*C***-REALCOMPACTIFICATIONS AND NORMAL BASES**

R. A. ALO and H. L. SHAPIRO (Received 24 September 1967)

In a recent paper (see [2]), Orrin Frink introduced a method to provide Hausdorff compactifications for Tychonoff or completely regular T_1 spaces X. His method utilized the notion of a normal base. A normal base \mathscr{Z} for the closed sets of a space X is a base which is a disjunctive ring of sets, disjoint members of which may be separated by disjoint complements of members of \mathscr{Z} .

Frink showed that if X has a normal base, then the Wallman space, $\omega(\mathscr{Z})$, consisting of the \mathscr{Z} -ultrafilters is a Hausdorff compactification of X. This also showed that X must be a Tychonoff space. In this note we use the notion of \mathscr{Z} -ultrafilters in a *countably productive* normal base \mathscr{Z} to introduce a new space $\eta(\mathscr{Z})$ consisting of all those \mathscr{Z} -ultrafilters with the countable intersection property.

Every normal base \mathscr{Z} of X corresponds to a normal base \mathscr{Z}^* in $\eta(\mathscr{Z})$ (and also in $\omega(\mathscr{Z})$). We show that every collection of \mathscr{Z}^* -ultrafilters with the countable intersection property is fixed, that is the intersection of all the members of the collection is non empty. In light of this fact, we say that $\eta(\mathscr{Z})$ is \mathscr{Z}^* -real-compact. We also show that $\eta(\mathscr{Z})$ is contained in the *Q*-closure of X in $\omega(\mathscr{Z})$. Finally if \mathscr{Z} is the collection of all zero-sets then $\eta(\mathscr{Z})$ is precisely the Hewitt real compactification of X. We have attempted to show that every realcompactification Y of a space X can be obtained as a space $\eta(\mathscr{Z})$. This remains an open question.

Many examples exist of normal bases which are countably productive. One of the most important is the collection of all zero-sets of a completely regular T_1 space. Gillman and Jerison in [3] have shown that this family is countably productive and also that it satisfies the requirements for a normal base. Thus every Tychonoff space has a countably productive normal base.

DEFINITIONS. A base \mathscr{Z} for the closed sets of a T_1 space X is said to be disjunctive if given any closed set F and any point x not in F there is a closed set A of \mathscr{Z} that contains x and is disjoint from F. The base is said to be normal if any two disjoint members A and B of \mathscr{Z} are subsets respectively of disjoint complements C' and D' of members of \mathscr{Z} .

A family \mathscr{Z} of subsets of a set X is a ring of sets if it is closed under

489

finite unions and intersections. We say that \mathscr{Z} is countably productive if it is closed under countable intersections. We say that \mathscr{Z} has the countable intersection property if every countable collection of subsets of \mathscr{Z} has non empty intersection.

A base \mathscr{Z} for the closed sets of a T_1 space X is a normal base if it is a normal disjunctive ring of sets.

A proper subset of a normal base \mathscr{Z} is called a \mathscr{Z} -*filter* if it is closed under finite intersections and contains every superset in \mathscr{Z} of each of its members. We also assume that no \mathscr{Z} -filter contains the empty set. A \mathscr{Z} -ultrafilter is a maximal \mathscr{Z} -filter.

If \mathscr{Z} is a base for the closed sets in X we say that X is \mathscr{Z} -realcompact if every \mathscr{Z} -ultrafilter with the countable intersection property has a non empty intersection.

If \mathscr{Z} is any distinguished family of subsets of a space X, we will represent the family of complements, X-Z, for Z in \mathscr{Z} by $\mathfrak{G}\mathscr{Z}$. In particular, if \mathscr{Z} is a normal base of closed sets in a Tychonoff space X then $\mathfrak{G}\mathscr{Z}$ is a base for the open sets.

Before stating our main results we will give three lemmas that will be needed. The proof of Lemma 1 can be found in [1].

