prospective collection of RWD can enable evidence generation based on pragmatic clinical trials (PCTs) that support random-
ized study designs and expand clinical research to the point of care. PCTs may help address the growing demands for access
to experimental therapies while increasing patient participation in cancer clinical trials. Conducting valid real-world studies
requires data quality assurance through auditable data abstraction methods and new incentives to drive electronic capture of
clinically relevant data at the point of care.

Real-world data (RWD) is a general term that can be described
as data generated or obtained outside of conventional clinical
trials. A wide range of data elements can be captured in the
real-world setting, including variables on the individual (eg, pa-
tient demographics, physical, and physiologic parameters), the
environment, and clinical outcomes (eg, survival and tumor dy-
namics such as response rate). Sources of real-world data in-
clude insurance claims, patient registries, electronic health
records (EHRs), patient health records, and digital health solu-
tions such as mobile applications and devices, including those
with sensor capabilities (eg, gyroscopic accelerometers). A defi-
nition that focuses on the original intent behind collection of
clinical data can be used to characterize the core characteristics
of RWD (Table 1). Using this framework, purposeful collection of
data at the point of care for research, rather than routine deliv-
ery of health care services, narrows the gap between real-world

and conventional clinical trial data, providing a foundation for
optimal experimental designs that include randomization at
the point of care.

The major contributing factor to the emergence of RWD as a
viable source of clinical evidence has been the recent accelera-
tion in the use of EHRs. As direct conduits into point of care ac-
tivities and transactions, EHRs are practical and scalable tools
for data collection. The driving force behind increased adoption
of EHRs in the United States was the 2009 Health Information
Technology for Economic and Clinical Health (HITECH) Act,
enacted as part of the American Recovery and Reinvestment
Act to promote the adoption and meaningful use of interopera-
ble health information technology systems. HITECH facilitated
adoption of EHRs by making investments in incentive programs
for health care providers and hospitals (1). By 2014, adoption of
EHRs by office-based physicians nearly doubled. Similarly, the
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proportion of nonfederal acute care hospitals reporting EHR use
increased from 13% in 2009 to 76% in 2014 (2).

Leveraging RWD has been of great interest to the US Food
and Drug Administration (FDA). In 2008, the Agency launched
the Sentinel Initiative in response to the FDA Amendments Act
(FDAAA) calling for creation of an active surveillance system for
monitoring the safety of approved drugs and medical products.
Working with several data partners (including insurers, univer-
sities, and hospitals), important surveillance reports have been
generated using data contained in Sentinel’s network of claims
and EHR-related content (3). More recently, the FDA’s Office of
Oncology and Hematology Products launched the Information
Exchange and Data Transformation (INFORMED) initiative, a
multidisciplinary effort that focuses on building technical and
organizational infrastructure in several key areas of big data an-
alytics to explore new pipelines of data from sources such as
EHRs and digital health solutions in making regulatory deci-
sions (4). The enactment of the 21st Century Cures Act in 2016
has paved a new path for the use of RWD to support new prod-
uct indications and postapproval requirements (5).

Opportunities for Using Real-world Evidence in
Cancer Drug Development

Existing FDA regulations offer adequate flexibility for the use of
emerging sources of clinical evidence in making regulatory deci-
sions (6). As a result, efforts for using real-world data should fo-
cus on the development of appropriate study designs and
strategies for acquisition of high-quality data from EHRs. The
experimental principles that have shaped the basic tenets of
biomedical research can be used to assess the role of point-of-
care data in clinical evidence generation and guide the design of
valid real-world studies (7).

Real-world Evidence for Digital Pharmacovigilance

As defined by the World Health Organization, pharmacovigi-
lance encompasses the science and activities related to the de-
tection, assessment, understanding, and prevention of adverse

