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Real-world menstrual cycle characteristics of more than

600,000 menstrual cycles
Jonathan R. Bull 1, Simon P. Rowland1, Elina Berglund Scherwitzl1, Raoul Scherwitzl1, Kristina Gemzell Danielsson2 and Joyce Harper3

The use of apps that record detailed menstrual cycle data presents a new opportunity to study the menstrual cycle. The aim of this

study is to describe menstrual cycle characteristics observed from a large database of cycles collected through an app and

investigate associations of menstrual cycle characteristics with cycle length, age and body mass index (BMI). Menstrual cycle

parameters, including menstruation, basal body temperature (BBT) and luteinising hormone (LH) tests as well as age and BMI were

collected anonymously from real-world users of the Natural Cycles app. We analysed 612,613 ovulatory cycles with a mean length

of 29.3 days from 124,648 users. The mean follicular phase length was 16.9 days (95% CI: 10–30) and mean luteal phase length was

12.4 days (95% CI: 7–17). Mean cycle length decreased by 0.18 days (95% CI: 0.17–0.18, R2= 0.99) and mean follicular phase length

decreased by 0.19 days (95% CI: 0.19–0.20, R2= 0.99) per year of age from 25 to 45 years. Mean variation of cycle length per woman

was 0.4 days or 14% higher in women with a BMI of over 35 relative to women with a BMI of 18.5–25. This analysis details variations

in menstrual cycle characteristics that are not widely known yet have significant implications for health and well-being. Clinically,

women who wish to plan a pregnancy need to have intercourse on their fertile days. In order to identify the fertile period it is

important to track physiological parameters such as basal body temperature and not just cycle length.
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INTRODUCTION

The menstrual cycle begins and ends with menstruation and is
divided by ovulation into the follicular and luteal phases. The
fertile window, during which there is a probability of conception
from unprotected sex, is defined as the day of ovulation and the
5 days preceding it (the time window for sperm survival).1 Clinical
guidelines state that a woman’s median cycle length is 28 days
with most falling in the 25–30 day range and that the luteal phase
is almost always 14 days long2,3, but there is much greater
variation than this.1,4–7 The variation in cycle length is attributed
mainly to the timing of ovulation.4 Nevertheless, the length of the
luteal phase may also deviate significantly from 14 days. For
example, the luteal phase length was between 7 and 19 days in a
sample of 28 day cycles.1 With increasing age, cycle length
reduces and the timing of ovulation becomes earlier; the variation
of a woman’s cycle length reduces with age until menopause.5,6,8,9

Cycle characteristics also may be affected by ethnicity, high body
mass index (BMI), stress and lifestyle factors.8,10–12 Whilst such
variations in cycle parameters have previously been observed in
controlled studies there is a lack of knowledge about fundamental
characterisitics of the menstrual cycle in the general population.
There are more than 100 fertility awareness based (FAB) mobile

apps with more than 200 million downloads13 and they are
becoming increasingly popular for contraception14–17 and preg-
nancy planning.18 The FAB apps can be separated into three
categories: calendar apps that look at the length of the menstrual
cycle and assume average phase lengths,19 basal body tempera-
ture (BBT; defined as lowest resting body temperature) based apps
that detect the BBT rise,20–22 and symptothermal apps that also

measure other parameters such as cervical mucus changes.23

Home urinary luteinising hormone (LH) tests may also be used to
determine fertile days24 or used as input to BBT methods to
improve the accuracy of ovulation detection.20 All those apps
relying on calendar methods to assign the fertile days assume that
our historic understanding of the menstrual cycle is correct
(ovulation 14 days before the next period). Available data,
however, suggests that there may be significant variability in
fertile days.1,4 Therefore, women who wish to track their fertile
days for the purposes of pregnancy prevention or pregnancy
planning need to understand their own cycle characteristics rather
than relying on a standardised cycle.
Besides the potential benefits to the individual, fertility

