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Abstract. Recently, efficient scheduling algorithms based on Lagrangian re- 
laxation have been proposed for scheduling parallel machine systems and job 
shops. In this article, we develop real-word extensions to these scheduling 
methods. In the first part of the paper, we consider the problem of scheduling 
single operation jobs on parallel identical machines and extend the methodology 
to handle multiple classes of jobs, taking into account setup times and setup 
costs. The proposed methodology uses Lagrangian relaxation and simulated 
annealing in a hybrid framework. In the second part of the paper, we consider 
a Lagrangian relaxation based method for scheduling job shops and extend it 
to obtain a scheduling methodology for a real-world flexible manufacturing 
system with centralized material handling. 
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1. Introduction 

The problem of scheduling arises in situations where scarce resources have to be optimally 
allocated to activities over time. Most scheduling problems belong to the class of NP hard 
combinatorial optimization problems. Any scheduling methodology should aim to (Luh 
et al 1990) 

(i) generate efficiently near optimal solutions with measurable performance, 

(ii) facilitate rapid "what if" analysis to examine the impact of dynamic changes, and 

(iii) support efficient methods for schedule reconfiguration to accommodate these changes. 
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In the area of discrete activity scheduling, it is generally accepted that a gap exists be- 
tween scheduling theory and practice. Practical methods react to dynamic changes without 
the ability to produce good solutions and theoretical methods produce good schedules 
without the ability to react to dynamic changes. Recently, Luh et al (1990) and Hoit- 
omt et al (1990, 1993) have developed a Lagrangian relaxation based suboptimal algo- 
rithm for scheduling of non-preemptive single/multi-operation jobs on parallel identical 
machines and for job shop scheduling. Their method performs very well in a wide va- 
riety of scheduling situations and is also amenable to carrying out extensive "what-if" 
analysis. 

In this paper, we consider the above scheduling methodologies for parallel identical 
machines (Luh et al 1990) and for jobshops (Hoitomt et al 1993) and extend these to take 
into account real-world features. 

1.1 Extension to a multiclass environment 

The scheduling methodolgy for parallel identical machines, developed by Luh et al (1990) 
does not take into account setup times and setup costs that are very important in multi- 
class manufacturing system scheduling. The first part of our work attempts to extend the 
scheduling methodology to multiclass production systems comprising parallel identical 
machines and taking into account setup times and setup costs. 

In a multiclass production setting, the jobs are divided into a number of mutually ex- 
clusive part types. Setup operations are an important feature of such production environ- 
ments. A significant setup time is incurred when a machine changes from processing one 
type of parts to a different type of parts. The setup time generally includes times for fix- 
turing tool changing and preparing the workplace. Thus, a setup cost is incurred, since 
the setup operations do not contribute to productivity. To minimize the setup times and 
costs, a batch of products belonging to the same part type is manufactured after a single 
setup. Large batch sizes, on the other hand, result in high inventory levels. The economic 
lot sizing problem (ELSP) (Fleishrnann 1990) addresses this problem of minimizing the 
sum of inventory and setup costs. The problem is known to be NP hard (Lawler et al 

1989). 
The extension proposed here follows a hybrid approach that combines the techniques of 

Lagrangian relaxation (Fischer 1973, 1981; Luenberger 1984) and simulated annealing 

(Kirkpatrick et al 1983; Aarts & Van Laarhoven 1985; Van Laarhoven et al 1992). The 
objective is to minimize the sum of the total weighted tardiness and setup costs (assumed 
to be a monotonically increasing function of the setup times). 

1.2 Extension to an FMS 

Scheduling is an important issue in the planning and operation of flexible manufactur- 
ing systems. The paper by Hoitomt et al (1993) proposes a Lagrangian relaxation-based 
scheduling methodology for job shops. However, it cannot be applied directly to the 
scheduling of a typical FMS. In the second part of this paper, we describe the scheduling 
problem of a particular flexible manufacturing system and develop an extension of the ap- 
proach presented by Hoitomt et al (1993) to schedule jobs on the machines and the material 
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handling equipment of the given FMS. The objective is to minimize the total quadratic 
weighted tardiness of the schedule. The problem is believed to be NP hard and the effort 
here is to only design an efficient suboptimal algorithm with performance measured with 
the help of a lower bound. 

