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Real-world illumination and the perception of surface 
reflectance properties 

Roland W. Fleming 
Massachusetts Institute of Technology,

Cambridge, MA, USA   

Ron O. Dror 
Massachusetts Institute of Technology,

Cambridge, MA, USA    

Edward H. Adelson 
Massachusetts Institute of Technology,

Cambridge, MA, USA   

Under typical viewing conditions, we find it easy to distinguish between different materials, such as metal, plastic, and 
paper.  Recognizing materials from their surface reflectance properties (such as lightness and gloss) is a nontrivial 
accomplishment because of confounding effects of illumination.  However, if subjects have tacit knowledge of the 
statistics of illumination encountered in the real world, then it is possible to reject unlikely image interpretations, and thus 
to estimate surface reflectance even when the precise illumination is unknown.  A surface reflectance matching task was 
used to measure the accuracy of human surface reflectance estimation.  The results of the matching task demonstrate 
that subjects can match surface reflectance properties reliably and accurately in the absence of context, as long as the 
illumination is realistic.  Matching performance declines when the illumination statistics are not representative of the real 
world.  Together these findings suggest that subjects do use stored assumptions about the statistics of real-world 
illumination to estimate surface reflectance.  Systematic manipulations of pixel and wavelet properties of illuminations 
reveal that the visual system’s assumptions about illumination are of intermediate complexity (e.g., presence of edges and 
bright light sources), rather than of high complexity (e.g., presence of recognizable objects in the environment). 
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1.  Introduction 

All objects in the world are made of some material or 
another, and we usually have a good idea what, just by 
looking.  Under typical viewing conditions, we find it 
trivial to distinguish between different materials, such as 
metal, plastic and paper, irrespective of the form of the 
object or the conditions of illumination.  Given this 
observation, and given the enormous variety of substances 
to be found in the environment, it seems reasonable to 
presume that our capacity for recognizing different 
materials rivals our ability to recognize different objects.  
And yet very little research has been carried out to 
determine how (although see Nishida & Shinya, 1998; 
Adelson, 2001; and a number of ongoing projects of 
Koenderink and colleagues).  Key questions include the 
following: What are the necessary and sufficient 
conditions to recognize different materials?  What sources 
of information are available to an observer as a result of 
the different ways that materials interact with light?  What 
are the principle dimensions underlying the 
representation of materials in the observer’s visual system? 

One very important source of information about 
material identity results from the wide range of optical 
properties that different materials exhibit.  Different 

materials reflect, transmit, refract, disperse, and polarize 
light to different extents and in different ways; this 
provides a rich set of optical cues for distinguishing 
materials.  For most materials, the majority of the light 
that is not absorbed is reflected from the surface, and 
thus a material’s surface reflectance properties are surely 
some of its most important optical attributes.  When light 
is reflected from a surface, it is generally scattered in many 
directions, producing a pattern that is characteristic of the 
material.  Variation in the distribution of scatter gives rise 
to such varied visual appearances as bronze, plaster-of-
Paris, gloss paint, and gold.  In this work, we present a 
number of theoretical and empirical observations on the 
conditions under which humans are good at estimating 
surface reflectance properties.  We also discuss a number 
of cues that appear to underlie this aptitude. 

1.1 Surface Reflectance Estimation 
Estimating surface reflectance is difficult because the 

image presented by a material depends not only on the 
reflectance properties but also on the conditions of 
illumination.  The image of a chrome sphere, for 
example, is simply a distorted reflection of the world 
around it, and thus the image of the sphere depends 
solely on the context in which it is viewed (see Figure 1).  
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And yet something about the appearance of the sphere 
remains the same across all of these contexts: it still looks 
like chrome.  This variability prevents the brain from 
recognizing materials by simply matching the raw image 
to a stored template.  In this respect, the task of 
recognizing materials with uniform surface reflectance 
properties (i.e., untextured materials, which have the 
same reflectance at each location on the surface) 

resembles the task of recognizing textures (i.e., materials 
whose reflectance properties vary across the surface in 
distinctive statistical patterns).  In both cases there is 
some characteristic pattern of features that are common 
to all samples within a class, and yet the specific image 
varies from sample to sample.  In the following 
arguments, we draw close parallels between texture 
recognition and surface reflectance estimation, and also 

(a) (c)

(b) (d)

Figure 1. Surface reflectance estimation is difficult because of confounding effects of illumination.  The same sphere is shown in two 

different scenes in (a) and (b).  Because of the change of environment, the images of the spheres are quite different, although the 

material appears the same.  Images (c) and (d) are photographs of a different sphere in the same scenes as (a) and (b).  On a pixel-by-

pixel basis, (c) is more similar to (a) than (b) is, despite the difference in material composition. 
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discuss a few critical differences. 
A second problem for surface reflectance estimation 

is posed by the conditions of viewing.  Under carefully 
contrived viewing conditions, a chrome sphere, for 
example, can be made to produce the same image as a 
sphere of any other material.  This could be achieved by 
painting the world in such a way that its distorted 
reflection in the sphere perfectly reproduced the pattern 
of light that would be reflected from a matte red sphere, 
for example, viewed under more normal conditions.  If 
the precise conditions of viewing are not known to the 
observer, then surface reflectance estimation is under-
constrained because many different combinations of 
material and scene are consistent with a given image. 

To summarize, identical materials can lead to 
different images, whereas different materials can lead to 
identical images.  These examples serve to demonstrate 
the deep relationship between illumination and surface 
reflectance estimation.  The characteristics of everyday 
illumination play a major role in the arguments that 
follow. 

1.2 Real-World Illumination 
As discussed above, the image of a surface depends 

not only on the material from which the surface is made, 
but also on the pattern of light that impinges on it from 
the environment.  Therefore, if we want to understand 
surface reflectance estimation, we must also understand 
the patterns of light that typically illuminate surfaces in 
the real world.  Figure 2 demonstrates the importance of 
the pattern of incoming light in determining the 
appearance of a material.  Three spheres were computer 
rendered under different illuminations.  In (a) the sphere 
was rendered under an isolated point-light source floating 

in space, while the spheres in (b) and (c) were rendered in 
environments that are more typical of the real world.  The 
impression of the material properties is clearer in (b) and 
(c) than in (a).  This observation motivates the arguments 
that follow, and is corroborated by our experiments. 

What is illumination, and what determines its 
structure?  In the real world, light is typically incident on 
a surface from nearly every direction.  Some of this light 
comes directly from luminous sources, such as the sun, 
and some comes indirectly, reflected from other surfaces.  
However, all of the light is treated equally by the surface, 
regardless of its origin, and thus all of this light is 
“illumination.” 

Each point in space receives different illumination, as 
a different set of rays converge on that point.  In order to 
characterize the illumination at a given point in space, we 
would have to measure the light arriving at that point 
from every direction.  This would create a spherical image 
or “illumination map” for that point in space.  The value 
at each location on the spherical image represents the 
amount of light arriving from that direction, as depicted 
in Figure 3.  Such spherical images or “illumination 
maps” have been captured photographically from 
locations in the world and used to render objects for the 
purposes of realistic computer graphics (Debevec, 1998; 
Debevec, Hawkins, Tchou, Duiker, Sarokin, & Sagar, 
2000).  Indeed, the spheres in (b) and (c) of Figure 2 were 
rendered using two of these illuminations. 

