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ABSTRACT
One of the greatest challenges in the design of realistic Artificial Intelligence (AI) in computer 
games is agent movement. Pathfinding strategies are usually employed as the core of any AI 
movement  system. This paper examines pathfinding algorithms used presently in games and 
details their shortcomings. These shortcomings are particularly apparent when pathfinding must 
be carried out in real-time in dynamic environments. This paper proposes a strategy by which 
machine learning techniques such as Artificial Neural Networks and Genetic Algorithms can be 
used to enhance traditional pathfinding algorithms to solve the real-time aspect of this problem. 
We  describe  a  test  bed  system,  currently  in  development,  that  incorporates  these  machine 
learning techniques into a 3D game engine.
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Realistic agent movement has always been difficult to achieve. This is particularly apparent in 
cases where we require the agents to carry out  pathfinding; to navigate their way from a start 
position to a goal position through a complex game world. This difficulty is compounded in 
modern games that are becoming more dynamic in nature as a result of middleware engines such 
as Renderware [14] and Havok [6].  These middleware companies allow game developers to 
spend more time developing interesting dynamic games because they remove the need to build 
custom physics engines for each game. But these new dynamic games create a strain on the 
existing traditional pathfinding strategies as these strategies rely on a static representation of the 
game world. Therefore, since the game world can change in real-time, the pathfinding strategy 
also has to adapt in real-time to cope with this. There are two principal abilities required in basic 
real-time pathfinding. These are:

• the ability to head in the direction of a goal, and

• the ability to avoid obstacles that may arise along the path towards the goal.

This paper will highlight the need for real-time pathfinding and investigate how an agent can be 
controlled by a neural network (NN) in order to achieve the desired behaviour. We then discuss 
the steps necessary to train a NN to learn the two basic real-time path-finding components, and 
the results achieved. In the next section we describe the traditional pathfinding approach. We 
then discuss some related work on solving the real-time pathfinding problem. Section 4 details 
our proposed approach using Neural Networks and section 5 discusses the results we obtained. 
We finish by presenting our conclusions and outline plans for future work.

2 TRADITIONAL PATHFINDING
Typically the game world geometry is stored in a structure called a  map. Maps contain all the 
polygons that make up the game environment. In most cases, in order to cut down the search 
space of the game world for the pathfinder, the game map is broken down and simplified. The 
pathfinder then uses this simplified representation of the map to determine the best path from the 
starting point to the desired destination. These simplified representations correspond to  graphs 
upon which search algorithms such as Dijkstra or A* [4][7][8][16] can be used to find paths 
between the nodes on these graphs. Common forms of simplified representations are navigation 
meshes and waypoints [1] [4] [21].

These  simplified  representations  of  a  game  map  are  too  computationally  expensive  to  be 
produced in real-time as game-play progresses and therefore they are pre-processed and loaded 
when the game begins. This means that throughout the course of the game, the AI agent can only 
search this  static representation of the map that was created at  load time. Unfortunately,  the 
assumption  that  the  geometry  of  the  game  remains  static  during  the  course  of  play  is  not 
necessarily valid anymore. This difficulty is then compounded by the fact that the agent typically 
has no real-time awareness of the environment around it. This situation results in a number of 
limitations for traditional pathfinding, some of which we now outline.

Firstly,  middleware  physics  engines  have  the  potential  to  allow  completely  dynamic  game 
geometry where the players and agents can physically alter the structure of the game world as 
play  progresses,  by  knocking  over  walls  for  example.  Dynamic  obstacles  can  therefore  be 
introduced that block previously accessible nodes on the pathfinding graph. When this happens 



the agent will still believe it can walk along this path due to its reliance on the pre-processed 
graph. Techniques have been developed that improve the agents’ reactive abilities when dynamic 
objects obstruct a path. These work well in some situations but generally the agent will not react 
until it has collided with an obstacle as it has no sense of awareness until a trigger is set when a 
collision occurs.

Another problem is the unrealistic movement which arises when the agent walks in a straight line 
between nodes along the path. This is  caused by the dilemma which occurs in the trade off 
between speed (the less number of nodes to search the better) and realistic movement (the more 
nodes the more realistic the movement). This has been improved in some games by applying 
splines (curve of best fit) between the different nodes for smoothing out the path [13][20].

Finally, another problem is the difficulty of implementing any kind of tactical pathfinding. This 
involves not just finding the shortest route but also the route that offers the most cover or avoids 
unnecessary encounters with undesirable game entities. One approach to this is to modify the 
cost heuristic of A* to take line of fire from other enemy agents into account [19]. This has the 
benefits  of  adding  a  more  realistic  touch  to  the  game  and  also  presents  a  less  predictable 
opponent to the human player. The drawback is that due to the added cost, the search space 
becomes much larger for A* to process. This approach also assumes that the threat remains static 
during the paths duration, which is seldom the case.

