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SUMMARY

This paper studies in some detail a class of high-frequency-based volatility (HEAVY) models. These models
are direct models of daily asset return volatility based on realised measures constructed from high-frequency
data. Our analysis identifies that the models have momentum and mean reversion effects, and that they adjust
quickly to structural breaks in the level of the volatility process. We study how to estimate the models and
how they perform through the credit crunch, comparing their fit to more traditional GARCH models. We
analyse a model-based bootstrap which allows us to estimate the entire predictive distribution of returns. We
also provide an analysis of missing data in the context of these models. Copyright  2010 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

This paper analyses the performance of some predictive volatility models built to exploit high-

frequency data. This is carried out through the development of a class of models we call high-

frequency-based volatility (HEAVY) models, which are designed to harness high-frequency data

to make multistep-ahead predictions of the volatility of returns. These models allow for both mean

reversion and momentum. They are somewhat robust to certain types of structural breaks and adjust

rapidly to changes in the level of volatility. The models are run across periods where the level of

volatility has varied substantially to assess their ability to perform in stressful environments.

Our approach to inference will be based on the use of the ‘Oxford-Man Institute’s realised

library’ of historical volatility statistics, constructed using high-frequency data. Such statistics are

based on a variety of theoretically sound non-parametric estimators of the daily variation of prices.

In particular, it includes two estimators of interest to us. The first is realised variance, which was

systematically studied by Andersen et al. (2001a) and Barndorff-Nielsen and Shephard (2002).

The second, which has some robustness to the effect of market microstructure effects, is realised

kernel, which was introduced by Barndorff-Nielsen et al. (2008). Alternatives to the realised kernel

include the multiscale estimators of Zhang et al. (2005) and Zhang (2006) and the pre-averaging

estimator of Jacod et al. (2009).1

Ł Correspondence to: Professor Neil Shephard, Oxford-Man Institute, Eagle House, Walton Well Road, Oxford OX2 6ED,
UK. E-mail: neil.shephard@economics.ox.ac.uk
1 See also the work by Bandi and Russell (2006, 2008), Andersen et al. (2006), Hansen and Lunde (2006), Corradi and
Distaso (2006) and Christensen and Podolskij (2007).
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The focus of this paper is on predictive models, rather than on non-parametric measurement of

past volatility. Torben Andersen, Tim Bollerslev and Frank Diebold, with various co-authors,

have carried out important work on looking at predicting volatility using realised variances.

Typically they fit reduced-form time series models of the sequence of realised variances—e.g.

autoregressions or long-memory models on the realised volatilities or their logged versions.

Examples of this work include Andersen et al. (2001a,b, 2003, 2007).

The approach we follow in this paper is somewhat different. We build models out of the

intellectual insights of the ARCH literature pioneered by Engle (1982) and Bollerslev (1986),

but bolster them with high-frequency information. The resulting models will be called HEAVY

models. These models also use ideas generated by Engle (2002), Engle and Gallo (2006) and

Cipollini et al. (2007) in their work on pooling information across multiple volatility indicators

and the paper by Brownlees and Gallo (2009) on risk management using realised measures. Our

analysis can be thought of as taking a small subset of some of the Engle et al. models and analysing

them in depth for a specific purpose, looking at their performance over many assets. Our model

structure is very simple, which allows us to cleanly understand its general features, strengths and

potential weaknesses. We provide no new contribution to estimation theory, simply using existing

results on quasi-likelihoods. We show that when we marginalise out the effect of the realised

measures, HEAVY models of squared returns have some similarities with the component GARCH

model of Engle and Lee (1999). However, HEAVY models are much easier to estimate as they

bring two sources of information to identify the longer-term component of volatility. We further

find that the additional information in the realised measure generates out-of-sample gains, which

are particularly strong when the parameters of the model are estimated to match the prediction

horizon, using so-called ‘direct projection’.

The structure of this paper is as follows. In Section 2 we will define HEAVY models, which

use realised measures as the basis for multi-period-ahead forecasting of volatility. We provide

a detailed analysis of these models. In Section 3 we detail the main properties of ‘Oxford-Man

Institute’s realised library’ which we use throughout the paper. In Section 4 we fit the HEAVY

models to the data and compare their predictions to those familiar from GARCH processes. Section

5 discusses possible extensions. Section 6 draws some conclusions.

2. HEAVY MODELS

2.1. Assumed Data Structure

Our analysis will be based on daily financial returns:

r1, r2, . . . , rT

and a corresponding sequence of daily realised measures:

RM1,RM2, . . . ,RMT

Realised measures are theoretically sound high-frequency, nonparametric-based estimators of

the variation of the price path of an asset during the times at which the asset trades frequently

on an exchange. Realised measures ignore the variation of prices overnight and sometimes the

Copyright  2010 John Wiley & Sons, Ltd. J. Appl. Econ. 25: 197–231 (2010)
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variation in the first few minutes of the trading day when recorded prices may contain large errors.

The background to realised measures can be found in the survey articles by Andersen et al. (2009)

and Barndorff-Nielsen and Shephard (2007).

The simplest realised measure is realised variance:

RMt D
∑

0�tj�1,t<tj,t�1

x2
j,t, xj,t D XtCtj,t � XtCtj�1,t

⊲1⊳

where tj,t are the normalised times of trades or quotes (or a subset of them) on the tth day.

The theoretical justification of this measure is that if prices are observed without noise then, as

minj jtj,t � tj�1,tj # 0, it consistently estimates the quadratic variation of the price process on the

tth day. It was formalised econometrically by Andersen et al. (2001a) and Barndorff-Nielsen and

Shephard (2002). In practice, market microstructure noise plays an important part and the above

authors use 1- to 5-minute return data or a subset of trades or quotes (e.g. every 15th trade) to

mitigate the effect of the noise. Hansen and Lunde (2006) systematically study the impact of noise

on realised variance. If a subset of the data is used with the realised variance, then it is possible

to average across many such estimators each using different subsets. This is called subsampling.

When we report RV estimators we always subsample them to the maximum degree possible from

the data, as this averaging is always theoretically beneficial, especially in the presence of modest

amounts of noise.

Three classes of estimators which are somewhat robust to noise have been suggested in the

literature: pre-averaging (Jacod et al., 2009), multiscale (Zhang, 2006; Zhang et al., 2005) and

realised kernel (Barndorff-Nielsen et al., 2008).2 Here we focus on the realised kernel in the case

where we use a Parzen weight function. It has the familiar form of a HAC type estimator (except

that there is no adjustment for mean and the sums are not scaled by their sample size):

RMt D
H∑

hD�H
k

(
h

HC 1

)
h, h D

n∑

jDjhjC1

xj,txj�jhj,t ⊲2⊳

where k⊲x⊳ is the Parzen kernel function:

k⊲x⊳ D
{

1 � 6x2 C 6x3 0 � x � 1/2

2⊲1 � x⊳3 1/2 � x � 1

0 x > 1

It is necessary for H to increase with the sample size in order to consistently estimate the

increments of quadratic variation in the presence of noise. We follow precisely the bandwidth

choice of H spelt out in Barndorff-Nielsen et al. (2009a), to which we refer the reader for details.

This realised kernel is guaranteed to be non-negative, which is quite important as some of our

time series methods rely on this property.3

2 See also the important work of Fan and Wang (2007) on the use of wavelets in this context.
3 We could also have included jump robust measures, which typically lead to an increase in predictive power. See, for
example, Andersen et al. (2007) and Barndorff-Nielsen and Shephard (2006). This has virtues but then we would also
need to forecast these terms in making multistep-ahead forecasts. See the work of Engle and Gallo (2006) in this context.
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2.2. Definitions

We will write a sequence of daily returns as r1, r2, . . . , rT, while we will use FLF
t�1 to denote

low-frequency past data. A benchmark model for time-varying volatility is the GARCH model of

Engle (1982) and Bollerslev (1986), where we assume that

var⊲rtjFLFt�1⊳ D �2
t D ωG C ˛Gr

2
t�1 C ˇG�

2
t�1

This can be extended in many directions, for example allowing for statistical leverage. The

persistence of this model, ˛G C ˇG, can be seen through the representation

�2
t D �G C ˛G⊲r

2
t�1 � �2

t�1⊳C ⊲˛G C ˇG⊳�
2
t�1

since r2
t � �2

t is a martingale difference with respect to FLF
t�1.

Our focus is on additionally using some daily realised measures. The models we will analyse

will be called ‘HEAVY models’ (High-frEquency-bAsed VolatilitY models) and are made up of

the system {
var⊲rtjFHF

t�1⊳

E⊲RMtjFHF
t�1⊳

}
, t D 2, 3, . . . , T

where FHF
t�1 is used to denote the past of rt and RMt, that is, the high-frequency dataset. The most

basic example of this is the linear model

var⊲rtjFHF
t�1⊳ D ht D ω C ˛RMt�1 C ˇht�1, ω, ˛ ½ 0, ˇ 2 [0, 1⊳ ⊲3⊳

E⊲RMtjFHF
t�1⊳ D �t D ωR C ˛RRMt�1 C ˇR�t�1, ωR, ˛R, ˇR ½ 0, ˛R C ˇR 2 [0, 1⊳ ⊲4⊳

These semiparametric models could be extended to include on the right-hand side of both

equations the variable r2
t�1 (see the discussion above (5) in a moment) but we will see these

variables typically test out. Hence it is useful to focus directly on the above model.4 Other possible

extensions include adding a more complicated dynamic to (4), such as a component structure with

short- and long-term components, a fractional model, allowing for statistical leverage type effects,

or a Corsi (2009) type approximate long-memory model.

Note that (3) models the close-to-close conditional variance, while (4) models the conditional

expectation of the open-to-close variation.

It will be convenient to have labels for the two equations in the HEAVY model. We call (3) the

HEAVY-r model and (4) the HEAVY-RM model. Econometrically it is important to note that

GARCH and HEAVY models are non-nested.

It is helpful to solve out explicitly stationary HEAVY-r model and GARCH models as

var⊲rtjFHF
t�1⊳ D

ω

1 � ˇ
C ˛

1∑

jD0

ˇjRMt�1�j, var⊲rtjFLF
t�1⊳ D

ωG

1 � ˇG
C ˛G

1∑

jD0

ˇ
j
Gr

2
t�1�j

4 Of course, the most basic realised measure is the squared daily return, so in some sense the GARCH model is a HEAVY-r
model. This point was made to us by Frank Diebold. From this point of view one might think that a HEAVY-r model is
a ‘turbo-charged’ GARCH.

Another interpretation of HEAVY models is that one could unravel var⊲rtjFHF
t�1⊳ in terms of many lags of RM, which

relates it directly back in some sense to the forecasting models considered by Andersen, Bollerslev and Diebold in various
papers in which they focused on forecasting RM using lags of RM.

Copyright  2010 John Wiley & Sons, Ltd. J. Appl. Econ. 25: 197–231 (2010)
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In applied work we will typically estimate ˇ to be around 0.6–0.7 and ω to be small. Thus the

HEAVY-r’s conditional variance is roughly a small constant plus a weighted sum of very recent

realised measures. In estimated GARCH models in our later empirical work ˇG is usually around

0.91 or above, so it has much more memory and thus it averages more data points.

Note that, unlike GARCH models, the HEAVY-r model has no feedback and so the properties

of the realised measures determine the properties of var⊲rtjFHF
t�1⊳.

The predictive model for the times series of realised measures is not novel. The work of Andersen

et al. (2001a,b, 2003, 2007) typically looked at using least squares estimators of autoregressive

cousins discussed in (4) or their logged transformed versions. These authors also emphasised the

evidence for long memory in these time series and studied various ways of making inference for

those types of processes. Some of this work uses the model of Corsi (2009), which is easy to

estimate and mimics some aspects of long memory.

Engle (2002) estimated GARCHX type models, which specialise to (3), based on realised

variances computed using 5-minute returns. He found the coefficient on r2
t�1 to be small. He also

fitted models like (4) but again including lagged square daily returns. He argues that the squared

daily return helps forecast the realised variance, although there is some uncertainty over whether

the effect is statistically significant (see his footnote 2). He did not, however, express (3)–(4) as a

simple basis for a multistep-ahead forecasting system. Lu (2005) looked at extensions of GARCH

models allowing the inclusion of lagged realised variance. He provides extensive empirical analysis

of these GARCHX models.

Engle and Gallo (2006) extended Engle (2002) to look at multiple volatility indicators, trying

to pool information across many indicators including daily ranges, rather than focusing solely

on theoretically sound high-frequency-based statistics. They then relate this to the VIX. In that

paper they do study multistep-ahead forecasting using a trivariate system which has daily absolute

returns, daily range and realised variance (computed using 5-minute returns for the S&P500).

Their estimated models are quite sophisticated with, again, daily returns playing a large role in

predicting each series. These results are at odds with our own empirical experience expressed in

Section 4. Some clues as to why this might be the case can be seen from their Table I, which shows

realised volatility having roughly the same average level as absolute returns and daily range but

realised volatility being massively more variable and having a very long right-hand tail. Further,

their out-of-sample comparison was based only on 217 observations, which makes their analysis

somewhat noisy. Perhaps these two features distracted from the power and simplicity of using

realised measures in HEAVY type models.