1.3 Organization of the paper 

The next section is a survey of the relevant literature and is in two parts. Section 2.1 deals 
with the scheduling of jobs in a single class production environment as described by Luh 
et al (1990). It essentially summarises the integer programming formulation of the schedul- 
ing problem and the solution methodology. Section 2.2 describes the job-shop scheduling 
problem and presents the Lagrangian relaxation approach of Hoitomt et al (1990, 1993). 
Section 3 proposes a hybrid methodology to a multiclass parallel identical machine prob- 
lem with setup times included. The proposed methodology employs simulated annealing 
and Lagrangian relaxation. Three examples are discussed to demonstrate the working of 
the proposed methodology and detailed numerical results are provided. Section 4 describes 
a particular FMS, and describes our extended methodology for scheduling the resources 
of the FMS. Numerical results are also provided. Section 5 presents conclusions and di- 
rections for future work. 

2. Scheduling methods based on Lagrangian relaxation 

2.1 The case of parallel identical machines 

Lagrangian relaxation (Fischer 1973, 1976, 1981; Luenberger 1984) provides an efficient 
way of scheduling independent jobs with due dates on identical parallel machines. The 
special integer programming formulation facilitates the application of the Lagrangian re- 
laxation technique. Decomposition of the dual problem serves to simplify solution at the 
lower level. The high level problem is solved via a subgradient method. Dynamic changes 
can easily be accommodated in this approach. In this section, we provide a review of the 
Lagrangian relaxation technique as applied to scheduling of non-preemptive, single oper- 
ation jobs on parallel identical machines. The material is mostly taken from the paper by 
Luh et al (1990). 

2. la Problem formulation An integer programming formulation as described by Luh 
et al (1990) is a common way to represent a scheduling problem. The following is a static, 
discrete time, integer programming formulation of the scheduling problem. We shall use 
the following notation. 

N total number of jobs, 

i index of jobs, i = 1, 2 . . . . .  N, 

K time horizon under consideration, 

k index of time, k = 1, 2 . . . . .  K, 

wi weight of job i, 
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ti processing time of job i, 

D i  due date of job i, 

Mk number of machines available at time k, 

bi beginning time of job i, 

ci completion time of job i, 

8ik  integer variable, equals 1 if job i is active at time k, and 0 otherwise, 

J objective function to be minimized. 

Among the above variables, the number of jobs N, time horizon K, weights of jobs 
W N t N {Di}N=I and machine availability { k}k= 1 { i}i=1' time requirements { i}i=1, due dates M K 

are assumed to be given. Also the job processing is non-preemptive so that a contiguous 
b N block of time length ti is needed to process job i. The decision variables are { i}i=1" Once 

C N t~ I N , K  the bis are selected, { i}i=l, {~}~=l and tOikli=l,k=l can easily be derived. For example, 
• for bi = 2, ti = 3, and D i  = 3, w e  have 8i2 = t~i3 = 8i4 = 1, ci  = bi  + ti - 1 = 4, a n d  

Ti = ci - D i  = 1. W e  also a s s u m e  for  the sake  o f  simplicity tha t  all jobs are  avai lable  

for processing at time 1 (this can easily be relaxed) and that the time horizon K is long 
enough to complete all the jobs. 

The objective function of interest is 

J = ~ wi l ) .  (1) 
i 

Such an objective function accounts for the weight of jobs, the importance of meeting 
due dates, and the fact that completing a job becomes critical with each time unit after 
passing its due date (Luh et al 1990). A static and deterministic parallel machine scheduling 
problem can now be formulated as follows. 

P : rain J = ~ wi Ti, (2) 
bi i 

subject to capacity constraints 

E ~ik <-- Mk (k = 1, 2 . . . . .  K), (3) 
i 

and processing time constraints 

Ci - -  bi -t- 1 = ti (i = 1, 2 . . . . .  N).  (4) 

Note that in (4), adding 1 to ci - bi is required to obtain ti in view of the definitions of bi 

and ci. 
The single machine sequencing problem can be solved as a weighted bipartite matching 

problem that is NP hard (Lawler et a11989). Consequently, the parallel machine weighted 
tardiness problem is also NP hard. The additivity of the objective function facilitates the 
decomposition approach. 

2.1b Solution methodology Relaxing the capacity constraints (3) using Lagrangian 
multipliers ~rk (k = 1, 2 . . . . .  K) to form the relaxed problem, 
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subject to (4), the dual problem is 

with 

subject to 

(5) 

D : max L, (6) 

(7) 

rr >__ 0. (8) 

This leads to the following decomposed subproblems for each job i (given Jr). 

