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Abstract. Neural network-based approaches can achieve high accuracy
in various medical image segmentation tasks. However, they generally re-
quire large labelled datasets for supervised learning. Acquiring and man-
ually labelling a large medical dataset is expensive and sometimes im-
practical due to data sharing and privacy issues. In this work, we propose
an adversarial data augmentation method for training neural networks
for medical image segmentation. Instead of generating pixel-wise adver-
sarial attacks, our model generates plausible and realistic signal corrup-
tions, which models the intensity inhomogeneities caused by a common
type of artefacts in MR imaging: bias field. The proposed method does
not rely on generative networks, and can be used as a plug-in module for
general segmentation networks in both supervised and semi-supervised
learning. Using cardiac MR imaging we show that such an approach can
improve the generalization ability and robustness of models as well as
provide significant improvements in low-data scenarios.

Keywords: Image segmentation, Adversarial data augmentation, MR

1 Introduction

Segmentation of medical images is an important task for diagnosis, treatment
planning and clinical research [1]. Recent years have witnessed the fast develop-
ment of deep learning for medical imaging with neural networks being applied
to a variety of medical image segmentation tasks [2, 3]. Deep learning-based
approaches in general require a large-scale labelled dataset for training, in or-
der to achieve good model generalization ability and robustness on unseen test
cases. However, acquiring and manually labelling such large medical datasets
is extremely challenging, due to the difficulties that lie in data collection and
sharing, as well as to the high labelling costs [4].

To address the aforementioned problems, one of the commonly adopted
strategies is data augmentation, which aims to increase the diversity of the
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available training data without collecting and manually labelling new data. Con-
ventional data augmentation methods mainly focus on applying simple random

transformations to labelled images. These random transformations include in-
tensity transformations (e.g. pixel-wise noise, image brightness and contrast ad-
justment) and geometric transformations (e.g. affine, elastic transformations).
Recently, there is a growing interest in developing generative network-based
methods for data augmentation [5, 6, 7, 8], which have been found effective for
one-shot brain segmentation [5] and low-shot cardiac segmentation [7]. Unlike
conventional data augmentation, which generates new examples in an uninfor-
mative fashion and does not account for complex variations in data, this gen-
erative network-based method is data-driven, learning optimal image transfor-
mations from the underlying data distribution in the real world [7]. However,
in practice, training generative networks is not trivial due to their sensitivity to
hyper-parameters tuning [9] and it can suffer from the mode collapse problem.

In this work, we introduce an effective adversarial data augmentation method
for medical imaging without resorting to generative networks. Specifically, we
introduce a realistic intensity transformation function to amplify intensity non-
uniformity in images, simulating potential image artefacts that may occur in
clinical MR imaging (i.e. bias field). Our work is motivated by the observations
that MR images often suffer from low-frequency intensity corruptions caused
by inhomogeneities in the magnetic field. This artefact cannot be easily elim-
inated [10, 11] and can be regarded as a physical attack to neural networks,
which have been reported to be sensitive to intensity perturbations [12, 13]. To
efficiently improve the model generalizability and robustness, we apply adversar-
ial training to directly search for optimal intensity transformations that benefit
model training. By continuously generating these realistic, ‘hard’ examples, we
prevent the network from over-fitting and, more importantly, encourage the net-
work to defend itself from intensity perturbations by learning robust semantic
features for the segmentation task.

Our main contributions can be summarised as follows: (1) We introduce a re-
alistic adversarial intensity transformation model for data augmentation in MRI,
which simulates intensity inhomogeneities which are common artefacts in MR
imaging. The proposed data augmentation is complementary to conventional
data augmentation methods. (2) We present a simple yet effective framework
based on adversarial training to learn adversarial transformations and to regu-
larize the network for segmentation robustness, which can be used as a plug-in
module in general segmentation networks. More importantly, unlike conventional
adversarial example construction [14, 15, 16], generating adversarial bias fields
does not require manual labels, which makes it applicable for both supervised
and semi-supervised learning, see Sec. 2.2. (3) We demonstrate the efficacy of
the proposed method on a public cardiac MR segmentation dataset in challeng-
ing low-data settings. In this scenario, the proposed method greatly outperforms
competitive baseline methods, see Sec. 3.2.