LEMMA 1. If \mathscr{Z} is a normal base for X and if \mathscr{F} is a \mathscr{Z} -filter on X, then \mathscr{F} is a \mathscr{Z} -ultrafilter if and only if for each Z in \mathscr{Z} either Z is in \mathscr{F} or there is an A in \mathscr{F} such that A is included in the complement of Z.

LEMMA 2. Let \mathscr{Z} be a countably productive base for the closed sets of X and let \mathscr{F} be a \mathscr{Z} -ultrafilter with the countable intersection property. If $(A_n)_{n \in \mathbb{N}}$ is a sequence of sets in \mathscr{F} , then the intersection A of the sets A_n is in \mathscr{F} .

PROOF. We first note that A is in \mathscr{Z} since \mathscr{Z} is countably productive. If F is in \mathscr{F} then $F \cap A$ is non empty since \mathscr{F} has the countable intersection property. It follows that $\mathscr{F} \cup \{A\}$ generates a \mathscr{Z} -filter \mathscr{B} containing \mathscr{F} . Consequently A is in \mathscr{F} since \mathscr{F} must equal \mathscr{B} .

Lemma 1 characterizes \mathscr{Z} -ultrafilters in a manner which directly relates the filter with the definition of the basic open sets in Frink's compactifications (see[2]). To investigate \mathscr{Z} -realcompact spaces we need a similar result for the filters on the trace of a normal base with a subspace.

LEMMA 3. Let A be a subspace of a space X, let $\mathscr{Z}(X)$ be a base for the closed sets of X, let $\mathscr{Z}(A)$ be the trace on A of $\mathscr{Z}(X)$, and let $cl_{\mathbf{X}}Z$ be in $\mathscr{Z}(X)$ for all Z in $\mathscr{Z}(A)$. If \mathscr{F} is a $\mathscr{Z}(X)$ -ultrafilter on X and if $\{F \cap A : F \text{ is in } \mathscr{F}\}$ is a base for a $\mathscr{Z}(A)$ -filter $\mathscr{F}(A)$, then $\mathscr{F}(A)$ is a $\mathscr{Z}(A)$ -ultrafilter.

PROOF. By hypothesis $\mathscr{F}(A)$ is a $\mathscr{Z}(A)$ filter so there is a $\mathscr{Z}(A)$ ultrafilter \mathscr{G} that contains $\mathscr{F}(A)$. Let \mathscr{H} be the set of all B in $\mathscr{Z}(X)$ such that B contains $cl_{\mathcal{X}}G$ for some G in \mathscr{G} . It is easy to see that \mathscr{H} is a $\mathscr{L}(X)$ -filter. Since F contains $cl_{\mathcal{X}}(F \cap A)$, if F is in \mathscr{F} then $F \cap A$ is in $\mathscr{F}(A)$ and F is in \mathscr{H} . Thus the $\mathscr{L}(X)$ -ultrafilter \mathscr{F} must be equivalent to \mathscr{H} .

If G is in the $\mathscr{Z}(A)$ -ultrafilter \mathscr{G} then G is in $\mathscr{Z}(A)$ and $cl_X G$ is in $\mathscr{Z}(X)$. Thus $cl_X G$ is in $\mathscr{H} = \mathscr{F}$ and $G = cl_A G = cl_X G \cap A$ is in the $\mathscr{Z}(A)$ -filter $\mathscr{F}(A)$. It follows that \mathscr{G} is equivalent to $\mathscr{F}(A)$ and that $\mathscr{F}(A)$ is a $\mathscr{Z}(A)$ -ultrafilter. This completes the proof of the lemma.

We now consider X to be always a Tychonoff space with a countably productive normal base \mathscr{Z} for the closed subsets of X. For this base \mathscr{Z} , the space $\eta(\mathscr{Z})$ is obtained in the following manner. The points of $\eta(\mathscr{Z})$ are the \mathscr{Z} -ultrafilters of X with the countable intersection property. For each Z in \mathscr{Z} we define the set Z^* to be the family of all \mathscr{Z} -ultrafilters with the countable intersection property having Z as a member. The collection \mathscr{Z}^* of sets Z^* for Z in \mathscr{Z} is taken as a base for the closed subsets of $\eta(\mathscr{Z})$. The space $\eta(\mathscr{Z})$ is a \mathscr{Z}^* -realcompact Hausdorff space. In particular if \mathscr{Z} is the collection of zero-sets of X then $\eta(\mathscr{Z})$ is the Hewitt realcompactification νX (see Gillman and Jerison [3]).