Brownlees and Gallo (2009) look at risk management in the context of exploiting high-frequency

data. Their model, in Section 5 of their paper, links the conditional variance of returns to an affine

transform of the predicted realised measure. In particular, their model has a HEAVY type structure

but instead of using ht D ω C ˛RMt�1 C ˇht�1 they model ht D ωB C ˛B�t. That is, they place in

the HEAVY-r equation a smoothed version �t of the lagged realised measures where the smoothing

is chosen to perform well in the HEAVY-RM equation, rather than the raw version which is then

smoothed through the role of the momentum parameter ˇ (which is optimally chosen to perform

well in the HEAVY-r equation). Although these models are distinct, they have quite a lot of

common thinking in their structure. Maheu and McCurdy (2009) have similarities with Brownlees

and Gallo (2009), but focusing on an even more tightly parameterised model working with open-

to-close daily returns (i.e., ignoring overnight effects) where realised variance captures much of

the variation of the asset price. Giot and Laurent (2004) looks at some similar types of models.

Copyright  2010 John Wiley & Sons, Ltd. J. Appl. Econ. 25: 197–231 (2010)
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Table I. A description of the ‘OMI’s realised library’, version 0.1. The table shows how each measure is
built and the length of time series available, denoted T. ‘Med dur’ denotes the median duration in seconds

between price updates during September 2008 in our database. All data series stop on 27 March 2009

Asset Med dur Start date T Asset Med dur Start date T

Dow Jones Industrials 2 2-1-1996 3278 MSCI Australia 60 2-12-1999 2323
Nasdaq 100 15 2-1-1996 3279 MSCI Belgium 60 1-7-1999 2442
S&P 400 Midcap 15 2-1-1996 3275 MSCI Brazil 60 4-10-2002 1587
S&P 500 15 2-1-1996 3284 MSCI Canada 60 12-2-2001 2013
Russell 3000 15 2-1-1996 3279 MSCI Switzerland 60 9-6-1999 2434
Russell 1000 15 2-1-1996 3279 MSCI Germany 60 1-7-1999 2448
Russell 2000 15 2-1-1996 3281 MSCI Spain 60 1-7-1999 2423
CAC 40 30 2-1-1996 3322 MSCI France 60 1-7-1999 2455
FTSE 100 15 20-10-1997 2862 MSCI UK 60 8-6-1999 2451
German DAX 15 2-1-1996 3317 MSCI Italy 60 1-7-1999 2437
Italian MIBTEL 60 3-7-2000 2194 MSCI Japan 15 2-12-1999 2240
Milan MIB 30 60 2-1-1996 3310 MSCI South Korea 60 3-12-1999 2263
Nikkei 250 60 5-1-1996 3177 MSCI Mexico 60 4-10-2002 1612
Spanish IBEX 5 2-1-1996 3288 MSCI Netherlands 60 1-7-1999 2454
S&P TSE 15 31-12-1998 2546 MSCI World 60 11-2-2001 2101

British pound 2 3-1-1999 2584
Euro 1 3-1-1999 2600
Swiss franc 3 3-1-1999 2579
Japanese yen 2 3-1-1999 2599

Bollerslev et al. (2009) model multiple volatility indicators and daily returns, where the return

model has a conditional variance which is contemporaneous realised variance.

Finally, for some data the realised measure is not enough to entirely crowd out the lagged squared

daily returns. In that case it makes sense to augment the HEAVY-r model into its extended version:

var⊲rtjFHF
t�1⊳ D ht D ωX C ˛XRMt�1 C ˇXht�1 C Xr

2
t�1, ˇX C X < 1 ⊲5⊳

This could be thought of as a GARCHX type model, but that name suggests it is the squared

returns which drives the model, whereas in fact in our empirical work it is the lagged realised

measure which does almost all the work at moving around the conditional variance, even on

the rare occasions that X is estimated to be statistically significant. There seems little point in

extending the HEAVY-RM model in the same way.

2.3. Representations and Dynamics

2.3.1 Multiplicative Representation

The vector multiplicative representation of HEAVY models rewrites (3) and (4) as

(
r2
t

RMt

)
D

(
εtht
�t�t

)
D

(
ht
�t

)
C

(
ht⊲εt � 1⊳

�t⊲�t � 1⊳

)
, where E

{(
εt
�t

)
jFHF
t�1

}
D

(
1

1

)

Such representations are the key behind the work of Engle (2002) and Engle and Gallo (2006).

They are powerful as ⊲εt, �t⊳
0 � ⊲1, 1⊳0 is a martingale difference with respect to FHF

t�1.5

5 A stronger set of assumptions, which is useful in inspiring a quasi-likelihood, is that jointly ⊲εt, �t⊳ ¾ i.i.d., over the
subscript t. We will not make the latter assumption unless we explicitly say so.
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The dynamic structure of the bivariate model can be gleaned from writing

(
ht
�t

)
D w C

(
ˇ 0

0 ˇR

) (
ht�1

�t�1

)
C

(
˛ 0

0 ˛R

)
RMt�1, w D

(
ω

ωR

)
,

D w C B

(
ht�1

�t�1

)
C

(
˛ 0

0 ˛R

)
⊲RMt�1 � �t�1⊳, B D

(
ˇ ˛

0 ˛R C ˇR

)

Hence this process is driven by a common factor RMt � �t, which is itself a martingale

difference sequence with respect to FHF
t�1.

The memory in the HEAVY model is governed by

(
ˇ ˛

0 ˛R C ˇR

)

This has two eigenvalues (e.g. Golub and Van Loan, 1989, p. 333): ˇ, which we call a momentum

parameter (a justification for this name will be given shortly), and ˛R C ˇR, which is the persistence

parameter of the realised measure. In empirical work we will typically see ˇ to be around 0.6 and

the persistence parameter being close to but slightly less than one, so ˛R C ˇR governs the implied

memory of r2
t at longer lags. The persistence parameter will be close to that seen for estimated

˛G C ˇG for GARCH models.

The role of ˇ is interesting. In typical GARCH models the main feature is that the current value

of conditional variance monotonically mean reverts to the long-run average value as the forecast

horizon increases. In HEAVY models this is not the case because of ˇ.

2.3.2 Dynamics of the r2
t Process

The HEAVY model can be solved out to imply the autocovariance function of the squared returns.

This seems of little practical interest but allows some theoretical insights.

Assume that ˛R, ˇR, ˇ 2 [0, 1⊳ and ˛R C ˇR < 1. Define ut D r2
t � ht, uRt D RMt � �t, which

under the model are martingale difference sequences with respect to FHF
t�1. We can write out the

process for the r2
t from a HEAVY model as

r2
t D ht C ut D

ω

1 � ˇL
C
˛RMt�1

1 � ˇL
C ut, where ut D r2

t � ht,

where L is the lag operator. Therefore

⊲1 � ˇL⊳r2
t D ω C ˛RMt�1 C ⊲1 � ˇL⊳ut

Likewise:

f1 � ⊲˛R C ˇR⊳LgRMt D ωR C ⊲1 � ˇRL⊳uRt, uRt D RMt � �t

Combining delivers the result

f1 � ⊲˛R C ˇR⊳Lg⊲1 � ˇL⊳r2
t D f1 � ⊲˛R C ˇR⊳gω C ˛ ωR C �t ⊲6⊳

Copyright  2010 John Wiley & Sons, Ltd. J. Appl. Econ. 25: 197–231 (2010)
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where

�t D ⊲1 � ˇRL⊳uRt�1 C f1 � ⊲˛R C ˇR⊳Lg⊲1 � ˇL⊳ut

D ut C fuRt�1 � ⊲˛R C ˇR C ˇ⊳ut�1g � fˇRuRt�2 C ⊲˛R C ˇR⊳ˇut�2g

If we assume that

var

(
ut
uRt

)
D

(
�2
u �u,R

�u,R �2
R

)

exists then �t has a zero-mean weak MA(2) representation and r2
t is weak GARCH(2,2) in the

sense of Drost and Nijman (1993). The autoregressive roots of r2
t are ˇ and ˛R C ˇR, so are real

and positive. A biproduct of the derivation of these results is the VARMA(1,1) representation

(
r2
t

RMt

)
D

(
ω

ωR

)
C

(
ˇ ˛

0 ˛R C ˇR

) (
r2
t�1

RMt�1

)
C

(
⊲1 � ˇL⊳ut
⊲1 � ˇRL⊳uRt

)

and the equilibrium correction form (see Hendry, 1995):

r2
t D ω C ˛⊲RMt�1 � r2

t�1⊳C ⊲1 � ˇL⊳ut, where  D
1 � ˇ

˛
⊲7⊳

An important aspect of the above result is that the memory parameters in the MA(2) depend

upon the covariance matrix of ⊲ut, uRt⊳.

The weak GARCH(2,2) representation has some similarities with the component model of Engle

and Lee (1999, equations (2.4) and (2.5)), which models

var⊲rtjFLF
t�1⊳ D �2

t D qt C ˛C⊲r
2
t�1 � qt�1⊳C ˇC⊲�

2
t�1 � qt�1⊳, where

qt D ωC C �Cqt�1 C ϕC⊲r
2
t�1 � ht�1⊳

The qt process is called the long-term component and �2
t�1 � qt�1 the transitory component of

the conditional variance. Thus we expect �C to be close to one and ˛C C ˇC to be substantially

less than one.

2.3.3 Momentum

An importance aspect of the marginal r2
t process is that

r2
t D ⊲˛R C ˇR C ˇ⊳r2

t�1 � ˇ⊲˛R C ˇR⊳r
2
t�2 C f1 � ⊲˛R C ˇR⊳gω C ˛ ωR C �t ⊲8⊳

This makes plain the role of ˇ in generating momentum. It can push ˛R C ˇR C ˇ above one,

heightening significant moves in the volatility, while ˛R C ˇR < 1 causes it to mean revert. If ˇ D 0

then r2
t becomes a weak GARCH(1,2) and has no momentum, although the realised measure still

drives volatility. The component model of Engle and Lee (1999) is also a weak GARCH(1,2) if

�C D 0. The sophisticated model of Engle and Gallo (2006) is capable of generating momentum

effects, of course.
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If ˇR D ˇ then

f1 � ⊲˛R C ˇR⊳Lg⊲1 � ˇRL⊳r
2
t D f1 � ⊲˛R C ˇR⊳gω C ˛ ωR C �t,

�t D ⊲1 � ˇRL⊳uRt�1 C f1 � ⊲˛R C ˇR⊳Lg⊲1 � ˇRL⊳ut

so we can divide through by ⊲1 � ˇRL⊳ to produce

f1 � ⊲˛R C ˇR⊳Lgr2
t D

f1 � ⊲˛R C ˇR⊳g
⊲1 � ˇR⊳

ω C
˛

⊲1 � ˇR⊳
ωR C �t,

�t D uRt�1 C f1 � ⊲˛R C ˇR⊳Lgut

Hence under that constraint the r2
t is a weak GARCH(1,1) model.

2.3.4 Integrated HEAVY Models

The marginal process (8) can be rewritten in equilibrium correction form as

r2
t D �f⊲1 � ˇ⊳⊲1 � ˛R � ˇR⊳gr2

t�1 C ˇ⊲˛R C ˇR⊳r
2
t�1 C f1 � ⊲˛R C ˇR⊳gω C ˛ ωR C �t

where  is the difference operator. In practice the coefficients on the level and difference are

likely to be slightly negative and close to ˇ, respectively.

Clements and Hendry (1999) have argued that most economic forecasting failure is due to shifts

in long-run relationships and so this can be mitigated by imposing unit roots on the model. In

this context this means setting ⊲1 � ˇ⊳⊲1 � ˛R � ˇR⊳to be zero. In order to avoid ˇ being set to

one, this is achieved by setting ˛R C ˇR D 1, and killing the intercept ωR (otherwise the intercept

becomes a trend slope). The resulting forecasting model would then be based around

r2
t D ˇr2

t�1 C �t

which has momentum but no mean reversion. This type of model would not be upset by structural

changes in the level of the process. Imposing the unit root in GARCH type models is usually

associated with the work of RiskMetrics, but that analysis does not have any momentum effects.

Hence such a suggestion looks novel in the context of volatility models. It would imply using a

HEAVY model of the type, for example, of

var ⊲rtjFHF
t�1⊳ D ht D ω C ˛RMt�1 C ˇht�1, ω, ˛ ½ 0, ˇ 2 [0, 1⊳ ⊲9⊳

E ⊲RMtjFHF
t�1⊳ D �t D ˛RRMt�1 C ⊲1 � ˛R⊳�t�1, ˛R 2 [0, 1⊳ ⊲10⊳

We call this the ‘integrated HEAVY model’. We will see later that this very simple model can

generate reliable multiperiod forecasts.

