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Abstract: Mental stress is known as a prime factor in road crashes. The devastation of these crashes
often results in damage to humans, vehicles, and infrastructure. Likewise, persistent mental stress
could lead to the development of mental, cardiovascular, and abdominal disorders. Preceding
research in this domain mostly focuses on feature engineering and conventional machine learning
approaches. These approaches recognize different levels of stress based on handcrafted features
extracted from various modalities including physiological, physical, and contextual data. Acquiring
good quality features from these modalities using feature engineering is often a difficult job. Recent
developments in the form of deep learning (DL) algorithms have relieved feature engineering by
automatically extracting and learning resilient features. This paper proposes different CNN and
CNN-LSTSM-based fusion models using physiological signals (SRAD dataset) and multimodal data
(AffectiveROAD dataset) for the driver’s two and three stress levels. The fuzzy EDAS (evaluation
based on distance from average solution) approach is used to evaluate the performance of the
proposed models based on different classification metrics (accuracy, recall, precision, F-score, and
specificity). Fuzzy EDAS performance estimation shows that the proposed CNN and hybrid CNN-
LSTM models achieved the first ranks based on the fusion of BH, E4-Left (E4-L), and E4-Right (E4-R).
Results showed the significance of multimodal data for designing an accurate and trustworthy stress
recognition diagnosing model for real-world driving conditions. The proposed model can also be
used for the diagnosis of the stress level of a subject during other daily life activities.

Keywords: driver stress recognition; multimodal data; deep learning; CNN; LSTM; fuzzy EDAS

1. Introduction

Successful driving activities always require both mental and physical skills [1–3].
Acute stress reduces the driver’s ability to fix hazardous situations, which causes signifi-
cant damage to humans and vehicles every year [4–8]. Dangerous driving situations are
triggered due to human errors, individual factors, and ambiance conditions [9]. According
to the National Motor Vehicle Crash Causation Survey (NMVCCS) in the United States
(US), human errors caused 94% of crashes alone, while vehicle defects, ambiance conditions,
and other factors collectively caused 6% of crashes during 2005–2007 [10]. Human errors
are linked to the driver’s perceptual conditions, so a complete understanding of these
conditions is crucial for preventing traffic accidents.

To detect and diagnose drivers’ different stress levels, physiological, physical, and
contextual information are widely utilized [11]. Moreover, different traditional machine
learning models based on handcrafted feature extraction methods are utilized for the
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classification of stress. Extracting the best features using these approaches is always a chal-
lenging task, as the quality of extracted features has a significant effect on the classification
performance [12]. These approaches are laborious, ad hoc, less robust to noise, and need
thorough skill [13]. To come through these challenges, deep learning models have been
utilized to automatically produce complex nonlinear features reliably [14–16]. In addition
to automatic feature extraction from raw data, these models offer noise robustness and
better classification accuracy [17–19]. Different deep learning algorithms are used in recent
research, e.g., CNN, RNN, DNN, and LSTM.

The models proposed in the current work are based on 1D CNN and hybrid 1D CNN-
LSTM networks. The proposed models are separately trained using multiple physiological
signals (SRAD) and multimodal data (AffectiveROAD) including physiological signals
and other information about the vehicle, driver, and ambiance. Multimodal fusion of data
based on deep learning approaches can be used to develop a precise driver stress level
recognition model with improved performance and reliability.

Contributions of this research study include: (1) proposing 1D CNN and hybrid 1D
CNN-LSTM-based real-world driver stress level recognition models using fused physiolog-
ical signals (SRAD dataset) and fused multimodal data (AffectiveROAD dataset) and (2)
ranking the assessment of the proposed models for the two and three levels of stress based
on the fuzzy EDAS approach.

The organization of this research article is given below. Analysis of the existing stress
recognition models is presented in Section 2. The proposed methodology is elaborated
in Section 3 in terms of datasets, data pre-processing, architectures of the proposed CNN
and hybrid CNN-LSTM models, and the fuzzy EDAS approach. Performance evaluation
of the proposed models is conducted in Section 4. A fuzzy EDAS-based rank estimation
of the proposed models for the driver’s two and three levels of stress is also presented
in this section. Section 5 gives a detailed assessment of the proposed and existing stress
recognition schemes. Finally, Section 6 concludes the paper and gives future directions to
further explore this research area.

2. Related Work

This section provides a review of the existing work in the driver’s stress analysis
domain and underscores the current contribution. Several driver stress level recognition
schemes exist in the literature based on simulated and real-world driving environments.
These schemes can be broadly categorized as conventional machine learning or deep
learning models.

Several machine learning approaches have been proposed for real-world driver mental
stress recognition based on different physiological signals. Dalmeida and Masala [20],
Vargas-Lopez et al. [21], Khowaja et al. [8], Lopez-Martinez et al. [22], Haouij et al. [23],
Chen et al. [4], Ghaderi et al. [24], Zhang et al. [25], and Healey and Picard [26] propose
conventional machine models based on physiological signals obtained from the PhysioNet
SRAD public database [27]. Unlike the previous studies, Rigas et al. [28] presented a real-
world binary stress recognition model based on multimodal data, including physical and
contextual data, in addition to physiological signals. On the other hand, Zontone et al. [29],
Bianco et al. [30], Lee et al. [31], Lanatà et al. [32], and Gao et al. [33] proposed conventional
machine learning models for driver stress recognition based on simulated driving situations.
Lanatà et al. [32] and Lee et al. [31] presented driver stress recognition models based
on multimodal data. Contrary to previous studies, Šalkevicius et al. [34], Rodríguez-
Arce et al. [35], Can et al. [36], Al abdi et al. [37], Betti et al. [38], Siramprakas et al. [39], de
Vries et al. [40], and Sun et al. [41] proposed stress recognition models during controlled,
lab, semi-lab, and physical (such as sitting, standing, and walking) environments. Recent
development in deep learning and machine learning models have shown good results in
various applied domains that can be applied in driver stress detection [42,43].

All the mentioned studies are based on feature engineering techniques, and various
conventional machine learning algorithms were employed to classify levels of stress. How-
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ever, handcrafted features are less robust to noise and subjective changes, and need a
considerable amount of time and hard work [8,13,19,34,35,44]. Moreover, capturing the
features’ sequential nature is difficult due to the absence of explicit features and high
dimensionality despite using complex feature selection methods. Likewise, the dependence
of the model on past observations would make it impractical to process all the information
due to the growing complexity. The feature-level multimodal fusion models proposed by
Chen et al. [4], Healey and Picard [26], Haouij et al. [23], Lee et al. [31], Bianco et al. [30],
Sun et al. [41], and Can et al. [36] mainly concentrate on pattern learning in individual
signals instead of multiple simultaneous signals [18]. Thus, these models are inappropri-
ate to obtain the nonlinear correlation across multiple signals appearing simultaneously.
Various linear and non-linear methods employed in these conventional machine learning
models have not been able to perform the vigorous investigation of such manifold time
series signals [19].

To address the issues faced by conventional machine learning models, deep learning
methods have been introduced. Deep learning models are developed based on signal pre-
processing (noise filtering), designing a particular deep neural network based on the area
of interest, network training, and model testing. Deep learning models learn and classify
raw data using multilayer deep neural networks [45]. The last fully connected (FC) layers
are utilized to obtain the final output. Contrary to feature engineering techniques used in
conventional machine learning approaches, deep learning models automatically produce
steady features [14,15]. Moreover, deep learning models are more robust to noise and
achieve improved classification accuracy [19]. Different deep learning algorithms are used
in recent research, e.g., the recurrent neural network (RNN), deep aeural network (DNN),
LSTM, and CNN. Rastgoo et al. [11], Zhang et al. [46], Kanjo et al. [17], Lim and Yang [47],
Yan et al. [48], Hajinoroozi et al. [49], and Lee et al. [50] presented different deep learning
models to identify different driver states. Rastgoo et al. [11], Kanjo et al. [17], Lim and
Yang [47], and Yan et al. [48] proposed deep learning models based on multimodal data. On
the other hand, the models proposed by Hajinoroozi et al. [49] and Lee et al. [50] are based
on physiological signals only. The stress recognition model proposed by Zhang et al. [46]
is based on facial images only. Apart from driving scenarios, Masood and Alghamdi [51],
Cho et al. [52], Seo et al. [53], Hwang et al. [54], and He et al. [55] proposed stress recog-
nition models based on deep learning techniques and physiological signals in academic,
workplace, and lab settings. Most of these studies including [46,49,50,52–56] are based on
two levels of stress only. Moreover, the schemes presented by [46,50,52,55,56] are based on
images. Likewise, the schemes proposed by [49,52–56] are either based on physiological
signals or a single modality. On the other hand, the model proposed by [11] is based on
multimodal data collected during simulated driving.