There is a natural embedding φ of X into $\eta(\mathscr{Z})$ where $\varphi(x)$ is the \mathscr{Z} -ultrafilter with the countable intersection property consisting of all \mathscr{Z} -sets that contain x. The mapping φ is a homeomorphism of X onto the dense subset $\varphi(X)$ of $\eta(\mathscr{Z})$.

In an equivalent manner, we could define a base for the open sets of $\eta(\mathscr{Z})$. Let U^* be the collection of all \mathscr{Z} -ultrafilters with the countable intersection property that have some subset of U as a member, where X-U is in \mathscr{Z} . This is just the dual of the definition of Z^* , that is, $\eta(\mathscr{Z})-U^* = (X-U)^*$ where X-U is in \mathscr{Z} .

THEOREM 1. Let X be a Tychonoff space with a countably productive base \mathscr{Z} and let φ be the natural embedding of X into $\eta(\mathscr{Z})$. If U, V, and $(U_n)_{n=1}^{\infty}$ are members of \mathscr{GZ} and Z, $(Z_n)_{n=1}^{\infty}$ are members of \mathscr{Z} , then the following properties hold.

1. If
$$U \subset V$$
 then $U^* \subset V^*$.

2.
$$(\bigcup_{n=1}^{\infty} U_n)^* = \bigcup_{n=1}^{\infty} U_n^* \text{ and } (\bigcap_{n=1}^{\infty} U_n)^* = \bigcap_{n=1}^{\infty} U_n^*.$$

- 3. $U^* \cap \varphi(X) = \varphi(U)$ and $Z^* \cap \varphi(X) = \varphi(Z)$.
- 4. $cl_{\eta(\underline{x})}\varphi(Z) = Z^*$.
- 5. $cl_{\eta(\mathcal{Z})}\varphi(\bigcap_{n=1}^{\infty} Z_n) = \bigcap_{n=1}^{\infty} cl_{\eta(\mathcal{Z})}\varphi(Z_n)$ or equivalently $(\bigcap_{n=1}^{\infty} Z_n)^* = \bigcap_{n=1}^{\infty} Z_n^*.$

The map φ of X onto the subset $\varphi(X)$ of $\eta(\mathscr{Z})$ is a homeomorphism.

PROOF. If U, V are in \mathfrak{GZ} and if $U \subset V$ then A a subset of U implies that A is a subset of V and therefore $U^* \subset V^*$. If $(U_n)_{n=1}^{\infty}$ is any sequence of members of \mathfrak{GZ} then $\bigcup_{n=1}^{\infty} U_n^* \subset (\bigcup_{n=1}^{\infty} U_n)^*$ and $(\bigcap_{n=1}^{\infty} U_n)^* \subset \bigcap_{n=1}^{\infty} U_n^*$.

To complete the proof of (2) we use the fact that for X-U in \mathscr{Z} , $\eta(\mathscr{Z})-U^* = (X-U)^*$. If α is in $(\bigcup_{n=1}^{\infty} U_n)^*$ then there is an A contained in $\bigcup_{n=1}^{\infty} U_n$ such that A is a member of α . If α is not in $\bigcup_{n=1}^{\infty} U_n^*$ then $X-U_n$ is in α for each n. Then

$$A \cap (X - \bigcup_{n=1}^{\infty} U_n) = A \cap \big(\bigcap_{n=1}^{\infty} (X - U_n)\big) = \emptyset$$

for α is in $(\bigcup_{n=1}^{\infty} U_n)^*$ which is a contradiction since α has the countable intersection property. Thus

$$(\bigcup_{n=1}^{\infty} U_n)^* = \bigcup_{n=1}^{\infty} U_n^*.$$

Using this, DeMorgan's laws, and $\eta(\mathscr{Z}) - U^* = (X - U)^*$ for X - U in \mathscr{Z} , we have

$$(\bigcap_{n=1}^{\infty} U_n)^* = \bigcap_{n=1}^{\infty} U_n^*$$

and (2) is shown.