awareness apps and the associated databases of fertility data
provide a unique opportunity to examine a large number of
menstrual cycles in order to improve understanding.25,26 The
mobile app used in the study can be used to prevent a pregnancy
(‘Prevent’ mode) or plan a pregnancy (‘Plan’ mode). The mode is
selected by the user during sign-up but can be changed when
desired. The app uses menstruation and BBT data as inputs
regardless of the mode selected by the user. The user can also add
urinary LH test results, however, this is not mandatory. The
automated statistical algorithm retrospectively detects the rise in
BBT following ovulation and makes personalised predictions of the
upcoming fertile window.14,20,27 With more than 1,000,000
registered users globally in August 2018, the database is one of
the largest collections of menstrual cycle data ever compiled. The
aim of this study is to describe menstrual cycle charactersitics
observed from a large database of cycles and investigate the
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association of menstrual cycle characteristics with cycle length,
age and BMI.

RESULTS

Study population

Totally, 17.4 million non-deviating BBT measurements and 1.4
million cycles were recorded by 124,648 anonymised users of the
app. They were mostly residents of Sweden, the UK and USA.
Users had a mean age of 30.3 (range: 18–45) and mean BMI of 23.6
(range: 15–50). 80% started using the app with the stated
intention to prevent a pregnancy and recorded an average of
8.5 cycles (5.0 ovulatory) in the study. In all, 20% started using the
app to plan a pregnancy and they recorded an average of 9.0
cycles (5.6 ovulatory) in the study.

Cycle selection

Out of 1.4 million cycles recorded by all eligible users, 3182 cycles
were excluded due to pregnancy and 1886 were excluded due to
being outside the 10–90 day accepted length range. Less than 1%
of cycles were longer than 50 days in length. Totally, 665,603
cycles in which ovulation was not detected were excluded, of
which 75% had valid temperatures entered on less than 50% of
the days, which partly explains why the algorithm was unable to
assign an estimated day of ovulation (EDO). An EDO was assigned
in 724,134 cycles, of which 612,613 (85%) were included in the
study due to having valid temperature entries entered on at least
50% of the days.

Validation of estimated day of ovulation

The distributions of the follicular and luteal phase lengths across
the study population are used to validate the app’s algorithm EDO
since there is good clinical data on the expected distributions of
both. We compared the distribution of follicular and luteal phase
lengths in our sample of 612,613 cycles to two reference data sets:
a sample of 688 cycles obtained by Baird et al.28 and a sample of
327 cycles obtained by Lenton et al.7 (Supplementary Results). The

adjusted phase length distribution is a close fit to that of Baird
et al. and has a slightly higher fraction of short luteal phases than
that of Lenton et al.

Cycle characteristics by cycle length

Table 1 lists the mean cycle lengths, follicular phase lengths, luteal
phase lengths and bleed lengths with 95% confidence intervals
(CI) in cohorts of cycles by cycle length (n= 612,613). Totally,
81,605 cycles (13%) were 28 days long and these cycles had mean
follicular and luteal phase lengths of 15.4 and 12.6 days,
respectively. Compared to the 560,078 normal length cycles
(21–35 days), very short cycles had shorter bleed lengths by
0.5 days or 12% (95% CI: 0.4–0.5 days). Very long cycles had longer
bleed lengths by 0.2 days or 6% (95% CI: 0.2–0.3 days). The very
short cycles had shorter follicular phase by 5.4 days or 34% (95%
CI: 5.3–5.5 days) and shorter luteal phases by 4.4 days or 35% (95%
CI: 4.3–4.5 days). The very long cycles had longer follicular phase
by 11.0 days or 66% (95% CI: 10.9–11.0 days) and longer luteal
phases by 0.6 days or 5% (95% CI: 0.5–0.6 days). Less than 1% of
cycles were longer than 50 days.