effects and other drug-related problems (8). The primary mech-
anism employed by regulatory agencies to support postmarket
pharmacovigilance is based on passive surveillance through
analysis of voluntary reports of adverse events by health care
professionals and patients, in addition to required reporting by
pharmaceutical companies (9). Passive reporting has several
limitations and can be influenced by factors unrelated to the in-
trinsic effects of a product such as media attention and the
length of time the product has been on the market.
Establishment of the Sentinel Initiative by the FDA was driven
by the need to create an active surveillance system where RWD
can be proactively interrogated for detection of new safety sig-
nals (10,11). The rapid growth in information technology solu-
tions in recent years provides an opportunity for the
development of an integrated approach based on RWD from
EHRs and patient-generated sources such as mobile applica-
tions and internet search logs for bringing pharmacovigilance
into the digital age (12,13). In randomized clinical trials, web-
based tools designed to capture self-reported symptoms have
been shown to improve survival in patients with advanced can-
cers undergoing treatment, highlighting the value of a digital
framework in identification of adverse events and triggering
mitigation strategies to prevent downstream adverse conse-
quences (14,15). A digital pharmacovigilance system linking
RWD (generated by health care professionals through EHRs and
by individual patients through web and mobile applications) to
clinical investigators and pharmacovigilance scientists in in-
dustry and regulatory agencies can support an active surveil-
lance system capable of rapid deployment of mitigation
strategies once a valid safety signal is detected. The validity of
safety signals in a digital pharmacovigilance system can be de-
termined using data mining techniques, such as proportional
reporting ratios and empirical Bayesian geometric mean scores
already employed by the FDA and other regulatory agencies
(16,17). A digital framework that includes heterogeneous pipe-
lines of real-world data can also take advantage of deep learn-
ing approaches based on artificial intelligence and natural
language processing to supplement insights gained from tradi-
tional data mining methods with computational reasoning to
improve safety signal detection practices (18,19,20).

Table 1. The intended use of point-of-care data at the time of collection is the primary feature informing potential use cases of real-world data
for clinical evidence generation*

Intended use of
data at the time
of collection

Primary sources
of data Potential use cases Challenges

Delivery of rou-
tine health
care services

EHRs and PHRs Development of external control Can primarily support retrospective analyses
Insurance claims
Patient registries

Studying the natural history of disease
Postmarket pharmacovigilance

Limited availability of clinically relevant struc-
tured data elements in EHRs

Digital health
solutions

Hypothesis generation to support design
of prospective clinical trials

Extraction of data from unstructured content
(eg, physician notes and diagnostic reports) is
resource intensive

Requires special procedures for assurance of
data quality

Research EHRs and PHRs
Digital health

solutions

All of the above plus:
Prospective pragmatic clinical trials that

support randomization and other ex-
perimental design principles employed
in conventional clinical trials

Creation of new incentives for capturing clini-
cally relevant structured data elements at the
point of care

Providing appropriate training for community
oncologists to ensure adherence to ethical,
regulatory, and legal standards in conducting
clinical research

*EHR ¼ electronic health record; PHR ¼ patient health record.
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Real-world Evidence as Means of Studying the Natural
History of Disease and Development of External
Controls

Applications supporting FDA approval of a new drug or biologic
product are required to contain data from adequate and well-
controlled clinical investigations (21). Appropriate design of
such studies relies on making accurate assumptions about the
natural history of the disease under investigation. The natural
history of disease depicts the course of a disease from the time
right before its inception to the presymptomatic phase, the dif-
ferent clinically symptomatic stages, and the point where the
patient is cured, chronically disabled, or dead without external
intervention (22). One way of describing this continuum is by
identifying the impact of two types of covariates that influence
the risk of developing asymptomatic disease from a healthy
state (type 1) and progression to the symptomatic stage of dis-
ease (type 2) (23). Our current understanding of the natural his-
tory of disease is largely informed by studies at academic
referral centers, despite the fact that most patients are treated
in community-based medical practices (24). RWD provides an
opportunity to study the covariates that influence the natural
history of disease in settings where the majority of the popula-
tion is under routine monitoring and treatment. For example,
real-world analyses of type 1 covariates responsible for increas-
ing the risk of cancer in healthy individuals can be done
through retrospective extraction of EHR data to characterize pa-
tient and environmental factors influencing disease occurrence.
Retrospective examination of EHR data for characterization of
type 2 covariates can similarly aid in identifying factors
influencing progression of cancer into the symptomatic stage.
These types of studies can inform the design of prospective
clinical trials assessing the impact of cancer screening and early
intervention on patient outcomes.

In clinical study designs such as single-arm trials, the use of
external control data can potentially support the development
of comparative benchmarks for regulatory decision-making, es-
pecially for serious conditions of high unmet medical need such
as advanced malignancies (25). If preliminary clinical evidence
for an anticancer agent in a single-arm trial suggests a substan-
tial treatment effect (for example, tumor response rates of large
magnitude and duration), evaluating outcomes in similar
groups of patients using RWD may provide a reliable assess-
ment of the safety and effectiveness of available therapies for
comparison. Anticancer therapies under the breakthrough ther-
apy designation program are especially appropriate candidates
for considering alternative trial designs that may allow the use
of real-world-derived external control data as primary or sup-
portive evidence for regulatory decisions (26,27).