The map φ is a one-one map of X onto the subspace $\varphi(X)$ of $\eta(\mathscr{Z})$ since \mathscr{Z} is a disjunctive family and X is a T_1 space. To show that φ is a homeomorphism it will be sufficient to show that (3) holds. In fact if α is in $\varphi(X) \cap U^*$ then $\alpha = \varphi(x)$ for some x in X and there is a Z in $\varphi(x)$ such that $Z \subset U$. Hence x is in $Z \subset U$ and $\varphi(x)$ is in $\varphi(U)$. Thus $\varphi(U) = U^* \cap \varphi(X)$. Since φ is one-one and onto $\varphi(X)$ this equation shows that φ is both a continuous and open map; hence φ is a homeomorphism. It follows then that $Z^* \cap \varphi(X) = \varphi(Z)$.

From (3) it follows that $cl_{\eta(\underline{x})}\varphi(Z)$ is included in Z^* . Conversely if α is in Z^* and U^* is any basic open set containing α then there is an $A \subset U$ such that $A \cap Z$ is in α . Since α is a filter there is a point p in $A \cap Z$ and $\varphi(p)$ is in $U^* \cap \varphi(Z)$. Thus $cl_{\eta(\underline{x})}\varphi(Z) = Z^*$.

Finally property (5) follows from DeMorgan's laws and properties (2) and (4). This completes the proof of our theorem.

We are now in a position to prove our main theorem.

THEOREM 2. If X is a Tychonoff space with a countably productive normal base \mathscr{Z} then X is homeomorphic to a dense subspace of the \mathscr{Z}^* -realcompact Hausdorff space $\eta(\mathscr{Z})$.

PROOF. Let \mathscr{F}^* be a \mathscr{Z}^* -ultrafilter on $\eta(\mathscr{Z})$ that also has the countable intersection property. By (5) of Theorem 1, the elements of \mathscr{F}^* are of the form $cl_{\eta(\mathscr{X})}Z$ for some Z in \mathscr{Z} where we have identified Z with $\varphi(Z)$. Thus \mathscr{F}^* is a family $cl_{\eta(\mathscr{X})}Z_{\alpha}$ for α in an indexing set I. Let \mathscr{G} be the collection of $cl_{\eta(\mathscr{X})}Z_{\alpha} \cap X$ for $\alpha \in I$. This is precisely the collection of Z_{α} for $\alpha \in I$. This collection is a base for a \mathscr{Z} -filter \mathscr{H} on X. For if Z_1 and Z_2 are in \mathscr{G} then

 $\mathbf{493}$

by property 5 of Theorem 1, $cl Z_1 \cap cl Z_2 = cl(Z_1 \cap Z_2)$ is in \mathscr{F} and hence $Z_1 \cap Z_2$ is non empty, so $Z_1 \cap Z_2$ is in \mathscr{G} .

The filter \mathscr{H} is precisely the \mathscr{Z} -filter on X generated by the family of $F \cap X$ for F in \mathscr{F} . By Lemma 3, \mathscr{H} is a \mathscr{Z} -ultrafilter on X. If K is a countable subset of I then $cl(\bigcap_{n \in K} Z_n) = \bigcap_{n \in K} cl Z_n$ is non empty since \mathscr{F}^* has the countable intersection property. Consequently $\bigcap_{n \in K} Z_n$ is non empty, \mathscr{H} is in $\eta(\mathscr{Z})$, and \mathscr{H} belongs to each member of \mathscr{F}^* . Thus $\eta(\mathscr{Z})$ is \mathscr{Z}^* -realcompact.