Cycle characteristics by user age

Table 2 lists the mean cycle length, follicular phase length, luteal
phase length, bleed length and per-user cycle length variation in
cohorts of cycles by user age (n= 612,613). Cycle length
decreased with increasing age with a mean difference of 2.9 days
or 10% (95% CI: 2.9–3.0) between the youngest and oldest
cohorts. The bleed length reduced slightly with age with a mean
difference of 0.5 days or 12% (95% CI: 0.4–0.5) between the
youngest and oldest cohorts. Per-user cycle length variation
reduced by 0.5 days or 20% (95% CI: 0.4–0.6 days) between the
youngest and oldest cohorts. The follicular phase length became
shorter with age with a mean difference of 3.2 days or 20% (95%
CI: 3.2–3.3 days) between the youngest and oldest cohorts. The
luteal phase length varied very little between age cohorts.
Figures 1–4, respectively, show mean cycle length, follicular

phase length, luteal phase length and per-user cycle length

Table 1. Mean cycle lengths, bleed lengths, follicular phase lengths and luteal phase lengths in cohorts by cycle length

Cycle length range
in days

Cycles (% of total) Mean ± std cycle length
in days

Mean ± std bleed
length in days

Mean ± std follicular phase
length in days

Mean ± std luteal phase
length in days

15–20 3769 (<1%) 18.4 ± 1.6 3.5 ± 1.5 10.4 ± 2.4 8.0 ± 2.4

21–24 47,449 (8%) 23.4 ± 0.9 3.7 ± 1.4 12.4 ± 2.2 11.0 ± 2.2

25–30 395,631 (65%) 27.6 ± 1.6 3.9 ± 1.4 15.2 ± 2.5 12.4 ± 2.2

31–35 116,998 (19%) 32.4 ± 1.3 4.1 ± 1.5 19.5 ± 2.7 12.9 ± 2.3

36–50 43,240 (7%) 39.8 ± 3.7 4.2 ± 1.7 26.8 ± 4.5 12.9 ± 2.8

All cycles (10–90) 612,613 29.3 ± 5.2 4.0 ± 1.5 16.9 ± 5.3 12.4 ± 2.4

Table 2. Mean cycle lengths, bleed lengths, per-user cycle length variations, follicular phase lengths and luteal phase lengths in cohorts of cycles by

user age

Age range
in years

Users (%
of total)

Cycles (% of total) Mean ± std
cycle length
in days

Mean ± std
bleed length
in days

Mean ± std per-user
cycle length
variation in days

Mean ± std
follicular phase
length in days

Mean ± std luteal
phase length
in days

18–24 13,391 (11%) 50,789 (8%) 30.3 ± 5.7 4.2 ± 1.4 2.9 ± 2.7 18.0 ± 5.7 12.2 ± 2.5

25–29 43,297 (35%) 209,968 (34%) 29.9 ± 5.5 4.0 ± 1.4 2.8 ± 2.7 17.6 ± 5.6 12.3 ± 2.4

30–34 41,571 (33%) 207,156 (34%) 29.2 ± 5.1 3.9 ± 1.5 2.6 ± 2.4 16.8 ± 5.2 12.4 ± 2.3

35–39 19,410 (16%) 102,553 (17%) 28.2 ± 4.4 3.8 ± 1.5 2.3 ± 2.1 15.7 ± 4.5 12.5 ± 2.4

40–45 6,948 (6%) 42,044 (7%) 27.4 ± 4.3 3.7 ± 1.5 2.4 ± 2.4 14.8 ± 4.3 12.5 ± 2.4

All cycles 124,646 612,613 29.3 ± 5.2 4.0 ± 1.5 2.6 ± 2.5 16.9 ± 5.3 12.4 ± 2.4
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variation against age with error bars corresponding to 95% CI.
Each point is the mean value for cycles from users of equal age
and the points are labelled with the number of users. In Figs 1 and
2, linear regressions are fitted in the age range 25–45 years with
95% CI shaded in pink. Age is negatively correlated with cycle
length (slope=−0.176, 95% CI: −0.168 to −0.183, R2= 0.994) and
follicular phase length (slope=−0.194, 95% CI: −0.186 to −0.202,
R2= 0.987). Mean cycle length and follicular phase length in cycles
from users aged 18–24 did not fit the linear regressions. In Fig. 3,
there were no significant differences between luteal phase length
with age. In Fig. 4, a linear regression is fitted to the per-user cycle
length variation in the age range 25–40 years with 95% CI shaded
in pink. Age is negatively correlated with the per-user cycle length
variation (slope=−0.060, 95% CI: −0.055 to −0.066, R2= 0.975).
Below age 25 there is little change in mean cycle length variation,
but the large confidence intervals suggest that some users have a
large cycle length variation. Above age 40 the variation increased
markedly to its highest level of 3.1 days at age 45.