The models proposed in this study are based on the fusion of multimodal data collected
during real-world driving (SRAD and AffectiveROAD datasets). Moreover, these models
are based on 1D CNN and 1D CNN-LSTM networks to detect driver’s two (stressed and
relaxed) and three levels (low, medium, and high). The fuzzy EDAS approach is also used to
find the performance ranks of the proposed models based on different classification metrics.

3. Materials and Methods

The proposed unimodal and fusion models for real-world driver stress level recogni-
tion are based on physiological signals and deep learning approaches, such as CNN and
hybrid CNN-LSTM. The proposed models are implemented in the latest MATLAB 2022a
platform. The proposed stress recognition models are based on the fusion of ECG, HR,
HGSR, FGSR, EMG, and RESP signals collected from the PhysioNet SRAD database, and
breathing rate (BR), GSR, BVP, HR, TEMP, ACCEL, posture, and activity data are collected
from AffectiveROAD database. Data input mechanisms used in this research are based on
raw signals. These raw signals are preprocessed to obtain cleaned signals.
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3.1. SRAD Dataset

The ECG, HR, GSR, EMG, and RESP signals analyzed in the current work belong to
the SRAD PhysioNet public database [57]. Experiments were performed while driving a
customized Volvo S70 series station wagon. Five different sensors were used to acquire
physiological signals from the nine drivers during twenty-four drives. The sensors were
connected to an embedded computer through an analog-to-digital converter (ADC). The
ECG sensor was placed using a modified lead II configuration to decrease the motion
artifacts. The EMG sensor was positioned on the shoulder near the trapezius muscle to
record the emotional stress. Two GSR sensors were located on the driver’s sole and palm of
the left foot and hand. Expansion of the chest cavity was used to measure the RESP signals
through an elastic Hall effect sensor fastened around the diaphragm.

All drives comprise rest, highway, and city driving phases on a specific route 31 km in
length in Boston, US. These rest, highway, and city driving phases are assumed to trigger
low, medium, and high levels of stress, respectively. Initially, the drivers are informed
about the travel plan and compliance with certain guidelines regarding the speed limits and
tuning out the radio. To avoid rush hours, all drives were performed in the midmorning
and afternoon. Two rest intervals of 15 min in the parking area were added at the start and
end of each drive to collect the driver’s low-stress baseline. Due to stop-and-go traffic in
the city area, drivers usually observe high-stress situations. After passing the toll booth, the
city road then turns into the highway. Uninterrupted highway driving normally indicates
medium-stress conditions. The trip completes after returning to the starting position using
the same highway and city routes. The total length of all drives varies from 50 to 90 min,
including two 15 min rest intervals.

The dataset contains information about 17 drives, but some drives have incomplete
signals and markers. These incomplete drives are removed from the experiments. Figures 1–5
separately show the ECG, HR, GSR, EMG, and RESP waveforms for the three levels of
stress. The figures show that all five signals have distinct waveforms for the three levels
of stress.

3.2. AffectiveROAD Database

Experiments were performed using wireless sensors networked together inside dif-
ferent cars to collect physiological signals and additional information about the vehicle,
driver, and ambiance. The Zephyr Bio-harness (BH) chest strap was placed on the driver’s
chest to collect HR, breathing rate (BR), posture, and activity information. Two Empatica
E4-Left (E4-L) and E4-Right (E4-R) wearable devices were mounted on the driver’s left
and right arms to capture GSR, BVP, inter-beat interval (IBI), HR, TEMP, and ACCEL
data. The Intel Edison developer kit-based environmental platform was placed in the car’s
rear seat for collecting luminosity, temperature, pressure, and humidity information. A
sound meter and microphone were used to obtain sound amplitude and audio signal. Two
cameras were placed on the windshield of the car to record inside and outside events. A
real-time continuous subjective metric was prepared by an experimenter during each drive
to monitor the driver’s stress level. The stress metric along with two video recordings were
then used by the drivers to correct and validate the experimenter’s ratings.

All drives comprise rest, highway, and city driving phases on a fixed route 31 km
in length in the Grand Tunis area. Fourteen driving experiments were performed by
10 experienced drivers with valid driver’s licenses. Each drive included two 15 min rest
periods at the start and end of the session. The whole experiment normally took about
86 min to travel through the zone, city1, highway, and city2, and then travel back in the
opposite direction to reach the starting point. The rest, highway, and city drives were
supposed to yield low, medium, and high levels of stress, respectively.
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Figure 1. Training graph of the CNN model for the two‐stress class based on the SRAD dataset. Figure 1. Training graph of the CNN model for the two-stress class based on the SRAD dataset.
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Figure 2. Training graph of the CNN model for the two‐stress class based on the BH dataset. Figure 2. Training graph of the CNN model for the two-stress class based on the BH dataset.
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Figure 3. Training graph of the CNN model for the two‐stress class based on the E4‐L dataset. Figure 3. Training graph of the CNN model for the two-stress class based on the E4-L dataset.
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Figure 4. Training graph of the CNN model for the two‐stress class based on the E4‐R dataset. Figure 4. Training graph of the CNN model for the two-stress class based on the E4-R dataset.
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Figure 5. Training graph of the CNN model for the two‐stress class based on the E4‐(L+R) datasets. Figure 5. Training graph of the CNN model for the two-stress class based on the E4-(L+R) datasets.
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3.3. Pre-Processing

Physiological data are normally derived from the human body in the form of low-
amplitude signals with different frequency ranges. These signals are mostly polluted by
different noises and artifacts. To model the driver’s stress levels accurately, it is necessary
to preprocess the ECG, HR, HGSR, FGSR, EMG, and RESP signals first.

ECG signals normally contain different unwanted components including baseline
wander, powerline interference (PLI), and high-frequency EMG noise [58]. Moreover, the
PLI adds 50–60 Hz noise components in ECG signals [59]. Likewise, high-frequency EMG
noise components caused by muscle contractions contaminate the ECG signals [58]. HR
signals are commonly derived from ECG signals, so they inherit some noise and artifacts
from ECG signals. To remove the baseline wander and other artifacts form ECG signals, a
band-pass Butterworth filter (5–15 Hz) was used to eliminate the baseline wander. Similarly,
a finite impulse response (FIR), Notch filter (59–61 Hz), and FIR band-pass filter (1.5–150 Hz)
were used for noise removal. The min–max normalization approach is then utilized to
remove the subject-specific baseline and motion artifacts.

A GSR signal is an effective stress measure that is comparatively less susceptible to
noise [60]. Yet, the authors of [61] used a low-pass filter (4 Hz) and a Gaussian filter for
denoising the GSR signal. These filters are used in this study too to obtain cleaned GSR
signals. The signals are also normalized to the maximum value.

The EMG signal is contaminated by several unwanted signals including motion arti-
facts, PLI, capacitive effects, and ECG artifact signals. In this work, a band-pass Butterworth
filter (0.5–500 Hz) is used to remove the low- and high-frequency noises in the EMG signals.
Likewise, PLI is eliminated using a 60 Hz Notch filter. The min–max normalization is
performed to remove the subject-specific baseline and motion artifacts. EMG signals in the
SRAD dataset were initially collected at a lower sampling frequency of 495 Hz. Although,
the EMG signal contains information up to 450 Hz. As per the Nyquist theorem, at least a
900 Hz sampling frequency is required for the EMG signals.

The RESP signal is normally polluted by different undesirable signals including
baseline wander, PLI, and motion artifacts. To remove high-frequency noise and baseline
signal from the RESP signal, we applied Butterworth high-pass (0.05 Hz) and low-pass
(0.70 Hz) filters, respectively.