Now let α and β be two distinct points in $\eta(\mathscr{Z})$. By maximality of the filters α and β there are disjoint \mathscr{Z} -sets A and B such that A is in α but not in β and B is in β but not in α . By the normality of \mathscr{Z} there are sets C and D in \mathscr{Z} such that their complements are disjoint and $A \subset X-C$, $B \subset X-D$. Then α is in $(X-C)^*$ and β is in $(X-D)^*$ and $\eta(\mathscr{Z})$ is a Hausdorff space.

If U^* is any basic non empty open set in $\eta(\mathscr{Z})$ then its correspondent U is non empty. Since $U^* \cap \varphi(X) = \varphi(U)$ (see Theorem 1), it follows that $\varphi(X)$ is dense in $\eta(\mathscr{Z})$ and the theorem has been proved.

COROLLARY. If \mathscr{Z} is the countably productive normal base of all zero-sets of a Tychonoff space X, then $\eta(\mathscr{Z})$ is precisely the Hewitt realcompactification vX.

If the space X has a normal base \mathscr{Z} (Frink has shown that X must be a Tychonoff space) and if X is \mathscr{Z} -realcompact then our construction for $\eta(\mathscr{Z})$ gives precisely X.

THEOREM 3. If \mathscr{Z} is a normal base on a space X and if X is \mathscr{Z} -realcompact then X is precisely $\eta(\mathscr{Z})$.

PROOF. If α is in $\eta(\mathscr{X})$ then α is a \mathscr{X} -ultrafilter with the countable intersection property. Since X is \mathscr{X} -realcompact there is an x in X such that x belongs to every member of α . But then the ultrafilter α is included in the filter $\varphi(x)$ and thus α must be $\varphi(x)$. Hence $\varphi(X) = \eta(\mathscr{X})$.

We have not yet determined whether or not $\eta(\mathscr{Z})$ is realcompact in the usual sense. S. Mrowka has pointed out to the authors that $\eta(\mathscr{Z})$ is contained in the Q-closure of X in $\omega(\mathscr{Z})$, the Hausdorff compactification introduced by Frink in [2]. If X is a subspace of a space Y, then a point p is in the Q-closure of X in Y if there does not exist a real-valued continuous function that is zero at p and positive on S.

Frink's compactification $\omega(\mathscr{Z})$ for a normal base \mathscr{Z} of a space X is obtained by taking Z^* to be the family of all \mathscr{Z} -ultrafilters that have Z as a member. The collection of sets Z^* are taken as a base for the closed sets of $\omega(\mathscr{Z})$. Then X is shown to be a dense subspace of the compact Hausdorff space $\omega(\mathscr{Z})$.

The following Lemma will be needed to give our result.

[6]

LEMMA 4. If \mathscr{Z} is a normal base on a space X, then \mathscr{Z}^* is a normal base on $\omega(\mathscr{Z})$.

PROOF. That \mathscr{Z}^* is a ring follows immediately (see Lemma 1 of [1]). If Z^* is any basic closed set of $\omega(\mathscr{Z})$ and if \mathscr{F} is any point not in Z^* then by Lemma 1 there is an A in \mathscr{F} such that A is included in X-Z. Hence \mathscr{F} is in A^* and $A^* \cap Z^*$ is empty since $A \cap Z$ is empty. Thus \mathscr{Z}^* is disjunctive.

If Z_1^* and Z_2^* are two disjoint \mathscr{Z}^* sets then $Z_1 \cap Z_2$ is empty. By the normality of \mathscr{Z} there are \mathscr{Z} -sets F_1 and F_2 whose complements are disjoint and such that $Z_1 \subset X - F_1$ and $Z_2 \subset X - F_2$. It follows that $Z_1^* \subset X - F_1^*$ and $Z_2^* \subset X - F_2^*$.

THEOREM 4. If \mathscr{Z} is a countably productive normal base on X then $\eta(\mathscr{Z})$ is a subset of the Q-closure of X in $\omega(\mathscr{Z})$.

PROOF. Suppose that \mathscr{F} is a point in $\omega(\mathscr{Z})$ that is not in the *Q*-closure of X in $\omega(\mathscr{Z})$. Then there is a real-valued continuous function f on $\omega(\mathscr{Z})$ that is zero at \mathscr{F} and positive on X.