Related work. Recent studies have shown that adversarial data augmentation,
which generates adversarial data samples during training, is effective to improve
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model generalization and robustness [15, 17]. Most existing works are based on
designing attacks with pixel-wise noise, i.e. by adding gradient-based adversarial
noise [14, 18, 19, 20, 21]. More recently, there have been studies showing that
neural networks can also be fragile to other, more natural form of transformations
that can occur in images, such as affine transformations [22,23,24], illumination
changes [24], and small deformations [13,25]. In medical imaging, designing and
constructing realistic adversarial perturbations, which can be used for improving
medical image segmentation networks, has not been explored in depth.

2 Adversarial Data Augmentation with Robust

Optimization

In this work, we aim at generating realistic adversarial examples to improve
model generalization ability and robustness, given a limited number of training
examples. To achieve the goal, we first introduce a physics-based intensity trans-
formation model that can simulate intensity inhomogeneities in MR images. We
then propose an adversarial training method, which finds effective adversarial
transformation parameters to augment training data, and then regularizes the
network with a distance loss function which penalizes network’s sensitivity to
such adversarial perturbations. Since our method is based on virtual adversar-
ial training (VAT) [20], we will first briefly review VAT before introducing our
method.

2.1 Virtual Adversarial Training

VAT is a regularization method based on adversarial data augmentation, which
can prevent the model from over-fitting and improve the generalization perfor-
mance and robustness [20]. Given an input image I ∈ R

H×W×C (H,W,C denote
image height, width, and number of channels, respectively) and a classification
network fcls(·; θ), VAT first finds a small adversarial noise radv ∈ R

H×W×C to
construct its adversarial example Iadv = I+ radv (as shown in Fig.1A), with the
goal of maximising the Kullback−Leibler (KL) divergence DKL between an origi-
nal probabilistic prediction fcls(I; θ) and its perturbed prediction fcls(I+radv; θ).
The adversarial example is then used to regularize the network for robust feature
learning.

The adversarial noise can be generated by taking the gradient of DKL with re-
spect to a random noise vector: radv = ǫ · r′

‖r′‖2

,r′ = ∇rDKL[f (I; θ) ‖ f (I+ r; θ)].

Here ǫ is a hyper-parameter that controls the strength of perturbation. After
finding adversarial examples, one can utilize them for robust learning, which
penalizes the network’s sensitivity to local perturbations. This is achieved by
adding DKL to its main objective function.

2.2 Adversarial Training by Modelling Intensity Inhomogeneities

In this work, we extend the VAT approach by introducing a new type of adver-
sarial attack, namely intensity inhomogeneities (bias field) that often occur in
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Fig. 1: (A) Adversarial example construction with additive gradient-based noise
in VAT [20]; (B) Adversarial example construction with a multiplicative con-
trol point-based bias field (proposed); (C) Adversarial training with bias field
perturbation.

MR imaging. In MR imaging, a bias field is a low frequency field that smoothly
varies across images, introducing intensity non-uniformity across the anatomy
being imaged. The model for the intensity non-uniformity can be defined as fol-
lows [10, 26]: Ibias = Gbias(I; c) = I × Φbias(c). Here, the intensity of the image
I is perturbed with a multiplication with the bias field Φbias ∈ R

H×W . As the
bias field is typically composed of low frequencies and thus slowly varying across
the image, it can be modelled using a set of uniformly distributed k by k points
c = {c(i)}1...k×k [10], see Fig. 1B. A smooth bias field at the finest resolution
is obtained by interpolating scattered control points with a third-order B-spline
smoothing [27].

While one can repeatedly sample random bias fields for data augmentation,
this might be computationally inefficient as it may generate images which are
of no added value for model optimization. We therefore would like to construct
adversarial examples (perturbed by bias field as described above) targeting the
weakness of the network in an intelligent way. This allows the use of the generated
adversarial examples to improve the model performance and robustness, which
can be achieved via the following min-max game:

min
θ

max
c

Dcomp[fseg(I; θ), fseg(Gbias(I; c); θ)]

subject to ∀(x, y) ∈ R
2, Φbias

(x,y) > 0; |Φbias − 1|∞ ≤ α, 0 < α < 1.
(1)

