
Realism in Computer Graphics: A Survey

John Amanatides

Dept. of Computer Science
University of Toronto

Introduction

One of the most challenging problems in computer graphics is to generate images that appear realis-
tic; that is, images that can fool a human observer when displayed on a screen. The quest for this "Holy
Grail" began in earnest in the early 70’s when memory prices dropped low enough to allow raster technolo-
gies to be cost-effective over the then prevailing calligraphic displays. Calligraphic displays could only
draw a limited number of lines and even the most capable of these displays allowed for only a handful of
colours. Previously, research work concentrated on removing "hidden lines" from objects drawn on these
displays. The objects displayed were obviously not realistic but contained enough information for the task
at hand, such as computer aided design. Raster technology, by subdividing the screen into pixels, allowed
whole regions of the screen to be filled with colours, colours that had a wide variety of intensities and tints.
This new technology, capable of displaying realistic images, opened up research in this direction and it is
this research that we will outline.

This paper will survey most of the major issues that one must deal with when generating realistic
images†. We begin with an overview of the rendering process and a quick review of visible surface deter-
mination algorithms. We then discuss, in more detail, shading, anti-aliasing, texture mapping, shadows,
optical effects and close with a discussion of modeling primitives.

The Rendering Process

The rendering process takes a three dimensional description of a scene and generates a two dimen-
sional array (typically 1024 by 1024) of intensities (pixels) that will be displayed on a CRT. The objects in
the scene are usually described by polygons although higher order surfaces are sometimes used. The scene
also contains light sources which are often point sources located outside the intended field of view. Finally,
the position and viewing direction of the eye/camera is required to completely specify what is to be dis-
played on the CRT (A pinhole camera model is almost universally used.)

The rendering process begins by transforming the objects into the eye coordinate system. Objects
that will be outside the field of view are clipped away. After performing the perspective transformation, the
remaining objects must then be compared to see which and what portion of each of them are visible.

As the visible surfaces are found they must be broken down into pixels and shaded correctly. This
process must take into account the position and colour of the light sources and the position, orientation and
surface properties of the visible object.

Sorting is an integral part of the visible surface problem and typically algorithms try to capitalize on
coherence properties in the final image to reduce the amount of sorting required.1 Three popular visible sur-
face algorithms are the z-buffer, priority, and the scan-line algorithms. In the z-buffer approach, a separate
2-D array is kept (called the z-buffer), indicating the depth (z value) of the pixel currently displayed in the
frame buffer. As polygons are broken down into pixel-sized pieces, the depth of each piece (assuming a
constant depth per piece) is compared with that in the z-buffer. If the piece is closer, it is written into the
frame buffer and the z-buffer is updated to reflect the depth of this new piece. This algorithm, though mem-
ory intensive, is very simple and requires no presorting or storage of polygons.

The second visibility algorithm is the priority algorithm. The main idea here is that the polygons are
sorted back-to-front and written in the frame buffer in that order. As more and more polygons are sent to

† This article surveys papers up to December 1985.



-2-

the frame buffer, they overwrite the polygons that are more distant. Unlike the previous algorithm, no z-
buffer is required; however, the polygons must be sorted with respect to depth and this requires both space
and time.

The final visible surface algorithm we will outline is the scan line algorithm. There are several varia-
tions, but each typically sorts the polygons in one direction (top-down, with a bucket sort) to reduce the
number of polygons that must be considered for each horizontal scan line. The algorithm concentrates on
finding the visible polygons for each scan line. This reduces the domain of the visible surface problem
from polygons to lines, a much easier problem. The variants of this algorithm differ in their strategies for
finding these visible lines, also called spans, and in propagating relevant information to neighboring scan
lines to reduce subsequent computation (by capitalizing on spatial coherence).

Shading

In this section we start to deal with the interaction of light with matter. In particular, we will deal
with point light sources shining on the surfaces of objects. The light reflected off a surface can be broken
down into two components- diffuse and specular. When light hits an ideal diffuse surface it is re-radiated
equally in all directions. Examples of real surfaces that radiate mostly diffuse light are chalk and flat
paints. Ideal specular surfaces only re-radiate light in one direction, the reflected light direction. Examples
of specular surfaces are mirrors and shiny surfaces on which highlights are visible. Physically, the differ-
ence between these two components is that specular light bounces off the surface of an object while diffuse
light penetrates the surface and is scattered internally before emerging again.

The light reflected from real objects contains both diffuse and specular components and both must be
modeled to create realistic images. Consider Figure 1.

→
E and

→
L are unit vectors that point to the eye and

light source, respectively,
→
E′ is a unit vectorin the ideal light direction and

→
N is the unit vector indicating the

surface normal at the point P. Computing the diffuse component is very simple; it is
→
N ⋅

→
L which is the

well-known Lambert’s Law. Note that since diffuse light is radiated in all directions the position of the eye
is not required by the computation and the maximum intensity occurs when the surface is perpendicular to
the light source.

The specular component is not as easy to compute. Real objects are non-ideal specular reflectors and
some light is also reflected slightly off axis from the ideal light direction (

→
E′). This is because the surface is

never perfectly flat but contains microscopic deformations.

The first reasonable approximation to the specular component in computer graphics was proposed by
Bui Tuong Phong.2 It was an empirical approximation and took the form:

W (ι) cosn (α )

where ι is the incident angle and α is the angle between
→
E′ and

→
L. For real objects, as the angle of inci-

dence changes, the ratio of incident light to reflected light also changes and W (ι) is intended to model this.
In practice, however, W (ι) has been ignored by most implementors.

The value n is the shininess factor. Cosn (α ) reaches a maximum when the light is in the
→
E′ direction

(α = 0). As n increases the function dies off much more quickly in the off-axis direction. Thus, a shiny
surface with a concentrated highlight, would have a large value of n, while a dull surface with the highlight
covering a larger area on the surface, would have a low value of n (Figure 2).

In 1977 Blinn3 proposed a more accurate model of the specular component that was gleaned from the
physics literature. This new model consisted of modeling the surface with a series of microscopic facets,
each of which was a perfect reflector, and took the form:

DGF
→
N ⋅

→
E

where D is the microfacet normal distribution function, G is the microfacet self-shadowing function and F
is the Fresnel function. The

→
N ⋅

→
E factor accounts for the increased subtended area when the surface is

tilted. D is related to cosn (α ) in the Phong model. The Fresnel function, which depends on the angle of
incidence and index of refraction of the surface, indicates the fraction of the incident light that is reflected.
It is related to W (ι) in the Phong model. Since the Blinn model is based on physics, measurements of real



-3-

objects can be used to fine tune the parameters to D, G and F to create more realistic highlights. When
comparing images produced by the Phong and Blinn models one sees that they are essentially the same
with the biggest difference occurring when the light hits the surface at grazing angles. Here the Blinn
model is more accurate. However, since the computation of D, G and F is more expensive than Phong’s
approximations, many people continue to use the older model.