For each integer n, let F_n be the set of \mathscr{G} in $\omega(\mathscr{Z})$ such that $f(\mathscr{G}) \geq 1/n$. The sets F_n are closed in $\omega(\mathscr{Z})$ and \mathscr{F} is not in F_n for any n. Since \mathscr{Z}^* is a normal base on $\omega(\mathscr{Z})$, there is a Z_n in \mathscr{Z} such that \mathscr{F} is in Z_n^* and $Z_n^* \cap F_n$ is empty. Then Z_n is in \mathscr{F} for each n and Z_n is included in $X - F_n$. But X is included in $\bigcup_{n=1}^{\infty} F_n$ so the intersection of the sets Z_n must be empty. Hence \mathscr{F} does not have the countable intersection property and \mathscr{F} is not in $\eta(\mathscr{Z})$. This completes the proof.

The Q-closure of a subspace of a space is always realcompact. It remains an open question as to whether or not $\eta(\mathscr{Z})$ is precisely the Q-closure of X in $\omega(\mathscr{Z})$.

We can now give an example of a space X with different normal bases \mathscr{Z}_1 and \mathscr{Z}_2 for which the \mathscr{Z}_i -realcompactifications are not equal (i = 1, 2). In particular let X be an uncountable discrete space. Let \mathscr{Z}_1 be the collection of all subsets A of X such that A or X-A is at most countable and let \mathscr{Z}_2 be the collection of all subsets of X.

It is easy to verify that \mathscr{X}_1 and \mathscr{X}_2 are countably productive normal bases on X; moreover, that $\eta(\mathscr{X}_2) = vX = \varphi(X)$ and that $\omega(\mathscr{X}_2) = \beta X$ where vX is the Hewitt realcompactification and βX is the Stone-Cech compactification of X. Now $\eta(\mathscr{X}_1)$ is not equal to $\varphi(X)$ for there is a member \mathscr{F} of $\eta(\mathscr{X}_1)$ that is not in $\varphi(X)$. In fact let \mathscr{F} be the \mathscr{X}_1 -filter that is the collection of all subsets of X whose complement is at most countable. It is a \mathscr{X}_1 -ultrafilter since X-Z is in \mathscr{F} for any member Z of a filter containing \mathscr{F} where Z is not in \mathscr{F} (see Lemma 1). If $(F_n)_{n=1}^{\infty}$ is any sequence of sets in \mathscr{F} , then their common intersection F is non empty since the complement $\boldsymbol{\mathscr{Z}}$ -realcompactifications

of F is countable and hence not equal to X. This shows that \mathscr{F} has the countable intersection property. Finally $X - \{x\}$ is in \mathscr{F} for each x in X and the common intersection of these sets is empty. It follows that the common intersection of the sets F in \mathscr{F} must be empty. Thus \mathscr{F} is not in $\varphi(X)$. Hence in this case we have that $\mathscr{Z}_1 \subset \mathscr{Z}_2$ and $\eta(\mathscr{Z}_2)$ is, homeomorphically, a proper subset of $\eta(\mathscr{Z}_1)$.

In addition $\omega(\mathscr{Z}_1)$ is not equal to βX . For if it were, then $\eta(\mathscr{Z}_1)$ would be included in the Q-closure of X in βX which in turn is included in βX , by Theorem 4. But the Q-closure of X in βX is vX = X. Hence $\eta(\mathscr{Z}_1)$ is included in vX = X and since $\eta(\mathscr{Z}_1)$ contains X homeomorphically we would have that $X = \eta(\mathscr{Z}_1)$, a contradiction.

References

- R. A. Alo and H. L. Shapiro, 'A note on compactifications and semi-normal spaces', J. Austral. Math. Soc. 8 (1968), 102-108.
- [2] Orrin Frink, 'Compactifications and semi-normal spaces', Amer. J. Math. 86 (1964), 602-607.
- [3] L. Gillman and M. Jerison, Rings of continuous functions. (New York: Van Nostrand, 1960.)

The Carnegie Institute of Technology The Pennsylvania State University