2.3.5 Iterative Multistep-Ahead Forecasts

Multistep-ahead forecasts of volatility are very important for asset allocation or risk assessment

since these tasks are usually carried out over multiple days. For one-step-ahead forecasts of

volatility we only need (3), but for the multistep equation (4) plays a central role.
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For s ½ 0, from the martingale difference representation, we have

(
var⊲rtCsjFHF

t�1⊳

E⊲RMtCsjFHF
t�1⊳

)
D

(
htCsjt�1

�tCsjt�1

)
D ⊲IC BC . . .C Bs⊳w C BsC1

(
ht�1

�t�1

)
⊲11⊳

Write ϑ D ⊲˛R C ˇR⊳. It has two roots ˇ and ˛R C ˇR. Further

BJ D
(
ˇJ ˛⊲ϑJ�1 C ϑJ�2ˇ C . . .C ˇJ�1⊳

0 ϑJ

)
, J D 1, 2, 3, . . .

Of course, of interest is the integrated variance prediction var⊲rt C rtC1 C . . .C rtCsjFHF
t�1⊳. We

will assume this can be simplified to

var⊲rt C rtC1 C . . .C rtCsjFHF
t�1⊳ D

s∑

jD0

var⊲rtCjjFHF
t�1⊳

which would mean (11) could be used to compute it.

2.3.6 Targeting Reparameterisation

In the case of a stationary HEAVY model there are some advantages in reparameterising the

equations in the HEAVY model so the intercepts are explicitly related to the unconditional mean

of squared returns and realised measures. In the HEAVY-RM model this is easy to do as

�t D ωR C ˛RRMt�1 C ˇR�t�1, ˛R, ˇR ½ 0, ˛R C ˇR < 1,

D �R⊲1 � ˛R � ˇR⊳C ˛RRMt�1 C ˇR�t�1 ⊲12⊳

so that E⊲RMt⊳ D �R. For the HEAVY-r equation it is less clear since the realised measure is

likely to be a biased downward measure of the daily squared return (due to overnight effects).

Writing � D E⊲r2
t ⊳ then we can set

ht D ωr C ˛RMt�1 C ˇht�1

D �⊲1 � ˛� � ˇ⊳C ˛RMt�1 C ˇht�1, � D
�R

�
� 1 ⊲13⊳

Taken together we call (13) and (12) the ‘targeting parameterisation’ for the HEAVY model.

This parameterisation of the HEAVY model has the virtue that it is possible to use the estimators6

�̂R D
1

T

T∑

tD1

RMt, �̂ D
1

T

T∑

tD1

r2
t , �̂ D

�̂R

�̂

of �R, � and �. Thus this reparameterisation is the HEAVY extension of variance targeting

introduced by Engle and Mezrich (1996). When these estimators are plugged into the quasi-

likelihood functions it makes optimisation easier, as the dimension is smaller, but it does alter the

resulting asymptotic standard errors. This is discussed in the next subsection.

6 There may be advantages in truncating the estimator of � to insist it is weakly less than one but we have not done that
in this paper.
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2.4. Inference for HEAVY Based Models

2.4.1 Quasi-likelihood Estimation

Inference for HEAVY models is a simple application of multiplicative error models discussed by

Engle (2002), who uses standard quasi-likelihood asymptotic theory.

The HEAVY model has two equations:

var⊲rtjFHF
t�1⊳ D ht D ω C ˛RMt�1 C ˇht�1,

E⊲RMtjFHF
t�1⊳ D �t D ωR C ˛RRMt�1 C ˇR�t�1

We will estimate each equation separately, which makes optimisation straightforward. No

attempt will be made to pool information across the two equations, although more information is

potentially available if this was attempted (see the analysis of Cipollini et al., 2007).

The first equation will be initially estimated using a Gaussian quasi-likelihood:

logQ1⊲ω,  ⊳ D
T∑

tD2

lrt , where lrt D �
1

2
⊲log ht C r2

t /ht⊳,  D ⊲˛, ˇ⊳0 ⊲14⊳

where we take h1 D T�1/2
∑bTc1/2

tD1 r2
t .

The second equation will be estimated using the same structure with

logQ2⊲ωR,  R⊳ D
T∑

tD2

lRM
t where lRM

t D �
1

2
⊲log�t C RMt/�t⊳,  R D ⊲˛R, ˇR⊳

0 ⊲15⊳

where we take �1 D T�1/2
∑bTc1/2

tD1 RMt.

In inference we will regard the parameters as having no link between the HEAVY-r and HEAVY-

RM models, i.e. ⊲ω,  ⊳ and ⊲ωR,  R⊳ are variation free (e.g. Engle et al., 1983), which we will

see in the next subsection is important for inference. It then follows that equation-by-equation

optimisation is all that is necessary to maximise the quasi-likelihood. This is convenient as existing

GARCH type code can simply be used in this context. We will write � D ⊲ω,  0, ωR,  
0
R⊳

0 and the

resulting maximum of the quasi-likelihoods as �̂.

The alternative targeting parameterisation has

ht D �⊲1 � ˛� � ˇ⊳C ˛RMt�1 C ˇht�1, � D
�R

�
� 1,

�t D �R⊲1 � ˛R � ˇR⊳C ˛RRMt�1 C ˇR�t�1, ˛R C ˇR < 1

so that E⊲RMt⊳ D �R and E⊲r2
t ⊳ D �. This has the virtue that we can employ a two-step approach,

first setting

�̂ D
1

T

T∑

tD1

r2
t and �̂R D

1

T

T∑

tD1

RMt

and then we compute

 ̂ D arg
 

max logQ1⊲�̂, �̂R,  ⊳ and  ̂R D arg
 R

max logQ2⊲�̂R,  R⊳
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This reduces the dimension of the optimisations by one each time; this has the disadvantage

that the two equations are no longer variation-free, which complicates the asymptotic distribution.

2.4.2 Quasi-likelihood Based Asymptotic Distribution

Inference using robust standard errors is standard in this context of (14) and (15). We stack the

scores so that

T∑

tD2

mt⊲�̂⊳ D 0, where mt⊲�⊳ D
(
∂lrt

∂�0 ,
∂lRM
t

∂�0
R

)0

, � D ⊲ω,  0⊳0, �R D ⊲ωR,  
0
R⊳

0

where � D ⊲�0, �0
R⊳

0. Then if we denote the point in the parameter space where the model (3) and

(4) holds as �Ł then under the model

Efmt⊲�Ł⊳jFHF
t�1g D 0

that is, mt⊲�
Ł⊳ is a martingale difference sequence with respect to FHFt�1. Under standard quasi-

likelihood conditions we have

p
T⊲�̂ � �Ł⊳

d
���!N⊲0,J�1

IJ�10
⊳

where the Hessian is

J D p lim
T���!1

ĴT, where ĴT D �
1

T




∑T
tD2

∂2lrt
∂�∂�0 0

0
∑T

tD2

∂2lRM
t

∂�R∂�
0
R


 ⊲16⊳

and

I D p lim
T���!1

ÎT, where ÎT D
1

T

T∑

tD2

mt⊲�̂⊳mt⊲�̂⊳
0 ⊲17⊳

The block diagonality of (16) is due to the variation-free property of the parameters, while it

is not necessary to use an HAC estimator in (17) due to the martingale difference features of the

stacked scores. This is a straightforward application of quasi-likelihood theory and can be viewed

as an extension of Bollerslev and Wooldridge (1992) and is discussed extensively in Cipollini

et al. (2007).

The most important implication of the block diagonality of the Hessian (16) is that the equation-

by-equation standard errors for the HEAVY-r and HEAVY-RM are correct, even when viewing

the HEAVY model as a system. This means that standard software can be used to compute them.

When the two-step approach is used on the targeting parameterisation then the moment

conditions change to

mt⊲�E⊳ D
{

1

T
⊲rt � �⊳,

∂lrt

∂ 0 ,
1

T
⊲RMt � �R⊳,

∂lRM
t

∂ 0
R

}0

, �E D ⊲�,  0, �R,  
0
R⊳

0
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The moment conditions are no longer martingale difference sequences, but they do have a zero

mean for all values of t at the true parameter point:

ĴT D �
1

T




T
∑T

tD2

∂2lrt
∂�∂ 0

∑T
tD2

∂2lrt
∂�R∂ 

0 0

0
∑T

tD2

∂2lrt
∂ ∂ 0 0 0

0 0 T
∑T

tD2

∂2lRM
t

∂�R∂ 
0
R

0 0 0
∑T

tD2

∂2lRM
t

∂ R∂ 
0
R




while ÎT needs to be an HAC estimator applied to the time series of mt⊲�E⊳.

2.4.3 Non-nested Tests

One natural way to assess the forecasting power of the HEAVY model is to compare it to that

generated by the GARCH model. This can be assessed at distinct horizons by comparing the

performance using the QLIK loss function:

loss⊲r2
tCs, �̃

2
tCsjt�1⊳ D

r2
tCs

�̃2
tCsjt�1

� log

(
r2
tCs

�̃2
tCsjt�1

)
� 1, s D 0, 1, . . . , S ⊲18⊳

where r2
tCs is the proxy used for the time t C s (latent) variance and �̃2

tCsjt is some predictor made

at time t � 1. This loss function has been shown to be robust to certain types of noise in the proxy

in Patton (2009) and Patton and Sheppard (2009a). It will later be used to compare the forecast

performance of non-nested volatility models. Also important is the cumulative loss function, which

we take as

loss




s∑

jD0

r2
tCj,

s∑

jD0

�̃2
tCjjt�1


 D

∑s

jD0
r2
tCj

∑s

jD0
�̃2
tCjjt�1

� log




∑s

jD0
r2
tCj

∑s

jD0
�̃2
tCjjt�1


 � 1, s D 0, 1, . . . , S

which is distinct from the cumulative sum of losses. This uses the s-period realised variance as

the observations.

The temporal average ⊲sC 1⊳-step-ahead relative loss between a HEAVY and GARCH model

will be

L̂s D
1

T� s

T∑

tDsC1

Lt,s, s D 0, 1, . . . , S

where

Lt,s D loss⊲r2
tCs, htCsjt�1⊳� loss⊲r2

tCs, �
2
tCsjt�1⊳, s D 0, 1, . . . , S

D
{

r2
tCs

htCsjt�1

C ln⊲htCsjt�1⊳

}
�

{
r2
tCs

�2
tCsjt�1

C ln⊲�2
tCsjt�1⊳

}

D �2 log
f⊲rtCsj0, htCsjt�1⊳

f⊲rtCsj0, �2
tCsjt�1⊳
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Here htCsjt�1 is the forecast from the HEAVY model, �2
tCsjt is the corresponding GARCH

forecast and f⊲xj�, �2⊳ denotes a Gaussian density with mean � and variance �2, evaluated at

x. The framework will allow both the HEAVY and GARCH model to be estimated using QML

techniques. The HEAVY model will be favoured if L̂s is negative.

L̂s estimates Ls D E⊲Lt,s⊳, s D 0, 1, . . . , S, for each s, the unconditional average likelihood ratio

between the two models. The HEAVY model will be favoured at s-steps if Ls < 0 and the

GARCH model if Ls > 0. We will say that the HEAVY model forecast-dominates the GARCH

model if Ls < 0 for all s D 1, 2, . . . , S. ‘Weakly forecast-dominates’ means that Ls � 0 for all

s D 1, 2, . . . , S with at least one of the � relationships being a strict inequality. This approach

follows the ideas of Cox (1961b) on non-nested testing using the Vuong (1989) and Rivers and

Vuong (2002) implementation.7

The above scheme can be implemented if Lt,s (evaluated at their pseudo-true parameter values)

is sufficiently weakly dependent to allow the parameter estimates of the HEAVY and GARCH

models to obey a standard Gaussian central limit theorem (e.g. Rivers and Vuong, 2002). Then

p
T⊲L̂s � Ls⊳

d
���!N⊲0, Vs⊳

where Vs is the long-run variance of the Lt,s. The scale Vs has to be estimated by an HAC estimator

(e.g. Andrews, 1991).

2.4.4 Horizon-Tuned Estimation and Evaluation

Having multistep-ahead loss functions suggests separately estimating the model at each forecast

horizon by minimising expected loss at that horizon. This way of tuning the model to produce

multistep-ahead forecasts is called ‘direct forecasting’ and has been studied by, for example,

Marcellino et al. (2006) and Ghysels et al. (2009). The former argue direct forecasting may be

more robust to model misspecification than iterating one-period-ahead models, although they find

iterative methods more effective in forecasting for macroeconomic variables in practice. Direct

forecasting dates at least to Cox (1961a). Marcellino et al. (2006) provide an extensive discussion

of the literature.

