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In a recent paper (see [2]), Orrin Frink introduced a method to provide
Hausdorff compactifications for Tychonoff or completely regular 7\ spaces
X. His method utilized the notion of a normal base. A normal base 2£ for
the closed sets of a space X is a base which is a disjunctive ring of sets,
disjoint members of which may be separated by disjoint complements of
members of 2£'.

Frink showed that if X has a normal base, then the Wallman space,
(a{21£), consisting of the i^-ultrafilters is a Hausdorff compactification of X.
This also showed that X must be a Tychonoff space. In this note we use the
notion of ^-ultrafilters in a countably productive normal base 2£ to introduce
a new space rj(^) consisting of all those iF-ultrafilters with the countable
intersection property.

Every normal base 3£ of X corresponds to a normal base 2£* in r]{2£)
(and also in co(2?)). We show that every collection of J?*-ultrafilters with
the countable intersection property is fixed, that is the intersection of all
the members of the collection is non empty. In light of this fact, we say that
r\{2?) is 3£*-real-compact. We also show that r)(^) is contained in the
^-closure of X in ay(2£). Finally if 2£ is the collection of all zero-sets then
r\{2£) is precisely the Hewitt real compactification of X. We have attempted
to show that every realcompactification Y of a space X can be obtained as a
space rj(^). This remains an open question.

Many examples exist of normal bases which are countably productive.
One of the most important is the collection of all zero-sets of a completely
regular T1 space. Gillman and Jerison in [3] have shown that this family is
countably productive and also that it satisfies the requirements for a normal
base. Thus every Tychonoff space has a countably productive normal base.

DEFINITIONS. A base $£ for the closed sets of a T1 space X is said to be
disjunctive if given any closed set F and any point x not in F there is a
closed set A of 2£ that contains x and is disjoint from F. The base is said
to be normal if any two disjoint members A and B of 3£ are subsets respec-
tively of disjoint complements C" and D' of members of 2£.

A family 2£ of subsets of a set X is a ring of sets if it is closed under
489
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finite unions and intersections. We say that 2£ is countably productive if
it is closed under countable intersections. We say that 2£ has the countable
intersection property if every countable collection of subsets of S£ has non
empty intersection.

A base 2£ for the closed sets of a Tx space X is a normal base if it is a
normal disjunctive ring of sets.

A proper subset of a normal base 2£ is called a 2£-filter if it is closed
under finite intersections and contains every superset in 2£ of each of its
members. We also assume that no iF-filter contains the empty set. A
2£-ultrafilter is a maximal ^"-filter.

If 3£ is a base for the closed sets in X we say that X is 2£-realcompact
if every Jf-ultrafilter with the countable intersection property has a non
empty intersection.

If 2£ is any distinguished family of subsets of a space X, we will re-
present the family of complements, X—Z, for Z in 3£ by $L2£. In particular,
if Jf is a normal base of closed sets in a Tychonoff space X then © ^ is a
base for the open sets.

Before stating our main results we will give three lemmas that will be
needed. The proof of Lemma 1 can be found in [1].

LEMMA 1. / / 2£ is a normal base for X and if 8F is a 2£-filter on X,
then J*~ is a ^-ultrafilter if and only if for each Z in 2£ either Z is in & or
there is an A in JF such that A is included in the complement of Z.

LEMMA 2. Let 2£ be a countably productive base for the closed sets of X
and let & be a 3£-ultrafilter with the countable intersection property. If(An)neN

is a sequence of sets in ?F, then the intersection A of the sets An is in 3P'.

PROOF. We first note that A is in 2£ since 2£ is countably productive.
If F is in 3F then F n A is non empty since 3F has the countable intersection
property. It follows that IF u {A} generates a .^-filter 8$ containing &.
Consequently A is in J5" since 3F must equal 88.

Lemma 1 characterizes S'-ultrafilters in a manner which directly relates
the filter with the definition of the basic open sets in Frink's compactifica-
tions (see [2]). To investigate ^-realcompact spaces we need a similar
result for the filters on the trace of a normal base with a subspace.