In conclusion, computer games are now being built using middleware for key components of the 
game, including the physics engine. Middleware is software written by an external source that 
has hooks that allow it to be integrated into a game developer’s code. Therefore game developers 
can spend much more time creating more flexible games with real-time dynamic scenes. This 
sounds exciting; however it is being impeded by traditional pathfinding AI that operates off a 
static representation of the games virtual environment. This limits the amount of dynamic objects 
that can be added to games, as the pathfinding strategy will have to be fine-tuned to handle them 
thus adding more time to the development of the game. Therefore new real-time pathfinding 
strategies are needed to complement the next generation of computer games and thereby give the 
user a more immersive experience.

3 REAL-TIME PATHFINDING
The two components for basic real-time pathfinding are (i) heading in the direction of a goal and 
(ii) avoiding any static and dynamic obstacles that may arise along the path to that goal. In order 
to avoid obstacles the agent need some method of detecting the presence of these obstacles and 
hence needs to be given some form of real-time awareness its surroundings so that is can react 
accordingly.  There  has  been  significant  research  into  the  implementation  of  real-time 
pathfinding,  especially in the robotics field as similar problems are encountered here.  These 
approaches will now be outlined with particular focus on their usefulness within the computer 
games domain. 

3.1 Real-time A*
The Real-time A* algorithm [10] is designed to handle complex search spaces and in particular 
to ensure that results are returned within specified time limits in order to allow robots or agents 
to progress This algorithm works on the same principle as the A* algorithm except it is subject to 
a time variable i.e. a look ahead time. If the goal is found within the set time period it effectively 



works in the same manner as A*. If the goal is not found within the time period the best path is 
chosen according to the information available to the agent. This information takes the form of a 
table of costs associated with each node which is then updated on an ongoing basis.

Real-time A* could be useful in computer games that require the navigation of large numbers of 
AI agents since the time interval can be set dynamically. This prevents the pathfinding taking 
longer than the graphics engine per frame which would result in jerky movement if not corrected. 
The potential flaw is if the time interval is too small the resulting paths will be far from optimal. 
The  main  drawback  though  is  that  the  algorithm  still  relies  on  a  pre-processed  static 
representation of the map and therefore all of the dynamic problems highlighted in the previous 
section still apply. One option may be to use the costs associated with the nodes in order to deal 
with dynamic obstacles but the algorithm is not designed to cope with graphs where the structure 
changes dynamically.

3.2 D* Algorithm
There  has  been  considerable  research  in  the  robotics  field  into  pathfinding  in  a  dynamic 
environment. One of the most suitable approaches with respect to computer games is the D* 
algorithm which stands for dynamic A* [17] [18]. The algorithm starts by computing a path from 
the start position to the end position in the normal manner. However if unforeseen obstacles are 
encountered while travelling along this path then the search algorithm is executed again in order 
to compute potential new paths. This is an interesting solution however it is may not be suitable 
for real-time games due to its requirement for extensive processing time in particular if there 
were  more  than  one  agent  involved.  Another  potential  problem  is  the  generation  of  new 
waypoints in real-time as the agent encounters inconsistencies within the representation of the 
game map it possesses. 

3.3 Steering Algorithms
Steering algorithms are sometimes referred to as  short-range pathfinding  algorithms and are 
intended  to  provide  a  means  of  carrying  out  tasks  such  as  steering  around  obstacles  and 
following paths. Any steering algorithm involves giving the agent real-time awareness using 
sensors in order to make decisions with regard to the local environment. Examples of steering 
include force based methods such as the flocking techniques popularised by Reynolds [15], and 
ray casting methods [20]. 

• Force based steering: Potential obstacles are regarded as emitting repulsive forces which 
grow stronger with proximity. As an agent travels around an environment containing such 
obstacles it  computes the net  result  of  these forces and uses it  to adjust  its  velocity and 
acceleration accordingly. Different types of agent behaviour can be achieved depending on 
how the forces are deciphered.

• Ray casting steering: The agent employs sensors which test and resolves potential lines of 
movement  against  the  environment,  or  against  some pre-computed  representation of  that 
environment. Typically the agent will head in the direction with the longest sensor range.

Steering algorithms offer an effective real-time response to dynamic obstacles since the sensors 
are gathering information in real-time and thus can react to sudden changes within the immediate 
environment of the agent. Considerable research has been carried out on force based steering 



since  it  offers  the  possibility  of  controlling  group  behaviour,  known  as  flocking [15].  This 
flocking behaviour has been applied to monster characters in well known computer games such 
as Unreal and Half-Life [20] thereby offering low cost unscripted behaviour when groups of 
monsters  appear  together.  Real-time  strategy  (RTS)  games  regularly  use  these  flocking 
techniques as they typically have to deal with large amounts of active agents,  all within the 
viewpoint of the player. Ray casting steering on the other hand, while being computationally less 
expensive, as it does not require computation of forces, is largely overlooked as deciding how to 
decipher the sensor data is much more abstract. However, if useful patterns could be derived 
from the sensor  data,  ray casting may prove  to  be a  very useful  tool  for  avoiding dynamic 
obstacles.