Minimising the QLIK multistep-ahead loss can be thought of as maximising a distinct quasi-

likelihood for each value of s:

logQ1,s⊲ωs,  s⊳ D
T∑

tD2

lrt,s, where lrt,s D �
1

2

(
log htCsjt�1 C

r2
tCs

htCsjt�1

)
,  s D ⊲˛s, ˇs⊳

0,

logQ2,s⊲ωR,s,  R,s⊳ D
T∑

tD2

lRM
t,s where lRM

t,s D �
1

2

(
log�tCsjt�1 C

RMtCs

�tCsjt�1

)
,  R,s D ⊲˛R,s, ˇR,s⊳

0

where the quasi-likelihood is the Gaussian likelihood based on multistep-ahead forecasts. This

delivers the sequence of horizon-tuned estimators ω̂s,  ̂s, ω̂R,s,  ̂R,s, whose standard errors can

be computed using the usual theory of quasi-likelihoods. In practice, because of the structure of

our HEAVY model, by far the most important of these equations is the second one, which allows

7 In the context of forecasting this is related to Diebold and Mariano (1995). Vuong (1989) has the virtue of being valid
even if neither model is correct. It just assesses which is better in terms of the unconditional average likelihood ratio.
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horizon tuning for the HEAVY-RM forecasts.8 The same exercise can be carried out for a GARCH

model.

2.4.5 Bootstrapping

Like GARCH models, a drawback of HEAVY models is that they only specify the conditional

means of r2
t and RMt given FHF

t�1. It is sometimes helpful to give the entire forecast distributions:

F⊲rtCsjFHF
t�1⊳, s D 0, 1, 2, . . . ⊲19⊳

or

F⊲rt C rtC1 C . . .C rtCsjFHF
t�1⊳ ⊲20⊳

A simple way of carrying this out is via a model-based bootstrap. We use the representation

rt D �th
1/2
t , RMt D �t�t, E⊲�2

t jFHF
t�1⊳ D 1, E⊲�tjFHF

t�1⊳ D 1 and then assume that ⊲�t, �t⊳
0i.i.d.¾ F�,�.

Typically these bivariate variables will be contemporaneously correlated. For equities we would

expect a sharp negative correlation reflecting statistical leverage. If we had knowledge of F�,� it

would be a trivial task to carry out model-based simulation from (19) or (20).

We can estimate the joint distribution function F�,� by simply taking the filtered ⊲ht, �t⊳
0 and

computing the devolatilised9

�̂t D rt/h
1/2
t , �̂t D ⊲RMt/�t⊳

1/2, t D 2, 3, . . . , T ⊲21⊳

and computing the empirical distribution function F̂�,�. Then we can sample with replacement

pairs from this population,10 which can then be used to drive a simulated joint path of the pair

⊲rt,RMt⊳
0, ⊲rtC1,RMtC1⊳

0, . . ., ⊲rtCs,RMtCs⊳
0. Discarding the drawn realised measures gives us

paths of daily returns rt, rtC1, . . ., rtCs. Carrying out this simulation many times approximates the

predictive distributions.

3. OMI’S REALISED LIBRARY 0.1

3.1. A List of Assets and Data Cleaning

This paper uses the database ‘Oxford-Man Institute’s realised library’ version 0.1, which has been

produced by Heber et al. (2009).11

The version 0.1 of the library currently starts on 2 January 1996 and finishes on 27

March 2009. Some of the series are available throughout this period, but quite a number

start after 1996, as detailed in Table I. In total, the database covers 34 different assets. Some

of these series are indexes computed by MSCI. Others are traded assets or indexes com-

puted by other data providers computed in real time. Table I gives the basic features of

8 If we condition on the lagged realised measure the additional memory in the HEAVY-r model is modest.
9 We work with the RM

1/2
t , rather than the original RMt as volatilities (as opposed to variance type objects) are easier to

interpret later, but this choice has little impact here and the same exercise could be carried out based on the RMt.
10 There may be some advantages in using a block sampling scheme for the innovations ⊲�t, �t⊳ as they are not expected
to be exactly temporally independent, although they should be temporally uncorrelated. However, we have not explored
that here.
11 Available at http://realized.oxford-man.ox.ac.uk
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the data used to compute the library, indicating the frequency of the base data used in the

calculations.

For each asset the library currently records daily returns, daily subsampled realised variances

and daily realised kernels. In this paper we use the daily returns and realised kernels in our mod-

elling. If the market is closed or the data are regarded as being of unacceptably low quality for

that asset, then the database records it as missing, except for days when all the markets are simul-

taneously closed, in which case the day is not recorded in the database. As a result, for example,

Saturdays are never present in the library. Summary features of the library will be discussed in

the next subsection.

Realised variances (1) are computed by first calculating 5-minute returns (using the last tick

method) and subsampling this statistic using every 30 seconds.12 Realised kernels are computed

in tick time using every available data point, after cleaning. Data cleaning is discussed in our data

appendix at the end of this paper.

3.2. Summary Statistics for the Library

Table II gives summary statistics for the realised measures and squared daily returns for each

asset. The table is split into three sections, which are raw indexes, MSCI indexes and exchange

rates, all quoted against the US dollar.

The Avol number takes either squared returns or the realised measure and multiplies them

by 252 and then averages the value over the sample period. We then square root the result

and report it. This is so that the Avol number is on the scale of an annualised volatility,

which is familiar in financial economics. It shows the raw common indexes have annualised

volatility for returns of usually just over 20%, with the corresponding results for the realised

variance measures typically being around 16% and the realised kernels around the same level. Of

course, the realised measures miss out on the overnight return, which accounts for their lower

level. The MSCI indexes have more variation in their Avol levels, sometimes going into the

30s and in one case the 40s. The overnight effects are large again. In the exchange rate case

the Avols are lower for squared returns and in this case the realised measures have roughly

the same average level—presumably as there is no overnight effect. The Avol for realised

kernels is typically a little higher than for the realised variance, but the difference is very

small.

The SD figures are standard deviations of percentage daily squared movements or realised mea-

sures, not scaled to present annualised quantities. They show much higher standard deviations for

squared returns than for their realised measure cousins. The ACF figures are the serial correla-

tion coefficients at one lag. This shows the modest degree of serial correlation of squared returns

and much higher numbers of the realised variances and realised kernels. These are the expected

results.

12 For our MSCI index data we only have raw returns at the 1-minute level, which meant that when we subsampled at

the 30-second level we produce the same RV twice (this has no impact as we divide everything by two).
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Table II. Calculations use 100 times differences of the log price (i.e. roughly percent changes). Avol is the
square root of the mean of 252 times either squared returns or the realised measure. It is the approximate
annualised volatility. SD is the daily standard deviation of percent daily returns or realised measure. The

same data are used to compute the ACFs (serial correlations) at 1 lag

Asset r2
t Realized variance Realized kernel

Avol SD ACF1 Avol SD SCF1 Avol SD ACF1

Dow Jones Industrials 19.4 4.81 0.125 15.2 1.94 0.663 15.0 1.95 0.655
Nasdaq 100 28.1 8.35 0.180 17.8 2.22 0.664 18.7 2.52 0.646
S&P 400 Midcap 21.7 5.68 0.260 13.5 1.90 0.800 13.7 1.96 0.799
S&P 500 20.8 5.46 0.209 15.5 2.09 0.699 15.9 2.14 0.701
Russell 3000 20.3 5.32 0.127 14.3 1.86 0.694 14.5 1.90 0.697
Russell 1000 20.4 5.38 0.125 14.7 1.91 0.692 14.9 1.94 0.695
Russell 2000 23.3 6.02 0.313 13.2 1.85 0.715 13.4 1.96 0.720
CAC 40 23.7 5.95 0.236 18.1 2.18 0.662 18.3 2.21 0.669
FTSE 100 20.7 4.66 0.229 15.2 1.62 0.645 15.6 1.74 0.620
German DAX 25.1 6.57 0.163 21.1 3.10 0.659 21.3 3.22 0.626
Italian MIBTEL 20.1 5.07 0.218 13.1 1.34 0.665 13.7 1.52 0.662
Milan MIB 30 23.2 5.69 0.214 16.5 1.84 0.624 17.0 1.99 0.615
Nikkei 250 24.9 6.96 0.241 16.0 1.37 0.691 16.5 1.48 0.668
Spanish IBEX 23.7 6.57 0.295 16.7 1.76 0.639 16.5 1.73 0.655
S&P TSE 20.9 5.54 0.292 14.1 1.82 0.785 14.3 1.89 0.774

MSCI Australia 16.4 3.05 0.229 8.8 0.53 0.763 9.1 0.57 0.749
MSCI Belgium 23.4 10.5 0.159 16.4 1.66 0.718 16.1 1.84 0.684
MSCI Brazil 43.7 24.3 0.155 28.5 6.30 0.796 29.6 7.21 0.749
MSCI Canada 19.5 5.05 0.320 12.6 1.67 0.819 13.1 1.88 0.761
MSCI Switzerland 20.6 5.25 0.330 14.5 1.44 0.727 14.5 1.56 0.700
MSCI Germany 25.7 6.94 0.163 21.1 3.10 0.677 20.8 2.99 0.692
MSCI Spain 24.0 6.08 0.225 17.5 1.84 0.690 17.6 1.92 0.676
MSCI France 23.9 6.29 0.238 18.2 2.23 0.682 18.4 2.32 0.669
MSCI UK 20.0 4.95 0.233 15.6 1.84 0.615 15.7 1.89 0.649
MSCI Italy 21.4 5.35 0.247 16.0 1.82 0.672 16.2 1.93 0.670
MSCI Japan 23.7 6.40 0.273 14.2 1.27 0.746 14.4 1.26 0.755
MSCI South Korea 32.0 9.63 0.131 21.6 2.61 0.700 21.9 2.80 0.682
MSCI Mexico 29.6 11.8 0.144 16.3 2.59 0.675 17.5 2.87 0.678
MSCI Netherlands 23.9 6.14 0.281 17.7 2.09 0.733 17.9 2.25 0.716
MSCI World 17.7 4.22 0.250 13.1 1.44 0.766 13.6 1.68 0.691

British pound 9.2 0.75 0.215 9.8 0.51 0.876 9.4 0.51 0.879
Euro 10.4 0.79 0.103 11.1 0.45 0.668 10.5 0.45 0.658
Swiss franc 11.0 0.91 0.133 11.6 0.39 0.690 10.8 0.38 0.650
Japanese yen 10.9 1.32 0.134 11.6 0.64 0.698 11.2 0.63 0.696

4. EMPIRICAL ANALYSIS WITH A LARGE CROSS-SECTION

4.1. Estimated Models

In this section we will take each univariate series of returns and realised measures and fit a HEAVY

model together with the targeting GARCH:

�2
t D �G⊲1 � ˛G � ˇG⊳C ˛Gr

2
t�1 C ˛G�

2
t�1
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and the non-targeting GARCHX models. The HEAVY models are set up in their targeting

parameterisation:

�t D �R⊲1 � ˛R � ˇR⊳C ˛RRMt�1 C ˇR�t�1, ˛R C ˇR < 1,

ht D �⊲1 � ˛� � ˇ⊳C ˛RMt�1 C ˇht�1, � D
�R

�
� 1, ˛C ˇ < 1

In the GARCH and HEAVY cases they are estimated using a two-step approach, using

unconditional empirical moments for �G, �R and � and then maximising the quasi-likelihoods for

⊲˛G, ˇG⊳, ⊲˛R, ˇR⊳ and ⊲˛, ˇ⊳. The same estimation strategy is used for the GARCH model, but

for the GARCHX model optimisation of the quasi-likelihood is used for all the parameters in the

model.

For multistep-ahead forecasts there are some arguments for imposing a unit root on the HEAVY-

RM model, in which case we model

�t D ˛RRMt�1 C ⊲1 � ˛R⊳�t�1, ˛R < 1 ⊲22⊳

ht D ω C ˛RMt�1 C ˇht�1, ˛C ˇ < 1

which means it has no targeting features at all. It would seem illogical to want to impose targeting

on HEAVY-r at the same time as using an integrated model for realised measures.

The results are presented in some detail in Table III for the dynamic parameters. In the HEAVY-r

model the momentum parameter ˇ is typically in the range from 0.6 to 0.75 but there are exceptions,

which are typically exchange rates where there is very considerable memory. The HEAVY-RM

models show a very large degree of persistence in the series, with ˛R being typically in the region

of 0.35–0.45 and ˛R C ˇR being close to one. For currencies, using realised measures improves

the fit of the model but the improvement is modest, as can be seen from Table IV.

When we allow for realised measures in the GARCH model, that is, we specify the GARCHX

model, typically the X parameter is estimated to be on its boundary at exactly zero. There are

eight exceptions to this, but the use of robust standard errors (not reported here) suggest only two

are statistically significant. These two are the S&P 400 Midcap and Russell 2000. In those cases

the realised kernel may not have dealt correctly with the dependence in their high-frequency data

induced by the staleness of the prices for some of the components of the indices.

Also given in the table is the median of the estimators for three blocks of the assets, which

provides a guide to the typical behaviour. Finally, the table also records the estimate value of ˛R
for the integrated HEAVY model. This does not change very much from the estimated HEAVY

model, but typically there are small falls in the estimates.