LEMMA 3. Let A be a subspace of a space X, let 2£(X) be a base for the
closed sets of X, let 3?[A) be the trace on A of 2£{X), and let clxZ be in
for all Zin&(A).If&' is a 3£{X)-ultrafilter on X and if {F n A : F is in
is a base for a 3T(A)-filter ^(A), then &{A) is a 2£{A)-ultrafilter.

PROOF. By hypothesis ^(A) is a 2?{A) filter so there is a 2?(A)-
ultrafilter % that contains 3F{A). Let JJf be the set of all B in 3£{X) such
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that B contains clxG for some G in 'S. It is easy to see that J f is a
filter. Since F contains clx(F n A), if F is in J5" then F n A is in
and F is in Jf. Thus the J^A^-ultrafilter & must be equivalent to Jtf.

If G is in the ^(yl)-ultrafilter <& then G is, in &(A) and c^G is in
&(X). Thus c/xG is in JtT = & and G = c/4G = c/xG r\ A is in the
^(^)-filter J^(^). It follows that <S is equivalent to ^(A) and that ^{A)
is a ^(^4)-ultrafilter. This completes the proof of the lemma.

We now consider X to be always a Tychonoff space with a countably
productive normal base 2£ for the closed subsets of X. For this base 2£,
the space i\{2£) is obtained in the following manner. The points of v(3?)
are the iF-ultrafilters of X with the countable intersection property. For
each Z in 5 we define the set Z* to be the family of all JT-ultrafilters
with the countable intersection property having Z as a member. The
collection 2£* of sets Z* for Z in 3£ is taken as a base for the closed subsets
of r\{2£). The space r\{2£) is a ^*-realcompact Hausdorff space. In particular
if 2£ is the collection of zero-sets of X then r\{2?) is the Hewitt realcom-
pactification vX (see Gillman and Jerison [3]).

There is a natural embedding q> of X into r\{2£) where <p(x) is the
Jf-ultrafilter with the countable intersection property consisting of all
•2"-sets that contain x. The mapping q> is a homeomorphism of X onto the
dense subset <p(X) of r\{2£).

In an equivalent manner, we could define a base for the open sets of
r\{2£). Let U* be the collection of all ^-ultrafilters with the countable
intersection property that have some subset of U as a member, where
X—U is in 2£. This is just the dual of the definition of Z*, that is,

U* = (X—U)* where X-U is in 2.

THEOREM 1. Let X be a Tychonoff space with a countably productive base
££ and let cp be the natural embedding of X into r\{2£). If U, V, and (Un)™=1

are members of Q2£ and Z, {Zn)™=1 are members of 2£, then the following
properties hold.

1. IfUCVthenU*CV*.

2. (U~ x Un)* = U~=1 U: and (f)Zi Un)* = f\Zx Ul
3. U* n <p{X) = cp(U) and Z* n <p(X) = <p(Z).
4. clnw9{Z) = Z*.
5- c/,w9»(flS.i Z») = f)Zi cl,w <p{Zn) or equivalents

\\ ln=l ^n) — I ln=l ^n-

The map <p of X onto the subset y>(X) of r\(2£) is a homeomorphism.

PROOF. If U, V are in ©.2? and if U C V then A a subset of U implies
that A is a subset of V and therefore U* CV*. If (Un)^=1 is any sequence
of members of %2 then U~=1 U* C ((J~=1 Un)* and ( D ^ i ^ ) * C [}Zi Ul
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To complete the proof of (2) we use the fact that for X—U in 3t',
rj{^)-U* = {X—U)*. If a is in (U~=i UH)* then there is an A contained
in U^Li Un such that A is a member of a. If a is not in U^Li U* then
X—Un is in a for each n. Then

A n (X- I) Un) = A n ( f\ (X-Un)) = 0
n=l n=l

for a is in (U^Li Un)* which is a contradiction since a has the countable
intersection property. Thus

OO 00

(U un)* = U u;.
Using this, DeMorgan's laws, and rj{&) — U* = (X—U)* for X—U in $£,
we have