Why might real-world illumination facilitate surface 
reflectance estimation?  Our argument is that 
illumination maps derived from very different scenes in 
the world nevertheless share certain statistical regularities 
in structure and these regularities allow the visual system 
to make certain assumptions in interpreting images of 
surfaces.  Recent work has shown that the spatial 

(a) (b) (c)

Figure 2. The sphere in (a) was rendered under point-source illumination, while the spheres in (b) and (c) were rendered under 

photographically captured real-world illuminations.  Most observers agree that the impression of material qualities is clearer for (b) and 

(c) than for (a).  This demonstrates the important role of real-world statistics in the perception of surface reflectance. 
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(a)

(b) Panoramic projection of illumination map

 

Figure 3. Illumination at a point in space is defined as the set of rays that converge on that point from every direction.  The set of all 

rays forms a spherical image of incoming light such that each location on the sphere represents the amount of light arriving from the 

corresponding direction.  Such spherical images can be acquired photographically for points in the real world.  (a)  shows one such 

map, acquired by Debevec et al. (2000).  (b) shows the same illumination map projected onto a two-dimensional plane.  Real-world 

illumination maps exhibit statistical regularities similar to those of conventional real-world images. 

structure of real-world illumination maps possesses 
statistical regularity similar to that of natural images 
(Dror, Adelson, & Willsky, 2001; Dror, Leung, Willsky, 
& Adelson, 2001); this is not surprising because the 
structure of the maps is derived from the layout of objects 
of the environment.  The visual system could in principle 
rely on these statistical regularities to eliminate unlikely 
image interpretations.  We discuss some key statistical 
properties of illumination below. 

1.3 Exploiting the Statistical 
Regularities Of Real-World 
Illumination to Estimate Surface 
Reflectance 

Although many combinations of illumination and 
material are consistent with a given image, some 
combinations are more likely than others if we take into 
account the statistics of the real world.  We reason that 
humans exploit tacit knowledge of the statistics of real-
world illuminations to reject interpretations that are 
unlikely to occur under normal viewing conditions.  This 
makes it possible to recognize materials even when the 
precise illumination is unknown, without performing 
“inverse optics.” 

Figure 4 is a photograph of a pearlescent sphere, 
which has been cut out of its original context and placed 
against a neutral background.  The only information that 
observers can use to determine the material is the pattern 
of light within the sphere itself, and yet our impression of 
the surface reflectance is unambiguous and fairly accurate 
(e.g., we do not mistake the sphere for bronze or chalk).  
We argue that this is possible because the image is full of 

blurred features, such as the one highlighted in Figure 4.  
When confronted with a blurred feature, two of the 
possible interpretations are (a) the feature could be a 
blurred reflection of an inherently sharp world, or (b) it 
could be a sharp reflection of an inherently blurry world.  
We argue that the visual system can reject the latter 

Blurry
feature

 

Figure 4. A photograph of a pearlescent sphere that has been 

cropped and placed on an arbitrary synthetic background.  We 

have a fairly clear impression of the material qualities of the 

sphere, even though there is no context to specify the 

illumination.  When real-world illumination is reflected in a 

surface, it reliably leads to image features, such as the one 

highlighted in red, that are characteristic of the surface’s 

reflectance properties.  Despite the inherent ambiguity of 

interpreting the feature, the regularities of the real world allow 

the visual system to reject interpretations that are improbable 

given the statistics of the world. 
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interpretation because most of the time the world is not 
blurry, and thus it is much more likely that it is the 
reflection that is blurred. 

This logic effectively converts the problem of surface 
reflectance estimation into a problem analogous to 
texture recognition.  Different textures can be recognized 
because they contain some characteristic set of statistical 
image features.  Likewise, different materials have 
characteristic appearances because the reflection of the 
world in their surfaces reliably leads to some set of 
statistical image features, such as the blurred feature in 
the pearlescent sphere.  Thus surface reflectance 
properties can be estimated directly from the image, 
without performing inverse optics.  Note that this 
approach is only available to the observer because certain 
statistical properties are highly conserved across real-world 
illuminations (i.e., in the real world, illumination is not 
arbitrary).  This is what we mean when we say that the 
visual system exploits the statistical regularities of real-
world illuminations to eliminate improbable image 
interpretations. 

One consequence of this “image-based” approach is 
that subjects can recognize materials across variations in 
illumination, as demonstrated in Figure 1.  Even though 
on a pixel-by-pixel basis the image of a surface varies 
dramatically from illumination to illumination, subjects 
can nevertheless “ignore” the variations that are due to 
illumination and reliably recognize the material.  Our 
argument is that subjects do this by tracking diagnostic 
features that are well conserved across illuminations.  In 
the following experiment, we find that subjects can 
reliably match surface reflectance properties across 
variations in illumination. 

A second consequence of the image-based approach 
to surface reflectance estimation is that it should be more 

difficult to recognize materials under illuminations with 
statistics that are not typical of the real world.  Image 
features that are reliable cues for surface reflectance under 
typical illuminations may lead to spurious estimates of 
surface reflectance when the illumination statistics are not 
typical of the real world.   In the following experiment, we 
measure the accuracy of human surface reflectance 
estimation under illuminations with typical and atypical 
statistics. 

1.3.1  The role of context in surface reflectance 
estimation 

A third consequence of the image-based approach to 
surface reflectance estimation is that subjects can estimate 
certain surface reflectance properties (e.g., gloss) for 
isolated surfaces; that is, in the absence of context.  This 
is consistent with the example of the pearlescent sphere 
above, and our previous report (Fleming, Dror, & 
Adelson, 2001).  Figure 5 further demonstrates the effects 
of changing context.  The image in (a) shows a sphere 
rendered under an illumination that was photographically 
captured from the real world by Debevec et al. (2000).  In 
this image, the sphere is shown against its true 
background.1 In (b), the image of the sphere has been 
cropped out of its original background and pasted onto a 
different real-world background.  Although the image 
somehow looks “wrong,” or internally inconsistent, this 
has remarkably little effect on the perceived surface 
reflectance properties of the sphere itself; specifically, the 
background has practically no effect on perceived gloss.  
Image (c) shows the same sphere, this time against a third 
real-world background.  Again the background looks 
inappropriate, but the surface reflectance properties of 
the sphere remain largely unaffected.  These observations 
are consistent with the finding of Hartung and Kersten 

(a) (b) (c)

Figure 5. The negligible effects of context on perceived gloss.  Sphere (a) is shown against its true background, acquired 

photographically by Debevec et al. (2000).  Images (b) and (c) were created by cropping the sphere out of image (a) and placing it 

against other backgrounds.  This has relatively little effect on our perception of the surface reflectance properties of the sphere. 
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Figure 6).  Their task was to adjust the surface reflectance 
of one sphere (the “Match”) until it appeared to be made 
of the same material as the other sphere (the “Test”), 
despite the difference in illumination. 

(2002) that when the object under scrutiny and its 
background do not belong together, this has little effect 
on the perception of gloss. 

It is worth noting that this observation is seemingly at 
odds with a couple of well-known phenomena in lightness 
perception, namely that (a) it is impossible to estimate the 
albedo of an isolated patch of Lambertian material (Gelb, 
1929); and (b) the perceived lightness of a patch of 
uniform intensity can be dramatically altered by the 
context in which it is placed (Gelb, 1929; Katz, 1935; 
Gilchrist, 1977, 1979, 1994; Adelson, 1999; for a review, 
see Gilchrist et al., 1999).  Why does context seem to play 
so much less of a role for our stimuli?  We argue that it is 
because of the structured specular reflections present in 
our stimuli.  The complex patterns of reflection supply 
the visual system with sufficient diagnostic image features 
to estimate the specular reflectance properties directly 
from the image of the object, without having to derive 
any estimate of the prevailing illumination from the 
context.  We discuss the role of context further in the 
“Appendix.” 

In the experiments that follow, images of spheres 
were removed from their original contexts.  This is 
justified because of the apparently small effects of context 
on surface reflectance estimation for these stimuli.  If 
performance is good in the absence of context, it supports 
our suggestion that subjects can estimate certain 
reflectance properties directly from the image, without 
performing inverse optics. 

2.  Methods 

2.1 Observers 
Four subjects with normal or corrected-to-normal 

vision participated in the experiments.  One was an 
author (R.F.), two were experienced observers (J.M. and 
M.S.), who were naïve to the purpose of the study, and 
one was a novice observer (R.A.), who was paid for 
participating. 