3.4. 1D CNN Models

CNN-based models were originally developed to learn the internal representation
of 2D images and then classify them into certain output classes. The same approach
can be utilized for automatic feature learning and classification of time series sequenced
data [62]. A 1D CNN uses several filters to perform 1D convolution (Conv1D) operations
for constructing feature maps from such data. These networks can better match the 1D
characteristic of different physiological signals. Increasing the convolutional layers can help
CNN models to gradually extract unique and vigorous higher-level features. The 1D CNN
models used in this research are based on the signal fusion of the SRAD and AffectiveROAD
datasets for both two-stress and three-stress classes. Thus, all signals in the SRAD dataset
are combinedly trained using the 1D CNN model. The AffectiveROAD dataset consists
of multimodal data collected using BH, E4-L, and E4-R devices. So, different 1D CNN
models are trained using the BH, E4-L, E4-R, E4-(Left+Right) (E4-(L+R)), and BH+E4-(L+R)
datasets. A sliding window approach is used to convert each cleaned signal into equal size
segments. These segments are then fed to a 1D CNN as new training data. The CNN-based
driver stress recognition performs both feature learning and classification tasks.

A 1D CNN architecture is defined using multiple Conv1D blocks each containing con-
volution, ReLU, and layer normalization (LN) layers. One-dimensional CNN architectures
based on SRAD, E4-L, E4-R, E4-(L+R), BH, and BH+E4-(L+R) datasets are shown in Table 1.
The convolution layer utilizes trainable filters (kernels) to convolve the low-level features
of each segment or the previous layer’s output to produce a feature map. The number
of filters in each convolutional block is set differently depending on the dataset. Causal
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padding is used in all convolutional layers to produce outputs with the same length. It
pads the layer’s input with zeros to predict the values of early time steps in the frame.
The convolutional layer is followed by the ReLU layer, which is based on a piecewise
linear function. This function returns output for positive inputs and is zero otherwise, thus
alleviating the vanishing gradient problem [63]. Moreover, the function adds nonlinearity
to the model to learn complex patterns in the data. A GAP layer is added after the four
convolutional blocks to produce a single vector output. This layer finds the average output
of each feature map generated by the convolutional layers and provides a substitute for
the flattening block. The last three layers including FC, softmax, and classification layers
perform the classification task. The vector output of the GAP layer is fed to the FC layer,
which is also known as the hidden layer. The FC layer is used to map the output classes
to a vector of probabilities. The output of the FC layer is utilized by the softmax layer to
perform the final classification decision by allocating probabilities to low, medium, and
high classes of stress. The final classification layer uses a cross-entropy loss function to
evaluate the performance of the classification model. An increase in cross-entropy loss
reflects the divergence of the predicted probability from the actual label and vice versa. The
classification layer assumes the number of classes from the FC and softmax layers.

Table 1. One-dimensional CNN architectures and parameter settings.
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Network’s Training

Before starting the training process, several parameters need to be settled. These
pa-rameters include the training algorithm, mini-batch size, validation frequency, initial
learning rate, and maximum epochs. Parameter settings for different 1D CNN models are
shown in Table 1.

A training algorithm is used to reduce the loss function of a learning model iterative-ly
based on a training dataset. Adaptive moment estimation (Adam) is used as a training
algorithm. It combines the benefits of RMSProp and AdaGrad by calculating the individ-ual
adaptive learning rates based on the parameters estimated for the first and second moments
of gradients. The mini-batch represents a subset of segments used in a single training
iteration. Min-batch size is set to a small value to ensure the uniform distribution and
utilization of the full dataset during a single epoch. The validation frequency repre-sents
the training iterations between evaluations of validation metrics, while training iter-ation
is a single step performed by an optimization algorithm to reduce the loss function for
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a mini-batch. The network’s validation frequency is set to 10. The epoch represents the
maximum iterations completed by the optimization algorithm to reduce the loss function
for the entire dataset. All datasets are divided into 80% for training data and 20% for
vali-dation data.

3.5. Hybrid 1D CNN-LSTM Models

The LSTM is a particular type of RNN developed by Hochreiter and Schmidhuber [64].
It is useful to discover and remember long sequences of data efficiently. Generally, the
LSTM is a chain of repeating cells of neural networks, such as a RNN, but both have
different cell structures. The RNN’s cell consists of a single neural network based on
tangent hyperbolic function, while LSTM’s cell has four interacting neural network layers
based on sigmoid functions and pointwise multiplication operations. The LSTM has several
cells connected to each other horizontally. Information can be added or removed from the
cell state using four different gates. Each LSTM cell consists of an input gate, cell state
gate, forget gate, and output gate. The forget gate is based on the sigmoid function, which
determines which information needs to be forgotten from the cell state. The information is
removed if the gate generates zero output and it is retained if the gate produces one output.
The cell state gate determines the cell state based on the new information. First, the input
gate based on the sigmoid function determines the values to be updated. Next, a vector is
created for the new candidate values by the tangent hyperbolic activation function. The
cell state is updated by combining the results of the two functions. To generate the output
of a cell, the output gate first applies the sigmoid function to the part of a cell state. Next, a
tangent hyperbolic function is applied to the cell state and the resulting value is multiplied
by the output of the sigmoid function.

The hybrid CNN-LSTM model utilizes both 1D CNN and LSTM networks to classify
sequenced data. In such a model, the CNN is used as a front end to extract features from
physiological data followed by the LSTM layers to perform learning and classification tasks.
The hybrid CNN-LSTM model has a similar architecture to the CNN model with additional
LSTM cells after the FC layers. The architecture of the CNN model is already discussed
in the previous section. The hybrid 1D CNN-LSTM architectures based on the SRAD,
BH, E4-L, E4-R, E4-(L+R), and BH+E4-(L+R) datasets are shown in Table 2. Moreover,
parameter settings for the proposed models are also shown in the same table.

3.6. Fuzzy EDAS Approach

The fuzzy EDAS approach is used to evaluate the performance of the proposed real-
world driver stress level detection models based on different modalities. This approach
performs the rank estimation of the proposed models in terms of accuracy, recall, precision,
F-score, and specificity. Fuzzy EDAS is an eight-step process where each step performs
some sort of calculations, which in turn is used by the coming steps, as elaborated below:

Step 1: First, the “solution of the average value (ψ)” is calculated for all matrices, as
shown mathematically in the equation below:

(ψ) = [ψβ]1×δ (1)

where: (
ψβ

)
=

∑x
i=1 Xαβ

x
(2)

The aggregate solution of Equations (1) and (2) can be found as the average value (ψ)
against every criterion’s estimated quantity for each performance metric.
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Table 2. One-dimensional CNN-LSTM architectures and parameter settings.
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SRAD

03

C
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l

1st Bloch: Conv1D (Filters: 8), ReLU, LN
2nd: Bloch: Conv1D (Filters: 32), ReLU, LN
3rd Block: Conv1D (Filters: 64), ReLU, LN
4th Block: Conv1D (Filters: 128), ReLU, LN

Conv1D (8 Filters)
GAP; FC; Softmax; Classification

250 0.4

A
da

m

20
20 30

10

80
:2

0

E4-L 300 0.5 30
10

20
20

E4-R 200 0.5 30
10

20
20

E4-(L+R) Sum of the layers of E4-L and E4-R 200 0.5 30 + 30
10

20 + 20
20

BH

1st Bloch: Conv1D (Filters: 128), ReLU, LN
2nd: Bloch: Conv1D (Filters: 64), ReLU, LN
3rd Block: Conv1D (Filters: 32), ReLU, LN

GAP; Softmax; FC; Classification
200 0.5 80

20
20
20

BH+E4-(L+R) Sum of the layers of BH, E4-L, and E4-R 200 0.5 80 + 30 + 30
15

20 + 20 + 20
20

Step 2: The positive distances from the average (PI) of each signal for the driver’s
each stress level is calculated using the following equation:

PI = [(PI)αβ]δ×δ (3)

The (PI)αβ in Equation (3) is the positive distance of βth model from the average
value for the αth parameter. It can be found using either of two ways. If βth criterion is
more favorable, then it is calculated using the equation below:

(PI)αβ =
Maximum(0, (AVβ

− Xαβ))

AVβ

(4)

On the other hand, if the βth criterion is not favorable, it is calculated by the follow-
ing equation:

(PI)αβ =
Maximum(0, (Xαβ − AVβ

))

AVβ

(5)

Step 3: The negative distances from the average (N I) of each signal for the driver’s
stress level is calculated using the following equation:

(NI) = [ (N I)αβ]δ×δ (6)

The (N I)αβ in Equation (6) is the negative distance of the βth model from the average
value for the αth parameter. It can be found using either of two ways. If the βth criterion is
more favorable, then it is calculated using the equation below:

(N I)αβ =
Maximum(0, (AVβ

− Xαβ))

AVβ

(7)
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On the other hand, if the βth criterion is not favorable, it is calculated by the follow-
ing equation:

(N I)αβ =
Maximum(0, (Xαβ − AVβ

))

AVβ

(8)

Step 4: The weighted sum of (PI)αβ is calculated using the following equation:

(SPI)α = ∑x
β=1 yβ (PI)αβ (9)

The aggregate (PI) is estimated for each signal evaluated using the proposed model
for each stress level.