Cycle characteristics by user BMI

Table 3 lists the mean cycle length, follicular phase length, luteal
phase length and bleed length in cohorts of cycles by user BMI (n
= 612,613). The median cohort was cycles from women with
normal BMI (18.5–25). Underweight women (BMI 15–18.5) had a
longer mean bleed length by 0.2 days or 5% (95% CI:

0.18–0.22 days) and morbidly obese women (BMI over 35) had
higher cycle length variation by 0.4 days or 14% (95% CI:
0.3–0.5 days) and longer follicular phase length by 0.9 days or 5%
(95% CI: 0.8–1.0 days), than women in the ‘healthy weight’ range
(BMI 18.5–25). No other clinically significant differences between
BMI cohorts were observed. Figure 5 shows the mean per-user
cycle length variation against BMI with error bars corresponding
to 95% CI. In the BMI range 18–35 the cycle length variation is flat
and above a BMI of 35 it increases although the confidence
intervals are very large.

DISCUSSION

In this study we analysed the key characteristics of more than
600,000 menstrual cycles. This large analysis of menstrual cycle
parameters provides insight into the physiology of the menstrual
cycle amongst the general population, which is not widely known.
It demonstrates significant variability in cycle and follicular phase
length amongst a large group of women with wide age and BMI
ranges. Using this large data set, our analysis reveals important
information on menstrual cycle characteristics in a real-world
population of women. Knowledge and understanding of the
menstrual cycle, ovulation day and the fertile period is important
for both individual women and healthcare professionals providing
services in reproductive health. These data are valuable for fertility

Fig. 1 Age versus mean cycle length ±2 standard errors of the mean
(blue). Linear regression (black) fitted in the range 25–45 with 95%
CI (pink). Points are labelled with the number of users followed by
the number of cycles

Fig. 2 Age versus mean follicular phase length ±2 standard errors of
the mean (blue). Linear regression (black) fitted in the range 25–45
with 95% CI (pink). Points are labelled with the number of users
followed by the number of cycles

Fig. 3 Age versus mean luteal phase length ±2 standard errors of
the mean. Points are labelled with the number of users followed by
the number of cycles

Fig. 4 Age versus mean per-user cycle length variation ±2 standard
errors of the mean (blue). Linear regression (black) fitted in the
range 25–40 with 95% CI (pink). Points are labelled with the number
of users followed by the number of cycles
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educators to support educational activites around female fertility
that address knowledge gaps across both the general population
and the medical community.
It is a common belief that ovulation occurs on day 14 of the

cycle, but our analysis has shown that for the majority of women
in the real-world that this is not the case. Cycle length differences
were found to be predominantly caused by follicular phase length
differences (i.e., differences in ovulation day). The mean follicular
phase length was 16.9 days (95% CI: 10–30). For women with a
typical cycle length (25–30 days) the follicular phase length was
on average 15.2 days. For women with normal but longer cycles
(31–35 days), it was 19.5 days and for women with normal but
shorter cycles (21–24 days) it was 12.4 days. In very short cycles
(15–20 days) the mean follicular phase length was 10.4 days and in
very long cycles (36–50 days) it was at 26.8 days. These findings
demonstrate that the widely held belief that ovulation occurs
consistently on day 14 of the cycle is not correct. Clinically, it is
important that women who wish to plan a pregnancy are having
intercourse on their fertile days. In order to identify the fertile
period it is important to track physiological parameters such as
BBT and not just cycle length.
Anecdotally most healthcare providers believe that the luteal

phase is consistently 14 days in length but we found a mean of
12.4 ± 2.4 days which ranged from 8.0 days in 15–20 day cycles to
12.9 days in 36–50 day cycles. The data in this study showed that
luteal phase lengths across the population do vary, albeit less than
follicular phase lengths. Variation in luteal phase lengths has
previously been observed in controlled clinical studies7,24,28;
however, this is still not widely acknowledged amongst non-
specialists. The results from this study are important in order to
highlight variations in phase lengths amongst the general
population. It is remarkable that short cycles had a significantly