The most realistic model that is used today in computer graphics is one that was introduced by Cook
and Torrance.4 It is almost identical to Blinn’s model with the exception being that the index of refraction
parameter used in the Fresnel function is dependent on wav elength. This implies that the colour of the
highlight is influenced by the colour of the surface, something that previous researchers had overlooked.

Though there are only two components to reflected light (diffuse and specular) a third component,
termed ambient light, is used in computer graphics to model light reaching the surface from multiple reflec-
tions off other surfaces or the sky. Since an attempt to accurately model it would be computationally pro-
hibitive, this ambient component is usually approximated with a constant. By using this ambient compo-
nent, surfaces which do not face any light sources or lie in the shadow of other surfaces are not completely
black (Figure 3).

Goral, Torrence and Greenberg5 have attempted to model the ambient component of light by taking
into account interreflections. Objects are modeled with very small polygons and are assumed to be per-
fectly diffuse. Algorithms gleaned from the physics and engineering literature (radiative heat exchange in
enclosures) are used to solve this special case. It involves finding the relative visibility of each pair of poly-
gons and then solving n equations in n unknowns where n is the number of polygons. Though the lack of
any specular components and the limited number of polygons allowed make this expensive approach
impractical by itself, it is a promising candidate for modeling environmental (ambient) lighting.

Once we know how to shade a point we can consider how to shade a surface. Most surfaces, includ-
ing those that are curved, must be described by polygonal meshes when the perspective and visible surface
calculations are to be performed by the majority of rendering algorithms. Since the normal of a polygon
never changes, polygons will have just one shade, making the polygonal representation very evident‡.
Gouraud6 proposed a technique to overcome this: when the curved surface is being broken down into poly-
gons, the true surface normals at the vertices of the polygons are retained. When the polygon is converted
into pixels, the correct colours at each of the vertices are computed and these values are linearly interpo-
lated across the polygon. This almost eliminates the impression of the underlying polygons. Unfortu-
nately, Mach bands are sometimes produced and highlights are distorted because of the linear interpolation
of the vertex colours. To get around this, Phong2 proposed the linear interpolation of the surface normal
instead, and performed the shading calculation at each pixel (Figure 4). Though this is much more expen-
sive, it produces superior images, especially when the underlying polygons are still rather large†. Phong
and Crow8 reduce the extra shading computations required with normal interpolation by performing it only
in polygons where highlights are expected to appear. In the remaining polygons Gouraud shading is per-
formed.

To correctly calculate the intensity of a surface, we should also have a good model for the light
source. Most graphics packages assume that the light source is either at infinity (parallel light rays) or is a
point source near or within the scene. Unfortunately, these sources are difficult to use creatively. Warn9

has tried to create more realistic light sources by mimicking the lights used by photographers. His exten-
sions include making the intensity of the point light source a function of direction (to produce spotlights)
and providing flaps that can cut off the light in certain directions. Nishita, Okamura and Nakamae10 and
Verbeck and Greenberg11 extended this by providing more general intensity distributions for these point
sources and more sophisticated lighting design tools.

‡ Actually, if the eye or the light source is very close to the surface, the shade of the pixels within the poly-
gon will differ significantly.

† Another problem with linear interpolation is that it is not rotation invariant. This is most evident in ani-
mated sequences where large concave polygons are present. See Duff7 for a more thorough discussion.



-4-

Sampling and Filtering

Many computer synthesized images exhibit annoying defects, such as jagged edges, distortions of
very small objects and inconsistencies in areas of complicated detail (Figure 5). These distortions are the
results of improper sampling of the original image and are called aliasing artifacts. To understand why we
get these problems and how to solve them (perform anti-aliasing), we must look briefly at sampling theory.

Suppose we sample a continuous signal I (x) at n regularly spaced points. Is it possible to reconstruct
the original signal from the samples? This depends on the frequency components of the original signal. If
it contains no frequencies greater than n/2 cycles per sampling period, we can reconstruct the original sig-
nal; if it contains frequencies greater than n/2 the reconstructed signal will always be incorrect.12 That is, a
discrete signal of n points can only represent frequencies below n/2 cycles per sampling period uniquely;
all higher frequencies in the original signal will be represented (or, aliased) somewhere between 0 and n/2.
If we look at the frequency components of this reconstructed signal, we cannot tell if they are legitimate or
are distortions introduced by the undersampling of the original signal (Figure 6).

In computer graphics, the signal I (x, y) is a two dimensional function that represents the intensity of
light passing through the viewing screen. We sample this intensity function in order to obtain a pixel-based
representation of intensity. These samples are stored in a frame buffer and the intensity function is recon-
structed on the monitor by the display hardware. Unfortunately, I (x, y) will typically contain high fre-
quency components. Therefore, when we sample I (x, y), aliasing problems are inevitable. What we need
then, is a way of removing the offending high frequency components in I (x, y) before sampling.

The simplest solution is to increase the sampling rate. As n increases, we can represent higher fre-
quencies. Alas, computing time also increases in proportion to the number of samples. Also, display hard-
ware limits the number of pixels we can display and thus the sampling rate. We can try to go around the
hardware limitation by supersampling (sampling at higher than screen resolution and averaging) but this is
also just as expensive. Consequently, researchers in computer graphics have looked at less expensive yet
effective approaches to anti-aliasing.

Let us look again at sampling theory. Giv en an intensity function I (x, y), is it possible to produce
I ′(x, y) which has the same frequency components for frequencies less than some frequency ω0 and has no
frequency components greater than ω0? This is desirable since we can now sample I (x, y) to get the pixel
intensities and know that no aliasing problems can occur. Sampling theory states that if we perform the fol-
lowing convolution:

I ′(x, y) =
∞

−∞
∫

∞

−∞
∫ I (α , β ) H(x − α ) H(y − β ) dα d β

with the appropriate sampling filter H :

H(u) =
sin(ω0u)

π u

we get exactly what we want. This convolution is just a weighed average of the intensity function where H
indicates the relative weight of a point as a function of distance (u) from the pixel center. Unfortunately,
this convolution is in practice impossible. Computing an infinite double integral for each pixel is just too
expensive. Also, the intensity function is too complicated to easily convolute analytically. Consequently,
simplifications and approximations have been used in computer graphics to compute the convolution in rea-
sonable time.