Step 5: The weighted sum of (N I)αβ is calculated using the following equation:

(SN I)α = ∑x
β=1 yβ (N I)αβ (10)

The aggregate (N I) is estimated for each signal evaluated using the proposed model
for each stress level.

Step 6: The normalized values of (SPI)α and (SN I)α of each signal for the driver’s
stress level are found using the following two equations:

N (SPI)α =
(SPI)α

maximumα

(
(SPI)α

) (11)

N (SN I)α = 1 −
(SN I)α

maximumα

(
(SN I)α

) (12)

Step 7: The appraisal score (λ) of each signal for the driver’s stress level is calculated
using the equation given below:

λα =
1
2
(N(SPI)α − N (SPI)α) (13)

The appraisal score (λα) lies are given as 0 ≤ λα ≤ 1.
Step 8: Each signal for the driver’s stress level is ranked according to the decreasing

values of the appraisal score (λα). Thus, the signal with the lowest appraisal score (λα) for
a particular stress level has the highest performance among the other signals.

4. Results

The SRAD and AffectiveROAD datasets are randomly distributed into two groups,
with 85% and 15% for training and validation, respectively. Results are acquired for the 1D
CNN and 1D CNN-LSTM models trained using the SRAD, BH, E4-L, E4-R, and BH+E4-
(L+R) datasets. A performance assessment of the proposed driver stress recognition models
for the low, medium, and high classes of stress is carried out using different classification
metrics. These performance metrics include accuracy (ACC), recall (RCL), precision (PRC),
F-score (F1), and specificity (SPC).

4.1. Models’ Evaluation for the Two-Stress Class

Results of the proposed driver stress recognition models for the two-stress class are
shown in Table 3. These results are based on the training data obtained from the SRAD
and AffectiveROAD datasets for real-world driving. The training graphs of the proposed
CNN models are shown in Figures 1–6. Similarly, the training graphs of the proposed
hybrid CNN-LSTM models are shown in Figures 7–12. Results show that the BH+E4-(L+R)-
based CNN model outperformed other models based on the SRAD, Bio BH, E4-L, E4-R,
and E4-(L+R) datasets by 2.9%, 6.5%, 9.1%, 7.3%, and 3.25%, respectively, with an overall
validation accuracy of 95.6% for the two-stress class. The proposed BH+E4-(L+R)-based
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hybrid CNN-LSTM model outperformed other models based on SRAD, BH, E4-L, E4-R,
and E4-(L+R) datasets by 4.79%, 1.1%, 7.76%, 5.94%, and 1.94%, respectively, with an overall
validation accuracy of 96.59% for the two-stress class.

Confusion matrices of the proposed CNN and hybrid CNN-LSTM models are shown
in Figures 13 and 14. In Figure 13f, 214 relaxed instances are predicted correctly, while
5 relaxed instances are incorrectly predicted as stressed by the model. Thus, the total correct
prediction for the relaxed class is 97.7%. Similarly, for the stressed class, 291 out of 309 in-
stances are correctly predicted, which amounts to a total accuracy of 94.2% for the stressed
class. In Figure 14f, 233 relaxed instances are predicted correctly, while 15 relaxed instances
are incorrectly predicted as stressed by the model. Thus, the total correct prediction for the
relaxed class is 94%. Similarly, for the stressed class, 277 out of 280 instances are correctly
predicted, which amounts to a total accuracy of 98.9% for the stressed class.

Table 3. Performance analysis of the proposed fusion models for the two-stress class.

Deep
Learning Model Dataset Driver’s

Stress Level

Performance Measure

ACC RCL PRC F1 SPC Overall
ACC

1D CNN

SRAD
Relaxed 0.9271 0.8774 0.9118 0.8942 0.9541

92.7%
Stressed 0.9271 0.9541 0.9350 0.9444 0.8774

BH
Relaxed 0.8909 0.9278 0.8267 0.8743 0.8654

89.1%
Stressed 0.8909 0.8654 0.9454 0.9036 0.9278

E4-L
Relaxed 0.8653 0.8072 0.9394 0.8683 0.9363

86.53%
Stressed 0.8653 0.9363 0.7989 0.8622 0.8073

E4-R
Relaxed 0.8825 0.8636 0.8693 0.8664 0.8974

88.3%
Stressed 0.8825 0.8974 0.8929 0.8951 0.8636

E4-(L+R)
Relaxed 0.9235 0.9776 0.8617 0.916 0.8833

92.35%
Stressed 0.9235 0.8833 0.9815 0.9298 0.9776

BH+E4-(L+R)
Relaxed 0.9564 0.9772 0.9224 0.949 0.9417

95.6%
Stressed 0.9564 0.9417 0.9831 0.962 0.9772

1D CNN-LSTM

SRAD
Relaxed 0.9180 0.9041 0.8742 0.8889 0.9261

91.8%
Stressed 0.9181 0.9261 0.9444 0.9352 0.9041

BH
Relaxed 0.9545 0.9857 0.9079 0.9452 0.9340

95.5%
Stressed 0.9545 0.9340 0.9900 0.9612 0.9857

E4-L
Relaxed 0.8882 0.9007 0.85 0.8746 0.8788

88.83%
Stressed 0.8882 0.8788 0.9206 0.8992 0.9007

E4-R
Relaxed 0.9065 0.9099 0.8649 0.8868 0.9041

90.65%
Stressed 0.9065 0.9041 0.9371 0.9203 0.9099

E4-(L+R)
Relaxed 0.9465 0.9555 0.9328 0.944 0.9384

94.65%
Stressed 0.9465 0.9384 0.9593 0.9487 0.9555

BH+E4-(L+R)
Relaxed 0.9659 0.9395 0.9873 0.9628 0.9893

96.59%
Stressed 0.9659 0.9893 0.9486 0.9685 0.9395
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Figure 6. Training graph of the CNN model for the two‐stress class based on the BH+E4‐(L+R) datasets. Figure 6. Training graph of the CNN model for the two-stress class based on the BH+E4-(L+R) datasets.
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Figure 7. Training graph of the hybrid CNN‐LSTM model for the two‐stress class based on the SRAD dataset. 
Figure 7. Training graph of the hybrid CNN-LSTM model for the two-stress class based on the SRAD dataset.
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Figure 8. Training graph of the hybrid CNN‐LSTM model for the two‐stress class based on the BH dataset. Figure 8. Training graph of the hybrid CNN-LSTM model for the two-stress class based on the BH dataset.
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Figure 9. Training graph of the hybrid CNN‐LSTM model for the two‐stress class based on the E4‐L dataset. Figure 9. Training graph of the hybrid CNN-LSTM model for the two-stress class based on the E4-L dataset.
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Figure 10. Training graph of the hybrid CNN‐LSTM model for the two‐stress class based on the E4‐R dataset. 
Figure 10. Training graph of the hybrid CNN-LSTM model for the two-stress class based on the E4-R dataset.
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Figure 11. Training graph of the hybrid CNN‐LSTM model for the two‐stress class based on the E4‐(L+R) datasets. Figure 11. Training graph of the hybrid CNN-LSTM model for the two-stress class based on the E4-(L+R) datasets.
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Figure 12. Training graph of the hybrid CNN‐LSTM model for the two‐stress class based on the BH+E4‐(L+R) datasets. 