Ri : min Li,  (9) 
l <bi < K - t i  + l 

with 

subject to 

(lO) 

c i  - -  b i  + 1 = ti. (11) 

K is assumed to be large enough to complete all the jobs. 
For convex programming problems, the maximum of the lag (dual cost) equals the mini- 

mum of the original objective function and a saddle point exists. However, there are several 
difficulties in utilizing this technique for solving discrete variable problems. First, the sad- 
dle point may or may not exist and it may be difficult to determine when the algorithm has 
terminated. Second, even if the dual optimum were obtained, the corresponding schedule 
at that point may not be feasible. Heuristic adjustment is generally required to ensure that 
the once relaxed constraints are obeyed. Therefore, the various steps to obtaining a near 
optimum solution are 

(1) solving the subproblems, 

(2) solving the dual problem, 

(3) constructing a feasible solution, and 

(4) finding a (sub) optimal solution. 

Each of these steps is discussed by Luh et al (1990). 
The optimized Lagrangian multipliers ~rl, are interpreted as a shadow price for using 

the resource (machine) at k. Therefore, they reflect the sensitivity of the objective function 
with respect to resource levels. This can be used to provide answers to "what if" questions 
and to reconfigure an existing schedule when changes occur in resource availability. Thus, 
Lagrangian relaxation has the ability to react effectively to dynamic changes and at the 
same time produce good suboptimal schedules. 
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2.2 The case o f  job shops 

A discrete time, integer programming formulation of the scheduling problem is given 
below. The variable definitions, and the constraint statements are all influenced by the 
work of Hoitomt et al (1990, 1993). Let (i, j )  refer to the j th  operation of the ith job. 

N total number of jobs, 

i index of jobs, i = 1, 2 . . . . .  N, 

K time horizon under consideration, 

k index of time, k = 1, 2 . . . . .  K, 

wi weight if job i, 

Ni number of operations of job i, 

j index of operation, j = 1, 2 . . . . .  Ni, 

tij processing time of (i, j ) ,  

Di due date of job i, 

H number of machine types, 

h index of machine type, h = 1, 2 . . . . .  H, 

mij machine chosen to process (i, j ) ,  

bij beginning time of (i, j ) ,  

cij completion time of (i, j ) ,  

~ijk integer variable equals 1 if (i, j )  is active at time k, 0 otherwise, 

Ci completion time of job i, 

Mkh number of machines of type h available at time k, 

hj type of machine processing operation j ,  

T/ tardiness of job i = max (0, Ci - Di), 

J objective function to be minimized. 

The precedence constraints of every job form a simple directed acyclic graph and Ci = 
CiNi, for all i. All jobs are assumed to be available for processing from time 1 (not a crucial 
requirement). K is assumed to be large enough to complete all the jobs. 

Among the above variables, the number of jobs N, time horizon K, weights of jobs 
it ,N, Ni {Di}N=I and machine availability {Wi}/N=I , time requirements t i j l i=l,j=l,  due dates 

M ,K,H kh lk=l,h=l are assumed to be given. Also the job processing is non-preemptive so that 
a contiguous block of time length tij is needed to process (i, j ) .  The decision variables are 

N Ni , N,Ni ,¢~ ~N,Ni,K 
{bij}i"l j-I" Once the bij s are selected, {cij}i-1,j-1, {/i}~=I and t ijkli=1,j=l,k=l Can 
easily-   S rived. The objective function of int  esi-is 

j = 2. (12) 
i 
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The above function accounts for the weight of the jobs, the importance of meeting due 
dates and the fact that a job becomes more critical with each time after passing its due 
date. Compare the function here with the objective function in (1). Whether we choose 
~,  wi 7~ or choose Y'~ wi 1)2 does not alter either the formulation or the solution method- 
ology, but only helps explore different weightages to the individual tardiness values. A 
static and deterministic parallel machine scheduling problem can now be formulated as 
follows. 

P "  min J = E wiTi 2, (13) 
bij i 

subject to capacity constraints 

t~ij k < Mkh (k = 1, 2 . . . . .  K; h = 1, 2, H) ,  (14) 
i 

processing time constraints 

cij - -  b i j  q- 1 = t i j  (i = 1, 2 . . . . .  N; j = 1, 2 . . . . .  Ni),  (15) 

and precedence constraints 

cij + 1 < b i ( j + ! )  (i = 1, 2 . . . . .  N; j = 1, 2 . . . .  Ni - 1). (16) 

The complexity of the above scheduling problem motivates a decomposition approach. 
Hoitomt et al (1993) propose a Gauss-Seidel method based on quadratic penalty terms for 
precedence constraints (16), since relaxing those constraints with Lagrangian multipliers 
alone would cause oscillations in the values of the multipliers relaxing them and therefore 
the beginning times b i j .  The oscillation phenomenon is due to nondecomposability of J 
with respect to the operations of each job. 