The two major simplifications are to use a simpler sampling filter and to capitalize on the coherence
properties of the intensity function. The sampling filter is typically a box filter or a truncated Gaussian
(Figure 7). In both cases, the filter usually does not spread over an area greater than three by two three
regions (an approximation of the major lobe of the ideal sampling filter when the cut-off frequency is n/2)
and many times is confined to the area of one pixel.

The intensity function approximation begins with the observation that as we sample along a polygon
the signal will change relatively slowly. It is only when we cross polygon boundaries that great fluctuations
in the intensity will occur. Thus we can assume that within a pixel the intensity of each polygon is



-5-

constant. This implies that we have to calculate the shade of each polygon within a pixel only once, a great
saving in computation. Consequently, the area and position that a polygon covers within a pixel along with
just one shade computation for that polygon is enough to calculate that polygon’s contribution to the inten-
sity function at that pixel.

The sampling theory outlined above was first applied to computer graphics by Crow13 in the middle
’70’s. He computed the area coverage of a polygon and used a triangular filter to get a weight for the con-
tribution of that polygon to the pixel. (Actually, he only performed the extra computations where the inten-
sity was expected to change, such as object silhouettes or polygon boundaries when the surface colour
changes. This adaptive filtering reduced the convolution computations, especially in scenes with large
polygons). The weighting plus one shading computation for that polygon per pixel was sufficient to per-
form the anti-aliasing by Crow.

Catmull14 later performed a visible surface computation at each pixel to produce polygon fragments
that tessellated the pixel. Thus one could compute the exact area that each polygon occupied within the
pixel. A simple box filter extending only to the edge of the pixel was used. Unfortunately, the visible sur-
face computation at each pixel was too expensive to make the algorithm widely applicable.

Feibush, Levo y and Cook15 extended Catmull’s approach by adding a Gaussian filter By breaking
down the fragments into triangles, they were able to use table lookup to approximate the weight of each of
the fragments.

Fiume, Fournier and Rudolph16 suggested a less accurate but much faster approximation of the area
coverage of each polygon within each pixel by using 8 by 8 coverage masks. They also used a box filter.
Variants of this approach can be seen in work by Carpenter17 and Abram, Westover and Whitted.18 The later
is notable in that a better filter via table look-up is utilized.

Bloomenthal19 has suggested a variation of the standard z-buffer that has a post-visible surface deter-
mination filtering step. It is fast but, in many cases, inadequate.

Another method of anti-aliasing that was suggested by Whitted20 is adaptive sampling. In this
scheme, the intensity is computed at the corners of the pixel. If the resulting values vary significantly, the
pixel is subdivided into four sub-pixels and the process is performed recursively on each of the sub-pixels.
Unfortunately, since this method uses no information other than the sampled intensities, it can fail.

In all the above approaches to anti-aliasing we have assumed that we would have problems only at
the boundaries of polygons. Unfortunately this is not always true. For example, I(x,y) will contain high
frequencies whenever a displayed object’s surface normal changes significantly within a pixel. This varia-
tion in the surface normal will cause the specular component (which is the one that is most sensitive to ori-
entation) to introduce very high frequencies when performing the shading computations (Figure 5). Alias-
ing errors can also occur in the interior of polygons when highly directional light sources introduce abrupt
intensity changes.

There have been only two papers that have suggested solutions to this problem. Crow21 has proposed
computing the specular component at higher resolution in pixels where the surface normal changes signifi-
cantly. A drawback to this expensive approach is that the user has to manually set a "threshold curvature"
at which the highlight component was to be super-sampled. Williams22 suggested replacing the highlight
calculation with a spherical texture map (discussed in the next section). This approach requires a great deal
of memory and will not generate as accurate highlights as the direct method.

In the above paragraphs we have been discussing ways of anti-aliasing static images. Animation, a
sequence of still images, introduces a new dimension: time. The convolution must now occur in three
dimensions to also filter out the aliasing introduced by sampling in the time dimension.

There has been relatively little work done on temporal anti-aliasing. A typical simplification that
researchers have made is to assume a constant velocity of objects during each frame of the animation. Kor-
ein and Badler,23 Potmesil and Chakravarty24 and Max and Lerner25 introduced simple approximations
while Cook26 used a more accurate though computationally expensive approach. Catmull27 used a simplifi-
cation that projected the temporal problem into the spatial domain by distorting the 2-D filter to account for



-6-

the velocity of objects. Grant28 proposed an analytic solution by modeling moving polygons as 4 dimen-
sional polyhedra. It unfortunately is an expensive and very involved procedure that does not look promis-
ing.

We hav e so far discussed sampling a signal at regularly spaced points. Recently, work by Lee, Red-
ner and Uselton29 and Dippe and Wold30 has concentrated on stochastic sampling; that is, sampling the sig-
nal at irregularly spaced points. The motivation for this is as follows: A signal that causes aliasing when
sampled at regular points can dissipate its energy as broadband noise when stochastically sampled. Instead
of the "jaggies" we get noise. As we increase the sampling rate, the amount of noise in the image
decreases. It is felt that this noise is less objectionable to the human observer than the aliasing present
when sampling at regularly spaced points. The work so far has concentrated on finding good sampling dis-
tributions, filtering methods and adaptively increasing the number of samples in regions of the image where
high frequencies are present. It has been used primarily in ray tracing (discussed in a later section) because
that technique is inherently an expensive point sampling process that has proved to be difficult to anti-alias.

Texture

To provide the illusion of reality we must be capable of displaying complex scenes. For example, if
we are modeling a room, we should be able to include portraits on the wall or Persian rugs on the floor.
These objects, rich in high frequencies, could be modeled by many individual polygons, but these resulting
polygons could easily swamp the modeling and display programs as the number of polygons increases by
several orders of magnitude. The technique of texture mapping was introduced by Catmull31 to provide this
illusion of complexity at a reasonable cost (Figure 8). Basically it is a method of "wallpapering" the exist-
ing polygons. Each vertex on a textured polygon contains coordinates in a two dimensional texture space.
As each pixel is shaded, the texture coordinates are interpolated and a look-up is performed into a two
dimensional array of colours containing the texture. The value in this array is used as the colour of the
polygon at that pixel, thus providing the "wallpaper" (Figure 9).