 

Figure 12. Training graph of the hybrid CNN-LSTM model for the two-stress class based on the BH+E4-(L+R) datasets.
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Figure 13. Confusion matrices of the CNN models for the two‐stress class based on: (a) the SRAD 

dataset;  (b) BH dataset;  (c) E4‐L dataset;  (d) E4‐R dataset;  (e) E4‐(L+R) datasets;  (f) BH+E4‐(L+R) 

datasets. 

Figure 13. Confusion matrices of the CNN models for the two-stress class based on: (a) the
SRAD dataset; (b) BH dataset; (c) E4-L dataset; (d) E4-R dataset; (e) E4-(L+R) datasets; (f) BH+E4-
(L+R) datasets.
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Figure 14. Confusion matrices of the hybrid CNN‐LSTM models for the two‐stress class based on: 

(a)  the SRAD dataset; (b) BH dataset; (c) E4‐L dataset; (d) E4‐R dataset; (e) E4‐(L+R) datasets; (f) 

BH+E4‐(L+R) datasets. 

Figure 14. Confusion matrices of the hybrid CNN-LSTM models for the two-stress class based
on: (a) the SRAD dataset; (b) BH dataset; (c) E4-L dataset; (d) E4-R dataset; (e) E4-(L+R) datasets;
(f) BH+E4-(L+R) datasets.
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4.2. Models’ Evaluation for the Three-Stress Class

Results of the proposed driver stress recognition models for the three-stress class are
shown in Table 4. These results are based on the training data obtained for the SRAD
and AffectiveROAD datasets for real-world driving. The training graphs of the proposed
CNN models are shown in Figures 15–20. Similarly, the training graphs of the proposed
hybrid CNN-LSTM models are shown in Figures 21–26. Results show that the proposed
CNN model based on the BH+E4-(L+R) datasets outperform the other models based on
the SRAD, BH, E4-L, E4-R, and E4-(L+R) datasets significantly by 6.16%, 6.76%, 9.16%,
8.87%, and 1.72%, respectively, with an overall validation accuracy of 85.66%. Similarly, the
proposed hybrid CNN-LSTM model based on the BH+E4-(L+R) datasets outperform the
other models based on the SRAD, BH, E4-L, E4-R, and E4-(L+R) datasets significantly by
2.15%, 0.15%, 11.22%, 5.89%, and 3.82%, respectively, with an overall validation accuracy
of 87.95%.

Confusion matrices for the proposed CNN and hybrid CNN-LSTM models are shown
in Figures 27 and 28. In Figure 27f, 190 low instances are predicted correctly, while 3 and
6 low instances are incorrectly predicted as medium and high by the CNN model. So,
the total correct prediction for the high-stress class is 95.5%. Likewise, for the medium-
and high-stress classes, 34 out of 50 and 224 out of 274 instances were correctly predicted,
which amounts to total accuracies of 68% and 81.8% for medium- and high-stress classes,
respectively. Similarly, in Figure 28f, 214 low instances are predicted correctly, while 3
and 8 low instances are incorrectly predicted as medium and high by the CNN-LSTM
model. Therefore, the total correct prediction for the low-stress class is 95.1%. Similarly,
for the medium- and high-stress classes, 47 out of 61 and 199 out of 237 instances were
correctly predicted, which amounts to total accuracies of 77% and 84% for the medium-
and high-stress classes, respectively.

4.3. Rank-Based Performance Evaluation

The eight-step fuzzy EDAS procedure [65] defined in Section 3.6 is utilized here to
evaluate the ranks of the SRAD, BH, E4-L, E4-R, E4-(L+R), and BH+E4-(L+R)-based CNN
and hybrid CNN-LSTM models for the two-stress and three-stress classes. This procedure
is separately followed for each the driver’s stress level. The classification metrics calculated
in Tables 3 and 4 are regarded as a criterion for the proposed CNN and hybrid CNN-LSTM
driver stress level classification models for the two-stress and three-stress classes.

4.3.1. Rank Estimation of the CNN Models for Two Levels of Stress

A rank estimation of the CNN models for the two-stress class (relaxed state) is per-
formed in a series of steps. The results of each step are shown in Tables 5–10. The first step
determines the cross-efficient values

(
ψβ

)
using Equations (1) and (2), as shown in Table 5.

In the next two steps, the positive distance (PI) and negative distance (NI) are separately
determined based by Equations (5) and (8), as given in Tables 6 and 7. In the fourth and
fifth steps, the weighted sum of (PI) and (NI) are separately calculated with the help of
Equations (9) and (10), as shown in Tables 8 and 9. The sixth step normalizes the weighted
sums (SPI)α and (SN I)α independently to obtain the aggregate scores of the models
based on Equations (11) and (12), as indicated in Table 10. Finally, the appraisal score (λα)
is determined based on the aggregate scores N (SPI)α and N (SN I)α in the seventh step
with the help of Equation (13), as given in Table 10. The eighth step uses the appraisal
scores (λα) to determine the ranks of the proposed CNN models based on the BH, E4-L,
E4-R, E4-(L+R), and BH+E4-(L+R) datasets. The model with the lowest appraisal score
(λα) has the highest performance among the candidate models. Table 10 shows that the
proposed BH+E4-(L+R), E4-L, E4-R, SRAD, E4-(L+R), and BH-based CNN models achieved
first, second, third, fourth, fifth, and fifth positions for the relaxed state. Likewise, the same
eight-step procedure is utilized for the stressed state, and the resulting ranks of each CNN
model are given in Table 11. Table 11 shows that the proposed BH+E4-(L+R), SRAD, E4-L,
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E4-R, E4-(L+R), and BH-based CNN models achieved first, second, third, fourth, fifth, and
fifth positions for the stressed state.

Table 4. Performance analysis of the proposed fusion models for the three-stress class.

Deep Learning
Model

Dataset Driver’s Stress
Level

Performance Measure

ACC RCL PRC F1 SPC Overall
ACC

1D CNN

SRAD

Low 0.9338 0.8596 0.9607 0.9074 0.9787

79.5%Medium 0.8377 0.5921 0.7143 0.6475 0.9203

High 0.8377 0.8661 0.708 0.7791 0.7895

BH

High 0.8659 0.8461 0.8959 0.8703 0.8883

78.9%Medium 0.8886 0.6216 0.3965 0.4842 0.9131

Low 0.8227 0.7456 0.7826 0.7636 0.8708

E4-L

Low 0.8911 0.8514 0.9255 0.8869 0.931

76.5%Medium 0.8567 0.6667 0.1132 0.1935 0.8618

High 0.7822 0.6788 0.8296 0.7467 0.875

E4-R

Low 0.8997 0.8687 0.9085 0.8882 0.9259

76.79%Medium 0.8481 0.493 0.6731 0.5691 0.9388

High 0.788 0.7966 0.6528 0.7176 0.7835

E4-(L+R)

Low 0.9312 0.9159 0.9241 0.9200 0.9428

83.94%Medium 0.893 0.7600 0.4634 0.5758 0.907

High 0.8547 0.7854 0.894 0.8362 0.9167

BH+E4-(L+R)

Low 0.9541 0.9548 0.9268 0.9406 0.9537

85.66%Medium 0.8929 0.6800 0.4595 0.5484 0.9154

High 0.8662 0.8175 0.918 0.8649 0.9197

1D CNN-LSTM

SRAD

Low 0.9454 0.9388 0.9139 0.9262 0.9492

85.6%Medium 0.9032 0.8033 0.6447 0.7153 0.9210

High 0.8635 0.8103 0.8977 0.8517 0.9135

BH

Low 0.9574 0.9245 0.9800 0.9515 0.9845

87.8%Medium 0.9204 0.9130 0.4468 0.6000 0.9210

High 0.8778 0.8294 0.9097 0.8677 0.9231

E4-L

Low 0.8596 0.8415 0.8571 0.8492 0.8757

76.22%Medium 0.8768 0.6552 0.3654 0.4691 0.8969

High 0.788 0.6987 0.8015 0.7466 0.8601

E4-R

Low 0.9027 0.9021 0.8833 0.8926 0.9031

82.06%Medium 0.9046 0.62 0.5 0.5536 0.9346

High 0.834 0.7824 0.8423 0.8113 0.8772

E4-(L+R)