3. Multiclass jobs on parallel identical machines 

In a multiclass production system, switchover times or setup times can have a significant 
effect on the way parts are scheduled. The jobs of a given part type need not be processed 
together. It is desired to find a schedule that minimizes the sum of the weighted tardiness 
and switchover costs. 

Several complications arise with the introduction of switchover times. The Lagrangian 
relaxation technique of Luh et al (1990) cannot be directly applied because 

• For every job j ,  we now need to evaluate Lij , and b*j where i is the part type of the 
job that was processed immediately before j (j  = 1, 2 . . . .  N); (i = 1, 2 . . . .  P) 
where P is the total number of part types. 

• Designing an effective greedy heuristic to arrive at near-optimum feasible schedule 
at the termination of the subgradient algorithm is not easy. 

To circumvent this, a hybrid approach that makes use of simulated annealing (Van 
Laarhoven et al 1992) to arrive at a near optimal sequence of setup operations and 
Lagrangian relaxation to arrive at the schedule of jobs of a part type on the machines 
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is developed. The assumption here is that once the machines are set up for a part type, all 
jobs belonging to the part type are processed. The following simplifying assumptions are 
made regarding switchover times and costs. 

(1) The switchover times are the same for all classes. 

(2) The setup costs depend only on the setup times and further, are a monotonically 
increasing function of the setup times. 

Defining the state of a machine at time t to be the type of part it is processing at t, the 
extra data necessary are the initial states of the machines and the time instants at which 
each machine first becomes available. 

First, we describe a method to arrive at the schedule of parts of a particular type on 
the machines. Let Q denote the total number of machines. An upper bound on the plan- 
ning horizon K for scheduling jobs belonging to class 1 is given by ~]iet ti (if all jobs 
are scheduled on a single machine). Let vi denote the time instant at which machine i 
(i = 1, 2, . . . ,  Q) first becomes available (after necessary setup operations). Let the per- 
mutation ( Sl , $2 . . . . .  SQ ) denote the sequence of machines such that vs~ < vs2 . . . < vsQ. 

Determine q = j such that maxj[vsj < vs~ + K]; machines Sq+l . . . . .  SQ cannot pro- 
cess any jobs belonging to the part type under consideration. For k = 1, 2 . . . .  K, form 
Mk based on v& . . . . .  vsn, where n = 1, 2 . . . . .  Q. It is here that the second assumption 
regarding setup costs becomes important. If two or more machines become available at 
the same time, any machine can be chosen for processing the jobs belonging to the part 
type thus preventing unnecessary enumeration at this stage. Use Lagrangian relaxation 
to-arrive at the schedule of jobs and cost for each n. Each of these tasks is paralleliz- 
able. The schedule for which the sum of the setup cost and tardiness cost is minimum is 
chosen and the availability of the machines and states of the machines are accordingly 
updated. 

To determine the order of the part types, higher level simulated annealing optimization 
is carried out. The simulated annealing process will give us the order in which to process 
the part types, taking into account the setup times and setup costs. Having obtained the 
order of part types, the schedule on each machine and cost is computed using the method 
discussed in the previous paragraph. It can easily be shown that in the global optimum 
schedule, jobs belonging to the same part type and having the same processing times and 
due dates have to be processed in the decreasing order of their weights (Srigopal 1994). 
These can be reordered to yield a lower cost at the termination of the algorithm. 

3.1 Numerical results 

The examples discussed here are the multiclass versions of the ones appearing in Hoitomt 
et al (1990, 1993) and Luh et al (1990). 

3.1a Example I There are 12 jobs belonging to 4 part types (call the part types A, B, 
C, and D), shown in table 1. They are to be scheduled on 2 machines that are available 
from time instant 1. Initial state of M1 is given to be A and that of M2 to be B. The setup 
times and setup costs are shown in table 2. 



Scheduling with Lagrangian relaxation 423 

Table 1. Job data for example 1. 

i wi ti Di Class i wi ti Di class 

1 2 4 41 A 2 2 4 41 A 
3 2 4 61 A 4 2 2 71 B 
5 2 2 46 B 6 2 3 31 C 
7 2 3 31 C 8 2 3 31 C 
9 2 3 36 C 10 2 3 56 C 

11 2 1 26 D 12 2 1 61 D 

Table 3 shows the schedule obtained after 16 iterations. The cost of  the above schedule is 
274 units, out of which setup costs account for 200 units and tardiness costs equal 74 units. 