Unfortunately, textures are very susceptible to aliasing since they contain high frequencies. Also, the
polygon that is using the textures may occupy a small portion of the screen, forcing many texture points
onto the same pixel. Blinn and Newell32 refined the technique with the use of filters. Feibush, Levo y and
Cook15 suggested Gaussian filters, though the computation could be expensive. Williams22 suggested filter-
ing schemes that, though not as accurate as others, allowed for fast (constant time) computation of the tex-
ture. He kept copies of the texture at various resolutions and used the ones that were most appropriate.
Crow33 made use of a precomputed table storing the integral of the texture map so that filtering could also
be done in constant time. Norton, Rockwood and Skolmoski34 suggested that when the texture is an ana-
lytic function, precomputing the frequency spectrum and reconstructing the function without any of the
offending frequencies could be an alternate way of computing the textures rapidly. This is useful for such
fuzzy objects as clouds, wav es and terrain where the texture does not have to contain many frequency com-
ponents.

A problem with texture is that it is hard to "wrap" a two dimensional texture around complex three
dimensional objects. One alternative is to define a function that maps the object’s spatial coordinates into
three dimensional texture space and use three dimensional textures. Thus no matter what the object’s shape
the texture on its surface is consistent. This is especially useful if the texture models the material out of
which the object is made, such as wood or marble. Because of the extraordinary amount of space required
to store a three dimensional array of pixels, procedural textures have been used by Peachey35 and Perlin.36

Procedural textures however, are, in general, difficult to anti-alias and thus the elegance of the technique is
easily compromised.

Te xtures need not just contain the colour of a surface. Another way of using texture mapping to
increase the illusion of complexity is to store other surface properties instead of just the surface colour.
Blinn37 suggested that surface normal perturbations could be stored in the texture map (bump mapping).
The resulting variation in the highlights provides a very convincing simulation of wrinkled surfaces. This is
ev en more apparent in animated sequences whenever the bump-mapped object moves since the highlights
match the surface perturbations correctly. Gardner used analytic textures to modify the surface boundaries



-7-

of ellipsoids.38, 39 for very convincing trees and clouds.

Another place where texture techniques have been used effectively is "environment mapping". If
objects are shiny, objects in the surrounding environment should be reflected, however faintly, by the
reflecting surface. Computing these reflections can be very expensive, especially in animated sequences.
This is where textures can step in. We can project an approximation of the world (the environment) as seen
from one viewpoint onto a sphere, cylinder or box and store the projection in a texture map.32, 22, 40 When
we later shade a point, the texture is sampled in the reflected direction. We hav e to be careful though for
we have the same sampling problems here as with regular texture mapping.

Shadows

Shadows play an important role in conveying reality in computer synthesized images. They also
facilitate the comprehension of spatial relationships between objects. Though there are situations where
shadows are not required (eg. if the light source is behind the viewer or when modeling an overcast day),
there are many other situations in which they are essential. This section will outline the research that has
already performed.

The complexity of a shadow algorithm is related to the model of the light source. If it is a point
source outside the field of view or at infinity, the problem is simplified. Finding which objects are in
shadow is then equivalent to solving the visible surface problem as viewed from the light source. If the
source is not a point source or is inside the field of view the problem becomes much more difficult.

Crow41 has proposed a taxonomy of shadow algorithms which consists of three classes: shadow com-
putation during scan-out;42, 43, 44 division of object surfaces into shadowed and unshadowed areas prior to
scanout;45, 46, 47, 48 and inclusion of shadow volumes into the object data.41

Appel was one of the first computer graphics researchers to study shadows extensively.42 He sug-
gested three different solutions, two being variations of ray casting (to be discussed below), and the third a
variation of a hidden line algorithm that he had previously used. He would create spans generated by the
intersection of a plane passing through the eye, viewing screen and objects in the scene. These spans would
represent the visible parts of an object. He would then use his hidden line algorithm to see what part of the
span was visible from the light source. Bouknight and Kelly used a similar approach43 where they pro-
jected possible shadowing polygons onto the plane of the polygon containing the span and then compared
the span with the projected polygons. To reduce the number of polygons that had to be compared when the
span was checked, they preprocessed the polygons by transforming them into a spherical coordinate space
centered at the light source. Polygons that overlapped were marked, indicating possible shadowing. Dur-
ing scan-out only the marked polygons would be checked against the span.

Goldstein and Nagel used a visible surface algorithm called ray casting.44 In it a ray is sent from the
eye, through the pixel center and into the world (Figure 10). The points of intersection between the ray and
the objects in the scene are found and the one closest to the eye represents the visible surface. An advan-
tage of this algorithm is that objects such as ellipsoids or cones need not be broken down into polygons but
can be intersected directly. To get shadow information, Goldstein and Nagel simply fired a ray from the
intersection point towards the light source. If it intersected anything, the visible surface was in shadow.
This method of finding shadows is very simple but the cost of computing the intersections is usually very
high.

Nishita and Kakamae45 introduced a two step shadow algorithm for convex polyhedra made up of
convex polygons. The first step consisted of a visible surface determination from the light source. By clip-
ping the polygons to the silhouettes of the polyhedra, they were able to subdivide them into two categories
after the first step, visible and shadowed. The polygons were marked and a second visible surface determi-
nation, from the eye, was performed. Since the polygons were appropriately marked, the shadow computa-
tions were trivial.

Atherton, Weiler and Greenberg46 extended this approach to handle more general environments by
encorporating a more powerful polygon clipping algorithm that allowed for concave polygons.

Williams48 also used a two pass process. However, he used a z-buffer algorithm in both steps. The
advantage of this approach was that it was simple and that non-planar objects could easily be accommo-
dated. Unfortunately, the z-buffer algorithm suffers from aliasing problems and this was exasperated by the



-8-

first pass from the light source. Williams suggested solutions to reduce the aliasing problem though they do
not work well in many situations. Hourcade and Nicolas47 modify Williams’ basic approach by using a pri-
ority algorithm for the first pass with a better method of anti-aliasing so that the sampling problems are not
as evident.

Crow41 has advocated computing the volumes swept out by the shadows of objects and including
them in the data base (in the form of "shadow" polygons). The shadow polygons defining these volumes
are invisible but the visible surface algorithm (a scan line algorithm) uses these polygons to check if any of
the visible polygons that it has found are within the shadow volumes. Thus a polygon is in shadow only if
it is straddled by at least two shadow polygons, one indicating the front face of a shadow volume and
another indicating the same shadow volume’s rear face.