Low 0.9235 0.9395 0.8821 0.9099 0.9123

84.13%Medium 0.9082 0.7857 0.4583 0.5789 0.9189

High 0.8509 0.7707 0.9234 0.8402 0.9338

BH+E4-(L+R)

Low 0.9522 0.9511 0.9386 0.9448 0.953

87.95%Medium 0.9178 0.7705 0.6184 0.6861 0.9372

High 0.8891 0.8397 0.9087 0.8728 0.9301
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Figure 15. Training graph of the CNN model for the three‐stress class based on the SRAD dataset. 
Figure 15. Training graph of the CNN model for the three-stress class based on the SRAD dataset.
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Figure 16. Training graph of the CNN model for the three‐stress class based on the BH dataset. Figure 16. Training graph of the CNN model for the three-stress class based on the BH dataset.
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Figure 17. Training graph of the CNN model for the three‐stress class based on the E4‐L dataset. Figure 17. Training graph of the CNN model for the three-stress class based on the E4-L dataset.
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Figure 18. Training graph of the CNN model for the three‐stress class based on the E4‐R dataset. Figure 18. Training graph of the CNN model for the three-stress class based on the E4-R dataset.
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Figure 19. Training graph of the CNN model for the three‐stress class based on the E4‐(L+R) datasets. Figure 19. Training graph of the CNN model for the three-stress class based on the E4-(L+R) datasets.
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Figure 20. Training graph of the CNN model for the three‐stress class based on the BH+E4‐(L+R) datasets. Figure 20. Training graph of the CNN model for the three-stress class based on the BH+E4-(L+R) datasets.
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Figure 21. Training graph of the hybrid CNN‐LSTM model for the three‐stress class based on the SRAD dataset. Figure 21. Training graph of the hybrid CNN-LSTM model for the three-stress class based on the SRAD dataset.
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Figure 22. Training graph of the hybrid CNN‐LSTM model for the three‐stress class based on the BH dataset. 
Figure 22. Training graph of the hybrid CNN-LSTM model for the three-stress class based on the BH dataset.
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Figure 23. Training graph of the hybrid CNN‐LSTM model for the three‐stress class based on the E4‐L dataset. 
Figure 23. Training graph of the hybrid CNN-LSTM model for the three-stress class based on the E4-L dataset.
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Figure 24. Training graph of the hybrid CNN‐LSTM model for the three‐stress class based on the E4‐R dataset. 
Figure 24. Training graph of the hybrid CNN-LSTM model for the three-stress class based on the E4-R dataset.
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Figure 25. Training graph of the hybrid CNN‐LSTM model for the three‐stress class based on the E4‐(L+R) datasets. 
Figure 25. Training graph of the hybrid CNN-LSTM model for the three-stress class based on the E4-(L+R) datasets.
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Figure 26. Training graph of the hybrid CNN‐LSTM model for the three‐stress class based on the BH+E4‐(L+R) datasets. 

 

Figure 26. Training graph of the hybrid CNN-LSTM model for the three-stress class based on the BH+E4-(L+R) datasets.
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(L+R) datasets.
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Figure 28. Confusion matrices of the hybrid CNN-LSTM models for the three-stress class based on:
(a) the SRAD dataset; (b) BH dataset; (c) E4-L dataset; (d) E4-R dataset; (e) E4-(L+R) datasets; (f)
BH+E4-(L+R) datasets.
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Table 5. Cross-efficient values of the CNN models for the relaxed state.

Dataset
Performance Measure (Driver’s Relaxed State)

ACC RCL PRC F1 SPC

SRAD 0.9271 0.8774 0.9118 0.8942 0.9541

BH 0.8909 0.9278 0.8267 0.8743 0.8654

E4-L 0.8653 0.8072 0.9394 0.8683 0.9363

E4-R 0.8825 0.8636 0.8693 0.8664 0.8974

E4-(L+R) 0.9235 0.9776 0.8617 0.916 0.8833

BH+E4-(L+R) 0.9564 0.9772 0.9224 0.949 0.9417

ψβ 0.9076 0.9051 0.8886 0.8947 0.9130

Table 6. Analysis results of the average (PI) of the CNN models for the relaxed state.

Dataset
Performance Measure (Driver’s Relaxed State)

ACC RCL PRC F1 SPC

SRAD 0.0000 0.0306 0.0000 0.0006 0.0000

BH 0.0184 0.0000 0.0696 0.0228 0.0522

E4-L 0.0466 0.1082 0.0000 0.0295 0.0000

E4-R 0.0277 0.0459 0.0217 0.0249 0.0171

E4-(L+R) 0.0000 0.0000 0.0302 0.0000 0.0326

BH+E4-(L+R) 0.0000 0.0000 0.0000 0.0000 0.0000

Table 7. Analysis results of the average (N I ) of the CNN models for the relaxed state.

Dataset
Performance Measure (Driver’s Relaxed State)

ACC RCL PRC F1 SPC

SRAD 0.0000 0.0000 0.0262 0.0000 0.0450

BH 0.0000 0.0250 0.0000 0.0000 0.0000

E4-L 0.0000 0.0000 0.0572 0.0000 0.0255

E4-R 0.0000 0.0000 0.0000 0.0000 0.0000

E4-(L+R) 0.0175 0.0801 0.0000 0.0238 0.0000

BH+E4-(L+R) 0.0537 0.0796 0.0191 0.0607 0.0314

Table 8. Analysis results of the aggregate (PI) of the CNN models for the relaxed state.

Weight of Criteria 0.4176 0.2850 0.14533 0.0844 0.0676

Dataset
Performance Measure (Driver’s Relaxed State)

ACC RCL PRC F1 SPC (SPI)α

SRAD 0.0000 0.0087 0.0000 0.0005 0.0000 0.0088

BH 0.0077 0.0000 0.0100 0.0019 0.0035 0.0233

E4-L 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

E4-R 0.0116 0.0000 0.0031 0.0027 0.0012 0.0185

E4-(L+R) 0.0000 0.0000 0.0044 0.0000 0.0022 0.0066

BH+E4-(L+R) 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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Table 9. Analysis results of the aggregate (N I) of the CNN models for the relaxed state.

Weight of Criteria 0.4176 0.2850 0.1453 0.0844 0.0676

Dataset
Performance Measure (Driver’s Relaxed State)

ACC RCL PRC F1 SPC (SN I)α

SRAD 0.0090 0.0000 0.0038 0.0000 0.0030 0.0158

BH 0.0000 0.0071 0.0000 0.0000 0.0000 0.0071

E4-L 0.0000 0.0000 0.0083 0.0000 0.0017 0.0100

E4-R 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

E4-(L+R) 0.0073 0.0228 0.0000 0.0020 0.0000 0.0321

BH+E4-(L+R) 0.0224 0.0227 0.0055 0.0051 0.0021 0.0579

Table 10. Analysis results of the CNN models for the relaxed state.

Dataset (SPI)α (SNI)α N(SPI)α N(SNI)α λα Ranks

SRAD 0.0088 0.0158 0.3774 0.7270 0.5522 4

BH 0.0233 0.0071 1.0000 0.8768 0.9384 6

E4-L 0.0000 0.0100 0.0000 0.8267 0.4133 2

E4-R 0.0000 0.0000 0.0000 1.0000 0.5000 3

E4-(L+R) 0.0185 0.0321 0.7968 0.4452 0.6210 5

BH+E4-(L+R) 0.0066 0.0579 0.2835 0.0000 0.1417 1

Table 11. Analysis results of the CNN models for the stressed state.