As shown in Fig. 1C, given a segmentation network fseg(·; θ) and an input im-
age I, we first find optimal values for control points c in the search space to
construct an adversarial bias field, so that it maximizes the distance mea-
sured by Dcomp between the original prediction and the prediction after per-
turbation: p = fseg(I; θ), p̂ = fseg(Gbias(I; c); θ), with θ fixed. We then optimize
the parameters θ in the network to minimize the distance between the orig-
inal prediction and the prediction after the generated adversarial bias attack
fseg(Gbias(I; c

adv); θ).
Finding adversarial bias fields. To find the optimal values for the control
points c for adversarial example construction, we use the gradient descent al-
gorithm and search the values of control points in its log space for numerical
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stability [10,26], which allows to produce positive bias fields. Specifically, similar
to the projected gradient decent (PGD) attack construction in [15], we first ran-
domly initialize the values of control points and then apply a projected gradient
ascent algorithm to iteratively update c with n steps: c ← Π(c + ξ · c′/‖c′‖2)
where c′ = ∇cDcomp[fseg(I; θ), fseg(Gbias(I; c); θ)]. Π denotes the projection func-
tion which projects c onto the feasible set, and ξ is the step size. For neural
networks, gradients c′ can be efficiently computed with back-propagation. Φbias

is updated by first interpolating the coarse-grid control points (log values at the
current iteration) to its finest grid using B-spline convolution, and then taking
the exponential function for value recovering. Finally, the generated bias field is
rescaled to meet the magnitude constraint in Eq. 1.
Composite distance function Dcomp. Here, we propose a composite distance
function Dcomp to enhance its discrimination ability between the original predic-
tion p (short for fseg(I; θ)) and the prediction after perturbation p̂, for semantic

segmentation tasks. This composite loss consists of (1) the original DKL used
in VAT, which measures the difference between distributions and (2) a contour-
based loss function Dcontour [28] which is specifically designed to capture mis-
match between object boundaries: Dcomp(p, p̂) = DKL[p || p̂] +wDcontour(p, p̂);
Dcontour(p, p̂) =

∑
m∈M

∑
Sx,y
‖S(pm)− S(p̂m)‖2. M denotes foreground chan-

nels, Sx,y denote two Sobel filters in x- and y-direction for edge extraction and
w controls the relative importance of both terms.
Optimizing segmentation network. After constructing the adversarial ex-
amples, one can compute Dcomp and apply it to regularizing the network, encour-
aging the network to be less sensitive to adversarial perturbations, and thus pro-
duce consistent predictions. Since this algorithm uses probabilistic predictions
(produced by the network) rather than manual labels for adversary construction,
it can be applied to both labelled (l) and unlabelled data (u) for supervised and
semi-supervised learning [20]. The loss functions for the two scenarios are defined

as: LSU = Lseg(p
(l),y

(l)
gt )+λlDcomp(p

(l), p̂(l)); LSE = LSU+λuDcomp(p
(u), p̂(u)).

Lseg denotes a general task-related segmentation loss function for supervised

learning (e.g. cross-entropy loss) and y
(l)
gt denotes ground truth.

3 Experiments

To test the efficacy of the proposed method, we applied it to training a segmen-
tation network for the left ventricular myocardium from MR images in low-data
settings. We compared the results with several competitive baseline methods.

3.1 Dataset and Experiment Settings

ACDC dataset. Experiments were performed on a public benchmark dataset
for cardiac MR image segmentation: The Automated Cardiac Diagnosis Chal-
lenge (ACDC) dataset [29] 5. This dataset was collected from 100 subjects which