Solving the shadow problem when we have non point light sources is more difficult. Nishita and
Nakamae have extended Crow’s idea of using shadow volumes to permit the generation of penumbras that
are cast by area49 and linear10 light sources. The environment is assumed to be made up of convex polyhe-
dra.

When extending the work of Goral et. al.5 on ambient light determination so that visible surfaces
could be computed, Cohen and Greenberg50 and Nishita and Nakamae51 were also able to compute the
shadows cast by non point sources. Unfortunately, the techniques are expensive and can handle only lim-
ited environments. Finally, more solutions to this problem will be discussed in the next section.

Optical Effects and Ray Tracing

Optical effects and ray tracing is an area in which significant research effort has been expended
recently. This topic includes the modeling of transparency, reflection, refraction and camera models that
have lenses instead of the pinhole camera model. This last element allows for visual effects such as focus-
ing and depth-of-field.

There are two reasons for recent work in this field. First, these effects are very important as we try to
model reality, and second, because the approach to solving these problems- ray tracing- is very simple both
conceptually and algorithmically.

Ray tracing was developed by Whitted20 and is an extension of the ray casting process used by
Appel,42 and Goldstein and Nagel.44 As in ray casting, a ray is fired from the eye, through the pixel and into
the world. The closest intersection between this ray and the objects in the world determines the visible sur-
face. Shadows are determined by firing rays towards the light sources. Whitted extended this ray casting
process into ray tracing by firing off two additional rays from the intersection point, one along the reflected
direction and the other along the direction of transmission (Figure 11, 12). Using ray optics, he was able to
model the distortions of reflecting and refracting surfaces accurately, thus producing stunning images.

There had been earlier attempts to model some of these effects. For example, reflection had been
modeled by Blinn and Newell’s "environment" texture mapping.32 Unfortunately, the "environment" map
sphere was at infinity and, thus, neighboring effects, such as the relative motion of objects, could not be
modeled. Transparency had often been modeled by allowing the other surfaces behind the visible surface
to show through. This was generally unconvincing since the refractive distortions were missing. Kay and
Greenberg52 tried approximating these distortions but their approach was not as accurate and was overshad-
owed by Whitted’s work.

There are two drawbacks to ray tracing: computational expense and aliasing. Whitted’s images took
on the order of several VAX 780 CPU hours to compute. There are several reasons for the computational
expense. First, all the coherence information is lost as each ray is traced independently of all the others.
Second, the intersection calculations are floating point intensive and typically require root finding of poly-
nomial functions. The aliasing problems result from the fact that since we are intersecting an object with a
ray (line), we are forced to point sample at the intersection point. There is no way, for example, of area fil-
tering as we cannot know how much of the pixel the intersected object occupies. Consequently, Whitted
used super-sampling as his method of anti-aliasing. He did it in an adaptive manner though, by firing rays
at the corners of a pixel and recursively subdividing and refiring rays if the intensity of the original corner
rays differed significantly.



-9-

Ray tracing, with its beautiful images and its computationally straightforward approach, convinced
many researchers to continue in this direction. They concentrated their research in four areas: finding inter-
section algorithms for various objects, extending the range of optical effects that could be captured using
ray tracing, anti-aliasing, and reducing the total number of intersection tests. The majority of the early
research concentrated on quickly finding the intersections of rays with more complicated objects.53, 54, 55, 56,

57, 58, 59, 60 An advantage over the traditional approach to rendering was that, in general, the objects did not
have to be broken down into polygons (with the resulting inaccuracies and extra intersection calculations),
but could be directly rendered in their "natural" representation.

To speed up the intersection calculations and improve on anti-aliasing, Heckbert and Hanrahan
worked with a cluster of rays at a time.61 For simple scenes this reduced the computations dramatically, but
the approach could not handle curved objects or refraction very well.

To help solve the aliasing problem when ray tracing, Amanatides generalized the concept of a ray
from a line to a cone representing the cross-sectional area of a pixel.62 Now, the intersection calculation
could return the area of intersection between an object and a ray, thus providing a way of filtering. This
approach also allowed for the computation of dull reflections and penumbras cast by non-point sources
(Figure 13). Unfortunately, the intersection calculations become more complicated.

Potmesil and Chakravarty63 used the information generated by ray tracing to compute the effects of
using a camera with a lens and aperture. Cook, Porter and Carpenter26 have also extended Whitted’s origi-
nal approach to ray tracing. By extending Whitted’s original work with regards to highlight generation
using ray tracing, they were able to model soft shadows, dull reflections, depth-of-field and temporal anti-
aliasing. Their approach was to super-sample and distribute the samples effectively among the various
dimensions to be sampled (stratified sampling). For example, when modeling a dull reflection, the reflected
rays do not just follow the ideal reflected direction but are perturbed by an amount related to how dull the
surface is to appear. Though not mentioned explicitly in the paper, they used stochastic sampling to reduce
aliasing. As mentioned earlier, Lee, Redner and Uselton29 and Dippe and Wold30 have done similar work
with regards to anti-aliasing.

Approaches to reducing the total number of intersections come in two flavors. The first is to envelop
each complex object in a tree of bounding volumes.20, 53, 64 Sub-objects within a branch of a tree are inter-
sected only if the ray pierces the bounding volume of the branch. The second approach consists of subdi-
viding space itself into regions and noting the objects that are in each region.65, 66, 67 As a ray propagates
from one region to the next, the objects in each region become candidates for ray intersection. Thus the
nearest objects are the first candidates for intersection, leading to a quick determination of the closest
object. To be really useful, a space subdivision scheme must not only work for primary rays (the original
rays sent from the eye), but also for shadows and reflected and refracted rays.

A work that stands apart from those encountered above is that of Moravec.68 Ray tracing depends on
the particle model of light. Moravec suggested using a wav e model instead. A wav e front would be propa-
gated through the volume occupied by the objects, and reflections and refractions would be modeled by
new wav e fronts that bounced off the objects in the scene. Though intriguing, the images generated were
disappointing and the approach proved to be much too expensive.

Modeling

Most graphics packages, when performing transformations and modeling the visible surfaces of
objects work with polygons. Unfortunately, determining complex objects with such simple, low lev el prim-
itives is both time consuming, complicated and an unnecessary process for the user. Higher level modeling
primitives that describe objects within a scene are required. This section covers several of the more popular
and novel of these modeling primitives.