2.2 Stimuli 

2.2.1 Reflectance properties 

The spheres were all spatially uniform in surface 
reflectance (i.e., untextured).  Reflectance was represented 
using the isotropic Ward model (Ward, 1992), which is a 
parametric model of reflectance like the Phong shading 
model.  Unlike the Phong model, the Ward model is 
constrained to obey fundamental physical laws, such as 
conservation of energy and reciprocity.  The Ward model 
represents surface reflectance as the sum of two 
components: diffuse and specular reflection.  Diffuse (or 
“Lambertian”) reflection occurs when light is scattered 
equally in all directions as it reflects from the surface.  
The proportion of incoming light reflected in this way 
determines the albedo (ρD) of the surface (see Figure 7).  
Small values of the albedo parameter lead to black and 
dark grey surfaces, while large values lead to light-grey and 
white surfaces.  As lightness perception has been studied 
extensively, this parameter was held fixed at red = 0.1; 
green = 0.3; blue = 0.1 for all stimuli in the experiment.  
This yields a dark green color. 

In order to measure the accuracy of human surface 
reflectance estimation, we asked subjects to perform a 
surface reflectance-matching task.  Subjects were 
presented with the images of two spheres that had been 
computer rendered under different illuminations (see 

Test Match

 

Figure 6. Example stimuli from the surface reflectance matching task.  Subjects adjusted the reflectance properties of the Match sphere 

until it appeared to be made of the same material as the Test sphere, despite the difference in illumination.  Note that in this image the 

spheres have different surface reflectance properties. 

 



Fleming, Dror, & Adelson 353 

The second component of the Ward model 
represents specular reflection.  This reflectance 
component is characterized by the fact that the angle of 
reflectance is equal to the angle of incidence (or 
distributed thereabout).  Specular reflection leads to a 
mirrorlike or glossy appearance.  Unlike diffuse 
reflectance, there are two parameters associated with 
specular reflection in the Ward model.  The specular 
reflectance (ρS) parameter controls the proportion of 
incoming light that is reflected in this way.  Small values 
of this parameter yield matte surfaces such as soot and 
chalk; intermediate values yield glossy surfaces such as 
plastic and glass; and large values yield lustrous surfaces 
such as platinum (see Figure 7).  A final parameter (α) 
controls the roughness of the surface at a microscopic 
scale.  Changing this parameter leads to changes in the 
“spread” or blur of the specular reflection.  Small values 
of the roughness parameter lead to smooth surfaces with 
crisp specular reflections, like polished chrome.  Large 
values lead to rough surfaces with blurred reflections, like 
unpolished aluminum or sandblasted plastic (see Figure 

7).  A wide range of materials, such as metals, plastics, 
and paints, have been modeled with the aforementioned 
three parameters.2 The parameter scales were stretched 
nonlinearly to make the step-sizes perceptually equal.  
This reparameterization was performed according to the 
psychophysically uniform space proposed by Pellacini, 
Ferwerda, and Greenberg (2000).3 

Diffuse Reflectance
(held fixed)

Diffuse Reflectance
(held fixed)

Specular ReflectanceSpecular Reflectance RoughnessRoughness

 

Figure 7. The three parameters of the Ward reflectance model.  Diffuse reflectance specifies the proportion of incoming light reflected 

by the diffuse (Lambertian) component.  In the matching experiments this was held constant for all stimuli.  Specular reflectance 

controls the proportion of incoming light reflected by the specular component, surface roughness controls the spread or blur of the 

specular reflection.  Subjects adjusted the latter two parameters to match surface reflectance. 

 

Subjects simultaneously adjusted the specular 
reflectance and roughness parameters of the specular 
reflection to match the material.  Ten values were used 
for the specular reflectance parameter and eleven for the 
roughness parameter, making a total of 110 possible 
surface reflectances.  These values spanned a range greater 
than but including the range of reflectances exhibited by 
isotropic “plastics,” such as gloss paint and sandblasted 
plastic in the real world (see Figure 8).  Specifically, values 
for the specular reflectance parameter ran from c = 0.019 
to 0.190 in 10 even steps in the Pellacini et al. 
parameterization, which is equivalent to a range of ρS = 
0.0139 to 0.193 in the Ward model.  Values for the 
surface roughness parameter ran from d = 0.900 to 1.00 
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in 11 even steps in the Pellacini et al. parameterization, 
which is equivalent to a range of α = 0.00 to 0.10 in the 
Ward model. 

2.2.2  Illuminations 

The spheres were rendered under nine real-world 
illuminations, and five artificial illuminations with 
various atypical statistics.  The real-world illuminations 
that we used were taken from a database originally 
acquired by Debevec et al. (2000) from a variety of indoor 
and outdoor scenes, using high-dynamic range 
photography.4 The overall brightness of the different 
illuminations was normalized such that a standard 
Lambertian patch oriented perpendicular to the observer 
yielded the same luminance under each of the 
illuminations.  Figure 9 shows spheres viewed under each 
of the eight real-world illuminations used to render Test 

stimuli; all spheres in this figure have the same surface 
reflectance properties.  The Match sphere that the 
subjects adjusted was viewed under the “Galileo” real-
world illumination for all conditions (see Figure 10).  
This illumination was never used to render Test stimuli. 

The artificial illuminations were designed to have 
specific atypical spatial or statistical properties; they 
consisted of (a) a single point source; (b) multiple point 
sources; (c) a single extended rectangular source; (d) 
Gaussian white noise; and (e) Gaussian noise with a 1/f 
amplitude spectrum (pink noise).  Example spheres 
rendered under each of these illuminations are shown in 
Figure 11; the spheres all have the same reflectance as the 
spheres rendered under real-world illuminations in Figure 
9.  It is worth noting that the impression of the 
reflectance properties is generally less distinct for the 
spheres viewed under the artificial illuminations than for 

Specular Reflectance
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ess

 

Figure 8. Subjects adjusted specular reflectance and surface roughness to match the appearance of the spheres.  Ten values were 

used for specular reflectance and 11 for roughness yielding a total of 110 possible surface reflectances.  The scales of these 

parameters were adjusted to form a perceptually uniform space, using the nonlinear scaling proposed by Pellacini et al. (2000). 
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(a)  Beach (b)  Building (c)  Campus (d)  Eucalyptus

(e)  Grace (f)  Kitchen (g)  St. Peter's (h)  Uffizi

Figure 9. Spheres rendered under each of the real-world illuminations used in the matching experiments.  All spheres shown here have 

the same surface reflectance properties.  It should be noted that these spheres do not have the maximum specular reflectance or 

minimum roughness used in the experiments.  Therefore additional detail was visible in some experimental conditions. 

 

those rendered under real-world illuminations; the one 
exception is the illumination featuring the single 
rectangular source. 

The white noise illumination map was generated by 

summing spherical harmonics whose coefficients up to a 
fixed order were chosen from independent Gaussian 
distributions of equal variance. For the pink noise, the 
spherical harmonic coefficients were again chosen from 
independent Gaussian distributions, but the standard 
deviation of the distributions was inversely proportional 
to the spherical harmonic order (this is the spherical 
analogue of frequency).  This process yields a 
characteristic “cloudlike” pattern, whose power spectrum 
is similar to that of many real-world illuminations, but 
whose phase characteristics are not typical of the real 
world. 

Galileo

 

Figure 10. Sphere rendered under the illumination used for the 

match sphere in the experiments.  As in Figure 9, this sphere 

has neither the sharpest nor brightest specular reflectance 

values used in the experiments. 

2.2.3  Rendering 

Rendering was performed using the RADIANCE 
rendering software (Ward, 1994; 
http://radsite.lbl.gov/radiance/HOME.html).  
Illuminations were stored and loaded using the 
RADIANCE native high-dynamic range format (.hdr or 
.pic).  The illumination data were treated as illumination 
arriving from infinite distance and from all directions for 
the evaluation of the Ward reflectance model.  This can 
be achieved by representing the data as a “glow source” in 
the RADIANCE scene description.  Further details are 
given in Dror’s (2002) doctoral thesis. 