reduced luteal phase relative to normal length cycles, but
conversely very long cycles had a significantly long follicular
phase and the luteal phase did not vary much. Out of the whole
sample, 18% of cycles had luteal phases of less than 11 days. For
reference, Vollman3 found luteal phases of less than 11 days in
15% of cycles. It has been proposed that all luteal phases of less
than 10 days, and 74% of 10 day luteal phases, are abnormal7

implying inadequate progesterone secretion.12 More research is
needed to ascertain whether the short luteal phases observed in
this study are signs of abnormality. The use of a menstrual cycle
tracking app that utilises BBT and other important physiological
parameters to identify ovulation day and in turn luteal phase
length can give insights into individual fertility and potentially
support early identification of subfertility.
Strong linear correlations between menstrual cycle length and

follicular phase length with increasing age are demonstrated.
Although it is known that cycle length is likely to decrease with
age, the linear correlation outlined in our analysis has never been
described in such detail. The mean cycle length dropped by
3.2 days from age 25 to 45 and the mean follicular phase length
dropped by 3.4 days in the same period. Above 40 the variation
increased dramatically. These results are in alignment with those
of reference studies.3,6,9 The mean bleed length of 4.0 ± 1.5 days,
and its decline by 0.5 days from 4.2 ± 1.4 days in women aged
18–24 to 3.7 ± 1.5 days in women aged 40–45, is in agreement
with Harlow.12

It is well-established that obesity is related to menstrual
disorders, infertility, miscarriage, obstetric complications, live birth
rate and can affect the success of assisted reproductive
technology.29–32 In our study, we were not able to demonstate
significant effects of BMI on ovulatory menstrual cycle character-
istics. This is likely due to underrepresentation of women with
high BMI within the study population. The strongest effect seen
was an increase of per-woman cycle length variation of 14% in
women with BMI of 35–50 relative to women with normal BMI.
This effect is expected because pre-existing medical condition
(PCOS) is associated with obesity and causes erratic menstrual
cycles.10 Future research may investigate the effect of BMI on
cycle characteristics in greater depth.
The main limitation of this study is that the study population is

derived solely from users of the app who may not be
representative of the wider population. In particular, only 8% of
women in our study were obese compared to 15% of women in
the general population.33,34 Only cycles with ovulation detected
were included in the study. Of the 1.4 million cycles initially
considered, ovulation was not detected in 665,603 (48%) of which
most did not have sufficient BBT measurements to enable
detection. Nevertheless, there is a bias caused by excluding these
cycles. The incidence of ovulatory cycles recorded was lower
among users with BMI of 30–35 (49% ovulatory) and 35–50 (45%
ovulatory) compared to users with normal BMI (53% ovulatory).

Table 3. Mean cycle lengths, bleed lengths, per-user cycle length variations, follicular phase lengths and luteal phase lengths in cohorts of cycles by

user BMI

BMI range in
kg m−2

Users (%
of total)

Cycles (% of total) Mean ± std
cycle length
in days

Mean ± std
bleed length
in days

Mean ± std per-user
cycle length
variation in days

Mean ± std
follicular phase
length in days

Mean ± std luteal
phase length
in days

15–18.5 5040 (4%) 25,735 (4%) 29.6 ± 5.2 4.2 ± 1.5 2.7 ± 2.5 16.4 ± 5.4 13.1 ± 2.1

18.5–25 83,791 (70%) 431,667 (72%) 29.3 ± 5.2 4.0 ± 1.5 2.7 ± 2.5 16.3 ± 5.3 12.8 ± 2.1

25–30 20,912 (18%) 100,228 (17%) 29.1 ± 5.2 3.9 ± 1.4 2.6 ± 2.6 16.3 ± 5.3 12.7 ± 2.2