Some of the most popular modeling primitives, outside of polygons, are parametric patches or
splines.31, 69 These surfaces are parametric to allow orientation independent curves. They are typically
cubic polynomials because these polynomials have been found to be easy to specify yet powerful enough to
describe most curved surfaces that have been modeled in computer graphics (Figure 14). Numerous vari-
eties of parametric surfaces have been proposed (see the Barsky paper69 for a survey). These have different



-10-

ways of letting the user specify the shape of the curve (by choosing different basis functions), each trying to
give the user controls that are simple, intuitive and yet powerful. One of the most popular at the present
time is beta-splines.

For display, two strategies have been used: direct scan conversion of the patches and breaking down
the patch into polygons by the graphics package just prior or during display.70 The first approach has fallen
into disfavor as the proposed algorithms have been found to be too cumbersome and difficult to incorporate
in many visible surface algorithms.

Another approach to modeling, motivated by other constraints, is that of solid modeling.71, 55 In this
approach, elaborate objects are formed by the union, intersection and difference of simple solid volume
primitives, such as spheres, cubes and cylinders. This approach is especially popular in CAD/CAM where
machined objects must be modeled. Visible surface determination can easily be computed using either ray
casting or variants of the scan line approach.72

Probably the hardest class of objects to model has been that of natural objects such as clouds, terrain,
fire and the results of biological processes. Human generated objects are fairly regular but natural ones typ-
ically have a high degree of complexity that is both very hard to describe and store in a data base. Conse-
quently, many researchers have looked into procedural, stochastic models. The general shape is defined by
the user by specifying a few well-chosen parameters and a stochastic process is used to generate the
required detail. Scientifically accurate processes are not as important as processes that create visually
acceptable results which are also easily integratable into existing graphics methodologies. Examples of
stochastic models are: for terrain (Figure 15),73 fire74 and flora.75, 76, 74, 77

To create terrain, Fournier and Fussell73 take a parametric patch and add to it a stochastic element.
This is done by generating a two dimensional table of values that approximate fractional Brownian motion,
and using these values to displace points on the surface patch in a direction perpendicular to the surface.
This allows good global control (the shape of the parametric patch is user-defined) with the details being
added by the stochastic process. A popular alternate approach, also in73 by Carpenter, starts with a triangle
and recursively subdivides it using a stochastic process to displace the endpoints of the sub-triangles.

To approximate fire, Reeves74 used what he called "particle systems". A particle system is a procedu-
ral model that stochastically generates a series of moving points. The user defines the mean number of par-
ticles generated, their lifetime, velocity and colour and the stochastic process creates, typically, sev eral
thousand of these particles, assigning to each its own velocity, colour and lifetime. In the image, these
moving particles are represented by straight lines. By having multiple particle systems and by summing up
for each pixel the contribution from all the particles, convincing images of explosions or fire can be gener-
ated. In a similar manner, grass and trees have also been produced with the particle streaks forming the
branches and leaves.77

Aono and Kunii75 and Smith76 both used a "grammar" approach to generate procedural models of
trees. They both used a formal language describing the branching patterns of trees devised by biologists
whose production rules generate a string representing the branching patterns of a tree. This string is then
"interpreted" to generate an instance of a tree. The way the string is interpreted depends on the type of tree
to be modeled and a stochastic element can be introduced to give trees individual characteristics.

Once we have modeled a surface we must be capable of animating it. Unfortunately, motion specifi-
cation and control is still rather limited. It has primarily dealt with the motion of rigid objects such as
skeletons or robots.78, 79, 80, 81, 82, 83 Tw o general approaches researchers have taken are 1), parametric inbe-
tweening of key frames and 2), more "intelligent" goal-directed animation. The fact that living things are
not rigid but bend as they move has not been adequately addressed by current modeling packages.

Concluding Remarks

We hav e reached the stage where computer synthesized images are acceptable for some special
effects in the movie industry (eg. TRON, STAR TREK II and The Last Starfighter) and in commercials
on TV. But we still have not found our "grail". Overall, computer synthesized images have a "sanitized"
look to them; no dirt or garbage in the corners; straight lines and perfectly flat faces instead of the familiar
flaws; plain looking scenes with a distinct lack of detail; simple, rigid motions instead of motions which



-11-

flow and deform the object. It is only when we go past these limitations that we will approach reality.

I would like to thank Alain Fournier, Eugene Fiume, Dave Fleet and Darwyn Peachey for going over
earlier drafts of this paper and giving me valuable suggestions. Thanks also to the reviewers who gav e me
many helpful comments.

References

1. Sutherland, I.E., Sproull, R.F., and Schumacker, R.A., “A Characterization of Ten Hidden-Surface
Algorithms,” Computing Surveys, 6(1), pp. 1-55 (March 1974).

2. Bui T. Phong, “Illumination for Computer Generated Pictures,” Comm. of the ACM, 18(6), pp.
311-317 (June 1975).

3. Blinn, J.F., “Models of Light Reflection For Computer Synthesized Pictures,” Computer Graphics,
11(2), pp. 192-198 (July 1977).

4. Cook, R.L. and Torrance, K.L., “A Reflectance Model for Computer Graphics,” ACM Trans. on
Graphics, 1(1), pp. 7-24 (January 1982).

5. Goral, C.M., Torrence, K.E., Greenberg, D.P., and Battaile, B., “Modeling the Interaction of Light
Between Diffuse Surfaces,” Computer Graphics, 18(3), pp. 213-222 (July 1984).

6. Gouraud, H., “Continuous Shading of Curved Surfaces,” IEEE Trans. on Computers, C-20(6), pp.
623-629 (June 1971).

7. Duff, T., “Smoothly Shaded Renderings of Polyhedral Objects on Raster Displays,” Computer
Graphics, 19(2), pp. 270-275 (August 1979).

8. Bui T. Phong and Crow, F.C., “Improved Rendition of Polygonal Models of Curved Surfaces,” Proc.
of the 2nd USA-Japan Computer Conference (1975).

9. Warn, D.R., “Lighting Controls for Synthetic Images,” Computer Graphics, 17(3), pp. 13-21 (July
1983).

10. Nishita, T., Okamura, I., and Nakamae, E., “Shading Models for Point and Linear Sources,” ACM
Tr ans. on Graphics, 4(2), pp. 124-146 (April 1985).