 

http://radsite.lbl.gov/radiance/HOME.html
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(a)  Single Point Source (b) Multiple Point Sources (c)  Extended Source

(e) Gaussian White Noise (f)  Gaussian 1/f Noise

Figure 11. Spheres rendered under each of the synthetic illuminations used in the matching experiment.  Each illumination was 

designed to have some key properties in common with real-world illuminations, but otherwise to have atypical statistics.  If subjects’ 

stored assumptions about illuminations are infringed, performance should be impaired.  It should be noted that perceived surface 

reflectance is less clear for these spheres than for those in Figure 9, with the possible exception of (c), which was rendered in a world 

featuring a single extended rectangular source. 

 

2.2.4  Display limitations on the CRT 

The range of luminances that results from viewing a 
specular surface under ordinary viewing conditions can be 
several orders of magnitude larger than what is possible 
with a good monitor. It is possible that the sheer intensity 
of real highlights facilitates reflectance estimation, and 
this cannot be reproduced using current display 
technology.  However, in an attempt to overcome this we 
used a number of presentation devices, to maximize the 
utility of the available range. 

First, all images were presented in a black room with 
the lights off, to decrease the luminance of the darkest 
blacks in the image. We estimated that as a consequence 
of this we were able to achieve a dynamic range of about 
30:1 for high spatial frequency information, and up to 
about 120:1 for larger regions. 

Second, rather than allowing the image values to clip, 
the images were passed through a compressive 
nonlinearity of the type described by Tumblin, Hodgins, 
and Guenter (1999). This is a sigmoidal nonlinearity that 
is linear for intermediate luminances but compresses low 
and high values. The same tone-mapping function was 
used for every experimental condition. The monitor was 

calibrated to ensure linearity before every session of the 
experiment. 

Third, we applied synthetic glare to the rendered 
images in order to mimic the optical effects of viewing 
high luminances with the human eye. This was done 
according to specifications derived by Ward Larson, 
Rushmeier, and Piatko (1997) from empirical 
measurements of the optical properties of the eye. This 
process simulates the glare that would be experienced had 
the brightest points in the images really been shown at 
full intensity. The process has little effect except for bright 
point sources. 

2.3  Procedure 
Each illumination condition was run in a separate 

block and the order of the blocks was randomized across 
subjects.  Within a block, subjects made 110 observations, 
one for each of the possible reflectances of the Test 
sphere.  Hence, for a given value of specular reflectance, 
subjects would perform 11 matches (each with a different 
roughness).  Conversely, for a given value of roughness, 
subjects would perform 10 matches (each with a different 
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specular reflectance).  The reflectances within a block 
were shown in random order. 

Specular Reflectance Surface Roughness

matte shiny
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r.m.s. error = 28% of range r.m.s. error = 16% of range 

Subjects could adjust both parameters simultaneously 
using the keyboard, and were given unlimited time.  
Subjects were informed by a beep if they tried to exceed 
the range of Match reflectances. 

3.  Results 

3.1  Can Subjects Match Surface 
Reflectance Without Knowing The 
Specific Illumination? 

Figure 13. Matching data pooled across all subjects and all 

real-world illuminations.  The two parameters are plotted 

separately.  Veridical performance would fall along red lines.  

Grey level indicates density of subjects’ responses.  Root 

mean square error between subjects’ matches and Test values 

can be expressed as a percentage of the range of Test values 

used. 

Figure 12 shows example matching data for three 
subjects; each subject was matching spheres under a 
different real-world illumination.  For each subject, 
matches for the specular reflectance parameter are plotted 
on top, with matches for roughness underneath.  The x-
axes represent the value of the Test sphere, the y-axes 
represent the subject’s match.  The grey level in the graph 
indicates density of responses, such that if a subject always 
provided the same match value for a given test value, the 
square would be white; the rarer the response, the darker 
the grey.  The diagonal line shows ideal performance. 

The data show that subjects can match specular 
surface reflectance properties across variations in 
illumination fairly reliably and accurately. Specifically, 
subjects’ matches are not independent of the Test value, 
as would be predicted if the subjects were incapable of 
estimating surface reflectance.  This is important as it 
confirms our observation that the pattern of light within 
an object provides a cue to surface reflectance, despite the 
potential ambiguity of the image features. Such a strategy 
is available only because of the statistical regularities that 

Figure 13 summarizes the complete data set, pooled 
across all subjects and all real-world illuminations.  Again, 
matches for specular reflectance and roughness are 
plotted on separate graphs. 

Subject: RF. (110 observations)

Illumination: “St. Peter’s”.

Subject: MS.  (110 observations)

Illumination: “Grace”.

Subject: RA. (110 observations)

Illumination: “Eucalyptus”.
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Figure 12. Examples of matching data from three subjects’ viewing spheres under three real-world illuminations.  Matches for the two 

parameters are plotted separately.  Abscissa represents value of Test parameter, Match axis represents subject’s estimate.  Veridical 

performance would fall along red line.  Grey level indicates density of subject’s responses. 
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are conserved across real-world illuminations. Without 
the statistical regularities, the image features would be 
ambiguous and matching performance would be at 
chance across illuminations.  That subjects can match 
surface reflectance properties accurately even though the 
images differ considerably on a pixel-by-pixel basis implies 
that they are using higher-level image features to perform 
the match. The finding also confirms our observation that 
gloss constancy does not require context, as long as the 
statistics of the illumination are typical of the real world. 

3.2  Differences In Matching 
Performance Across Real-World  
Illuminations 

Although matching performance is well above 
chance, there are statistically significant differences in 
matching performance across variations in illumination. 
Put another way, constancy is not perfect under our 
viewing conditions.  For example, estimates of the 
specular reflectance parameter are systematically lower 
under the “Uffizi” illumination than under the “Galileo” 
illumination (see Figure 14).  However, the fact that 
constancy is not perfect does not undermine our basic 
observations.  That performance is better than chance (i) 
across illuminations and (ii) in the absence of context 

demonstrates that subjects can use higher-level image 
features to match surface reflectance properties.  
Furthermore, although certain statistical regularities are 
well conserved across real-world illuminations, we do not 
expect them to be perfectly conserved — residual 
differences in the statistics across illuminations ought to 
lead to biases in subjects’ estimates of the surface 
reflectance properties.  Thus, differences in matching 
performance are to be expected when subjects’ 
assumptions are not perfectly satisfied. 

3.3  How Accurate Are Subjects’ 
Matches? 

It is clear from Figures 12 and 13 that subjects are 
performing above chance.  But exactly how well can 
subjects match surface reflectance in the absence of 
context?  In order to quantify accuracy, we took the root 
mean squared (RMS) error between subjects’ responses 
and the true values of the Test stimulus.  This measure of 
accuracy can be expressed as percentage of the total range 
of values that we used in the experiments: the larger the 
percentage, the worse the performance. 

The RMS error for the specular reflectance matches, 
pooled across all subjects and all real-world illuminations 
(see Figure 13) was 28% of the range of values we used.  
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Specular Reflectance Specular Reflectance Specular Reflectance

Test Test Test

(a)  Uffizi (b)  White Noise (c)  Pink Noise

 

Figure 14. Matching performance under real-world and noise illuminations.  (a) shows matches pooled across subjects for the Uffizi 

illumination, which yielded the least accurate performance of all the real-world illuminations.  Poor performance reflects a systematic 

bias in matching.  By contrast, performance for the noise stimuli shown in (b) and (c) is disorganized, presumably manifesting the 

difficulty subjects had in interpreting the patterns in the spheres as specular reflections. 
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3.5  Comparison Between Real-World 
and Artificial Illuminations 

This error represents the tendency for subjects to 
underestimate the specular reflectance of the Test surface 
relative to the Match surface seen in Figure 13 (i.e., the 
slope is less than 1).  This tendency to underestimate 
specular reflectance appears to be partly due to a response 
bias that leads subjects to avoid the highest values on the 
scale.  If there were no response bias, then swapping the 
illumination maps used for the Test and Match spheres 
should lead to a symmetrical change in the matching 
slope (i.e., slopes of less than 1 should become greater 
than 1).  However, when subjects adjusted Match spheres 
viewed under the “Eucalyptus” illumination map to 
match Test spheres viewed under the “Galileo” 
illumination map, matching slopes were also less than 1, 
suggesting a response bias. 