Progress in genomic sequencing and computational proteo-
mics is uncovering increasing numbers of rare tumor variants
based on somatic mutations, proteomic signatures, and cell sig-
naling pathway alterations of oncogenic potential (28,29,30,31).
When clinical development goals require delineation of disease
outcomes in these rare subsets, retrospective RWD analyses
may be the most practical way of understanding the prognostic
implications of the biomarkers of interest. Therefore, linking
clinical outcomes in RWD repositories to genomic and proteo-
mic profiles for the prognostication and development of exter-
nal control benchmarks is of critical importance and calls for
increasing capacity in big data analytics for optimal interpreta-
tion of rare and complex signatures defined by the computa-
tional outputs of multiomic pipelines.

Observational Real-world Studies

In cancer drug development, randomized clinical trials (RCTs)
are the gold standard for establishing causal relationships and
evaluating the efficacy and safety of new therapies, primarily as
a result of widely implemented procedures governing the
design and conduct of clinical research. Emerging evidence sug-
gests similarities between the results of RCTs and well-
designed observational studies, signaling an opportunity for
building robust methodologies in support of EHR-based obser-
vational research (32,33,34). The results of observational studies
can generate new hypotheses that can be tested in randomized
clinical trials or used as supportive evidence in regulatory deci-
sion-making. Observational real-world studies can accommo-
date assessment of safety and effectiveness of therapies in
patients that are excluded in conventional cancer trials, such as
those with poor performance status, history of prior malignan-
cies, organ dysfunction, or brain metastases. New regulatory
incentives for drug developers for submission of RWD on
patients that are typically excluded in conventional clinical
trials can improve the generalizability of the information on
FDA labels, helping prescribers better tailor their treatment
decisions (35).

Pragmatic Clinical Trials

Prospective real-world studies are similar to pragmatic (also
known as practical) clinical trials (PCTs), clinical studies that are
designed to produce results that uniquely support clinical deci-
sion-making at the point of care (36,37). As the primary instru-
ments for conducting prospective PCTs, EHRs are widely
available conduits into the health care delivery system. The
chain of technological innovations such as structured docu-
mentation and practice management tools in modern EHRs can
power a clinical trial enterprise anchored at the point of care
and digitally connected to patients through emerging techno-
logical solutions such as sensors and mobile applications. With
EHRs supporting the purposeful collection of clinically relevant
data reflecting the true diversity of cancer patients, we can
bring the real-world evidence base to drug development while
driving the focus on improving quality, patient safety, and value
in cancer care delivery (38).

In cancer drug development, PCTs have potential advan-
tages over conventional clinical trials that are typically confined
to specialized centers with adequate resources and economy of
scale to maintain research programs. The low rates of participa-
tion in cancer trials (<5%), especially for minorities, the elderly,
low-income individuals, and those living in rural areas, are clear
indications of the barriers posed by segmentation of clinical re-
search to geographically dispersed sites (39,40,41,42). Indeed,
the recent right-to-try debates do suggest that barriers to gain-
ing convenient access to experimental therapies, rather than
patient preferences, are the prohibitive force behind low partici-
pation in cancer trials (43,44). PCTs allow community oncolo-
gists to assume an active role in clinical research, especially for
late-phase studies where highly controlled experimental condi-
tions for dose finding or drug mechanism explorations are not
needed. PCTs can maintain existing standards in methodologi-
cal, ethical, legal, and regulatory oversight of clinical research
while increasing access to experimental therapies in a safe and
efficient manner. For community oncologists, the incentives
provided by sponsors of PCTs can balance the demands of the
additional time devoted to EHR-based structured data entry.
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Assessing Threats to Internal Validity of Real-
world Clinical Studies

The existing controls that govern the conduct of clinical re-
search, in particular RCTs, focus on creating ideal conditions
supporting assumptions and operations that reduce bias and
augment the internal validity of the studies in order to mini-
mize alternative explanations of treatment effects. However,
factors such as narrow eligibility criteria and differences be-
tween protocol-specified patient care and routine medical prac-
tice have led to deficits in the external validity of conventional
clinical trials (45,46). A balanced approach based on prospective
collection of RWD can protect against common threats to inter-
nal validity while increasing external validity of clinical re-
search to facilitate evidence-based decisions at the point of care
with greater precision (46,48).