Table IV shows the change in the log-likelihood function by moving to the HEAVY-r and

GARCH models from the nesting GARCHX model. In the GARCH case the changes are always

very large; in the HEAVY-r case the changes are usually zero. However, there are a couple of

cases where the reduction in likelihood is quite large. The table also shows the impact on the

likelihood by imposing unit roots on the GARCH and HEAVY-RM models. The effect on the

HEAVY-RM model is more modest than in the GARCH case.

Table V shows the HEAVY’s model’s average in sample iterated multistep-ahead QLIK loss

compared to the GARCH model, using the methodology discussed above (‘Iterative Multistep-

Ahead Forecasts’). Here the parameters are estimated using the quasi-likelihood, which means
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Table III. Fit of GARCH and HEAVY models for various indexes and exchange rates. The cross-sectional
median takes the median of the parameter estimates for the indexes. GARCH and HEAVY-RM models are

estimated using tracking parameterisation. Integrated models are IGARCH and Int-HEAVY-RM

Asset HEAVY-r GARCHX GARCH HEAVY-RM Integrated

˛ ˇ ˛X ˇX X ˛G ˇG ˛R ˇR ˛G ˛R

Dow Jones Industrials 0.407 0.737 0.407 0.737 0.000 0.082 0.912 0.411 0.567 0.062 0.336
Nasdaq 100 0.730 0.658 0.439 0.744 0.051 0.081 0.916 0.428 0.567 0.063 0.349
S&P 400 Midcap 0.848 0.641 0.270 0.794 0.083 0.100 0.886 0.392 0.603 0.073 0.333
S&P 500 0.378 0.773 0.378 0.773 0.000 0.076 0.918 0.417 0.564 0.054 0.340
Russell 3000 0.448 0.747 0.448 0.747 0.000 0.081 0.911 0.403 0.574 0.059 0.313
Russell 1000 0.397 0.768 0.397 0.768 0.000 0.078 0.916 0.402 0.577 0.057 0.315
Russell 2000 0.949 0.678 0.244 0.812 0.102 0.106 0.885 0.387 0.622 0.077 0.322
CAC 40 0.526 0.674 0.526 0.674 0.000 0.081 0.917 0.417 0.573 0.067 0.350
FTSE 100 0.613 0.656 0.613 0.656 0.000 0.105 0.892 0.441 0.556 0.085 0.369
German DAX 0.447 0.673 0.447 0.673 0.000 0.093 0.903 0.457 0.536 0.075 0.376
Italian MIBTEL 0.806 0.630 0.806 0.630 0.000 0.107 0.889 0.512 0.486 0.080 0.436
Milan MIB 30 0.496 0.748 0.342 0.779 0.047 0.102 0.895 0.484 0.518 0.075 0.417
Nikkei 250 0.508 0.772 0.508 0.772 0.000 0.079 0.905 0.346 0.641 0.065 0.295
Spanish IBEX 0.640 0.669 0.481 0.713 0.035 0.113 0.885 0.393 0.603 0.084 0.343
S&P TSE 0.643 0.692 0.637 0.693 0.002 0.067 0.930 0.362 0.635 0.054 0.324

Index’s median 0.526 0.678 0.447 0.744 0.000 0.082 0.905 0.411 0.573 0.067 0.340

MSCI Australia 0.214 0.645 0.976 0.668 0.043 0.098 0.894 0.324 0.670 0.069 0.292
MSCI Belgium 0.769 0.568 0.374 0.692 0.093 0.143 0.854 0.399 0.608 0.105 0.359
MSCI Brazil 0.662 0.652 0.661 0.653 0.001 0.096 0.876 0.433 0.536 0.071 0.375
MSCI Canada 0.515 0.765 0.485 0.769 0.009 0.074 0.914 0.364 0.630 0.060 0.329
MSCI Switzerland 0.699 0.638 0.699 0.638 0.000 0.131 0.860 0.474 0.508 0.093 0.425
MSCI Germany 0.568 0.592 0.568 0.592 0.000 0.107 0.885 0.461 0.529 0.083 0.388
MSCI Spain 0.589 0.659 0.589 0.659 0.000 0.090 0.907 0.417 0.579 0.067 0.365
MSCI France 0.596 0.628 0.596 0.628 0.000 0.090 0.908 0.453 0.543 0.074 0.386
MSCI UK 0.582 0.616 0.582 0.616 0.000 0.110 0.886 0.456 0.543 0.086 0.393
MSCI Italy 0.583 0.659 0.583 0.659 0.000 0.100 0.896 0.537 0.462 0.075 0.467
MSCI Japan 0.741 0.720 0.741 0.720 0.000 0.088 0.902 0.459 0.533 0.075 0.387
MSCI South Korea 0.765 0.661 0.765 0.661 0.000 0.071 0.928 0.432 0.564 0.059 0.392
MSCI Mexico 0.872 0.711 0.723 0.725 0.032 0.095 0.885 0.364 0.624 0.068 0.328
MSCI Netherlands 0.538 0.678 0.538 0.678 0.000 0.105 0.889 0.453 0.541 0.084 0.396
MSCI World 0.339 0.798 0.339 0.798 0.000 0.084 0.910 0.377 0.610 0.068 0.340

MSCI’s median 0.596 0.659 0.589 0.661 0.000 0.096 0.894 0.433 0.543 0.074 0.386

British pound 0.162 0.810 0.162 0.810 0.000 0.042 0.950 0.283 0.699 0.035 0.264
Euro 0.055 0.936 0.034 0.947 0.013 0.030 0.969 0.247 0.746 0.028 0.223
Swiss franc 0.046 0.948 0.045 0.947 0.002 0.027 0.971 0.239 0.748 0.024 0.220
Japanese yen 0.173 0.772 0.173 0.772 0.000 0.048 0.934 0.398 0.552 0.035 0.341

Currency’s median 0.109 0.873 0.104 0.879 0.001 0.036 0.959 0.265 0.722 0.031 0.244

they are tuned to perform best at one-step-ahead forecasting. The forecast horizon varies over 1,

2, 3, 5, 10 and 22 lags. Two models are fitted. The left-hand side shows the result for the standard

HEAVY model, which is estimated using a targeting parameterisation. The right-hand side shows

the corresponding result for the ‘integrated HEAVY’ model, which is discussed in (22). Recall

that negative t-statistics indicate a statistically significant preference for HEAVY models. The

final column examines the log-likelihood loss from excluding the smoothing parameter from the

HEAVY-RM model (ˇ D 0). In all cases the decrease in log-likelihood is substantial, indicating

that averaging over the most recent 4 or 5 days is highly desirable.
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Table IV. Twice the likelihood change by imposing restrictions on the model. Left-hand side shows twice
the likelihood change compared to the GARCHX model. The right-hand side compares the unconstrained

GARCH and HEAVY-RM models with those which impose a unit root

Asset Compare to extended HEAVY-r Impose unit root No momentum

HEAVY–r GARCH GARCH HEAVY-RM ˇ D 0

Dow Jones Industrials 0.0 �199.5 �48.4 �19.5 �56.6
Nasdaq 100 �15.9 �108.5 �31.1 �14.4 �72.9
S&P 400 Midcap �64.6 �61.8 �61.4 �11.0 �88.8
S&P 500 0.0 �211.1 �50.6 �17.9 �67.2
Russell 3000 0.0 �187.3 �49.8 �21.1 �61.3
Russell 1000 0.0 �186.3 �45.3 �20.0 �61.9
Russell 2000 �163.2 �64.9 �57.4 �13.3 �131.1
CAC 40 0.0 �149.1 �30.8 �14.5 �67.3
FTSE 100 0.0 �125.5 �32.4 �12.3 �55.2
German DAX 0.0 �153.4 �47.0 �16.0 �63.7
Italian MIBTEL 0.0 �141.2 �40.5 �9.9 �38.1
Milan MIB 30 �16.5 �100.7 �48.3 �13.0 �75.6
Nikkei 250 0.0 �116.5 �64.5 �9.9 �84.6
Spanish IBEX �9.3 �113.9 �59.0 �12.1 �78.4
S&P TSE �0.0 �120.8 �17.3 �5.6 �72.3

Index’s median 0.0 �125.5 �48.3 �13.3 �67.3

MSCI Australia �6.6 �96.6 �31.2 �3.9 �55.8
MSCI Belgium �22.7 �66.2 �60.2 �4.1 �56.9
MSCI Brazil 0.0 �60.2 �35.5 �7.1 �23.6
MSCI Canada �0.4 �75.0 �22.9 �4.4 �56.7
MSCI Switzerland 0.0 �153.4 �65.8 �9.1 �32.7
MSCI Germany 0.0 �136.9 �45.0 �10.7 �44.5
MSCI Spain 0.0 �106.7 �31.5 �7.5 �44.5
MSCI France 0.0 �158.3 �27.7 �9.4 �47.1
MSCI UK 0.0 �134.3 �37.1 �9.3 �44.5
MSCI Italy 0.0 �154.7 �38.3 �8.7 �35.4
MSCI Japan 0.0 �111.8 �33.7 �6.2 �28.0
MSCI South Korea 0.0 �118.6 �15.1 �4.1 �43.5
MSCI Mexico �3.4 �61.2 �36.5 �3.5 �43.1
MSCI Netherlands 0.0 �117.8 �40.8 �7.6 �46.8
MSCI World 0.0 �92.9 �25.6 �6.3 �104.0

MSCI’s median 0.0 �111.8 �35.5 �7.1 �44.5

British pound 0.0 �50.4 �16.0 �1.8 �28.3
Euro �2.7 �18.5 �6.0 �1.6 �44.6
Swiss franc �0.1 �33.0 �5.9 �1.7 �40.5
Japanese yen 0.0 �67.4 �38.6 �8.4 �26.1

Currency’s median �0.0 �41.7 �11.0 �1.8 �34.4

The results are striking. They shows that in sample and pointwise the standard HEAVY

model forecast dominates the GARCH model, but that the out-performance gets weaker as the

forecast horizon increases. The integrated HEAVY model performs slightly more poorly than the

unconstrained HEAVY model.

This picture is remarkably stable across assets with two counter-examples: the mid-cap series

Russell 2000 and the S&P 400 Midcap. These have lower quasi-likelihoods and this under-

performance continues when applied at multistep-ahead periods.
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Table V. In-sample likelihood ratio tests for losses generated by HEAVY and GARCH models. Negative val-
ues favour HEAVY models. Both models are estimated using the quasi-likelihood, i.e. tuned to one-step-ahead

predictions

Asset t-statistic for non-nested LR tests for iterative forecasts

Horizon h D sC 1: HEAVY model Horizon h D sC 1: Int HEAVY model

1 2 3 5 10 22 1 2 3 5 10 22

Dow Jones Industrials �5.72 �3.79 �3.07 �2.98 �2.16 0.78 �5.65 �3.71 �3.02 �2.75 �2.40 0.03
Nasdaq 100 �2.49 �0.46 �0.34 �0.72 1.03 �0.42 �2.47 �0.46 �0.33 �0.57 1.25 �0.02
S&P 400 Midcap 0.07 1.19 1.14 0.16 0.25 �0.41 0.16 1.21 1.15 0.38 0.72 0.64
S&P 500 �6.12 �4.50 �3.98 �4.14 �1.92 0.90 �6.01 �4.43 �3.91 �3.89 �1.51 0.81
Russell 3000 �5.69 �3.97 �3.25 �4.01 �1.82 �0.12 �5.52 �3.82 �3.20 �3.87 �1.75 �0.29
Russell 1000 �5.40 �3.88 �3.25 �3.88 �1.65 0.33 �5.25 �3.74 �3.20 �3.74 �1.67 0.06
Russell 2000 1.70 2.32 2.24 1.28 1.45 0.41 1.73 2.24 2.12 1.35 1.54 0.89
CAC 40 �4.43 �3.04 �2.32 �0.78 �0.17 1.56 �4.38 �2.96 �2.15 �0.70 �0.36 0.88
FTSE 100 �5.18 �3.34 �2.61 �1.71 �0.17 �0.10 �5.08 �3.19 �2.39 �1.62 �0.27 0.11
German DAX �5.15 �3.40 �2.79 �1.10 �0.92 �0.47 �5.23 �3.40 �2.65 �0.68 �0.61 0.34
Italian MIBTEL �4.13 �3.20 �3.22 �1.73 �0.86 �0.86 �4.02 �2.91 �2.66 �1.24 �0.14 �0.89
Milan MIB 30 �1.89 �0.98 �0.91 �0.17 �0.05 �0.08 �1.88 �0.89 �0.71 0.09 0.51 0.05
Nikkei 250 �3.87 �2.55 �2.06 �0.56 0.32 0.53 �3.63 �2.38 �1.75 �0.19 0.77 1.76
Spanish IBEX �2.81 �2.51 �1.37 �0.63 �1.13 �0.61 �2.81 �2.46 �1.18 �0.53 �0.98 0.07
S&P TSE �5.17 �4.44 �3.57 �2.23 �0.89 �0.23 �5.16 �4.40 �3.49 �2.04 �0.59 0.22