Dataset (SPI)α (SNI)α N(SPI)α N(SNI)α λα Ranks

SRAD 0.0021 0.0263 0.0874 0.4791 0.2832 2

BH 0.0237 0.0052 1.0000 0.8960 0.9480 6

E4-L 0.0000 0.0073 0.0000 0.8562 0.4280 3

E4-R 0.0000 0.0000 0.0000 1.0000 0.5000 4

E4-(L+R) 0.0213 0.0232 0.8985 0.5401 0.7193 5

BH+E4-(L+R) 0.0093 0.0505 0.3913 0.0000 0.1956 1

4.3.2. Rank Estimation of the CNN-LSTM Models for Two Levels of Stress

For the rank estimation of the SRAD, BH, E4-L, E4-R, E4-(L+R), and BH+E4-(L+R)-
based hybrid CNN-LSTM models, the same eight-step procedure is utilized for the relaxed
state and stressed state, and the resulting ranks are given in Tables 12 and 13, respectively.
Table 12 shows that the proposed BH+E4-(L+R), BH, E4-L, E4-R, E4-(L+R), and SRAD-based
CNN-LSTM models achieved first, second, third, third, fourth, and fifth positions for the
relaxed state. Similarly, Table 13 shows that the proposed fused BH+E4-(L+R), BH, E4-L,
E4-R, SRAD, and E4-(L+R)-based CNN-LSTM models achieved first, second, third, third,
fourth, and fifth positions for the stressed state.

4.3.3. Rank Estimation of the CNN Models for Three Levels of Stress

The eight-step fuzzy EDAS procedure is also utilized for the three levels of stress
(low, medium, and high) and the resulting ranks of the SRAD, BH, E4-L, E4-R, E4-(L+R),
and BH+E4-(L+R)-based CNN models are shown in Tables 14–16, respectively. For the
low-stress level, BH+E4-(L+R), SRAD, E4-(L+R), E4-L, E4-R, and BH-based CNN models
achieved first, second, third, fourth, fifth, and fifth positions, as shown in Table 14. For
the medium-stress level, E4-R, E4-(L+R), BH+E4-(L+R), E4-L, SRAD and BH-based CNN
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models achieved first, second, third, fourth, fifth, and fifth positions, as shown in Table 15.
Likewise, Table 16 shows that the proposed BH+E4-(L+R), SRAD, E4-L, E4-R, BH, and
E4-(L+R)-based CNN models achieved first, second, third, fourth, fifth, and fifth positions
for the high-stress level.

Table 12. Analysis results of the CNN-LSTM models for the relaxed state.

Dataset (SPI)α (SNI)α N(SPI)α N(SNI)α λα Ranks

SRAD 0.0214 0.0000 1.0000 1.0000 1.0000 5

BH 0.0000 0.0311 0.0000 0.2328 0.1164 2

E4-L 0.0000 0.0000 0.0000 1.0000 0.5000 3

E4-R 0.0000 0.0000 0.0000 1.0000 0.5000 3

E4-(L+R) 0.0212 0.0225 0.9887 0.4452 0.7169 4

BH+E4-(L+R) 0.0000 0.0405 0.0000 0.0000 0.0000 1

Table 13. Analysis results of the CNN-LSTM models for the stressed state.

Dataset (SPI)α (SNI)α N(SPI)α N(SNI)α λα Ranks

SRAD 0.0093 0.0000 0.5875 1.0000 0.7938 4

BH 0.0000 0.0247 0.0000 0.3496 0.1748 2

E4-L 0.0000 0.0000 0.0000 1.0000 0.5000 3

E4-R 0.0000 0.0000 0.0000 1.0000 0.5000 3

E4-(L+R) 0.0158 0.0145 1.0000 0.6195 0.8097 5

BH+E4-(L+R) 0.0000 0.0380 0.0000 0.0000 0.0000 1

Table 14. Analysis results of the CNN models for the low-stress level.

Dataset (SPI)α (SNI)α N(SPI)α N(SNI)α λα Ranks

SRAD 0.0075 0.0190 0.1696 0.5996 0.3846 2

BH 0.0441 0.0000 1.0000 1.0000 1.0000 6

E4-L 0.0000 0.0003 0.0000 0.9937 0.4968 4

E4-R 0.0000 0.0000 0.0000 1.0000 0.5000 5

E4-(L+R) 0.0104 0.0214 0.2357 0.5504 0.3931 3

BH+E4-(L+R) 0.0000 0.0476 0.0000 0.0000 0.0000 1

Table 15. Analysis results of the CNN models for the medium-stress level.

Dataset (SPI)α (SNI)α N(SPI)α N(SNI)α λα Ranks

SRAD 0.0348 0.1006 1.0000 0.0000 0.5000 5

BH 0.0322 0.0094 0.9250 0.9061 0.9155 6

E4-L 0.0000 0.0140 0.0000 0.8240 0.4120 4

E4-R 0.0000 0.0761 0.0000 0.2438 0.1219 1

E4-(L+R) 0.0103 0.0793 0.2956 0.2117 0.2537 2

BH+E4-(L+R) 0.0022 0.0392 0.0638 0.6101 0.3370 3
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Table 16. Analysis results of the CNN models for the high-stress level.

Dataset (SPI)α (SNI)α N(SPI)α N(SNI)α λα Ranks

SRAD 0.0224 0.0371 0.3835 0.4636 0.4236 2

BH 0.0194 0.0009 0.3326 0.9868 0.6597 5

E4-L 0.0000 0.0071 0.0000 0.8974 0.4487 3

E4-R 0.0000 0.0054 0.0000 0.9212 0.4606 4

E4-(L+R) 0.0584 0.0439 1.0000 0.3648 0.6824 6

BH+E4-(L+R) 0.0000 0.0691 0.0000 0.0000 0.0000 1

4.3.4. Rank Estimation of the CNN-LSTM Models for Three Levels of Stress

For the rank estimation of the SRAD, BH, E4-L, E4-R, E4-(L+R), and BH+E4-(L+R)-
based hybrid CNN-LSTM models, the same eight-step procedure is utilized for low-stress,
medium-stress, and high-stress, and the resulting ranks are given in Tables 17–19, re-
spectively. Table 17 shows that the proposed BH+E4-(L+R), BH, E4-L, E4-R, SRAD, and
E4-(L+R)-based CNN-LSTM models achieved first, second, third, third, fourth, and fifth
positions for the low-stress level. Moreover, Table 18 shows that the proposed, SRAD,
E4-R, E4-L, BH, and BH+E4-(L+R)-based CNN-LSTM models achieved first, second, third,
third, fourth, and fifth positions for the medium-stress level. For the high-stress level, BH,
BH+E4-(L+R), SRAD, E4-L, E4-R, and E4-(L+R)-based CNN models achieved first, second,
third, third, fourth, and fifth positions, as shown in Table 19.

Table 17. Analysis results of the CNN-LSTM models for the low-stress level.

Dataset (SPI)α (SNI)α N(SPI)α N(SNI)α λα Ranks

SRAD 0.0000 0.0204 0.0000 0.4467 0.2233 4

BH 0.0000 0.0368 0.0000 0.0000 0.0000 2

E4-L 0.0000 0.0000 0.0000 1.0000 0.5000 3

E4-R 0.0000 0.0000 0.0000 1.0000 0.5000 3

E4-(L+R) 0.0173 0.0072 1.0000 0.8034 0.9017 5

BH+E4-(L+R) 0.0058 0.0332 0.3365 0.0981 0.2173 1

Table 18. Analysis results of the CNN-LSTM models for the medium-stress level.

Dataset (SPI)α (SNI)α N(SPI)α N(SNI)α λα Ranks

SRAD 0.0009 0.0732 0.0559 0.0000 0.0280 1

BH 0.0170 0.0653 1.0000 0.1072 0.5536 4

E4-L 0.0000 0.0000 0.0000 1.0000 0.5000 3

E4-R 0.0000 0.0009 0.0000 0.9870 0.4935 2

E4-(L+R) 0.0085 0.0118 0.4974 0.8383 0.6678 6

BH+E4-(L+R) 0.0168 0.0561 0.9891 0.2327 0.6109 5
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Table 19. Analysis results of the CNN-LSTM models for the high-stress level.

Dataset (SPI)α (SNI)α N(SPI)α N(SNI)α λα Ranks

SRAD 0.0000 0.0196 0.0000 0.5913 0.2956 3

BH 0.0000 0.0379 0.0000 0.2113 0.1057 1

E4-L 0.0000 0.0000 0.0000 1.0000 0.5000 4

E4-R 0.0000 0.0000 0.0000 1.0000 0.5000 4

E4-(L+R) 0.0187 0.0102 1.0000 0.7884 0.8942 5

BH+E4-(L+R) 0.0064 0.0480 0.3450 0.0000 0.1725 2

4.4. Comparison of the Proposed 1D CNN and 1D CNN-LSTM Models

Comparisons of the proposed 1D CNN and 1D CNN-LSTM models for two and three
levels of stress based on training time, accuracy, and fuzzy EDAS ranking are shown in
Tables 20–23. Execution environments for all proposed models are based on a single CPU.
The fuzzy EDAS approach performs a comprehensive rank estimation of the proposed
models in terms of accuracy, recall, precision, F-score, and specificity. The model with the
lowest appraisal score (λα) has the highest performance among the candidate models.