5 https://www.creatis.insa-lyon.fr/Challenge/acdc/databases.html
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were evenly classified into 5 groups: 1 normal group (NOR) and 4 pathological
groups with cardiac abnormalities: dilated cardiomyopathy(DCM); hypertrophic
cardiomyopathy (HCM); myocardial infarction with altered left ventricular ejec-
tion fraction (MINF); abnormal right ventricle (ARV). The left ventricular my-
ocardium in end-diastolic and end-systolic frames were manually labelled.
Image pre-processing. We used the same image preprocessing as in [7], where
all images were bias corrected using N4 algorithm [10]. In addition, all images
were centrally cropped into 128× 128, given that the heart is generally located
in the center of the image. This saves computational costs.
Random data augmentation (Rand Aug). We applied a strong random
data augmentation method to our training data as a basic setting. Random
affine transformation (i.e. scaling, rotation, translation), random horizontal and
vertical flipping, random global intensity transformation (brightness and con-
trast) [7] and elastic transformation were applied.
Training details. For ease of comparison, same as [7], we adopted the commonly-
used 2D U-net as our segmentation network, which takes 2D image slices as
input. The Adam optimizer with a batch size of 20 was used to update network
parameters. For the proposed method, we first trained the network with the de-
fault data augmentation (Rand Aug) for 10,000 iterations (learning rate=1e−3),
and then finetuned the network by adding the proposed adversarial training us-
ing a smaller learning rate (1e−5) for 2,000 iterations. The common standard
cross-entropy loss function was used as Lseg. For bias field construction, we
adopted the B-spline convolution kernel (order=3) with 4 × 4 control points.
The kernel was provided by AirLab library [30]. We empirically set: α = 0.3,
w = 0.5, λl = 1 and λu = 0.1. Besides, we found that in our experiments, one
step searching in the inner loop produced sufficient improvement. Thus, we set
n = 1, ξ = 1 to save computational cost. All the experiments were performed on
an Nvidia R© GeForce R© 2080 Ti with Pytorch.

3.2 Experiments and Results

Experiment 1: Low-shot learning. In this experiment, the proposed method
was evaluated in both supervised learning and semi-supervised learning scenarios,
where only 1 or 3 labelled subjects are available. Specifically, we used the same
data splitting setting as in [7]. The ACDC dataset was split into 4 subsets:
a labelled set (where Nl images were sampled from for training), unlabelled
training set (N=25), validation set (N=2), test set (N=20). N denotes the number
of subjects. Details of the low-data setting can be found in [7]. For one-shot
learning (Nl=1) and three-shot learning (Nl=3) in both supervised and semi-
supervised settings, we trained the network for five times, each with a different
labelled set.

We compared the proposed method (Adv Bias) with several competitive
data augmentation methods including VAT [20], an effective data mixing-based
method (Mixup) [31] for supervised learning and the state-of-the-art semi-
supervised generative model-based method(cGANs) [7]. For VAT and Mixup,
we used the set of hyperparameters that achieved the best performance on the
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Table 1: Comparison of the proposed
method (Adv Bias) to other data aug-
mentation methods.

Setting Method
# labelled subjects

1 3

Supervised

No Aug 0.293 0.544
Rand Aug 0.560 0.796

+Mixup [31] 0.575 0.801
+VAT [20] 0.570 0.811

+Adv Bias 0.650 0.826

Semi-supervised
+VAT [20] 0.625 0.826
+Adv Bias 0.692 0.830

cGANs [7] 0.710 0.823

Table 2: Segmentation performance
of the proposed method and baseline
methods across five populations. All
were trained with NOR cases only.

Population Rand Aug +Mixup +VAT
+Adv Bias

(Proposed)

NOR 0.911 0.901 0.909 0.912

DCM 0.831 0.803 0.843 0.871

HCM 0.871 0.881 0.891 0.890
MINF 0.805 0.789 0.824 0.847

ARV 0.843 0.844 0.843 0.853

Average 0.841 0.833 0.853 0.868

validation set and applied the same training procedure. For cGANs, we report
the results of one-shot and three-shot learning in their original paper for refer-
ence, which were tested on the same test set. Table 1 compares the segmenta-
tion accuracy obtained by different data augmentation methods. Each reported
value is the average Dice score of 20 test cases. In the supervised learning set-
ting (no access to unlabelled images), when only one or three labelled subject
was available, the proposed method clearly outperformed all baseline methods.
For semi-supervised learning, the proposed methods outperformed VAT, espe-
cially when only one labelled subject is available (0.686 vs 0.625). The proposed
method achieves competitive results compared to the semi-supervised GAN-
based method (cGANs) as well. Of note, cGANs adopts two additional GANs
to sample geometric transformations and intensity transformations from unla-
belled images. This is why it was only compared in the semi-supervised learning
setting here. On the contrary, our approach is applicable to both low-shot super-
vised learning and semi-supervised learning. In addition, cGANs contains more
parameters than our method and thus it might be less computationally efficient.