MSCI Australia �3.14 �1.94 �2.57 �1.87 �2.35 �2.89 �3.14 �1.93 �2.54 �1.80 �1.70 �2.05
MSCI Belgium �1.21 �1.21 �1.08 �1.75 �2.05 �2.14 �0.85 �1.04 �0.94 �1.59 �1.62 �0.58
MSCI Brazil �3.54 �2.19 �1.40 �1.22 �1.35 �0.22 �3.31 �2.01 �1.01 �0.84 �0.49 0.45
MSCI Canada �3.90 �3.15 �3.11 �2.47 �1.73 �1.03 �3.91 �3.14 �3.07 �2.34 �1.42 �0.43
MSCI Switzerland �4.33 �3.01 �2.23 �1.94 �0.37 �1.50 �4.15 �2.87 �2.12 �1.88 0.13 0.50
MSCI Germany �5.31 �4.50 �3.90 �2.45 �1.15 �1.45 �5.33 �4.43 �3.54 �1.64 �0.56 �0.07
MSCI Spain �3.71 �2.59 �2.05 �1.22 �0.39 �0.55 �3.44 �2.36 �1.74 �1.06 �0.14 �1.05
MSCI France �5.67 �4.56 �3.33 �1.69 �0.64 �0.06 �5.52 �4.31 �2.96 �1.33 �0.46 �0.08
MSCI UK �5.54 �3.98 �3.20 �2.30 �0.42 �0.48 �5.17 �3.59 �2.92 �2.19 �0.47 �0.24
MSCI Italy �5.38 �3.78 �3.32 �2.71 �1.02 �0.36 �5.29 �3.48 �2.96 �2.23 �0.63 �0.79
MSCI Japan �5.30 �3.06 �2.28 �0.61 �0.09 0.62 �5.08 �2.90 �2.00 �0.25 0.31 1.44
MSCI South Korea �4.79 �2.61 �2.29 �2.32 �0.49 2.74 �4.73 �2.53 �2.23 �2.25 �0.34 2.18
MSCI Mexico �2.47 �1.79 �1.80 �1.21 �1.96 �1.26 �2.43 �1.73 �1.68 �1.03 �1.72 �1.04
MSCI Netherlands �4.81 �3.34 �2.33 �2.14 �1.39 �1.46 �4.40 �3.06 �2.06 �1.79 �0.93 �0.57
MSCI World �5.57 �4.37 �3.39 �2.02 �1.26 �0.37 �5.04 �3.97 �3.00 �1.41 �1.16 �0.10

British pound �3.33 �2.99 �2.06 �1.81 �1.44 �2.25 �3.36 �2.99 �2.02 �1.72 �1.16 �1.45
Euro �1.14 �0.75 �0.63 �0.36 �0.22 �0.16 �1.11 �0.71 �0.59 �0.29 �0.16 0.10
Swiss franc �2.55 �2.82 �2.81 �2.08 �2.18 �2.32 �2.54 �2.82 �2.79 �2.00 �2.05 �1.86
Japanese yen �2.97 �2.35 �1.30 �0.25 �0.79 0.65 �2.88 �2.20 �1.16 �0.32 �0.64 0.12

4.2. Direct Forecasting

The above estimation strategy fixes the parameters at the QMLE values and uses these to

iterate through the multistep-ahead forecast formula to produce multistep-ahead forecasts and

corresponding estimated losses. We call this indirect estimation. We now move on to a second

approach, which allows different parameters to be used at different forecast horizon, maximising

the multistep-ahead forecast quasi-likelihood for the HEAVY-RM model. Recall this is called the

direct parameter estimator.

We first focus on the estimated parameters which come out from this approach, highlighting

results from the Dow Jones Industrials example. The left of Figure 1 shows a plot of the estimated

Copyright  2010 John Wiley & Sons, Ltd. J. Appl. Econ. 25: 197–231 (2010)
DOI: 10.1002/jae



218 N. SHEPHARD AND K. SHEPPARD

1 5 10 15 20 22
0.6

0.7

0.8

0.9

1

 

GARCH

GARCH (Direct)

HEAVY−RM

HEAVY−RM (Direct)

Figure 1. Direct and indirect method for Dow Jones Industrial case. Estimates of ⊲˛R C ˇR⊳
sC1 and

⊲˛G C ˇG⊳
sC1 drawn against forecast horizon sC 1. The figure shows the impact of strong mean reversion

on the HEAVY-RM model when it is indirectly estimated and the weaker mean reversion in the direct case.
This figure is available in color online at www.interscience.wiley.com/journal/jae

memory in the HEAVY-RM and GARCH models:

⊲˛R C ˇR⊳
sC1, and ⊲˛G C ˇG⊳

sC1 ⊲23⊳

plotted against s when we use the quasi-likelihood, which is tuned to perform well at one step. We

see that, although the estimated values of these parameters are not very different, at long lags the

difference becomes magnified. By the time we are 1 month out the HEAVY-RM model wants to

give around a half the weight on recent past data and half the weight on the unconditional mean.

In the GARCH model the figures are very different; the model wants around 90% of the weight

to come from the recent data and only 10% to come from the unconditional mean.

Figure 1 also shows the profile of (23) now for the directly estimated parameters, tuning each

estimator to the appropriate forecast horizon. When we do this the persistence of the HEAVY-RM

model jumps up beyond the level of the GARCH model. This is caused by a reduction in ˛R from

around 0.4 for small numbers of periods ahead to around 0.2 for longer periods ahead. As ˛R
decreased, the rise in ˇR was sharper, leading to an increase in the estimated value of ˛R C ˇR for

large s. The increase in the level of the curve for the GARCH model in comparison is similar.
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When we compare the forecast performance of the directly estimated GARCH and HEAVY

models using the QLIK loss functions we see in Table VI that the HEAVY models are system-

atically much better. This improvement is now sustained at quite long horizons and holds for

standard HEAVY models and integrated versions.

An important question is how well we forecast the variance of the sum of s period returns.

Again the forecast out-performance of HEAVY models appears for nearly all assets and forecast

horizons. The results are given in Table VI.

Table VI. In-sample t-statistic-based LR tests comparing losses generated by the HEAVY and GARCH
models. Negative values favour the HEAVY model. The left columns of each panel compare HEAVY and
GARCH models using horizon tuned parameters and the right columns compare Integrated HEAVY against

a standard GARCH model using horizon-tuned parameters

Asset Pointwise comparison Cumulative comparison

Direct HEAVY
vs. Direct GARCH

Direct Int. HEAVY
vs. Direct GARCH

Direct HEAVY
vs. Direct GARCH

Direct Int. HEAVY
vs. Direct GARCH

1 10 22 1 10 22 5 10 22 5 10 22

Dow Jones Industrials �5.72 �3.34 �0.95 �5.65 �3.50 �0.30 �4.40 �4.32 �3.60 �4.48 �4.52 �3.71
Nasdaq 100 �2.49 �0.51 �0.54 �2.47 �0.23 0.12 �0.88 �0.17 �0.45 �0.79 0.03 0.02
S&P 400 Midcap 0.07 0.55 0.24 0.16 0.81 1.00 0.78 0.80 0.54 0.89 1.06 1.15
S&P 500 �6.12 �4.52 �0.24 �6.01 �4.63 0.25 �5.43 �4.95 �2.84 �5.46 �5.12 �2.88
Russell 3000 �5.69 �4.24 �1.15 �5.52 �4.17 �0.27 �4.86 �4.61 �3.63 �4.78 �4.55 �3.30
Russell 1000 �5.40 �4.11 �0.69 �5.25 �4.17 �0.00 �4.75 �4.44 �3.09 �4.72 �4.52 �2.94
Russell 2000 1.70 1.56 0.81 1.73 1.66 1.17 2.01 1.97 1.59 1.99 1.99 1.76
CAC 40 �4.43 �0.98 �0.34 �4.38 �0.91 0.59 �2.98 �1.87 �1.40 �2.88 �1.79 �0.69
FTSE 100 �5.18 �1.97 �1.32 �5.08 �1.81 0.28 �3.46 �2.44 �2.35 �3.25 �2.08 �1.09
German DAX �5.15 �1.18 �1.48 �5.23 �0.72 0.64 �3.70 �2.84 �2.84 �3.47 �2.04 �0.92
Italian MIBTEL �4.13 �1.61 �1.52 �4.02 �1.08 �0.35 �3.17 �2.23 �2.32 �2.85 �1.84 �1.37
Milan MIB 30 �1.89 �0.37 �1.51 �1.88 �0.25 0.20 �1.07 �0.97 �1.73 �0.96 �1.08 �0.96
Nikkei 250 �3.87 �0.11 0.51 �3.63 0.18 1.03 �2.07 �1.05 �0.05 �1.84 �0.70 0.50
Spanish IBEX �2.81 �0.90 �0.73 �2.81 �1.02 �0.11 �2.02 �2.27 �1.82 �1.96 �1.94 �0.85
S&P TSE �5.17 �2.37 �1.83 �5.16 �2.24 �1.10 �4.14 �2.95 �2.50 �4.04 �2.92 �2.55

MSCI Australia �3.14 �2.17 �2.84 �3.14 �2.09 �1.69 �2.51 �2.62 �3.42 �2.47 �2.45 �2.73
MSCI Belgium �1.21 �1.89 �1.67 �0.85 �1.68 0.07 �1.60 �1.93 �2.23 �1.37 �1.68 �1.43
MSCI Brazil �3.54 �1.56 0.03 �3.31 �1.04 0.74 �2.91 �2.03 �0.96 �2.47 �1.37 �0.24
MSCI Canada �3.90 �2.41 �1.69 �3.91 �2.30 �1.02 �3.47 �2.71 �2.40 �3.41 �2.55 �2.20
MSCI Switzerland �4.33 �1.95 �1.44 �4.15 �1.74 0.67 �3.10 �2.19 �2.14 �2.98 �1.71 �0.49
MSCI Germany �5.31 �2.27 �1.50 �5.33 �1.51 0.48 �4.83 �3.03 �2.80 �4.37 �2.15 �1.13
MSCI Spain �3.71 �1.30 �1.50 �3.44 �1.12 �0.73 �2.62 �1.82 �1.84 �2.38 �1.69 �1.37
MSCI France �5.67 �1.61 �1.23 �5.52 �1.22 0.21 �4.25 �2.58 �2.20 �3.93 �2.05 �1.04
MSCI UK �5.54 �2.43 �1.65 �5.17 �2.27 0.09 �3.84 �2.96 �2.54 �3.57 �2.59 �1.35
MSCI Italy �5.38 �2.86 �2.19 �5.29 �2.43 �0.58 �4.10 �3.47 �3.72 �3.85 �3.52 �2.60
MSCI Japan �5.30 �0.72 0.27 �5.08 �0.38 0.75 �2.88 �2.21 �1.17 �2.55 �1.65 �0.26
MSCI South Korea �4.79 �2.30 1.21 �4.73 �2.13 1.06 �3.46 �2.71 �0.33 �3.39 �2.51 0.05
MSCI Mexico �2.47 �1.47 �1.56 �2.43 �1.45 �1.27 �1.95 �2.12 �2.19 �1.90 �2.07 �2.27
MSCI Netherlands �4.81 �2.14 �2.99 �4.40 �1.81 �0.83 �3.29 �2.59 �2.90 �2.99 �2.19 �1.81
MSCI World �5.57 �2.25 �0.86 �5.04 �1.93 0.04 �4.05 �3.16 �2.69 �3.60 �2.86 �2.10