00 OO

(n un)*= n u*
n=l n = l

and (2) is shown.
The map <p is a one-one map of X onto the subspace 9?(X) of J?(.2°)

since ^ is a disjunctive family and X is a 7\ space. To show that 93 is a
homeomorphism it will be sufficient to show that (3) holds. In fact if a
is in <p(X) n U* then a = <p(x) for some x in X and there is a Z in 99(x)
such that ZCU. Hence x is in ZCU and 9?(a;) is in cp(U). Thus
9?(f/) = U* n 95(X). Since 9? is one-one and onto <p(X) this equation shows
that 93 is both a continuous and open map; hence 95 is a homeomorphism.
It follows then that Z* n <p(X) = <p(Z).

From (3) it follows that clv^(p(Z) is included in Z*. Conversely if a
is in Z* and U* is any basic open set containing a then there is an A C £7
such that A n Z is in a. Since a is a filter there is a point p in A n Z and
99(/>) is in U* n 9?(Z). Thus clv{z]cp(Z) = Z*.

Finally property (5) follows from DeMorgan's laws and properties (2)
and (4). This completes the proof of our theorem.

We are now in a position to prove our main theorem.
THEOREM 2. / / X is a Tychonoff space with a countably productive

normal base 3£ then X is hotneomorphic to a dense subspace of the 2£*-real-
compact Hausdorff space r\(3£).

PROOF. Let 3F* be a ^*-ultrafilter on rj(&) that also has the countable
intersection property. By (5) of Theorem 1, the elements of &* are of the
form clv{z) Z for some Z in 3? where we have identified Z with <p(Z). Thus
<̂ ~* is a family cln{s) Za for a in an indexing set / . Let ^ be the collection of
clv[z)Zx n X for <x el. This is precisely the collection of Za for « el. This
collection is a base for a JT-filter J f on X. For if Z± and Z2 are in 'S then
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by property 5 of Theorem 1, cl Zx n cl Z2 = cl(Z1 n Z2) is in & and hence
Zx n Z2 is non empty, so Zx n Z2 is in 'S.

The filter J f is precisely the JT-filter on X generated by the family of
F n X f o r F i n &'. By Lemma 3, Jt is a ^-ultrafilter on X. If if is a count-
able subset of I then cl(f]neKZn) = HneW ^ n is n o n empty since Ĵ "* has
the countable intersection property. Consequently f)neK^n is n o n empty,
Jf is in ??(^), and Jf belongs to each member of &*. Thus r\{3?) is 2£*-
realcompact.

Now let a and /? be two distinct points in r\{2£). By maximality of the
filters a and /9 there are disjoint S'-sets A and 5 such that A is in a but not
in fi and B is in /? but not in a. By the normality of S£ there are sets C and
D in 2£ such that their complements are disjoint and A C X—C, B C X—D.
Then a is in (X—C)* and /? is in (X—Z))* and r\{2£) is a Hausdorff space.

If U* is any basic non empty open set in r\{3£) then its correspondent
U is non empty. Since U* n <p{X) = <p{U) (see Theorem 1), it follows that
q>(X) is dense vn.r\{2£) and the theorem has been proved.

COROLLARY. If 3£ is the countably productive normal base of all zero-sets
of a Tychonoff space X, then r\{3£) is precisely the Hewitt realcompactification
vX.

If the space X has a normal base 3£ (Frink has shown that X must
be a Tychonoff space) and if X is JT-realcompact then our construction
for r\{2£) gives precisely X.

THEOREM 3. If 3£ is a normal base on a space X and if X is 2£-real-
compact then X is precisely rj{2£).

PROOF. If a is in r\{2£) then a is a iF-ultrafilter with the countable
intersection property. Since X is iF-realcompact there is an x in X such that
x belongs to every member of a. But then the ultrafilter a is included in
the filter cp{x) and thus a must be q>(x). Hence cp(X) = r\{2£).