4 REAL-TIME PATHFINDING WITH LEARNING ALGORITHMS
Our objective is to provide the agent with a means of learning to navigate its own way around the 
game world rather than simply relying on routes provided by the game engine via a pathfinding 
algorithm such as A*. Providing an agent with this functionality means providing it with two 
important abilities. Firstly it needs the ability to examine its environment in some way in order to 
know what is in front of it and around it, thus giving it real-time awareness. Secondly it needs 
some way of processing this information to accomplish tasks such as steering around obstacles 
that have been placed in its path.

4.1 Sensors
The first ability is achieved by embedding sensors in the agent. This is a concept borrowed from 
the robotics literature where ultrasound or infrared sensors are commonly employed. We adapt 
this idea for our virtual agents by casting rays from the agent which test for intersections with the 
geometry of the game world. This scenario is illustrated in Figure 4.1 In this way information is 
provided to the agent pertaining to the proximity of objects within its field of vision.

Figure 4.1: Shows an agent with four sensors

In our implementation the agents are equipped with four sensors each of which is separated by an 
angle of 30o. This gives an effective field of vision of 90o which should allow the agent to detect 
any obstacles which will significantly affect its path.

30o
30o

30o



4.2 Interpreting Sensor Data
The second ability is to process this information in some way, and our solution to this problem is 
to furnish each agent with an Artificial Neural Network (ANN) [3] [5] which takes the sensor 
information as input.  The ANN is a learning algorithm that is  trained to exhibit  the desired 
behaviour we want – namely that the agent has the ability to steer around objects. If trained 
correctly ANN’s can generalise  on situations that they have not encountered during training 
[3][16] and this should be useful when dealing with dynamic environments. Neural Networks 
once trained, should provide a very robust steering behaviour that is extremely tolerant of noisy 
data. Another advantage of this approach is that the amount of processing required is minimal 
and hence multiple agents can be imbued with this behaviour without causing a major strain on 
the CPU.
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Figure 4.2: Shows the relationship between the amount of neurons in the 
Quake 2 engine and the Frames per Second (FPS)

The definitive measure of success in real-time games is the frames per second (FPS) rate. For a 
real-time game frame rates below 25 - 30 FPS are generally deemed unacceptable. As shown in 
figure 3.1 our system can have well over two hundred thousand neurons active in the Quake 2 
engine at 30 FPS.  This translates depending on how many neurons a NN is composed of to 
thousands of AI agents being able to use a trained NN at the same time.

The data from the sensor is fed as input to the NN and then in turn the output from the NN will 
govern how the AI agent will move. This is a relatively straightforward scenario to set up but the 
main problem arises in training the NN to learn useful reactions to the inputs it receives. The 
training is accomplished by evolving the weights of the NN through a genetic algorithm (GA). 
So essentially  our  approach involves getting an ANN to learn meaningful patterns from the 
sensors i.e. ray casting steering.



Figure 4.3: Illustrates the evolution of a NN’s weights

The encoding  of  a  neural  network  which  is  to  be  evolved  by  a  genetic  algorithm is  fairly 
straightforward. This is achieved by reading all the weights from its respective layers and storing 
them in an array. This weight array represents the chromosome of the organism (AI agent) with 
each individual weight representing a gene. During crossover the arrays for both parents are 
lined up side by side. Then depending on the crossover method, the genetic algorithm chooses 
the respective parents  weights to be passed on to the offspring as shown in figure 4.3.  Our 
system is implemented using the Quake 2 game engine by id software.

4.3 Training
Reinforcement learning [2] [16] is used to evolve the NN’s weights through a genetic algorithm 
(GA). This is achieved by rewarding AI agents for following various rules that the user specifies 
at  different  time intervals.  Then the AI agents are  then ranked according to their  respective 
scores, with the top ranking agents putting a mixture of their weights into a lower ranking agent. 
This is analogous to the evolutionary survival of the fittest model.

The NN and the GA were implemented in C++ and compiled into a standalone library named the 
AI Library. The AI Library gives any programme linking to it access to NN, GA and traditional 
pathfinding functionality through high-level commands. Therefore to train the AI agents within 
the Quake2 engine the AI Library was linked to the engine’s source code. Once linked a number 
of graphical user interfaces (GUI) were implemented that allow the user to integrate a NN into 
the AI agents and evolve them through a GA. 