3.1b Example 2 There are 25 jobs belonging to 7 part types (call these A, B, C, D, E, 
F, and G), shown in table 4. Table 5 shows the setup times and setup costs. The jobs are to 
be scheduled on 4 machines that are available from time instant 1. The initial state of M1 
is given to be A, M2 is B, M3 is C and M4 is D. The schedule obtained (after 49 iterations) 
is shown in table 6. The cost of the (suboptimal) schedule is 930 units. Tardiness cost is 
130 units and the rest are setup costs. 

3.1c Example 3 Eighty-nine jobs belonging to 15 part types are to be scheduled on 
10 machines (see table 7). The first five machines are available from the beginning of the 
planning horizon and the next five are available from time instant 10. Initial states of the 
machines 1, 2 . . . . .  10 are A, B . . . . .  J respectively. Table 8 shows the setup times and the 
setup costs. The detailed schedule, obtained after 225 iterations, is shown in table 9. The 
cost of the schedule is 4749 units out of which 1199 units are tardiness costs and the rest 
are setup costs. 

Table 2. Setup times and setup costs. 

Job class A B C D 

Setup time 40 20 30 10 
Setup cost 200 100 150 50 

Table 3. Schedule obtained for ex- 
ample 1. 

M1 1 2 3 11 12 
M2 5 4 6 7 8 9 10 
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Table 4. Job data for example 2. 

i wi ti Di Class i wi ti Di Class 

1 6 4 21 A 2 2 4 21 A 
3 5 4 101 A 4 2 5 61 B 
5 8 5 101 B 6 2 8 61 C 
7 2 8 41 C 8 5 8 76 C 
9 2 8 126 C 10 1 2 61 D 

11 2 2 20 D 12 2 2 66 D 
13 1 2 101 D 14 6 2 126 D 
15 2 6 126 E 16 2 7 61 F 
17 2 7 126 F 18 2 7 176 F 
19 2 7 76 F 20 2 7 101 F 
21 2 7 101 F 22 2 7 151 F 
23 2 7 151 F 24 2 3 176 G 
25 2 3 76 G 

TabkS. Sempfimesandsetupcostsforexample2. 

Job class A B C D E F G 

Setup time 40 50 80 20 60 70 30 
Setup cost 200 250 400 100 300 350 150 

4. Scheduling an FMS with centralized material handling 

4.1 Architecture of  the FMS 

The FMS under study consists of three identical numerically controlled machines (NCs), 
a rail-guided vehicle (RGV), a pallet pool (PP), a pallet preparation area (PPA), and a tool 
preparation area (TPA). Each fixture is first prepared in the PPA (mount operation). It is 
then taken to the NCs for machining that requires a predetermined amount of time. The 
fixture is then unmounted in the PPA and the pallet is released back into the PP. Assume 
the NCs and the PPA to have infinite buffer capacity. Periodically, the RGV feeds the tool 

Table 6. Schedule obtained for example 2. 

M1 1 2 3 15 
M2 4 5 24 25 
M3 7 6 8 9 
M4 10 11 12 13 

17 20 21 18 
14 16 19 
22 23 
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magazine of the NCs with tools prepared in the TPA and is unavailable for the transit 
operations. The travel times between the PP and PPA, the PPA and the NC centres, and 
the TPA and the NCs are all given. However, these times are applicable only if the RGV 
is loaded. In other words, if the RGV is free, it takes negligible amount of time to reach 
any of the facilities. 

Every job (pallet) therefore, undergoes seven operations. 

(1) Travel from the PP to the PPA. 

(2) The mount operation in the PPA. 

(3) Travel from the PPA to the NC centres. 

Table 7. Job data for example 3 

i wi ti Di Class i wi ti Di Class 

1 1 1 1 A 2 9 1 121 A 
3 1 1 131 A 4 5 1 11 A 
5 1 1 11 A 6 1 1 11 A 
7 1 1 - 2 9  A 8 1 1 71 A 
9 1 1 71 A 10 1 1 71 A 

11 1 1 71 A 12 1 1 71 A 
13 1 1 81 A 14 1 1 81 A 
15 6 1 21 A 16 1 1 21 A 
17 1 1 21 A 18 1 1 51 A 
19 9 1 - 9  A 20 1 1 - 9  A 
21 1 1 101 A 22 1 1 101 A 
23 1 1 101 A 24 1 1 91 A 
25 1 2 - 1 9  B 26 1 2 151 B 
27 1 2 151 B 28 1 2 1 B 
29 1 2 1 B 30 1 2 131 B 
31 1 2 - 9  B 32 1 2 - 9  B 
33 1 2 - 9  B 34 1 2 81 B 
35 1 2 71 B 36 1 2 71 B 
37 1 2 71 B 38 1 2 41 B 
39 1 2 11 B 40 1 2 l l  B 
41 1 2 11 B 42 1 3 251 C 
43 1 3 241 C 44 1 3 201 C 
45 1 3 21 C 46 1 3 21 C 
47 1 3 21 C 48 1 3 21 C 
49 1 3 21 C 50 1 3 21 C 
51 1 3 21 C 52 1 3 71 C 
53 1 3 71 C 54 1 3 91 C 
55 1 3 9I C 56 1 3 91 C 