Figure 15 shows matching error for each of the real-
world and artificial illuminations, pooled across subjects.  
The red lines are the mean errors for the real-world 
illuminations.  Subjects are generally less reliable and less 
accurate at matching surface reflectance properties under 
artificial illuminations (dark blue) than under real-world 
illuminations (light blue).  One notable exception is for 
the illumination featuring an extended rectangular source 
(see Figure 11), for which matching performance is 
comparable to matches performed under real-world 
illumination for the roughness parameter. 

Matching is especially disorganized for the white and 
pink noise stimuli.  Figure 14 shows data pooled across 
subjects for the “Uffizi” illumination, which yielded the 
least accurate performance of the real-world 
illuminations.  Although subjects’ matches are inaccurate, 
their errors reflect a systematic bias, presumably resulting 
from some idiosyncratic statistics of that illumination.  By 
contrast, matches for the noise illuminations are highly 
unreliable, as shown in Figure 14.  It is likely that this 
unreliability reflects the difficulty that subjects 
experienced in interpreting these patterns as specular 
reflections.  Subjects reported that the spheres viewed 
under noise illumination did not look glossy; some 
subjects also reported that the objects did not even look 
spherical, but rather flat and matte.  Indeed, the example 
images shown in Figure 11 demonstrate that random 
patterns of illumination do not lead to distinct percepts 
of gloss. 

The RMS error for the roughness matches, pooled 
across all subjects and all real-world illuminations (see 
Figure 13), was 16% of the range of values we used. 

3.4  Are the Parameters Perceptually 
Independent? 

In Figures 12 and 13, matches for specular reflectance 
and roughness were plotted on separate graphs.  This is 
only appropriate if the parameters are perceptually 
independent (i.e., if perceived specular reflectance is not a 
function of roughness and vice versa).  When Pellacini et 
al. (2000) proposed their psychophysically uniform 
reparameterization of the Ward model, they reported that 
the two parameters are independent.  Our data support 
this finding: there was no statistical dependence of 
perceived specular reflectance on surface roughness, nor 
of perceived roughness on surface specular reflectance, 
when the data were pooled across subjects and 
illuminations. 

 

E
rr

o
r

0

5

10

15

20

25

30

35

40

45

B
ea

ch

B
ui
ld
in
g

C
am

pu
s

E
uc

al
yp

tu
s

G
ra

ce

K
itc

he
n

S
t. 

P
et

er
's

U
ffi
zi

P
oi
nt

M
ul
tip

le

E
xt
en

de
d

W
hi
te

 N
oi
se

P
in
k 
N
oi
se

Illumination Map

0

5

10

15

20

25

30

B
ea

ch

B
ui
ld
in
g

C
am

pu
s

E
uc

al
yp

tu
s

G
ra

ce

K
itc

he
n

S
t. 

P
et

er
's

U
ffi
zi

P
oi
nt

M
ul
tip

le

E
xt
en

de
d

W
hi
te

 N
oi
se

P
in
k 
N
oi
se

Specular Reflectance Surface Roughness

 

Figure 15. Comparison between matching performance for real-world and artificial illuminations.  Error for two parameters is plotted 

separately.  Real-world illuminations shown in light blue, artificial illuminations in dark blue.  Error axis represents RMS error between 

subjects’ match and Test value, expressed as a percentage of the total range of Test values used in the experiment.  The red line 

indicates mean error for real-world illuminations. 
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4.  Discussion The results of the matching experiment already 
provide some important clues.  One obvious hypothesis is 
that the visual system looks for local highlights — the 
small very bright “first bounce”6 specularities that result 
from the reflection of light arriving directly from 
luminous sources. Beck and Prazdny (1980) showed that a 
matte surface can be given a glossy appearance simply by 
adding a few local highlights.  By contrast, our finding 
that point source illumination leads to poor surface 
reflectance estimates suggests that the visual system 
requires more varied or more extended features than local 
highlights in order to estimate surface reflectance.  It is 
important to recall that the low dynamic range of the 
CRT limits the intensity of the highlights in our displays.  
It is possible that with higher dynamic range, 
performance would be somewhat improved under the 
point light sources.  Nevertheless, no matter how intense 
a single highlight becomes, it will never possess the 
extended spatial structure that results from real-world 
illumination. 

Taken together, these findings corroborate our initial 
observations.  First, subjects can reliably match surface 
reflectance properties across variations in illumination, 
even though the images are quite different on a pixel-by-
pixel basis. Matching performance across real-world 
illuminations is well above chance.  This demonstrates 
that image features that are (i) more abstract than pixels 
and (ii) local to the image of the surface provide a reliable 
cue to surface reflectance properties across variations in 
illumination.  If illumination were arbitrary, this would 
not be possible, as the origin of a given image feature 
would be ambiguous.  Therefore, in order to perform the 
task, subjects must somehow exploit the statistical 
regularities of real-world illumination.  We argue that 
subjects do this by tracking diagnostic image features that 
are well conserved across illuminations. 

Second, subjects are better at estimating surface 
reflectance when the object under scrutiny is illuminated 
by a world with typical statistics (or at least by 
illuminations taken from the real world).  When the 
illumination statistics are not representative of those 
found under ordinary viewing conditions, surface 
reflectance estimation is less accurate.  This supports our 
hypothesis that subjects rely on stored assumptions about 
the statistics of the world, because performance 
deteriorates when the assumptions are infringed. 

Recent work by Berzhanskaya, Swaminathan, Beck, 
and Mingolla (2002) suggests that perceived specular 
reflectance falls off with distance from the highlight.  
Could it be that local highlights are good cues to surface 
reflectance but that the impression fails to propagate 
across the whole surface?  The result with the multiple 
point sources makes this seem unlikely, because matching 
was still poor even when more of the surface was “close to 
a highlight.”  We suggest that highlights are good for 
distinguishing glossy from matte surfaces (hence the Beck 
demonstration), but do not provide sufficient 
information to specify the degree of specular reflectance or 
the roughness of the surface. 

Third, as observed earlier, subjects can estimate 
surface reflectance directly from images of objects; they do 
not need to estimate the illumination precisely from the 
context.  We know this because subjects can match 
surface reflectance reliably and accurately even when the 
precise conditions of illumination are unknown. The white noise illumination leads to detectable 

contrasts right across the surface of the object.  However, 
we found that matches were also poor under white noise 
illumination, suggesting that the ubiquitous and varied 
contrasts are not sufficient features for estimating surface 
reflectance. 

4.1  What Are The Stored 
Assumptions? 

We have suggested that subjects should be able to use 
the distinctive patterns that are reflected from generic 
materials to estimate the surface reflectance of the 
materials.  We argued that this is possible because of the 
statistical regularities of real-world illumination.  We are 
left with the deeper question, however: what statistical 
properties do subjects exploit?  What measurements does 
the visual system perform to estimate surface reflectance?  
In the “Introduction,” we drew a parallel between surface 
reflectance estimation and texture recognition.  Different 
samples of the same texture look similar even though on a 
pixel-by-pixel basis, the image changes from sample to 
sample.  Likewise, the same material looks similar under 
different illuminations even though the pattern of 
reflection varies with the illumination.  There must be 
some set of diagnostic features,5 some set of statistical 
properties that is common across typical images of a given 
material or a given texture.  The question is: what are the 
features? 

The fact that surface reflectance estimation is also 
poor under the pink noise illumination confirms this, but 
also rejects another hypothesis.  The subject’s stored 
assumptions about the statistics of real-world 
illuminations do not simply consist of information about 
spatial frequencies, as the pink noise illumination has a 
similar power spectrum to typical real-world illuminations 
and yet matching performance was poor.  Clearly 
“structural” or “configurative” regularities are also 
important. 