11. Verbeck, C.P. and Greenberg, D.P., “A Comprehensive Light-Source Description for Computer
Graphics,” IEEE Computer Graphics and Applications, 4(7), pp. 66-75 (July 1984).

12. Pratt, W.K., Digital Image Processing, Wiley-Interscience (1978).

13. Crow, F.C., “The Aliasing Problem in Computer-Generated Shaded Images,” Comm. of the ACM,
20(11), pp. 799-805 (November 1977).

14. Catmull, E., “A Hidden-Surface Algorithm with Anti-Aliasing,” Computer Graphics, 12(3), pp. 6-10
(August 1978).

15. Feibush, E.A., Levo y, M., and Cook, R.L., “Synthetic Texturing Using Digital Filters,” Computer
Graphics, 14(3), pp. 294-301 (July 1980).

16. Fiume, E., Fournier, A., and Rudolph, L., “A Parallel Scan Conversion Algorithm with Anti-Aliasing
for a General Purpose Ultracomputer,” Computer Graphics, 17(3), pp. 141-150 (July 1983).

17. Carpenter, L., “The A-buffer, an Antialiased Hidden Surface Method,” Computer Graphics, 18(3),
pp. 103-108 (July 1984).

18. Abram, G., Westover, L., and Whitted, T., “Efficient Alias-Free Rendering using Bit-Masks and
Look-Up Tables,” Computer Graphics, 19(3), pp. 53-59 (July 1985).

19. Bloomenthal, J., “Edge Inference with Applications to Antialiasing,” Computer Graphics, 17(3), pp.
157-162 (July 1983).

20. Whitted, T., “An Improved Illumination Model for Shaded Display,” Comm. of the ACM, 23(6), pp.
343-349 (June 1980).

21. Crow, F.C., “Computational Issues in Rendering Anti-Aliased Detail,” IEEE 1982 Spring COMP-
CON, pp. 238-244 (1982).



-12-

22. Williams, L., “Pyramidal Parametrics,” Computer Graphics, 17(3), pp. 1-11 (July 1983).

23. Korein, J. and Badler, N., “Temporal Anti-Aliasing in Computer Generated Animation,” Computer
Graphics, 17(3), pp. 377-388 (July 1983).

24. Potmesil, M. and Chakravarty, I., “Modelling Motion Blur in Computer-Generated Images,” Com-
puter Graphics, 17(3), pp. 389-399 (July 1983).

25. Max, N.L. and Lerner, D.M., “A Two-and-a-Half-D Motion-Blur Algorithm,” Computer Graphics,
19(3), pp. 85-93 (July 1985).

26. Cook, R.L., Porter, T., and Carpenter, L., “Distributed Ray Tracing,” Computer Graphics, 18(3), pp.
137-145 (July 1984).

27. Catmull, E., “An Analytic Visible Surface Algorithm for Independent Pixel Processing,” Computer
Graphics, 18(3), pp. 109-115 (July 1984).

28. Grant, C.W., “Integrated Analytic Spatial and Temporal Anti-Aliasing for Polyhedra in 4-Space,”
Computer Graphics, 19(3), pp. 79-84 (July 1985).

29. Lee, M.E., Redner, R.A., and Uselton, S.P., “Statistically Optimized Sampling for Distributed Ray
Tracing,” Computer Graphics, 19(3), pp. 61-67 (July 1985).

30. Dippe, M.A.Z. and Wold, E.H., “Antialiasing Through Stochastic Sampling,” Computer Graphics,
19(3), pp. 69-78 (July 1985).

31. Catmull, E., A Subdivision Algorithm for Computer Display of Curved Surfaces, PhD Thesis, Univer-
sity of Utah (1974).

32. Blinn, J.F. and Newell, M.E., “Texture and Reflection in Computer Generated Images,” Comm. of the
ACM, 19(10), pp. 542-547 (October 1976).

33. Crow, F.C., “Summed-Area Tables for Texture Mapping,” Computer Graphics, 18(3), pp. 207-212
(July 1984).

34. Norton, A., Rockwood, A.P., and Skolmoski, P.T., “Clamping: A Method of Antialiasing Textured
Surfaces by Bandwidth Limiting in Object Space,” Computer Graphics, 16(3), pp. 1-8 (July 1982).

35. Peachey, D.R., “Solid Texturing of Complex Surfaces,” Computer Graphics, 19(3), pp. 279-286 (July
1985).

36. Perlin, K., “An Image Synthesizer,” Computer Graphics, 19(3), pp. 287-296 (July 1985).

37. Blinn, J.F., “Simulation of Wrinkled Surfaces,” Computer Graphics, 12(3), pp. 286-292 (August
1978).

38. Gardner, G.Y., “Simulation of Natural Scenes using Textured Quadratic Surfaces,” Computer Graph-
ics, 18(3), pp. 11-20 (July 1984).

39. Gardner, G.Y., “Visual Simulation of Clouds,” Computer Graphics, 19(3), pp. 297-303 (July 1985).

40. Greene, N., “A Method of Modeling Sky for Computer Animation,” Proc. Intl. Conf. of Engineering
and Computer Graphics, Beijing China, pp. 297-300 (August 1984).

41. Crow, F.C., “Shadow Algorithms for Computer Graphics,” Computer Graphics, 11(3), pp. 242-248
(July 1977).

42. Appel, A., “Some techniques for shading machine renderings of solids,” Proc. AFIPS JSCC, 32, pp.
37-45 (1968).

43. Bouknight, W.J. and Kelly, K.C., “An algorithm for producing half-tone computer graphics presenta-
tions with shadows and movable light sources,” Proc. AFIPS JSCC, 36, pp. 1-10 (1970).

44. Goldstein, R.A. and Nagel, R., “3-D Visual Simulation,” Simulation, pp. 25-31 (January 1971).

45. Nishita, T. and Nakamae, E., “An Algorithm for Half-Tone Representation of Three-Dimensional
Objects,” Information Processing in Japan, 14, pp. 93-99 (1974).

46. Atherton, P., Weiler, K., and Greenberg, D., “Polygon Shadow Generation,” Computer Graphics,
12(3), pp. 275-281 (August 1978).



-13-

47. Hourcade, J.C. and Nicolas, A., “Algorithms for Antialiased Cast Shadows,” Computers and Graph-
ics, 9(3), pp. 259-265 (1985).