Establishing internal validity requires careful assessment of
the design and conduct of clinical studies. This assessment is
done logically, as opposed to statistically, through detailed ex-
amination of the study design and gauging adherence to the ex-
ecution of study procedures (9). In a typical clinical study report,
the materials and methods section outlines the technical and
methodological components of the study design aimed at pro-
tecting internal validity, while the discussion section draws
conclusions on the potential sources of bias influencing inter-
pretation of the study results (49). For clinical studies intended
to support regulatory decisions, quality in execution of study
procedures is explicitly stated by the study sponsor’s attestation
of adherence to good clinical practice guidelines (50).
Additionally, the FDA’s regulatory review process contains sev-
eral measures directed at validating appropriate conduct of clin-
ical research, including site inspections for source document
verification and random audits on data sets to verify accuracy.
These well-established procedures contribute to the FDA’s logi-
cal framework for evaluating threats to internal validity and
confirming the integrity of clinical research studies. For real-
world studies intended to support regulatory decisions, a simi-
lar thread of information can accommodate a comparable ap-
proach for assessing internal validity and estimating the
influence of extraneous factors on treatment effects. Ensuring
the internal validity of real-world studies, in particular in non-
randomized designs, requires controlling for the sources of bias

arising from provider-patient dynamics, data collection and
processing techniques, and variations in practice patterns in re-
gional health care systems (Table 2).

Discussion

The conventional clinical trial enterprise leans heavily toward
producing internally valid clinical studies, often at the expense
of compromising external validity. This has resulted in uncer-
tainties in making evidence-based individualized treatment
decisions and excessive reliance on clinical judgment, which
can introduce variations in practice patterns and cancer care
quality. Furthermore, fragmentation of clinical research to geo-
graphically dispersed sites poses a significant barrier to cancer
clinical trial participation, despite growing demands for patient
access to experimental therapies.

Advances in health information technologies and a dramatic
increase in the adoption of EHRs have created new opportuni-
ties for optimizing and streamlining clinical evidence genera-
tion through collection of RWD. Applying the principles that
have shaped the theoretical foundation of biomedical research
to the experimental design of real-world studies can result in an
appropriate balance between the internal and external validity
of clinical research, enabling more individualized treatment
decisions at the point of care. Prospective PCTs conducted at
the point of care are particularly beneficial for increasing pa-
tient participation in clinical research, bringing new efficiencies
to cancer drug development, and improving the evidentiary
standards used for making decisions regarding the safety and
effectiveness of therapies.

The shortfalls of existing EHRs have been widely discussed
because most systems were primarily designed to support bill-
ing and practice management activities as opposed to clinical
research (51,52). Clinically relevant information is often hard to
retrieve, buried deep in unstructured content such as physician
notes and diagnostic reports. Despite these deficits, methods
based on natural language processing and technology-enabled
abstraction are producing reliable EHR data sets for clinical in-
vestigation that can be used today to support evidence genera-
tion (53,54).

As we carve a path toward the use of real-world evidence as
a means of modernizing clinical research and evidence

Table 2. Potential sources of bias in real-world studies threatening internal validity

Sources of bias Individual Technology System

Arising from Patient-provider dynamics and pa-
tient characteristics

EHRs Trends and influences on the
health care system

Primary type(s) Information bias* influencing
accuracy of data collection
(recall, observer/
interviewer, and reporting
bias)

Information bias* due to variations
in EHR interfaces, data entry
procedures, or data retrieval
methods leading to compromis-
ing data quality

Selection bias due to variation in
access to care affecting sampling
frame

Confounding bias† due to patient
characteristics and
comorbidities

Selection bias§ arising from selec-
tion of patients using EHR diag-
nostic and therapeutic codes

Confounding bias† due to regional
variations in standards of care
or available therapies due to
third-party formulariesCompliance bias‡ due to patient

nonadherence to treatment

*Information bias: erroneous or inaccurate capture of patient variables. EHR ¼ electronic health record.

†Confounding bias: association between treatment and outcome being influenced by the presence of extraneous variables.

‡Compliance bias: variations in patient adherence to planned treatment affecting study outcomes.

§Selection bias: study population not representative of the true distributions in the overall population.
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generation, more focus should be placed on identifying and
addressing organizational barriers. For example, purely techni-
cal solutions aimed at increasing interoperability among EHRs
are critical for efficient health information exchange, but they
are not sufficient for solving the challenges of data capture at
the point of care or leveraging patient-generated data on mobile
applications and devices. Building a scalable framework for
broadening the use of real-world evidence requires organiza-
tional support driven by appropriate incentives for busy oncolo-
gists to provide clinically relevant data at the point of care and
for patients to benefit from sharing their data generated on digi-
tal health platforms outside of the traditionally defined bound-
aries of the health care system.
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