Of the spheres shown in Figure 11, the one 
illuminated under a single extended rectangular source 
looks more similar to the “real-world” spheres than the 
other “artificial” spheres.  For comparison, Figure 16 
shows example spheres illuminated under the Uffizi real-
world illumination, under the extended artificial source, 
and under the pink noise illumination.  The similarity in 
appearance between the sphere rendered under the 
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(a)  Uffizi (b)  Extended (c)  Pink Noise

 

Figure 16. Example spheres illuminated under (a) real-world illumination, (b) artificial illumination featuring an extended rectangular 

source, and (c) pink noise illumination.  Both (b) and (c) are synthetic illuminations, and yet the impression of surface reflectance 

properties is clearer for (a) and (b) than for (c); we suggest that this is because the extended source illumination shares important 

properties in common with real-world illuminations, while the pink noise illumination infringes many of the assumptions used by the 

visual system to estimate surface reflectance. 

extended source and the Uffizi illumination is reflected in 
the matching results; accuracy under the extended source 
was comparable to the real-world illuminations, at least 
for the roughness parameter.  There are three striking 
features of this illumination: (1) it has a dominant 
direction of illumination, unlike the noise illuminations; 
(2) it contains extended edges, unlike all the other 
artificial illuminations; (3)  the edges are organized into a 
regular, meaningful shape.  These are important 
candidate features that the visual system might require in 
order to estimate surface reflectance properties accurately.  
In the following section, we discuss these and other 
possible features. 

4.2  Further Observations on the 
Features Underlying Surface 
Reflectance Estimation 

We have discussed several image features that subjects 
may use to estimate surface reflectance properties.  
However, there are countless other features that may be 
important, ranging from the sharpness of the brightest 
edge to the presence of recognizable objects in the 
reflection.  The most direct way to test the importance of 
a feature is to see if selectively manipulating that feature 
has a systematic effect on surface reflectance estimation. 

4.2.1  Direct manipulations of the image 

In Figure 17, we directly modify the brightest 
highlights in images of spheres rendered under one real-
world and one artificial illumination.  When we remove 
the brightest highlights from the image of a sphere 
rendered under the “St. Peter’s” illumination (Figure 
17b), the result looks somewhat less glossy than the 
original (a).  This is consistent with Beck and Prazdny’s 
(1980) observation, discussed above.  However, it should 
be noted that the sphere does not appear uniformly 
matte.  It is easy to interpret the remaining, lower-contrast 

patterns as reflections, suggesting that these features also 
play a role in the glossy appearance, as argued above.  
Likewise, when we blur the brightest highlights (Figure 
17c), the resulting sphere appears somewhat rougher than 
the original.  However, the effect does not extend 
uniformly across the entire surface, nor does the visual 
system attribute all of the blur to the environment.  The 
sphere looks non-uniform in reflectance, but it still looks 
essentially like a glossy sphere, demonstrating that under 
real-world illumination many features act simultaneously 
to produce the impression of gloss. 

With artificial illumination, manipulating the local 
features can have a much more pronounced effect. Figure 
17d shows a sphere rendered under multiple, isolated 
point sources, as used in the matching experiment.  
When we remove the bright highlights, the sphere looks 
entirely matte (Figure 17e).  This is, of course, because no 
other features are available to produce the impression of 
specularity.  Likewise, when we blur the bright highlights, 
the entire sphere appears rougher (Figure 17f).  Real-
world illumination provides much richer specular 
reflections.  In turn, the visual system has more features 
available with which to estimate the surface reflectance 
properties. 

4.2.2  Manipulations of the 
Illumination 

Doctoring the image directly allows us to test the role 
of specific local features in surface reflectance estimation.  
However, there are two advantages to manipulating the 
illuminations as opposed to adjusting the features of the 
rendered image directly.  The first is that the results are 
guaranteed to be physically possible (within the limits of 
the display device).  The second is that features of 
illumination are independent of the three-dimensional 
shape of the object being viewed, and thus we do not 
need to have a theory of shape perception to make 
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(2)  Quasi-local and nonlocal properties statements about which properties of illumination are 
important for the perception of surface reflectance.  To 
this end, we have rendered objects under a number of 
manipulated or fabricated illuminations to demonstrate 
the importance (or lack thereof) of various salient 
properties of illumination for surface reflectance 
estimation. 

a. Nearby pixels are correlated in intensity, such that 

power falls off at higher spatial frequencies.  At 

higher spatial frequencies, amplitude typically falls 

off as 1/f, where f is the modulus of the spatial 

frequency. 

b. Distributions of bandpass filter coefficients (e.g., 

wavelet coefficients) are highly kurtotic.  In other 

words, large wavelet coefficients are sparse. 

A priori, we would expect a given property of the 
illumination to be important for estimating surface 
reflectance if (a) the property is well conserved across 
illuminations so that it gives reliable information across 
instances, and (b) variations in surface reflectance 
systematically map that illumination property into 
detectable, reliable image features.  Before showing 
surfaces rendered under manipulated and fabricated 
illuminations, it is instructive to review some of the most 
salient statistical regularities of illumination [see Dror, 
Leung, Willsky, & Adelson (2001) and Dror (2002) for a 
more thorough account].  Illuminations tend to have the 
following properties, which we have grouped by the 
complexity, and the extent to which they can be measured 
locally. 

c. Approximate scale invariance.  Distributions of 

wavelet coefficients are similar at different scales. 

d. Although approximately decorrelated, wavelet 

coefficients exhibit higher-order dependencies 

across scale, orientation, and location.  These 

dependencies reflect the presence of image features 

such as extended edges. 

(3) Global / nonstationary properties 

a. Dominant direction of illumination. 

b. Presence of recognizable objects such as buildings 

and trees. 
(1)  Properties based on the raw luminance 
values 

c. Cardinal axes corresponding to the ground plane 

and perpendicular structures erected thereupon. 
a. High dynamic range.  The “Campus” illumination 

map (Figure 9c), for example, has a range of 

luminances spanning over three orders of 

magnitude (2000:1). 

We will now discuss the role of a number of these 
properties in surface reflectance estimation by rendering 
under systematically manipulated illuminations. 

b. Pixel histograms that are heavily skewed toward 

low-intensity values. 

(a) (b) (c)

(d) (e) (f)

 

Figure 17. Direct manipulation of highlights. Original images are shown in (a) and (d). In (b) and (e), highlights have been removed; in 

(c) and (f), they have been blurred. The consequences are more pronounced for the artificial illumination than for the real-world 

illumination. Real-world illumination provides the visual system with many features with which to estimate surface reflectance, unlike the 

artificial illumination shown here. 
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4.2.3  Manipulations of the illumination 
histogram 

Real-world illuminations tend to have pixel 
histograms with moderately well conserved higher-order 
statistics.  One particularly salient feature of the 
distributions of illumination intensities found in the real 
world is that they are heavily skewed toward small values, 
such that the vast majority of pixels are many orders of 
magnitude darker than the few brightest.  This reflects the 
fact that radiant sources in the real world are generally 
fairly compact.  Is the distribution of intensities found in 
real-world illumination one of the stored assumptions 
humans use to estimate surface reflectance? 

Consider the sphere shown in Figure 11(e), which 
was illuminated under the pink noise illumination.  This 
sphere yields a poor impression of surface reflectance.  
The illumination map was synthesized to have a Gaussian 
pixel histogram, which is atypical of real-world 
illumination.7 If the visual system assumes that the 
distribution of illumination intensities is generally heavily 
skewed, then the poor impression of surface reflectance 
associated with the Gaussian pink noise illumination may 
in part be due to the fact that it violates this assumption.  
We can test this hypothesis directly by enforcing a more 
realistic histogram on the illumination and rendering a 
new sphere.  If the alteration improves the percept of 
surface reflectance, then this suggests that the visual 

system does expect objects to be illuminated by skewed 
distributions of light, as they tend to be in the real world. 

Conversely, we can enforce a Gaussian (i.e., 
unrealistic) histogram on one of the real-world 
illuminations, and thus rob that illumination of one of its 
characteristic properties.  If this property is important for 
surface reflectance estimation, then the modified 
illumination should yield poor impressions of surface 
reflectance, just as the Gaussian pink noise illumination 
does.  The results of these two manipulations are shown 
in Figure 18. 