Experiment 2: Learning from limited population. In this experiment, we
trained the network using only normal healthy subjects (NOR) and evaluated
its performance on pathological cases. 20 healthy subjects were split into 14/2/4
subjects for training, validation and test. This setting simulates a practical data
scarcity problem, where pathological cases are rarer, compared to healthy data.
As shown in Table 2, while the conventional method (Rand Aug) achieved excel-
lent performance on the test healthy subjects (NOR), its performance dropped
on pathological cases. Interestingly, applying Mixup did not help to solve this
population shift problem, but rather slightly reduced the average performance
compared to the baseline, from 0.841 to 0.833. This might be due to the fact
that Mixup generates unrealistic images through its linear combination of paired
images, which may modify semantic features and affect representation learning
for precise segmentation. By contrast, our method outperformed both Mixup
and VAT, yielding substantial and consistent improvements across five different
populations. Notably, we attained evident improvement on the most challenging
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Fig. 2: Visualization of generated adversarial examples and failed network pre-
dictions. Before/After: network prediction before/after bias field attack (Adv
Bias Field).

MINF images (0.805 vs 0.847), where the shape of the myocardium is clearly
irregular. As shown in Fig. 2, the proposed method does not only generate ad-
versarial examples during training, but also increases the variety of image styles
while preserving the shape information. Augmenting images with various styles
can encourage the network to learn high-level shape-based representation instead
of texture-based representation, leading to improved network robustness on un-
seen classes, as discussed in [32]. By contrast, VAT only introduces imperceptible
noise, failing to model realistic image appearance variations.
Ablation study. To get a better understanding of the effectiveness of adver-
sarial bias field, we compared it to data augmentation using random bias field,
using experiment setting 2. Results clearly showed that training with adversar-
ial bias field improved the model generalization ability, increasing the Dice score
from 0.852 to 0.868. On the other hand, applying Dcomp to regularize the net-
work improved the average Dice score from 0.859 to 0.868, compared to the one
trained with only DKL. Unlike random-based approach, constructing adversarial
attacks considers both the posterior probability information estimated by the
model and semantic information from images. In experiments, we found these
attacks focused on attacking challenging images on which the network was un-
certain, e.g. object boundary is not clear or there is another similar structure
presented, see Fig. 2. In the same spirit of online hard example mining, utilizing
these borderline examples during training helps the network to improve its gen-
eralization and robustness ability. Please find more details in the supplementary
material.

4 Discussion and Conclusion

In this work, we presented a realistic adversarial data augmentation method
to improve the generalization and robustness for neural network-based medical
image segmentation. We demonstrated that by modelling bias field and introduc-
ing adversarial learning, the proposed method is able to promote the learning
of robust semantic features for cardiac image segmentation. It can also alle-
viate the data scarcity problem, as demonstrated in the low-data setting and
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cross-population experiments. The proposed method does not rely on generative
networks but instead employs a small set of explainable and controllable param-
eters to augment data with image appearance variations which are realistic for
MR. It can be easily extended for multi-class segmentation and used in general
segmentation networks for improving model generalization and robustness.

Acknowledgements. This work was supported by the SmartHeart EPSRC
Programme Grant (EP/P001009/1). HQ was supported by the EPSRC Pro-
gramme Grant (EP/R005982/1).
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Supplementary material: Realistic Adversarial Data

Augmentation for MR Image Segmentation

Supple. Figure 1: Performance of adversarial bias field attack (Adv Bias)
vs random bias field attack (Rand Bias)

Supple. Figure 2: Segmentation accuracy of each method for cardiac my-
ocardium segmentation across five different populations. Each dot rep-
resents the Dice score for each test subject, and its color indicates its group. Our
method (column 4) produces more accurate segmentation on unseen patho-
logical cases than the baselines. This indicates that the proposed method can
improve the model robustness for abnormal cases, even the network was only
trained with normal cases (NOR).
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Supple. Table 1: Dcomp vs DKL

Method Distance Loss Dice HD VolumeSim

VAT DKL 0.853 6.678 0.949
VAT Dcomp 0.856 6.331 0.946

Adv Bias DKL 0.859 6.330 0.949
Adv Bias Dcomp 0.868 5.912 0.957

HD: Hausdorff distance; VolumeSim: Volume
similarity index [?]. Reported values are aver-
age scores across all test subjects from five pop-
ulations (20 × 4 + 4 = 84 subjects). The same
applies to Table 2.

Supple. Table 2: Random bias field vs Adversarial bias field

Method Distance Loss Dice HD VolumeSim

Rand Bias Dcomp 0.852 6.25 0.941
Adv Bias Dcomp 0.868 5.91 0.957