We have not yet determined whether or not r\{2£) is realcompact in
the usual sense. S. Mrowka has pointed out to the authors that r\{2£) is
contained in the ^-closure of X in co(J?), the Hausdorff compactification
introduced by Frink in [2]. If X is a subspace of a space Y, then a point
p is in the Q-closure of X in Y if there does not exist a real-valued continuous
function that is zero at p and positive on S.

Frink's compactification «(iT) for a normal base 2£ of a space X is
obtained by taking Z* to be the family of all if-ultrafilters that have Z
as a member. The collection of sets Z* are taken as a base for the closed
sets of u}{2£). Then X is shown to be a dense subspace of the compact
Hausdorff space m{2£).

The following Lemma will be needed to give our result.
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LEMMA 4. / / 2£ is a normal base on a space X, then 2£* is a normal
base on

PROOF. That 2£* is a ring follows immediately (see Lemma 1 of [1]).
If Z* is any basic closed set of a>(££) and if IF is any point not in Z* then
by Lemma 1 there is an A in IF such that A is included in X—Z. Hence
IF is in A* and A* r\ Z* is empty since A n Z is empty. Thus 2£* is
disjunctive.

If Z* and Z* are two disjoint 2£* sets then Zx n Z2 is empty. By the
normality of 3£ there are Jf-sets F1 and F2 whose complements are disjoint
and such that Z1CX-F1 and Z2CX~F2. It follows that Z*CX-F*
and Z*CX-F*.

THEOREM 4. If 2£ is a countably productive normal base on X then
r]{2£) is a subset of the Q-closure of X in

PROOF. Suppose that IF is a point in <a{2£) that is not in the ^-closure
of X in oi{2£). Then there is a real-valued continuous function / on co(&)
that is zero at J5" and positive on X.

For each integer n, let Fn be the set of 'S in <o(££) such that f(@) 2g 1/w.
The sets Fn are closed in oi{2£) and IF is not in Fn for any n. Since .3T*
is a normal base on (n{3£), there is a Zn in J such that IF is in Z* and
Z* n FB is empty. Then ZB is in IF for each w and Zn is included in X—Fn.
But X is included in L)£Li -̂ n s o the intersection of the sets Zn must be
empty. Hence IF does not have the countable intersection property and
IF is not in r\{2£). This completes the proof.

The ^-closure of a subspace of a space is always realcompact. It
remains an open question as to whether or not r\{3£) is precisely the Q-
closure of X in co{2£).

We can now give an example of a space X with different normal bases
2£x and 3£2 for which the ^,-realcompactifications are not equal (i = 1, 2).
In particular let X be an uncountable discrete space. Let 2£x be the collection
of all subsets A of X such that A or X—A is at most countable and let 2£2

be the collection of all subsets of X.
It is easy to verify that 2£x and 2£\ are countably productive normal

bases on X; moreover, that r](£?2) = vX = <p{X) and that w{2£2) = flX
where vX is the Hewitt realcompactification and (IX is the Stone-Cech
compactification of X. Now r\{2£^) is not equal to q>(X) for there is a member
^ of rji&i) that is not in q>(X). In fact let J5" be the ^-fi l ter that is the
collection of all subsets of X whose complement is at most countable. It is
a JTj-ultrafilter since X—Z is in J^ for any member Z of a filter containing
J5" where Z is not in & (see Lemma 1). If {Fn)™=1 is any sequence of sets
in IF', then their common intersection F is non empty since the complement
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of F is countable and hence not equal to X. This shows that J^ has the
countable intersection property. Finally X—{x} is in IF for each a; in I
and the common intersection of these sets is empty. It follows that the
common intersection of the sets F in ^ must be empty. Thus J^ is not
in <p(X). Hence in this case we have that 2£x C 3?2 and r\{2£^) is, homeo-
morphically, a proper subset of r\{2£]).

In addition a>{2£^) is not equal to BX. For if it were, then r\{3£^) would
be included in the (^-closure of X in fiX which in turn is included in BX,
by Theorem 4. But the (^-closure of X in BX is vX = X. Hence J ? ( ^ I ) is
included in vX = X and since r\{2£^) contains X homeomorphically we
would have that X = r]{2£x), a contradiction.
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