A comparison shows that there is a tradeoff between the training time and performance
of various models, with the exception of the SRAD dataset. For example, Table 20 shows
that the proposed BH+E4-(L+R)-based 1D CNN model achieved the best EDAS ranks at
the cost of a maximum training time of 72 min and 42 s. On the other hand, the BH-based
1D CNN model has the worst EDAS rank with the lowest training time of 3 min and
15 s. The performance of the SRAD-based model is somehow in between with the highest
computational cost of 277 min and 29 s. Similarly, Table 21 reveals that the proposed
BH+E4-(L+R)-based 1D CNN-LSTM model secured the top EDAS ranks at the cost of a
maximum training time of 72 min and 42 s. Moreover, the BH-based 1D CNN model
has the worst EDAS rank with the lowest training time of 3 min and 15 s. However, the
SRAD-based model achieved average performance, with a maximum computational cost
of 167 min and 56 s.

Table 20. Comparison of the proposed CNN models for the two-stress class.
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Diagnostics 2023, 13, 1897 46 of 51

Table 21. Comparison of the proposed CNN-LSTM models for the two-stress class.

D
at

as
et

Ex
ec

ut
io

n
En

vi
ro

nm
en

t Training Time
1D CNN-LSTM

Performance

Accuracy (%) Fuzzy EDAS Rank

Fe
at

ur
e

Le
ar

ni
ng

C
la

ss
ifi

ca
ti

on

R
el

ax
ed

St
at

e

St
re

ss
ed

St
at

e

O
ve

ra
ll

R
el

ax
ed

St
at

e

St
re

ss
ed

St
at

e

SRAD

Si
ng

le
C

PU

167 min 33 s 23 s 91.80 91.80 91.81 5 4

E4-L 35 min 18 s 34 s 88.82 88.82 88.83 3 3

E4-R 35 min 26 s 31 s 90.65 90.65 90.65 3 3
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BH+E4-(L+R) 72 min 30 s 21 s 96.59 96.59 96.59 1 1

Table 22. Comparison of the proposed CNN models for the three-stress class.
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Table 23. Comparison of the proposed CNN-LSTM models for the three-stress class.
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E4-R 35 min, 19 s 33 s 90.27 90.46 83.40 82.06 3 2 2

E4-(L+R) 70 min, 39 s 30 s 92.35 90.82 85.09 84.13 5 6 6

BH 1 min, 28 s 34 s 95.74 92.04 87.78 87.78 2 4 4

BH+E4-(L+R) 72 min, 7 s 31 s 95.22 91.78 88.91 87.95 1 5 5

Table 22 shows the comparison of the 1D CNN model for the three-stress class. As
usual, the proposed BH+E4-(L+R) secured the best EDAS ranks at a maximum cost of
72 min and 51 s. On the other hand, the BH-based model has the worst EDAS rank for
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a minimum computational cost of 3 min and 45 s. However, the SRAD-based model has
average performance with the highest training time of 279 min and 6 s. Similarly, Table 23
reveals that the proposed SRAD-based 1D CNN-LSTM model secured the top EDAS rank
at the cost of a maximum training time of 171 min and 31 s. The BH-based 1D CNN-LSTM
model achieved an average EDAS rank with the lowest training time of 2 min and 2 s.
However, the E4-(L+R)-based model has the worst EDAS rank despite the high training
time of 71 min and 9 s. The proposed models have a high training time due to the usage of
a single CPU. Utilizing GPUs may reduce the training time of the proposed algorithms.

5. Discussion

The proposed CNN and hybrid CNN-LSTM models are analyzed using the SRAD
and AffectiveROAD datasets in the previous section. AffectiveROAD is based on the BH,
Empatica E4-L, Empatica E4-R, and E4-(L+R) datasets. Both BH and Empatica E4 datasets
are individually and combinedly used to train the proposed models for the two-stress
and three-stress classes. It is evident from the previous tables that the models trained on
multimodal data (AffectiveROAD) achieved the maximum performance compared to SRAD
data. This shows the importance of physiological, physical, and contextual information in
the domain of stress recognition. Moreover, it is also clear that the hybrid 1D CNN-LSTM
models achieved better performance than the 1D CNN models. The fuzzy EDAS procedure
also shows that the proposed CNN and hybrid CNN-LSTM models achieved the first rank
based on the fused AffectiveROAD BH+E4-(L+R) datasets. The achieved performance of
the proposed real-world driver stress recognition models is greatly enhanced compared to
the existing schemes. A comparison of the proposed driver stress recognition models with
the existing schemes is shown in Table 24. It is clear from the table that the proposed models
achieved the highest performance for both two and three levels of stress compared to the
existing schemes. Rastgoo et al. [11] achieved a higher performance than the proposed
models for the three-stress class but their study was based on simulated driving conditions,
while the proposed models were based on real-world driving conditions.

Table 24. Comparison of the proposed stress recognition models with existing schemes.

A
rt

ic
le

/
Ye

ar

Si
gn

al
(s

)/
M

od
al

it
ie

s

En
vi

ro
nm

en
t

N
o.

of
Su

bj
ec

ts

D
at

a
I/

P
M

ec
ha

ni
sm

D
ee

p
Le

ar
ni

ng
A

pp
ro

ac
h

St
re

ss
Le

ve
ls

A
C

C
(%

)

R
C

L

PR
C

F1 SP
C

Proposed
Models

HR, BR, Posture, Activity,
TEMP, IBI, GSR, ACCL

R
ea

l-
W

or
ld

D
ri

vi
ng

10 1D Signal CNN-LSTM
2 96.6 96.4 96.8 96.6 96.4

3 88 85.4 82.2 83.5 94
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[46]/2019 Facial Images 123 Images Pre-Trained
MTCNN 2 97.3 - - - -

[11]/2019 ECG, VDD, EP Simulated
Driving

27 1D Signal CNN-LSTM 3 92.8 94.1 95 - 97.4
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[56]/2021 EEG 32
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AlexNet 2 84.8 85.2 - - 84.3

[55]/2019 ECG 20 CNN 2 82.7 - - - -

[54]/2018 ECG 13 1D Signal 1D CNN 2 80 - - - -

[52]/2017 Thermographic Patterns
of Breath 8 Spectrogram CNN 2 84.6 - - - -

6. Conclusions

This paper concludes that in addition to physiological signals, other information
regarding the driver, vehicle, and ambiance has an important role in designing reliable
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and accurate driver stress recognition systems. It is also evident that the hybrid CNN-
LSTM models have better performance than the CNN models. Moreover, the fusion of the
AffectiveROAD datasets (BH, E4-L, and E4-R) achieved the best performance with the least
computational cost compared to the SRAD dataset. This is due to several factors including
the utilization of multimodal information (physiological signals and information regarding
the driver, vehicle, and environment), quality of the hardware and software tools used
for capturing the data, and accurate sampling of the signals. Thus, hybrid deep learning
models and multimodal data have a key role in designing an accurate and reliable stress
recognition model for real-world driving conditions.

The fusion models based on 1D CNN and hybrid 1D CNN-LSTM produced promising
results, but these models may be further improved by utilizing more complex CNN and
LSTM architectures. Moreover, a joint CNN-LSTM architecture may be used to further
improve stress level recognition. The current study is based on the driver’s stress level,
thus in the future, these models may be utilized for drowsiness, cognitive workload,
activity, fatigue, and feeling recognition. The AffectiveROAD and PhysioNet SRAD datasets
used in this study are based on real-world driving conditions. Such datasets are usually
contaminated by different noises and artifacts. Enhanced pre-processing techniques can
further improve the performance of the models. Future work may also include stress
recognition by training the proposed models using physiological signals acquired using
non-contact sensors and smart watches.
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