British pound �3.33 �1.74 �2.20 �3.36 �1.69 �1.44 �2.60 �2.18 �2.65 �2.59 �2.12 �2.34
Euro �1.14 0.05 �0.14 �1.11 0.09 0.11 �0.60 �0.24 �0.40 �0.55 �0.19 �0.26
Swiss franc �2.55 �1.65 �2.50 �2.54 �1.61 �2.30 �2.66 �2.58 �3.17 �2.64 �2.56 �3.08
Japanese yen �2.97 �1.78 �1.25 �2.88 �1.71 0.05 �2.22 �2.24 �2.36 �2.16 �1.98 �1.42
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Table VII. Out-of-sample t-statistic-based LR tests comparing losses generated by the HEAVY and GARCH
models. Negative values favour the HEAVY model. The left columns of each panel compare HEAVY and
GARCH models using horizon-tuned parameters and the right columns compare Integrated HEAVY against

a standard GARCH model using one-step-ahead tuned parameters

Asset Pointwise comparison Cumulative comparison

Direct HEAVY
vs. Direct GARCH

Int. HEAVY
vs. GARCH

Direct HEAVY
vs. Direct GARCH

Int. HEAVY
vs. GARCH

1 10 22 1 10 22 5 10 22 5 10 22

Dow Jones Industrials �5.94 �2.74 0.39 �5.81 �3.04 �0.60 �5.19 �4.87 �2.83 �4.83 �4.75 �3.03
Nasdaq 100 �5.43 �1.00 �2.67 �5.28 �3.55 �2.55 �4.51 �3.50 �2.94 �4.33 �4.64 �3.45
S&P 400 Midcap �2.87 �0.81 �2.50 �2.98 �0.07 �1.25 �2.01 �1.89 �1.29 �1.90 �2.47 �2.50
S&P 500 �6.55 �1.96 0.24 �6.57 �3.14 �0.34 �5.40 �4.55 �2.03 �5.12 �4.79 �2.67
Russell 3000 �6.00 �1.87 �0.88 �5.89 �3.48 �1.17 �5.29 �4.37 �2.64 �5.22 �5.23 �3.49
Russell 1000 �6.01 �1.82 �0.66 �5.90 �3.41 �0.91 �5.37 �4.36 �2.53 �5.24 �5.22 �3.24
Russell 2000 �0.97 0.20 �0.80 �1.07 0.24 �0.73 0.17 0.48 �0.42 �0.43 �0.11 �0.30
CAC 40 �4.82 �0.20 �2.08 �4.76 �1.06 �1.46 �4.31 �1.76 �1.72 �4.02 �2.72 �2.07
FTSE 100 �5.45 �2.02 �2.84 �5.57 �1.72 �2.13 �3.78 �2.90 �2.85 �3.85 �2.86 �2.44
German DAX �3.96 �2.49 �3.57 �4.12 �2.11 �1.32 �3.84 �3.33 �4.02 �3.89 �3.25 �2.55
Italian MIBTEL �2.87 �0.81 �2.50 �2.98 �0.07 �1.25 �1.88 �1.61 �2.61 �1.51 �0.71 �0.86
Milan MIB 30 �4.18 �1.13 �3.33 �4.28 �1.19 �1.41 �3.36 �2.94 �3.69 �3.27 �2.59 �2.32
Nikkei 250 �3.35 �0.64 �0.03 �3.36 �0.68 0.93 �3.74 �3.35 �0.37 �3.41 �2.76 �0.90
Spanish IBEX �3.13 �0.52 �2.96 �3.19 �0.87 �1.28 �2.88 �2.10 �2.06 �2.54 �1.68 �1.33
S&P TSE �3.29 �1.78 �0.46 �3.25 �1.03 0.63 �3.07 �2.36 �1.72 �2.91 �1.97 �0.53

MSCI Australia �2.60 �2.15 �1.65 �2.61 �1.48 �1.25 �2.01 �2.10 �2.91 �1.95 �1.79 �1.49
MSCI Belgium �3.28 �3.69 �3.29 �3.26 �2.79 �3.54 �3.16 �3.67 �4.79 �2.52 �2.63 �3.45
MSCI Brazil �2.21 �1.52 0.54 �2.27 �1.65 �0.62 �1.58 �1.61 �0.97 �1.46 �1.57 �0.92
MSCI Canada �3.41 �1.98 �1.49 �3.34 �1.04 0.17 �3.01 �2.30 �1.88 �2.81 �1.82 �0.85
MSCI Switzerland �5.15 �2.22 �2.65 �5.13 �1.90 �2.91 �4.47 �3.34 �3.83 �4.64 �3.25 �3.81
MSCI Germany �3.15 �3.67 �1.93 �3.18 �1.93 �1.64 �3.26 �3.46 �3.95 �2.83 �2.35 �1.97
MSCI Spain �2.82 �1.39 �2.88 �2.84 �0.96 �1.28 �2.89 �2.38 �2.30 �2.50 �1.68 �1.23
MSCI France �4.38 �2.06 �2.81 �4.39 �1.31 �2.01 �4.64 �2.91 �3.67 �3.99 �2.64 �2.12
MSCI UK �4.30 �1.09 �3.13 �4.32 �1.56 �3.04 �3.79 �2.74 �2.29 �3.25 �2.60 �2.52
MSCI Italy �4.08 �2.64 �2.88 �4.08 �1.40 �2.19 �3.37 �3.78 �4.53 �3.02 �2.38 �2.44
MSCI Japan �2.73 �0.18 �0.25 �2.62 0.15 0.60 �2.72 �1.79 �0.58 �2.43 �1.44 �0.58
MSCI South Korea �4.08 0.14 1.12 �4.10 �1.68 0.18 �2.65 �1.62 0.34 �3.06 �2.74 �1.38
MSCI Mexico �2.23 �1.34 �0.63 �2.24 �1.28 �0.92 �1.53 �1.47 �0.89 �1.47 �1.43 �1.09
MSCI Netherlands �4.58 �3.35 �3.08 �4.55 �2.36 �1.62 �4.21 �4.21 �3.54 �4.09 �3.28 �2.49
MSCI World �3.30 �0.08 0.20 �3.59 �0.93 �1.15 �2.07 �1.22 �0.99 �2.41 �1.73 �1.29

British pound �2.53 �1.53 �1.60 �2.59 �0.94 �0.97 �2.24 �1.90 �1.82 �2.16 �1.65 �1.24
Euro �1.05 �0.03 0.70 �1.03 �0.69 �0.56 �0.65 �0.10 0.08 �0.85 �0.69 �0.58
Swiss franc �2.09 �0.82 �2.33 �2.10 �1.58 �2.32 �2.12 �1.51 �1.94 �2.24 �2.03 �2.22
Japanese yen �2.22 �1.12 �1.34 �2.22 �1.44 �0.54 �1.82 �1.76 �1.64 �1.75 �1.85 �1.23

4.3. Out-of-Sample Performance

An out-of-sample exercise was conducted to assess the performance of HEAVY models in a more

realistic scenario. All models were estimated using a moving window with a width of 4 years (1008

observations) and parameters were updated daily. Forecasts were then produced for one through

22 steps ahead. Table VII shows the results of this exercise based on two comparisons. The

first comparison is based on direct estimation of both the HEAVY-RM model and its GARCH

competitor. In both cases parameters were optimised by fitting the realised measure (HEAVY-

RM) or squared return (GARCH) models at the forecasting horizon. All HEAVY models used
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the same HEAVY-r model, which was optimised for the one-step horizon. The second compares

the performance of the Integrated HEAVY-RM specification with a standard GARCH, where both

sets of parameters were optimised for one-step prediction. The standard HEAVY model based on

one-step tuning is not included since the memory parameter chosen was often implausibly small.

Neither the directly estimated HEAVY model nor the Integrated HEAVY suffers from this issue.

The left panel contains pointwise comparisons which assess the forecasting performance at

a specific horizon, where performance is assessed using Giacomini and White (2006) tests,

which evaluate the loss of both the innovation and the parameter estimation uncertainty. These

results strongly favour the HEAVY models in both cases, especially at shorter horizons. The

results for the S&P 400 Midcap index and the Russell 2000 further highlight the strength of

the HEAVY model—despite decidedly worse performance in full-sample comparisons, HEAVY

models outperform GARCH models in out-of-sample evaluation. This difference is likely due to

the higher signal-to-noise ratio of realised measures.

The right panel contains cumulative comparisons for the two sets of models. Cumulative loss

measures the performance on the total variation over the forecast horizon, and so the one-step

is identical to the pointwise (and so replaced by the five-step horizon). HEAVY models perform

well at all horizons, with statistically significant out-performance in most series while never being

outperformed by GARCH-based forecasts.

4.4. Parameter Stability

Figure 2 shows time series plots of the estimated HEAVY and GARCH parameters estimated

using the quasi-likelihood based on a moving window of 4 years of data, recording the estimates

at the time of the last data point in the sample. The top of the plot shows very dramatic percentage

changes in the GARCH ˛G parameter but relatively modest movements in the corresponding

HEAVY parameter ˛R. Percentage changes are important as the time variation in the conditional

variance is scaled by ˛ parameters.

The bottom of Figure 2 shows the rolling estimate of the persistence parameters for the GARCH

model ˛G C ˇG and the HEAVY-RM model ˛R C ˇR. The latter shows consistently less memory

than the former but, interestingly, the two sequences of parameter estimates are moving around in

lock step. Figure 2 shows results for the ˛ parameter. It is a volatile picture, but the percentage

moves are actually quite modest.

4.5. Properties of the Innovations

One way of thinking about the performance of the model is by computing the one-step-ahead

innovations from the model:

�̂t D rt/h
1/2
t , �̂t D ⊲RMt/�t⊳

1/2, t D 2, 3, . . . , T

In this section we evaluate the performance using the quasi-likelihood criteria.

Figure 3 shows these innovations for the Dow Jones Index example, which is fairly typical of

results we have seen for other series. At the top left-hand side of the figure we have a time series

plot of �̂t. It does not show much volatility clustering, but there are some quite large negative

innovations, with a couple of days reporting falls which are larger than �5. These occurred at the

start of 1996 and at the start of 2007. There are no remarkable moves during the credit crunch.
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Figure 2. Recursive parameter estimates using a quasi-likelihood for GARCH and HEAVY model for the Dow
Jones Industrial example. This figure is available in color online at www.interscience.wiley.com/journal/jae

At the top right-hand side of Figure 3 there is a time series plot of �̂t, which has large moves at

the same time as the large moves in �̂t. This is confirmed at the bottom left-hand side of the figure,

which cross-plots �̂t and �̂t, suggesting some dependence in the bottom right-hand quadrant. The

bottom right side shows the empirical copula for �̂t and �̂t, from which it is hard to see much

dependence, although there is little mass in the bottom left-hand quadrant and a cluster of points

in the bottom right.

Summary statistics for the innovations for all the series are given in Table VIII. We have chosen

not to report the estimated E⊲�̂2
t ⊳ and E⊲�̂t⊳ as these are for all series extremely close to one. Here

r denotes the estimated correlation coefficient and rs denotes Spearman’s rank coefficient. We will

first focus on the first row, the Dow Jones series. The raw correlation shows a large amount of

negative correlation between the �̂t and �̂t for all the equity series. This negative dependence is a

measure of statistical leverage—that is, falls in equity prices are associated with rises in volatility.

For exchange rates the correlation is roughly zero. The Spearman’s rank correlations show the

same pattern. The final column reports the first-order autocorrelation of �̂2
t , which was small but

generally positive. This may indicate that a more complex specification could be justified for the

HEAVY-RM model, which is a topic of ongoing research.

Another features of the table which is interesting is that there is strong evidence that �̂t has a

negative skew and that the standard deviation of �̂2
t is not far from two. The latter suggests that

the marginal distribution of �̂t is not very thick tailed. These results are common across different

series except for the exchange rates which are closer to symmetry, except for the yen.
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Figure 3. Innovations �̂t and �̂t from the HEAVY model fitted to the DJI. Top left: the HEAVY-r model

innovations �̂t, which should be roughly martingale difference sequences with unit variance. Top right is

�̂t, which should have unit conditional means and be uncorrelated. Bottom left is a cross-plot of �̂t and
�̂t, while bottom right is the equivalent version mapped into copula spaces using the marginal empirical
distribution functions to calculate the empirical copula measure. This figure is available in color online at
www.interscience.wiley.com/journal/jae

4.6. Volatility Hedgehog Plots

It is challenging to plot sequences of multistep-ahead volatility forecasts. We carry this out using

what we call ‘volatility hedgehog plots’ and illustrate it through the credit crunch of late 2008.