Con~nued 
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Table 7. Continued. 

i wi ti Di Class i wi ti Di Class 

57 1 3 51 C 58 1 3 11 C 
59 6 3 121 C 60 1 3 101 C 
61 1 3 1 C 62 1 3 1 C 
63 1 3 31 C 64 1 4 181 D 
65 1 4 1 D 66 9 4 11 D 
67 1 4 91 D 68 1 4 41 D 
69 1 4 151 D 70 6 5 191 E 
71 1 5 51 E 72 1 5 51 E 
73 16 5 21 E 74 6 5 101 E 
75 16 6 71 F 76 1 7 31 G 
77 6 8 601 H 78 1 8 111 H 
79 1 8 101 H 80 1 9 81 I 
81 9 10 91 J 82 1 10 201 J 
83 1 10 201 J 84 1 11 111 K 
85 6 12 91 L 86 1 15 421 M 
87 1 16 241 N 88 1 16 171 N 
89 1 20 241 O 

(4) Undergo machining in one of the NC machines. 

(5) Travel back to the PPA for the unmount operation. 

(6) The unmount operation at the PPA. 

(7) Travel back to the PP. 

For the sake of convenience, we shall re-label the RGV to be facility 1, PPA to be facility 
2, and the three NCs to be facilities 3, 4, 5 respectively. We also find it useful to label the 
RGV as machine type 1, PPA as machine type 2, and the three NC machines as machine 
type 3. 

Table 8. Setup times and setup costs for example 3. 

Class A B C D E F G H 

Time 10 20 30 40 50 60 70 80 
Cost 50 100 150 200 250 300 350 400 

Class I J K L M N O 
Time 90 100 110 120 150 160 200 
Cost 450 500 550 600 750 800 1000 
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Table 9. Schedule obtained for example 3. 

M1 84 
M2 25 28 29 31 

38 37 34 27 
M3 61 62 58 48 

53 54 55 56 
M4 65 66 68 67 
M5 71 72 74 73 
M6 75 19 15 4 

16 24 8 22 
11 23 14 

M7 76 85 
M8 78 77 79 
M9 80 86 
M10 82 81 83 

32 33 39 40 41 35 36 
30 26 
49 50 45 51 46 47 63 
57 43 60 44 42 52 59 
69 64 87 88 
70 89 
5 6 20 17 7 1 18 
3 13 10 12 9 2 21 

4.2 A new formulation 

The job shop scheduling methodology of Hoitomt et al (1990, 1993) was implemented 
for the above problem and an oscillation phenomenon was found to persist despite adding 
quadratic penalty terms. Therefore, a slightly different problem formulation as shown 
below is employed. Define the following additional variables. 

o)ij k integer variable, equals 1 for every time unit k < cij and 0 otherwise. 

trij k integer variable, equals 1 for every time unit k > bi j  and 0 otherwise. 

With these new variables, the precedence constraints (16) can be replaced by the fol- 
lowing: 

o)ij k q- tTi(j+l) k < 1 (i = 1, 2 . . . . .  N; j = 1, 2 . . . . .  6; k = 1, 2 . . . . .  K). 

(17) 

With (17) in place of (16), the problem formulation is still valid and standard Lagrangian 
relaxation employing subgradient optimization can be employed. 

Now, we relax the capacity constraints (14) using Lagrangian multipliers 7~kh(k = 
1, 2 . . . . .  K; h = 1, 2, 3) and relax the precedence constraints (17) using Lagrangian 
multipliers l~ i jk ( i  = 1, 2 . . . . .  N; j = 1, 2, ., 6; k = 1, 2 . . . . .  K) to form the relaxed 
problem, 

R : min V, (18) 
bij 

with V given by: 

(19) 
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subject to (15). Then the dual problem is 

D : maxL, 7t,/z 

with L given by 

subject to 

-- ~ 7(khMkh, 
kh 

(20) 

(21) 

zr > 0,/z > 0; (22) 

This leads to the following decomposed subproblems for each job i (given ~r,/z) 

Di : maxLi(#i,  :r), (23) ~i ,Tr 

with 

Di --=--L~k/zijk+min wiTi2 + E IAiJ k+  Z I£i(j-1) k 
bij j \ k=l k=bi(j-1) 

+ Y~ ~khj , (24) 
bij 

subject to (15). bij is not a linear function of the multiphers (l~ijk) and therefore the 
oscillation phenomenon disappears. 