30–35 6153 (5%) 26,483 (4%) 29.3 ± 5.6 3.9 ± 1.4 2.7 ± 2.7 16.6 ± 5.6 12.6 ± 2.1

35–50 3145 (3%) 12,011 (2%) 29.8 ± 6.0 4.0 ± 1.5 3.0 ± 3.1 17.2 ± 6.0 12.4 ± 2.1

All cycles 124,646 612,613 29.3 ± 5.2 4.0 ± 1.5 2.6 ± 2.5 16.9 ± 5.3 12.4 ± 2.4

Fig. 5 BMI versus mean per-user cycle length variation ±2 standard
errors of the mean. Points are labelled with the number of users
followed by the number of cycles
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We also acknowledge the potential for human error in identifica-
tion of the start of the cycle, the start and peak of the LH surge
and the BBT rise based on self-reported bleeding, urinary LH test
results and temperature measurements respectively. Study
participants were able to purchase approved LH tests from the
app developers, however, it is known that some users prefer to
buy other commercially available tests between which there may
be small variations in LH threshold values for a positive result.
Measuring BBT and LH every 24 h limits the precision of phase
length calculations.
Given the variations in cycle length and follicular phase length

that we have described, especially for cycles outside the average
range (25–30 days), an individualised approach to identification of
the fertile window should be adopted. There are more than 100
fertility tracking apps freely available for download. Many of these
apps claim to identify fertile days based on traditional assump-
tions about key menstrual cycle parameters such as regularity of
cycle length, follicular phase length and luteal phase length. Apps
giving predictions of fertile days based solely on an outdated
understanding of ovulation day variation could completely miss
the fertile window. It is, therefore, unsurprising that several studies
have shown that calendar apps are not accurate in identifying the
fertile window.35–38 This study has demonstrated that such
assumptions are invalid and that in reality there are significant
variations in several key parameters in the general population.
Some fertility apps are based on sophisticated algorithms for

individualised identification of the fertile window relying on
physiological parameters such as BBT which are more acceptable
for large numbers of women.14,27 Whilst LH test kits have been
used to determine the day of ovulation for decades, they have a
significant margin of error when used in isolation. The addition of
BBT and the use of a fertility app may help to narrow down testing
days and therefore be more convenient and cheaper. Individua-
lised identification of the fertile window based on BBT and
menstruation dates can help to reduce the time to conception in
some cases.18

With women globally delaying fertility39 the potential value of
fertility tracking apps as a platform for delivery of individualised
fertility education and preconception care should not be under-
estimated. Anecdotally there is poor understanding of fertility
amongst the general population, which can lead to both
unintended pregnancies and delayed time to conception with
associated psychological suffering for those wishing to start a
family.40 Fertility education delivered through an app has the
potential to improve doctor–patient interactions41 and commu-
nication between partners. The value of fertility apps as
educational platforms to achieve public health benefits through
standardised health promotion messages during key stages of
reproductive life such as preconception, pregnancy and birth
spacing is also being explored.
Finally, the widespread use of mobile phone apps for personal

health monitoring is generating large amounts of data on the
menstrual cycle. Provided that the real-world data can be
validated against traditional clinical studies done in controlled
settings, there is enormous potential to uncover new scientific
discoveries. This is one of the largest ever analyses of menstrual
cycle characteristics. These initial results only scratch the surface of
what can be achieved. We hope to stimulate greater interest in
this field of research for the benefit of public health.

METHODS

Menstrual cycle data collection

Physiological data, including daily BBT (sublingual measurement), cycle by
cycle dates of menstruation, and urinary LH test results, were collected
prospectively from users of the Natural Cycles app. Participant character-
istics including age and BMI were determined through mandatory in-app
questions that must be completed during the sign-up process. Users are

recommended to measure their temperature on 5 out of 7 days per week
as soon as they wake up. They are requested to report whether a
temperature measurement may be deviating for reasons such as disrupted
sleep or alcohol consumption the night before. The algorithm also
identifies deviating temperatures if the value is outside the range
35.0–37.5 °C.
All users in the study had consented at registration to the use of their

data for the purposes of scientific research and could remove their consent
at any time. This study was a subanalysis of data collected as part of a
wider study protocol that was reviewed and approved by the regional
ethics committee (EPN, Stockholm, diary number 2017/563-31).