Spheres rendered under the original versions of the 
illuminations are shown in (a) and (b), along with their 
pixel histograms.8 By passing the intensities of the 
Gaussian noise illumination through a carefully chosen 
static nonlinearity, we can force the illumination to have 
a very similar pixel histogram to the Campus illumination 
shown in (a)9; this process is known as histogram 
matching.  Rendering under this modified noise 
illumination yields the sphere shown in (d).  On close 
inspection, it is clear to the observer that the world 
reflected in this sphere is made of meaningless clumps, 
rather than meaningful objects such as buildings and 
trees.  However, at first glance, the sphere tends to give 
the impression of being spherical and glossy, as opposed 
to relatively flat and matte, as is the case in (b).  This 
suggests that simply by skewing the illumination 

(a)  Campus Original (c)  Campus with histogram of pink noise

(d)  Pink noise with histogram of campus(b)  Pink Noise Original
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Figure 18. Spheres rendered under illuminations with modified pixel histograms.  The sphere in (a) was rendered under the original 

Campus illumination, which has a heavily skewed pixel histogram.  The sphere in (b) was rendered under pink noise illumination with a 

truncated Gaussian pixel histogram.  These illuminations were then modified using histogram matching.  The sphere in (c) was 

rendered under modified Campus illumination with an approximately Gaussian histogram derived from (b).  The sphere in (d) was 

rendered under modified noise illumination with a histogram derived from (a).  Note the difference in scale on the pixel histogram plots; 

the original Campus is considerably more skewed than the original Noise. 
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Although the visual system seems to expect a skewed 
illumination histogram, it is by no means sufficient alone.  
This is demonstrated in Figure 19.  This sphere was 
rendered under modified white noise.  As before, the 
illumination was given the same pixel histogram as the 
Campus illumination, and yet this time the impression of 
a glossy surface is much less vivid.  The reason for the 
difference between the modified pink noise and the 
modified white noise is due to the spatial distribution of 
the brightest pixels.  In pink noise, the intensity of 
neighboring pixels is correlated, and thus there is a good 
chance that the brightest pixels will be clumped together 
in space.  When these pixels are made much brighter 
than the rest by the histogram matching process, they 
form a directional source that leads to vivid shading and 
highlights, as discussed above.  By contrast, the brightest 
pixels in white noise are randomly distributed about the 
illumination map.  When these pixels are “boosted” by 
the histogram matching process, they do not aggregate 
into a predominant direction of illumination, but rather 
add bright light from many directions at once.  This leads 
to poor shading information and lower contrast, and 
hence a weaker impression of a glossy surface. 

histogram, we have satisfied one of the major assumptions 
held by the visual system about the statistics of real-world 
illumination. 

(a)  Campus original
(b)  White noise with 

histogram of campus

 

Figure 19.  Sphere (a) was rendered under an unmodified real-world illumination.  Sphere (b) was rendered under white noise 

illumination that had been modified using histogram matching to have the same pixel histogram as the illumination in (a).  Unlike the 

modified pink noise shown in Figure 18, the modified white noise does not lead to compelling impressions of gloss. 

 

Conversely, when we force the Campus illumination 
to have a Gaussian histogram, the corresponding sphere, 
shown in (c), appears dull and flat.  Scrutiny reveals that 
the sphere contains the same pattern as in (a), but it lacks 
the depth and shading associated with a skewed pixel 
histogram.  These two demonstrations suggest that a 
skewed distribution of illuminant intensities is a necessary 
condition for perceiving surface reflectance.  It seems 
likely that this is one of the stored assumptions held by 
the visual system. 

Why might a skewed illumination histogram lead to 
good impressions of surface reflectance?  Although only a 
small proportion of the world is very bright, it is in fact 
those few bright sources that are responsible for the 
majority of the light that is reflected from a surface.  A 
skewed illumination histogram allows the few brightest 
directions to dominate the image, leading to good 
shading information from the diffuse component of 
reflectance, and bright, localized highlights from the 
specular component.  Moreover, the skew tends to 
increase the contrast between the darkest and brightest 
regions of the image.  This could be important for 
distinguishing spatial variations in illumination (i.e., 
highlights) from spatial variations in the intrinsic 
reflectance of the material (i.e., surface texture).  In the 
real world, variation in pigment reflectance spans a range 
of about 30:1, whereas first-bounce highlights can be 
many orders of magnitude brighter than their 
surroundings.  We argue that under illuminations with 
skewed histograms, the visual system more readily 
interprets the pattern as reflections and thus better 
estimates the intrinsic properties of the surface. 

4.2.4  The role of illumination wavelet statistics 

If the reason that the modified white noise 
illumination yields poor impressions of surface 
reflectance is because it lacks some of the spatial structure 
of real-world illuminations, then synthesized 
illuminations that share such spatial structure should lead 
to compelling percepts of gloss.  In order to test this, we 
need a method to describe the relevant properties of 
spatial structure.  We suggest that histograms of wavelet 
coefficients at various scales and orientations may serve as 
a formal measure of this property for the following 
reasons.  First, wavelet histogram properties are well 
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conserved across real-world illuminations (Dror et al., 
2001) and therefore lead to reliable cues.  Second, wavelet 
histograms offer a means to capture some of the 
important spatial structure of illuminations, including 
that captured by power spectra.  However, wavelets are 
more powerful than power spectra in that they capture 
the effects of local image features, such as edges.  Third, 
because of their local, multi-scale nature, illuminations 
that are synthesized to have constrained wavelet 
histograms will exhibit structure at all scales and 
contrasts.  Put another way, wavelet histograms can 
capture the relatively low-contrast structure that results 
from secondary sources in the environment (i.e., non-
emitting surfaces such as walls, trees, and people) as well 
as structure resulting from bright light sources.  Thus, 
wavelet statistics represent reliable features of 
intermediate complexity, which capture a number of 
important quasi-local properties of illumination.  It is also 
worth noting that a computer vision system can perform 
reflectance estimation using the statistics of the wavelet 
and pixel histograms considered here (Dror, Adelson, & 
Willsky, 2001). 

Heeger and Bergen (1995) provide an iterative 
algorithm for synthesizing textures with specified pixel 
histograms and with specified histograms of the wavelet 
coefficients at each scale and orientation.  We can use 
their texture synthesis algorithm to generate new 

illuminations that are constrained to have the same pixel 
and wavelet coefficient distributions as real-world 
illuminations.  If such histograms capture the types of 
features that the visual system expects from glossy 
surfaces, then these illuminations should yield compelling 
impressions of surface reflectance.   

Figure 20 shows spheres rendered under eight such 
illuminations.  Each illumination was generated from a 
different random initial state and was forced by the 
algorithm to have the same pixel and wavelet coefficient 
histograms as the real-world illumination with the 
corresponding name.  Thus, the first sphere, for example, 
was rendered under a synthetic illumination with the 
same pixel and wavelet coefficient histograms as the 
Beach illumination (which was captured photographically 
from the real world). 

On close inspection, it is clear that the world 
reflected in each of these spheres does not contain 
meaningful objects such as houses and people, and yet, at 
first glance, the impression of gloss is quite compelling in 
most of the cases.  Nothing about the synthesis process 
forces the bright sources to organize themselves into 
regular or naturalistic configurations; none of the global 
properties of real-world illumination are captured, such as 
the fact that in the real-world light generally comes from 
above.  In addition, the synthesis process does not capture 
features such as extended straight edges; such features 

(a)  Beach (b)  Building (c)  Campus (d)  Eucalyptus

(e)  Grace (f)  Kitchen (g)  St. Peter's (h)  Uffizi
 

Figure 20. Spheres rendered under synthetic illuminations with same wavelet and pixel histograms as real-world illuminations.  Each 

illumination was synthesized from a random initial state by an iterative procedure that constrains the wavelet and pixel histograms to be 

the same as a given real-world illumination.  The statistics of each illumination were matched to the real-world illumination denoted in 

the title  (cf. Figure 9). 
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result in interdependencies between specific wavelet 
coefficients at different scales, but are not described by 
the histograms we used.  Despite this, observers agree that 
the spheres do generally lead to a compelling sense of 
surface reflectance. 