The various steps to obtaining a near optimum solution (Hoitomt et al 1990, 1993; Luh 
et al 1990) are 

(1) solving the subproblems, 

(2) solving the dual problem, 

(3) constructing a feasible solution and 

(4) finding a (sub) optimal solution. 

4.2a Scheduling individual operations The scheduling of (i, j )  becomes the selection 
of optimal beginning times bij's. TO do this Li is computed for each possible value of 
bij and of these b*j is the one yielding the lowest value of Li's. This selection again is 
decomposable by operations. Determination of b~j can be parallelized. 

4.2b Solving the dualproblem A subgradient method is used to solve the dual problem. 
The multipliers zr and/x are updated according to 

~n+l = yt.n + 0t~g(7~n), (25) 

/z n+l = iz n + et~.g(lzn), (26) 
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where n is the iteration index, gkh~ (:zn) is the khjth component of the subgradient of Di 
with respect to Jr and equals Y~4j  t~ijk - -  Mkhj and 0~ is the step size at the nth iteration. 
Similarly, gijk(IZ n) ~- I~ijk -]- tri(j+l)k - -  1 .  W e  h a v e  

= z ( L  - L " ) /  I g(rr") 12, (27) 
a'J = x ( L  - L " ) /  I g(u") 12, (28) 

where L is an estimate of the optimal solution and L n is the value of the optimal solution 
at the nth iteration. The method converges at the rate of geometric progression, k is halved 
whenever L n fails to increase in some fixed number of iterations. The subgradient algorithm 
terminates when the step size oe i' and ot~ remains small for a fixed number of iterations 
while L n is not increasing. 

4.2c Construction of a feasible schedule Because of the stopping criterion used, the 
solution in the dual space is generally associated with an infeasible solution, viz. some of the 
capacity constraints (14) and precedence constraints (17) may be violated. The processing 
time constraints are always satisfied. In the optimal dual solution, each operation is uniquely 
associated with a beginning time b*j. 

The dual solution is first modified to ensure that the precedence constraints are satisfied. 
This is done by pushing all bij which violate precedence constraints forward in time, start- 
ing with the second operation of each job. A list U is then created by arranging operations 
of all jobs in the ascending order of the modified operation beginning times. Operations are 
scheduled on the required machines as they become available. If the capacity constraint for 
a particular machine type is violated, a greedy heuristic based on the incremental change in 
J determines which operations should begin at that time and which ones are to be delayed 
by one time unit. 

Operations in U are ordered in such a way that if (i, j )  is before another operation (u, v), 
then 

(1) bii < buy, 

(2) if bij = buy, then f ( i ,  j )  > f (u ,  v). 

The incremental cost function for job i is defined as 

f ( i ,  .j) = wi[(Ti + 1) 2 - T/2]. (29) 

Additionally, let n be a time index tracking machine availability, and let E be a set of 
unscheduled operations which cannot be scheduled between time n and their respective 
beginning times bij. Given the sequence U and {Mkh}, the greedy algorithm works as 
follows. 

Step 0: Set E = 0 and go to step 1. 

Step 1: Determine the job and operation indices i and j of the first operation in U. Deter- 
mine hi; Set b = bij. 

Step 2: Determine the first time I such that Mlhj > 0. Set n=l, and go to step 3. 

Step 3: If Mlhj # 0 for I = n, n + 1 . . . . .  n + tij -- 1, go to step 4. Otherwise go to step 5. 
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Tabk 1~ Job damfortheFMS. 

i wi ~ Di i wi ~ Di 

1 1 6 11 2 1 10 21 
3 2 12 1 4 1 48 41 
5 2 72 51 6 3 12 101 
7 3 48 51 8 3 48 61 
9 3 48 71 10 1 48 1 

Step 4: If the precedence constraints related to preceding operations are not violated, set 
Mlhj = Mlh i -- 1 for I = n, n + 1 . . . . .  n + tij -- 1 and go to step 8. Otherwise go to 
step 5. 

Step 5: Set n = n + 1. If n > b, go to step 6; Otherwise go to step 3. 

Step 6: If operation 2 on list U has beginning time b, then set set sequence U = U - { (i, j )  }, 
re-index the sequence, and set E = E t.J {(i, j)}, and go to step 1; otherwise go to 
step 7. 