4.3.1 GA Options GUI
The user is given real-time control over all the GA parameters thus giving the user huge scope to 
dynamically change each of them throughout a simulation. These parameters are the selection 
function,  the  crossover  function,  mutation  probability,  evolution  time  and  all  the  elements 
concerned with the rank function. This facilitates evolution in stages of difficulty, by introducing 
more elements as the AI agent learns previous ones, thus gradually evolving to a more complex 
behaviour.



4.3.2 NN Options GUI
The NN options GUI allows the user real-time control over the inputs to each AI agents NN and 
its activation function. It also offers the user the facility to bias certain inputs thus decreasing the 
search space for the NN initially, and then gradually removing the bias values at later stages of 
the evolution thus gradually increasing the search space. This again facilitates evolution through 
different stages of difficulty. A set of custom maps were also created to facilitate training the AI 
agents to learn the basic components of real-time pathfinding.

5 RESULTS
The first thing that the NN was tested on was its ability to go towards a goal. The idea here is to 
have an agent relentlessly pursues a dynamic object around an obstacle free space. Therefore the 
agent will decide which way to move via a NN that takes the relative position of the goal as its 
input. The NN has three outputs which are turn left,  move forward and turn right respectively. 
The output with the strongest signal will be selected for the next move. This was learned with 
ease  by  the  AI  agents  by  scoring  them for  moving  towards  the  goal.  An  interesting  result 
however is the variety in the solutions the GA produces. This is shown in figure 5.1 where three 
agents x and y coordinates were recorded as they moved from the same initial position to the 
same goal.

Figure 5.1: Trace of three AI agents as they move from the same starting 
position (S) to the same goal position (G)

The next test was to supply the AI agents with sensors and insert them into a map with obstacles 
and evolve them to use the sensor information to steer around obstacles. Once again the NN had 
no  trouble  learning  this  behaviour  once  scored  on  valid  moves  and  turning  in  the  correct 
direction once the sensors detected an obstacle. This time the inputs were the sensors and the 
output was the same as before.

The next test was to see if a NN could learn to head in the direction of a goal and avoid obstacles 
that may litter the path. The AI agent also has no prior knowledge of the map and reacts purely 
on what it senses in real-time. The inputs provided to the NN were relative position to the goal 
and the data received from each of the sensors. This proved to be very difficult for the NN to 
learn so much so that a complete rethink on the training procedures had to be done. It was also 
evident that a NN with one hidden layer was not capable to learning this behaviour. Another 



major change that was integrated into the system was the ability to run the simulation in discreet 
intervals. This meant at the end of each interval the agents were reset to there original position 
and orientation.

Figure 5.2: Outline of one of the bot training maps where bots have to 
move from (S) to (G) to score points

This spawned a series of new custom maps which we call the  bot boot camps.  These maps 
contain sets  of  parallel  obstacle  courses,  each of  which takes  a single AI agent  for discreet 
evolution. Figure 5.2 shows an outline of one of the custom bot boot camp maps. Each agent 
starts at the left side of the map (S) and has to make its way to the goal on the right (G).This 
finally produced AI agents that would head towards a goal and avoid obstacles on the way.

Figure 5.3: Trace of four AI agents as they move from their starting 
position (S) to the goal position (G) on the same map



As shown in figure 5.3 the path the AI agent takes is not the smoothest of paths but illustrates 
that the agent has learned to head towards the goal position and avoid obstacles on route with no 
prior knowledge of the map.

6 CONCLUSIONS AND FUTURE WORK

6.1 Conclusions
While NN’s seemed an obvious choice for our implementation of real-time pathfinding, due to 
their speed at deciphering real-time data and their ability to generalise, they proved very difficult 
to train. However, the results that have been achieved so far demonstrate that NN can learn the 
basic components of real-time pathfinding. This is an exciting prospect as it could become the 
basis of a real-time pathfinding Application Programming Interface (API) that could be used by 
game developers for low level pathfinding in a dynamic game map. The only element the game 
engine would have to provide would be a ray casting function which is a basic component of any 
physics engine. 

Figure 6.1: Shows how real-time pathfinding reduces waypoints in  a 
simple map

6.2 Future Work
Future work will involve refining the training procedures further so as to obtain better results. 
Experiments that have been carried out using the combinations of sensors and Neural Nets to 
emulate smooth steering behaviour have been successful so we anticipate that refinement  of 
training procedures should result in smoother paths. We will also investigate how the use of 
hybrid neural networks [11] might compliment our results. These would be capable of breaking 
up the problem into its two components thus reducing the search space for the full problem. 
Since there will constantly be situations where a higher planning algorithm will be needed to 
guide the AI agent in complex maps, we will investigate the concept of using a trained NN to cut 
down the number of waypoints required to represent these game maps. Figure 6.1 illustrates how 



the simple map requires four waypoints to represent it. Whereas by using a trained NN with 
sensors the map can be represented by two waypoints with the added benefit of being able to 
avoid any obstacle that may litter the map during runtime.
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