This has two consequences for our theory of the 
stored assumptions about illumination used by the visual 
system to estimate surface reflectance.  First, we can infer 
that wavelet properties capture some of the essential 
features of illumination expected by the visual system.  
Second, although real-world illumination certainly 
contains higher-order regularities (e.g., cardinal axes), the 
visual system does not require these to pertain in order for 
an object to yield a clear impression of gloss.  Specifically, 
it does not seem to be important for the structures of the 
environment to be organized into recognizable forms.  
Enforcing additional, higher-order regularities would no 
doubt yield even better impressions of surface reflectance.  
For example, objects illuminated from above tend to look 
more “normal” or “realistic” than those lit from behind 
or below.10  However, that the spheres in Figure 20 look 
quite compelling without enforcing additional constraints 
suggests that a number of important assumptions have 
already been captured, and that additional constraints 
would yield diminishing returns. 

5.  Conclusions 

Recognizing materials by their reflectance properties 
is difficult because the image of a material depends not 
only on the material but also on the conditions of 
illumination.  Many combinations of illumination and 
material are consistent with a given image, and yet we 
usually have a clear and unique impression of the 
material attributes of an object.  The results of the 
matching experiment suggest that this aptitude does not 
require knowledge of the specific conditions of 
illumination, as subjects can accurately perceive surface 
reflectance in the absence of contextual information to 
specify the illumination. Indeed, we have demonstrated 
that it is possible to vary the context considerably with 
little effect on the apparent glossiness of the surface. 

We have argued that subjects use tacit knowledge of 
the statistics of real-world illumination to eliminate 
improbable image interpretations. Our claim is that the 
statistical regularities of real-world illumination manifest 
themselves as diagnostic image features that can be 
reliably interpreted as resulting from a given surface 
reflectance.  Thus, the recognition of glossy surfaces can 
be treated as a problem analogous to texture recognition.  
Our demonstrations suggest that surface reflectance 
properties are clearer when objects are viewed under real-
world illuminations than when they are viewed under 
atypical illuminations such as a single point light source.  
This observation is supported by our finding that subjects 
are poorer at matching reflectance properties under 

illuminations with atypical statistics than under real-world 
illuminations. We have also identified some of the 
properties of illumination that lead to reliable image 
features.  Localized point sources and random noise 
patterns yield poor estimates of surface reflectance.  
Mimicking the power spectrum of real-world illumination 
is insufficient to create a compelling impression of gloss.  
By contrast, extended edges and a predominant direction 
of illumination tend to lead to good impressions of gloss. 

Direct manipulation of the highlights in the image 
suggests that under ordinary viewing conditions, many 
features play a role in the perception of gloss, and not just 
local highlights.  By manipulating the conditions of 
illumination systematically, we have identified additional 
properties of illumination that are important for human 
surface reflectance estimation.  We have demonstrated 
that some important properties of illumination can be 
captured by relatively simple measurements using the 
pixel histograms and wavelet coefficient histograms of 
illumination maps.  This suggests that the visual system’s 
stored assumptions include local spatial properties of 
intermediate complexity, as opposed to complex, global, 
nonstationary, or configurative properties, such as 
cardinal axes of orientation and the organization of 
environmental structures into recognizable forms.  
Although higher-order regularities found in the 
environment are likely to facilitate realism, they are not 
required for compelling impressions of surface reflectance. 

Appendix 

We observe that surfaces viewed under real-world 
illumination appear remarkably constant across changes 
in the background against which they are viewed (Figure 
5).  This can be contrasted with the dramatic role that 
context plays in lightness perception.  Our explanation 
for this discrepancy is that observers estimate surface 
reflectance directly from the image of the object under 
scrutiny and thus do not require context to provide an 
estimate of the prevailing illumination.  In this section, 
we specify more precisely how much surface reflectance 
constancy can be achieved without context. 

Without context, the visual system can estimate the 
distribution of light scatter (e.g., the ratio of specular to 
Lambertian reflectance) directly from the image.  
However, without context, it cannot even in principle 
estimate the overall scaling factor for the reflectance 
distribution, because this is confounded by the overall 
intensity of the illumination. 

This point is illustrated in Figure 21, where we 
consider only surfaces whose reflectance is a combination 
of a monochromatic Lambertian component and a 
monochromatic perfect specular (mirrored) component 
(additional dimensions are also possible).  Surfaces along 
the Lambertian axis vary from matte black to matte white, 
while surfaces along the specular axis vary from matte 
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visual system can distinguish two surfaces without 
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Footnotes 

1. Specifically, what is visible is a portion of the spherical 
illumination map in which the object was placed in order 
to render it. 

Lambertian Reflectance
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2. Additional parameters are required to represent 
reflection as a function of wavelength.  For plastics and 
other dielectrics, only diffuse reflectance varies with 
wavelength: specular reflection varies little with the 
wavelength of the incident light.  However, for metals 
such as gold, the specular reflectance can be wavelength 
sensitive. 
3. Specifically, the reparameterization of specular 
reflectance was such that ρS = (c + (ρD/2)

1/3
)

3
 – ρD/2. To 

compute  ρD , we projected the red, green, and blue 
channels of ρD in the Ward model onto the CIE Y 
dimension using the values specified in the RADIANCE 
documentation.  The reparameterization of surface 
roughness was such that α = 1-d. 
4. The high dynamic range light probe images are 
available online at http://www.debevec.org/Probes.  
5. We intend the term “features” to refer to any 
measurable property of the image, and not simply local 
image tokens such as edges and junctions. 
6. The term “first-bounce” refers to the fact that these 
reflections are the first time that the light bounces after 
leaving the luminous source. 

Figure 21. Ambiguity in surface reflectance estimation without 

context. Physical reflectances are constrained to fall within the 

grey triangle. Without context, surface reflectance can be 

estimated up to an unknown scale factor. Thus, two 

reflectances can be distinguished without context as long as 

they do not fall on a straight line that passes through the origin. 

Hence, the visual system could distinguish spheres A and B, 

but cannot tell A and A´ apart without context. This is a two-

dimensional example, but the principle holds for arbitrary 

dimensions. 

7. Note that pixel values cannot be negative, so the 
distribution of intensities is truncated at zero, and 
therefore is not strictly Gaussian, although we refer to it 
as such for brevity.  This is not the case for wavelet 
coefficients, however, which can be negative as well as 
positive. 
8. It should be noted that the axes of the histograms are 
on different scales — the real world histogram has a much 
longer tail than the pink noise histogram, indicating that 
a few points in the map are much brighter than the 
majority. 

The reflectances of the Lambertian materials 
considered by Gelb (1929) and others fall along one axis 
of the space in Figure 21.  Because these surfaces differ 
only by a scaling factor, the visual system requires context 
to resolve them.  Thus our claim is not at odds with 
previous claims about the role of context in lightness 
perception.  Rather, by considering a wider range of 
materials, we make explicit the possible reduction in 
ambiguity that the visual system could achieve without 
context. 

9. No steps were taken to preserve the spatial frequency 
content of the modified noise stimulus, and thus there is 
no guarantee that it has a 1/f amplitude spectrum.  
Nevertheless, the modified illumination is still essentially 
“noise” because it was generated by a nondeterministic 
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process, and it contains none of the phase structure of a 
typical real-world illumination. 
10. Conversely, objects illuminated from below or behind 
can be given an unnatural appearance, a fact exploited in 
film- and stage-lighting for dramatic effect. 
11. The visual system could in principle learn priors on 
the scaling factor of particular materials (e.g., purely 
specular surfaces are more likely to be metals than black 
billiard balls, and therefore more likely to have a large 
scaling factor), although we know of no evidence so far 
that this plays a role in perception. 
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