Step 7: For any unscheduled operations (i, j )  E E such thatbij < b, modify bij = b +  1; 
check all subsequent operations of job i and reset those beginning times which violate 
precedence constraints; set U = U O E; and reform sequence U; set E = fl and go to 
step 1. 

Step 8: Set U = U - {(i, j)}; if U = 0, stop; otherwise go to step 1. 

4.2d Performance evaluation Once a feasible schedule is obtained, the corresponding 
value of the objective function J is an upper bound on the optimal objective function J*. 
The value of the dual function L*, on the other hand is a lower bound on J*. An upper 
bound of the duality gap is thus provided by J -  L* which is a measure of the suboplimality 
of the feasible schedule with respect to the optimal schedule. 

4.3 Numerical results 

Ten jobs had to be scheduled on the system under consideration (table 10). The travel times 
are given to be: 2 units from PP to PPA and vice-versa; 1 unit from PPA to NCs and vice- 
versa. Table 11 shows the detailed schedule obtained. The cost of the schedule is 50435 
units. The best lower bound that could be obtained (by tuning the various parameters) was 
31084 units. Thus, the schedule is at most 60% more than the optimum. 

5. Conclusions 

In the first part of this work, a new hybrid scheduling algorithm that uses simulated an- 
nealing and Lagrangian relaxation has been proposed and tested for multiclass production 
systems consisting of identical parallel machines. The technique is found to work very 
well for many examples. However, the two key issues 
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(1) performance evaluation, and 

(2) schedule reconfiguration in the event of dynamic changes, 

have not been answered. Future work should concentrate on 

(1) answering questions regarding performance evaluation and schedule reconfiguration 
in the event of dynamic changes for multiclass production systems and, 

(2) extending the hybrid technique to job shop scheduling. 

In the second part of this work, a Lagrangian relaxation algorithm for job shops was 
extended to the scheduling of a real-world flexible manufacturing system. An interesting 
feature of the algorithm is that it is quite sensitive to the initial value of ~.. Also, it is 

Table 11. Schedule obtainedfortheFMS. 

i j bij cij mij i j bij cij mij 

1 1 12 13 1 1 2 15 17 2 
1 3 18 18 1 1 4 24 29 4 
1 5 34 34 1 1 6 36 36 2 
1 7 37 38 1 2 1 14 15 1 
2 2 18 20 2 2 3 22 22 1 
2 4 103 112 3 2 5 113 113 1 
2 6 114 114 2 2 7 115 116 1 
3 1 3 4 1 3 2 6 8 2 
3 3 11 11 1 3 4 12 23 4 
3 5 24 24 1 3 6 25 25 2 
3 7 26 27 1 4 1 39 40 1 
4 2 41 43 2 4 3 44 45 1 
4 4 89 136 5 4 5 137 137 1 
4 6 138 138 2 4 7 139 139 1 
5 1 7 8 1 5 2 9 11 2 
5 3 16 16 1 5 4 17 88 5 
5 5 89 89 1 5 6 90 90 2 
5 7 91 92 1 6 1 32 33 1 
6 2 37 39 2 6 3 59 59 1 
6 4 113 124 3 6 5 127 127 1 
6 6 128 128 2 6 7 129 130 1 
7 1 9 10 1 7 2 12 14 2 
7 3 17 17 1 7 4 30 77 4 
7 5 78 78 1 7 6 79 79 2 
7 7 81 82 1 8 1 30 31 1 
8 2 33 35 2 8 3 36 36 1 
8 4 55 102 3 8 5 103 103 1 

Continued 
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Table 11. (Continued.) 

i j bij cij mij i j bij Cij mij 

8 6 104 104 2 8 7 106 107 1 
9 1 28 29 1 9 2 30 32 2 
9 3 35 35 1 9 4 78 125 4 
9 5 128 128 1 9 6 129 129 2 
9 7 131 132 1 10 1 1 2 1 

10 2 3 5 2 10 3 6 6 1 
10 4 7 54 3 10 5 55 55 1 
10 6 56 56 2 10 7 57 58 1 

not monotonic. In other words, a higher value of the dual of the objective function at the 
termination of the subgradient optimization algorithm, does not necessarily yield a schedule 
that is better in quality. This is mainly attributable to the termination condition and the 
heuristic that is applied to arrive at a feasible schedule. Future work should concentrate 
on designing a monotonic Lagrangian relaxation algorithm that is insensitive to the initial 
values of ~.. At least it should provide an empirical rule for arriving at good lower bounds 
and better quality schedules. 
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