An example of this is Figure 4, which is calculated for the MSCI Canada series. It plots the time

series of one-step-ahead forecasts from the HEAVY-r model ht; these are joined together using a

thick solid red line. For a selected number of days (if all days are plotted then it is hard to see the

details) we also draw off the one-step-ahead forecast the corresponding multistep-ahead forecast,

drawn using a dashed line, over the next month. The corresponding results for the GARCH model

are also shown using a solid line with added symbols, with the multistep-ahead forecasts being

shown using a dotted line.
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Table VIII. Descriptive statistics of the estimated innovations �̂t and �̂t from the fitted HEAVY model. Their
empirical variance and mean were, respectively, very close to one and so are not reported here. The first five
columns are estimated moments of their marginal distributions. r denotes the correlation, rs is the Spearman

rank correlation coefficient and � is the first-order autocorrelation

Asset min⊲�̂t⊳ max⊲�̂t⊳ E⊲�̂3
t ⊳ Sd⊲�̂2

t ⊳ Sd⊲�̂t⊳ r⊲�̂t, �̂t⊳ rs⊲�̂t, �̂t⊳ �⊲�2
t ⊳

Dow Jones Industrials �6.19 3.15 �0.336 1.82 0.270 �0.313 �0.280 0.008
Nasdaq 100 �5.90 4.25 �0.149 1.66 0.264 �0.321 �0.323 0.043
S&P 400 Midcap �7.47 3.51 �0.366 1.87 0.257 �0.351 �0.334 0.036
S&P 500 �6.86 3.61 �0.396 1.90 0.270 �0.331 �0.312 0.027
Russell 3000 �7.01 3.97 �0.338 1.88 0.276 �0.339 �0.335 0.019
Russell 1000 �7.40 3.91 �0.346 1.92 0.275 �0.337 �0.329 0.021
Russell 2000 �7.08 3.48 �0.385 1.83 0.285 �0.289 �0.264 0.030
CAC 40 �4.37 3.64 �0.212 1.53 0.262 �0.350 �0.323 0.017
FTSE 100 �4.29 3.90 �0.307 1.52 0.263 �0.330 �0.312 0.012
German DAX �5.30 3.79 �0.216 1.59 0.259 �0.396 �0.367 0.026
Italian MIBTEL �4.90 3.40 �0.464 1.63 0.255 �0.430 �0.421 0.010
Milan MIB 30 �5.38 4.87 �0.076 1.79 0.263 �0.334 �0.339 0.012
Nikkei 250 �5.78 3.95 �0.343 1.77 0.260 �0.198 �0.162 0.043
Spanish IBEX �6.95 5.19 �0.237 1.92 0.262 �0.328 �0.297 0.035
S&P TSE �5.82 3.48 �0.225 1.63 0.254 �0.282 �0.286 0.045

MSCI Australia �6.19 3.63 �0.318 1.75 0.238 �0.244 �0.207 0.040
MSCI Belgium �5.78 3.04 �0.391 1.77 0.239 �0.310 �0.267 0.032
MSCI Brazil �5.08 3.61 �0.194 1.59 0.258 �0.327 �0.311 0.041
MSCI Canada �4.52 3.47 �0.232 1.58 0.247 �0.309 �0.298 0.064
MSCI Switzerland �5.98 3.43 �0.453 1.84 0.231 �0.396 �0.346 0.012
MSCI Germany �4.94 3.21 �0.333 1.57 0.246 �0.390 �0.370 0.042
MSCI Spain �5.48 3.63 �0.211 1.60 0.243 �0.312 �0.297 0.033
MSCI France �4.55 3.06 �0.249 1.48 0.250 �0.345 �0.335 0.027
MSCI UK �4.71 3.17 �0.381 1.60 0.251 �0.347 �0.328 0.006
MSCI Italy �4.44 3.17 �0.392 1.56 0.241 �0.396 �0.385 0.014
MSCI Japan �5.95 3.41 �0.351 1.69 0.235 �0.274 �0.212 0.031
MSCI South Korea �5.64 3.37 �0.239 1.71 0.222 �0.233 �0.229 0.001
MSCI Mexico �5.19 3.75 �0.107 1.74 0.241 �0.262 �0.222 0.071
MSCI Netherlands �5.00 3.23 �0.296 1.55 0.242 �0.368 �0.352 0.040
MSCI World �5.36 4.34 �0.197 1.62 0.259 �0.227 �0.225 0.061

British pound �3.58 3.76 �0.061 1.51 0.170 �0.050 �0.030 0.065
Euro �4.20 3.48 0.060 1.54 0.196 0.014 0.017 0.053
Swiss franc �4.49 3.91 �0.182 1.57 0.184 �0.101 �0.080 0.064
Japanese yen �4.65 3.71 �0.322 1.80 0.222 �0.193 �0.128 0.028

The figure shows the GARCH model always slowly mean reverting back to its long-term aver-

age. It also shows from the start of September a sequence of upward moves in volatility, caused

by the slow adjustment of the GARCH model.

The HEAVY model has a rather different profile. This is most clearly seen by the highest

volatility point, where the multistep-ahead forecast shows momentum. This is highlighted by

displaying an ellipse. The model expected volatility to increase even further than we had already

seen in the data. Another feature that is interesting is that the HEAVY model has, in the first half

of the data sample, much higher levels of volatility. After the end of October volatility falls, with

the HEAVY model indicating very fast falls suggesting a lull in volatility during November 2008,

before it kicks back up in December before falling to around 45% for the remaining 3 months of the

data. GARCH models do not see this lull; instead, from half way through October until the end of

December the GARCH model shows historically very high levels of volatility with a slow decline.
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Figure 4. Volatility hedgehog plot for annualised volatility for the MSCI Canada series. The hedgehog plots
are given for both HEAVY and GARCH models. Areas of momentum are indicated by ellipses. This figure
is available in color online at www.interscience.wiley.com/journal/jae

Overall the main impressions are the slow and steady adjustments of the GARCH model and

the more rapid movements implied by the HEAVY model. There is some evidence that GARCH

was behind the curve during the peak of the financial crisis, while HEAVY models rapidly

adjust. Likewise, it looks as though GARCH’s volatility was too high during late December

and early January, as the model could not allow the conditional variance to fall rapidly enough.

The momentum effects of the HEAVY model are not very large in these figures but they do have

an impact. Basically local trends are followed through before mean reversion overcomes them.

More dramatic momentum effects can be seen from the Swiss franc case, which is the most

extreme example of momentum we have seen in our empirical work. For the HEAVY model

ˇ is much higher than is typical for equities, being around 0.95. The result is some interesting

arcs which appear in the volatility hedgehog plot given in Figure 5. The evidence in Table III is

that the HEAVY model is a better fit than for GARCH models but the difference is very modest

for exchange rates in the library, while for other assets it is quite substantial.

5. EXTENSIONS

5.1. Statistical Leverage Effect

We can parametrically model statistical leverage effects, where falls in asset prices are associated

with increases in future volatility, by adding a new equation for a realised semivariance (RMŁ
t ).
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Figure 5. Extreme case of momentum. Volatility hedgehog plot for annualised volatility for the Swiss franc
against the US dollar. The hedgehog plots are given for both HEAVY and GARCH models. This figure is
available in color online at www.interscience.wiley.com/journal/jae

Realised semivariances (sums of squared negative returns) were introduced by Barndorff-Nielsen

et al. (2009b) and further emphasised in empirical work by Patton and Sheppard (2009b). Now

our model becomes

var⊲rtjFHF
t�1⊳ D ht D ω C ˛RMt�1 C ˛ŁRMŁ

t�1 C ˇht�1, ˛Ł ½ 0,

E⊲RMtjFHF
t�1⊳ D �t D ωR C ˛RRMt�1 C ˇR�t�1,

E⊲RMŁ
t jF

HF
t�1⊳ D �Ł

t D ωŁ
R C ˛Ł

RRMŁ
t�1 C ˇŁ

R�
Ł
t�1, ˛Ł

R, ˇ
Ł
R ½ 0, ˛Ł

R C ˇŁ
R < 1

The expansion of the model to allow for the appearance of realised semivariances raises no new

issues (allowing lags of RMŁ
t to appear in the dynamic of RMt could potentially help too, but we

will not discuss that here).

The paper by Engle and Gallo (2006) suggests an alternative approach. Let it D 1rt<0, then they

extend models by interacting it with volatility measures, following the tradition of the GARCH

literature. If one does this to the HEAVY model it becomes

var⊲rtjFHF
t�1⊳ D ht D ω C ˛RMt�1 C ˛Łit�1RMt�1 C ˇht�1, ˛Ł ½ 0 ⊲24⊳

E⊲RMtjFHF
t�1⊳ D �t D ωR C ˛RRMt�1 C ˛it�1RMt�1 C ˇR�t�1, ˛Ł

R ½ 0
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This model is easy to estimate, for it�1 is in FHF
t�1. However, to make two-step-ahead forecasts

we run into trouble as we do not know itRMt or have a forecast of it.

One approach to this is to assume that

itCh ?? RMtChjFHF
t�1, h D 0, 1, 2, . . .

where A ?? B denotes A and B are statistically independent. This would imply

E⊲itChRMtChjFHF
t�1⊳ D E⊲itChjFHF

t�1⊳E⊲RMtChjFHF
t�1⊳

Typically we would assume that E⊲itChjFHF
t�1⊳ D E⊲itCh⊳, which is likely to be very close to 1/2.

This would allow multistep-ahead forecasts to be computed analytically and straightforwardly.

Perhaps, more wisely, we could use a bootstrap to simulate the empirical distribution of �̂t, �̂t
from (21) and this allows simulation through (24). This method of dealing with statistical leverage

has the virtue that it also delivers an estimator of the multistep-ahead prediction distribution, and

so may reveal the long left-hand tail of the asset prices often induced by statistical leverage even

though �̂t is marginally relatively symmetric.

5.2. A Semiparametric Model for Fz,h

The joint distribution of the innovations F�,� can be approximated by the joint empirical distribution

function, which can be used inside a bootstrap procedure.

We could impose a model on the joint distribution via the following simple structure. Let

�t ¾ F� and

�tj�t
LDˇf�t � E⊲�t⊳g C �

1/2
t εt, εt ¾ Fε, �t ?? εt

This is a nonparametric location-scale mixture.13 Now εt D �
�1/2
t [�t � ˇf�t � E⊲�t⊳g] and so

we can estimate the distribution functions F� and Fε by their univariate empirical distribution

functions, having estimated ˇ by using the fact that under this model cov⊲�t, �t⊳ D ˇ.

5.3. Extending HEAVY-r

In some cases where the realised measure is inadequate it may be better to extend the HEAVY-r

model to allow a GARCHX structure. The HEAVY model then becomes

var⊲rtjFHF
t�1⊳ D ht D ω C ˛RMt�1 C ˇht�1 C r2

t�1, ˇ C  < 1

E⊲RMtjFHF
t�1⊳ D �t D ωR C ˛RRMt�1 C ˇRht�1, ˛R C ˇR < 1

It is then straightforward to see that r2
t has an ARMA(2,2) representation with autoregressive

roots ˛R C ˇR and ˇ C  . The moving average roots are not changed by having  > 0. Thus this

extension has more momentum than the standard HEAVY model.

13 If the parametric assumption that F� was a generalised inverse Gaussian distribution and Fε was Gaussian, then the
resulting distribution for �t would be the well-known generalised hyperbolic distribution.
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The derivation of this result is as follows:

r2
t D ht C ut, ht D ω C ˛RMt�1 C ˇht�1 C rt�1, so

f1 � ⊲ˇ C ⊳Lgr2
t D ω C ˛RMt�1 C ⊲1 � ˇL⊳ut

where L is the lag operator. Likewise:

f1 � ⊲˛R C ˇR⊳LgRMt D ωR C ⊲1 � ˇRL⊳vt, vt D RMt � �t

Combining delivers the result. In particular:

f1 � ⊲ˇ C ⊳Lgr2
t D ω C ˛

fωR C ⊲1 � ˇRL⊳vt�1g
f1 � ⊲˛R C ˇR⊳Lg

C ⊲1 � ˇL⊳ut

Thus

f1 � ⊲˛R C ˇR⊳Lgf1 � ⊲ˇ C ⊳Lgr2
t D f1 � ⊲˛R C ˇR⊳gω C ˛fωR C ⊲1 � ˇRL⊳vt�1g

C f1 � ⊲˛R C ˇR⊳Lg⊲1 � ˇL⊳ut

6. CONCLUSIONS

In this paper we have given a self-contained and sustained analysis of a particular model of

conditional volatility based on high-frequency data. HEAVY models are relatively easy to estimate

and have both momentum and mean reversion. We show that these models are more robust to

level breaks in the volatility than conventional GARCH models, adjusting to the new level much

faster. Further, as well as showing mean reversion, HEAVY models exhibit momentum, a feature

which is missing from traditional models.
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APPENDIX: DATA CLEANING

The Realised Library is based on underlying high-frequency data, which we obtain through Reuters.

We are not in a position to make available these base data, or its cleaned version, for commercial

reasons, as Reuters owns the copyright to it. Although the raw data are of high quality, they

do need to be cleaned so they are suitable for econometric inference. Cleaning is an important

aspect of computing realised measures. Although realised kernels are somewhat robust to noise,

experience suggests that when there are mis-recordings of prices or large amounts of turbulence

are encountered at the start of a trading day then they may sometimes give false signals. Barndorff-

Nielsen et al. (2009a) have studied systematically the effect of cleaning on realised kernels, using

cleaning methods which build on those documented by Falkenberry (2002) and Brownlees and

Gallo (2006). Our data have more variation in structure than those dealt with in Barndorff-Nielsen

et al. (2009a) and so we discuss how our methods use their rules.

Most of the datasets we use are based on indexes, which are updated at distinct frequencies.

Some indexes, such as the DAX and Dow Jones Index, are updated every second or couple of

seconds. Most are updated every 15 or 60 seconds. The only data cleaning we applied to this was

that applied to all datasets, called P1, given below.

All Data

P1. Delete entries with a timestamp outside the interval when the exchange is open.

Quote data for the exchange rates are very plentiful and have the virtue of having no market

closures. We use four rules for this, given below as Q1–Q4. Q1 is by far the most commonly

used.

Quote Data Only

Q1. When multiple quotes have the same timestamp, we replace all these with a single entry with

the median bid and median ask price.

Q2. Delete entries for which the spread is negative.

Q3. Delete entries for which the spread is more than 50 times the median spread on that day.

Q4. Delete entries for which the mid-quote deviated by more than 10 mean absolute deviations from

a rolling median centred but excluding the observation under consideration of 50 observations

(i.e. 25 observations before and 25 after).

In addition, we have made various manual edits in the library when the results were unsatis-

factory. Some of these were due to rebasing of indexes, which had their biggest effects on daily

returns. It is the hope of the editors of the library that as it develops then the degree of manual

edits will decline.
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