Identification of ovulation day

A surge in LH is responsible for triggering follicle rupture.2 The start of the
surge is approximately 28–48 h before follicle rupture and peak LH levels
are reached 12 h before follicle rupture.42 After follicle rupture the corpus
luteum forms, marking the start of the luteal phase, and secretes
progesterone for the duration of the luteal phase in order to prime the
endometrium for embryo implantation.2 Elevated levels of LH are
detectable in blood and urine samples. At the onset of menses, marking
the start of the follicular phase, the corpus luteum collapses and
progesterone levels fall back to a low level until the next preovulatory
increase. Progesterone has a thermogenic effect so its levels can be
tracked by measuring BBT. BBT is at a relatively constant low level during
the follicular phase, reaching its lowest level (the nadir) prior to
ovulation,43 and then displays a distinct rise of 0.2–0.3 °C following
ovulation.44 The higher level of BBT is sustained during the luteal phase
before falling back to the lower level at the start of the next cycle.44,45

The algorithm within the app detects ovulation retrospectively based on
BBT measurements, menstrual cycle parameters and additionally on
positive urinary LH tests. The algorithm can identify the BBT rise associated
with ovulation in the presence of measurement errors, missing data and
BBT rise occurring over a variable length of time.20 The risk of
misidentification is reduced by excluding deviating temperatures. In order
to determine that ovulation has occurred, as a minimum requirement the
rolling average BBT (average of valid (nondeviating) temperatures over the
last three calendar days) must be higher than both the woman’s follicular
phase average and her cover line (the average temperature across all data
entries) and consistent with her luteal phase average. Figure 6 illustrates a
typical biphasic temperature graph in an ongoing ovulatory cycle from a
user in ‘Prevent’ mode. The horizontal grey line is the cover line.
Comparisons are made using standard statistical techniques taking into
account sample size and standard deviation. If ovulation is not detected in
this initial test then more tests are performed with a rolling average over
an increasing number of days up to 1 week. Ovulation detection is less
likely if there are valid temperature measurements on fewer than about
50% of cycle days.
If a positive-LH test has been recorded, fewer high temperatures are

required in order to detect ovulation since the LH test provides extra
confidence that ovulation has occurred. The app recommends which days
to take an LH test, considering the uncertainty of the ovulation day such
that it minimises the number of LH tests used while ensuring that the user
will not miss her surge. If the user is in Prevent mode, the algorithm only
recommends to check for LH if the user had at least three cycles off
hormonal contraception and the total ovulation uncertainty is less than
±10 days. For users on Plan mode the app always recommends which days
to check for LH since Plan users are in general more keen on finding the
surge, even if it requires a large number of LH tests. The app will, however,
only recommend to start checking LH 10 days prior to the earliest recorded
ovulation day even if the total uncertainty is larger.
As the LH surge typically lasts for several days42 the probability of

missing the surge if only testing every other day is relatively small. The
app, therefore, recommends to only test every other day until close to the
expected ovulation day. If one positive LH test has been entered, but no
positive or negative LH test entry exists on the day immediately before,
then the user is encouraged to test the following day to establish whether
the positive test corresponds to the first or second day of the surge. If no
such test is entered, the app assumes the first LH test marks the first day of
the surge.
Cycles in which ovulation has been detected are hereafter referred to as

ovulatory cycles. If ovulation has been detected in the current cycle then
the algorithm selects the most suitable candidate day to call the First High
Point (FHP) using a system of measurements based on comparisons of
each temperature to the phase averages. This is the day on which the
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temperatures immediately before and after are most consistent with the
follicular and luteal phase averages respectively. On average the FHP
temperature is just below the cover line. In a previous study the FHP was
1.9 ± 1.4 days after the estimated start of the LH surge,20 similar to a
comprehensive study of different markers of ovulation by Ecochard et al.45

where the FHP was most often 2 days after the LH peak. An evaluation of
the timing of the FHP and the LH peak relative to the data of Ecochard et al
(2001) is available in Supplementary materials.
In a clinical study43 the FHP was observed in most cycles during the 12 h

following ovulation. Because users of the app only measure temperature
every 24 h, the FHP is expected to be detectable by the algorithm the day
after ovulation. This means that ovulation itself is estimated to occur on
the day of the last low temperature before the rise as suggested by Hilgers
and Bailey46 and Mouzon et al.43 We define the EDO as the day before the
FHP, the day of the last low temperature. According to convention the
follicular phase ends on the EDO and the luteal phase starts the day after
the EDO.
Another marker besides the BBT shift that has been used in clinical

settings to estimate the day of ovulation is the day of luteal transition (DLT)
defined as the ratio of oestrogen to progesterone falling below a critical
threshold.28,47 The DLT ovulation detection algorithm has been designed
to coincide with the peak of the LH surge.47 Although DLT is not intended
for home use we mention it here because a study using it will be used as a
source of reference data for validating the results of this study.