48. Williams, L., “Casting Curved Shadows on Curved Surfaces,” Computer Graphics, 12(3), pp.
270-274 (August 1978).

49. Nishita, T. and Nakamae, E., “Half-Tone Representation of 3-D Objects Illuminated by Area or Poly-
hedron Sources,” Proc. of IEEE Computer Society’s Seventh International Computer Software and
Applications Conference (COMPSAC83), pp. 237-242 (Nov 7-11 1983).

50. Cohen, M.F. and Greenberg, D.P., “The Hemi-Cube: A Radiosity Solution for Complex Environ-
ments,” Computer Graphics, 19(3), pp. 31-40 (July 1985).

51. Nishita, T. and Nakamae, E., “Continuous Tone Representation of Three-Dimensional Objects Tak-
ing Account of Shadows and Interreflection,” Computer Graphics, 19(3), pp. 23-30 (July 1985).

52. Kay, D.S. and Greenberg, D., “Transparency for Computer Synthesized Images,” Computer Graph-
ics, 13(2), pp. 158-164 (August 1979).

53. Rubin, S.M. and Whitted, T., “A 3-Dimensional Representation for Fast Rendering of Complex
Scenes,” Computer Graphics, 14(3), pp. 110-116 (July 1980).

54. Kajiya, J.T., “Ray Tracing Parametric Patches,” Computer Graphics, 16(3), pp. 245-254 (July 1982).

55. Roth, S.D., “Ray Casting for Modeling Solids,” Computer Graphics and Image Processing, 18, pp.
109-144 (1982).

56. Hall, R.A. and Greenberg, D.P., “A Testbed for Realistic Image Synthesis,” IEEE Computer Graphics
and Applications, 3(8), pp. 10-20 (November 1983).

57. Hanrahan, P., “Ray Tracing Algebraic Surfaces,” Computer Graphics, 17(3), pp. 83-90 (July 1983).

58. Kajiya, J.T., “New Techniques For Ray Tracing Procedurally Defined Objects,” Computer Graphics,
17(3), pp. 91-102 (July 1983).

59. Van Wijk, J.J., “Ray Tracing Objects Defined By Sweeping Planar Cubic Splines,” ACM Trans. on
Graphics, 3(3), pp. 223-237 (July 1984).

60. Van Wijk, J.J., “Ray Tracing Objects Defined By Sweeping a Sphere,” Computers and Graphics,
9(3), pp. 283-290 (1985).

61. Heckbert, P. and Hanrahan, P., “Beam Tracing Polygonal Objects,” Computer Graphics, 18(3), pp.
119-127 (July 1984).

62. Amanatides, J., “Ray Tracing with Cones,” Computer Graphics, 18(3), pp. 129-135 (July 1984).

63. Potmesil, M. and Chakravarty, I., “Synthetic Image Generation with a Lens and Aperture Camera
Model,” ACM Trans. on Graphics, 1(2), pp. 85-108 (April 1982).

64. Weghorst, H., Hooper, G., and Greenberg, D.P., “Improved Computational Methods for Ray Trac-
ing,” ACM Trans. on Graphics, 3(1), pp. 52-69 (January 1984).

65. Cleary, J.G., Wyvill, B., Birtwistle, G.M., and Vatti, R., “Multiprocessor Ray Tracing,” Research
Report No. 83/128/7 Dept. of Computer Science University of Calgary (1983).

66. Glassner, A.S., “Space Subdivision for Fast Ray Tracing,” IEEE Computer Graphics and Applica-
tions, 4(10), pp. 15-22 (October 1984).

67. Fujimoto, A. and Iwata, K., “Accelerated Ray Tracing,” Proc. CG Tokyo ’85, pp. 41-65.

68. Moravec, H.P., “3D Graphics and the Wav e Theory,” Computer Graphics, 15(3), pp. 289-296
(August 1981).

69. Barsky, B.A., “A Description and Evaluation of Various 3-D Models,” IEEE Computer Graphics and
Applications, 4(1), pp. 38-52 (January 1984).

70. Lane, J.M., Carpenter, L.C., Whitted, T., and Blinn, J.F., “Scan Line Methods for Displaying Para-
metrically Defined Surfaces,” Comm. of the ACM, 23(1), pp. 23-34 (January 1980).

71. Requicha, A.A.G., “Representations for Rigid Solids: Theory Methods and Systems,” Computing
Surveys, 12(4), pp. 437-464 (December 1980).



-14-

72. Atherton, P.R., “A Scan-Line Hidden Surface Removal Procedure for Constructive Solid Geometry,”
Computer Graphics, 17(3), pp. 73-82 (July 1983).

73. Fournier, A., Fussell, D., and Carpenter, L., “Computer Rendering of Stochastic Models,” Comm. of
the ACM, 25(6), pp. 371-384 (June 1982).

74. Reeves, W.T., “Particle Systems- A Technique for Modelling a Class of Fuzzy Objects,” Computer
Graphics, 17(3), pp. 359-376 (July 1983).

75. Aono, M. and Kunii, T.L., “Botanical Tree Image Generation,” IEEE Computer Graphics and Appli-
cations, 4(5), pp. 10-34 (May 1984).

76. Smith, A.R., “Plants Fractals and Formal Languages,” Computer Graphics, 18(3), pp. 1-10 (July
1984).

77. Reeves, W.T. and Blau, R., “Approximate and Probabilistic Algorithms for Shading and Rendering
Structured Particle Systems,” Computer Graphics, 19(3), pp. 313-322 (July 1985).

78. Reeves, W.T., “Inbetweening For Computer Animation Utilizing Moving Point Constraints,” Com-
puter Graphics, 15(3), pp. 263-269 (August 1981).

79. Korein, J.U. and Badler, N.I., “Techniques for Generating the Goal-Directed Animation of Articu-
lated Structures,” IEEE Computer Graphics and Applications, 2(9), pp. 71-81 (November 1982).

80. Reynolds, C., “Computer Animation with Scripts and Actors,” Computer Graphics, 16(3), pp.
289-296 (July 1982).

81. Zeltzer, D., “Motor Control Techniques for Figure Animation,” IEEE Computer Graphics and Appli-
cations, 2(9), pp. 53-59 (November 1982).

82. Girard, M. and Maciejewski, A.A., “Computational Modeling of the Computer Animation of Legged
Figures,” Computer Graphics, 19(3), pp. 263-270 (July 1985).

83. Steketee, S.N. and Badler, N.I., “Parametric Keyframe Interpolation Incorporating Kinetic Adjust-
ment and Phrasing Control,” Computer Graphics, 19(3), pp. 255-262 (July 1985).