Inclusion/exclusion criteria

Women using the app who had registered between 1st September 2016
and 1st February 2019, had given their consent for the use of their data in
research, were aged 18–45 at registration, had a BMI between 15 and 50
and had not been using hormonal contraception within the 12 months
prior to registration were included. Users who stated at registration that
they had a PCOS (hypothyroidism or endometriosis) or who had
menopausal symptoms were excluded. They were required to have
logged at least ten nondeviating temperatures.
Cycles were, included if they were recorded by a user with at least six

complete cycles (with or without detected ovulation), the cycle length was
between 10 and 90 days and nondeviating temperatures had been
recorded on at least 50% of cycle days. ‘Non-deviating temperatures’ are
defined as temperature measurements where the user has not selected
the temperature to be abnormal (e.g., due to unexplained fever or high
alcohol intake) when entering into the app. Cycles were excluded if a
pregnancy was reported by the user or was otherwise flagged as possibly
pregnant by the algorithm due to a significantly longer luteal phase than
the user’s average and sustained high temperatures. Figure 7 summarises
the number of users and cycles at each step of the selection process.

Study design

The ‘normal’ menstrual cycle is conventionally classified as 21–35 days in
length, frequent menstrual bleeding (polymenorrheic) cycles as being
under 21 (very short cycles) and infrequent menstrual bleeding
(oligomenorrheic cycles) as being over 35 days (very long cycles).48 In
this study bleed length was defined as the number of consecutive days on
which bleeding—not spotting—was recorded. Spotting is defined as very
light bleeding (a few drops of blood) or brown/pink fluids. Users are
instructed not to log very light bleeding just before the period as bleeding
but to wait until the flow increases. The follicular phase was defined as the
first day of recorded menstruation to the EDO. Luteal phase length was
defined as the day after the EDO to the day before the next day of
recorded menstruation. The per-user cycle length variation was defined as
one standard deviation of a user’s cycle lengths.
We calculated mean cycle length, duration of bleeding (bleed length),

follicular phase length and luteal phase length in ovulatory cycles. The
following cohort splits by cycle length were defined: very short cycles
(15–20 days), short cycles (21–24 days), medium cycles (25–30 days), long
cycles (31–35 days) and very long cycles (36–50 days). We calculated the
same statistics as well as per-user cycle length variation for cohorts of
ovulatory cycles by user age at registration (18–24, 25–29, 30–34, 35–39
and 40–45 years) and BMI (15–18.5, 18.5–25, 25–30, 30–35 and 35–50). We
also calculated the mean proportion of ovulatory cycles as a fraction of all
cycles recorded by the user in each of the age and BMI cohorts.
Owing to the very large sample sizes in this study, P values were not

calculated since they can be very small even if differences between cohorts
are of no clinical significance.49 Instead, effect size between two cohorts
was estimated as a mean difference with a 95% confidence interval
calculated from 200 bootstrapped cohort-sized randomly selected samples
with replacement.50 Mean differences are also given as a percentage of the

Fig. 7 Flow diagram of user and cycle selection for study. *Eligible
users met requirements on registration date, hormone use and
medical conditions at the time of registration

Fig. 6 Typical temperature chart in a biphasic menstrual cycle as seen in the app. Shown here are the fertile/nonfertile days (red/green)
returned by the algorithm. The fertile window days are darker red. Days with measurements are shown as filled circles. The
cycle average temperature (cover line) is the grey horizontal line at 36.37 °C
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mean in the combined cohorts. Where linear regression is used, we quote
the coefficient of the slope with a 95% confidence interval and R2 value.

Reporting summary

Further information on research design is available in the Nature Research
Reporting Summary linked to this article.
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