
Realistic Analysis for

Algorithmic Problems on

Geographical Data

Werkelijkheidsgetrouwe Analyse voor Algoritmische

Problemen met Geografische Data
(met een samenvatting in het Nederlands)

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de Universiteit Utrecht
op gezag van de rector magnificus, prof.dr. G.J. van der Zwaan,

ingevolge het besluit van het college voor promoties

in het openbaar te verdedigen op
maandag 16 september 2013 des middags te 4.15 uur

door

Anne Driemel

geboren op 19 mei 1983 te Rüdersdorf bei Berlin, Duitsland

Promotoren:
Prof.dr. M. J. van Kreveld
Prof.dr. M. de Berg

This work was supported by the Netherlands Organisation for Scientific Research
(NWO) under project no. 612.065.823 (Realistic Input Models for Geographic Appli-
cations).

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Trajectory analysis . 3
1.1.2 Shape matching . 4
1.1.3 Terrain analysis . 5

1.2 Realistic analysis . 6
1.2.1 Imprecise input models . 7
1.2.2 Probabilistic analysis . 7
1.2.3 Approximation algorithms . 8
1.2.4 Realistic input models . 8

1.3 Contributions of this thesis . 10
1.3.1 Approximating the Fréchet distance 10
1.3.2 Data structures for Fréchet-distance queries 11
1.3.3 The Fréchet distance with shortcuts 12
1.3.4 Flow computations on imprecise terrains 13
1.3.5 The complexity of Voronoi diagrams on terrains 14

2 Introduction to the Fréchet distance 15
2.1 Basic definitions . 15
2.2 State of the art . 16
2.3 Basic concepts . 17
2.4 Alt and Godau’s algorithm . 19
2.5 Notation . 20

3 Approximating the Fréchet distance 21
3.1 On c-packed curves . 21

3.1.1 Definition and basic properties 21
3.1.2 Curve simplification . 22
3.1.3 Bounding the free-space complexity 23

3.2 The algorithm . 24

iii

iv CONTENTS

3.2.1 Computing the reachable free space 24

3.2.2 The approximate decision procedure 26

3.2.3 Searching for the Fréchet distance 27

3.2.4 The resulting algorithm . 31

3.3 Analysis of the algorithm . 31

3.3.1 Correctness . 31

3.3.2 Running time . 33

3.3.3 The result . 34

3.4 Extension to low-density curves . 35

3.4.1 Low density curves can be long only if they pay for it 35

3.4.2 Accounting for many reachable free-space cells 37

3.5 Extension to bounded curves . 39

3.6 Extension to closed packed curves . 41

3.7 Fatness implies packedness . 43

3.8 Concluding remarks . 44

4 Data structures for Fréchet-distance queries 47

4.1 Useful lemmas for curves and segments 47

4.2 Data structure for queries with single segments 49

4.2.1 Stage 1: Achieving a constant-factor approximation 49

4.2.2 Stage 2: A segment query to the entire curve 51

4.2.3 Stage 3: A segment query to a subcurve 53

4.3 Data structure for queries with polygonal curves 56

4.3.1 Universal vertex permutation 56

4.3.2 Extending the data structure 60

4.4 Concluding remarks . 62

5 The Fréchet distance with shortcuts 65

5.1 Introduction . 65

5.2 Preliminaries . 68

5.2.1 The k-shortcut Fréchet distance 68

5.2.2 Tunnels in the free space diagram 69

5.3 The vertex-restricted shortcut Fréchet distance 72

5.3.1 Canonical tunnels and gates . 72

5.3.2 A polynomial-time exact algorithm 73

5.3.3 Tunnel events . 76

5.3.4 Analysis of the exact algorithm 78

5.3.5 A near-linear time approximation algorithm 80

5.3.6 Analysis of the approximation algorithm 86

5.3.7 Extension to the k-shortcut Fréchet distance 90

5.4 The continuous shortcut Fréchet distance 95

5.4.1 NP-hardness reduction . 95

5.4.2 Correctness of the reduction . 102

5.4.3 Algorithmic results . 110

5.5 Concluding remarks . 117

CONTENTS v

6 Flow computations on imprecise terrains 121
6.1 Introduction . 121

6.1.1 Basic definitions and notation 123
6.2 NP-hardness in the surface model . 123

6.2.1 Flow model . 124
6.2.2 Overview of the construction 124
6.2.3 Details of the construction . 127
6.2.4 Analysis of flow through a gadget 129
6.2.5 Correctness of the NP-hardness reduction 130

6.3 Watersheds in the network model . 131
6.3.1 Flow model . 131
6.3.2 Flow paths are stable . 132
6.3.3 Potential watersheds . 133
6.3.4 Computing potential watersheds in linear time 138
6.3.5 Potential downstream areas . 140
6.3.6 Persistent watersheds . 142

6.4 Regular terrains . 145
6.4.1 Characterization of regular terrains 145
6.4.2 Computing proxies and regular terrains 147
6.4.3 Nesting properties of imprecise watersheds 149
6.4.4 Fuzzy watershed boundaries . 151
6.4.5 The fuzzy watershed decomposition 154
6.4.6 Disconnected persistent watersheds 157

6.5 Concluding remarks . 157

7 Complexity of Voronoi diagrams on terrains 161
7.1 Introduction . 161
7.2 Preliminaries . 163

7.2.1 Voronoi diagrams on terrains 163
7.2.2 The input model . 163
7.2.3 The complexity of the Voronoi diagram 165

7.3 Upper bound . 167
7.4 Lower bound . 170

7.4.1 A simple example . 170
7.4.2 Farming – an Ω(n

√
m) example 171

7.4.3 Industrial farming – an Ω
(
nm2/3

)
example 173

7.5 Concluding remarks . 178

8 Conclusions 179
8.1 Summary . 179
8.2 Outlook . 180

8.2.1 Shape-matching protein structures 180
8.2.2 Towards robust hydrological computations 181

References 187

Publications 199

vi CONTENTS

Samenvatting 201

Zusammenfassung 205

Summary 209

Acknowledgements 213

Curriculum Vitae 215

Colophon 217

CHAPTER 1

Introduction

Geographical information science is no more
about geographical information systems than

astronomy is about telescopes.1

1.1 Motivation

Many of our every-day problems are spatial, for example the question where the next
coffee place is or how to get back to the hotel. We increasingly solve them with the
help of the computer. While it used to be prevalent to ask people for directions on
the street, today modern gadgets such as smart phones and navigation systems can
provide an answer just as conveniently.

Underlying this technology are so-called geographic information systems (GIS).
The advancement of these systems is closely linked to automated cartography. In the
most general terms, a geographic information system processes spatially referenced
data and provides a visualization or summary (e.g., a map) of certain aspects of the
data. A specific type of geographical data are trajectories of moving objects. The
temporal component which is present in this tracking data is posing new challenges to
GIS technology and is receiving increasing attention [47, 48]. Figure 1.1 demonstrates
the need to address this challenge. The figure shows an automatically generated map
of vessels driving in the Aegean sea over the period of one day. Since the temporal
information was omitted from the data, the individual trajectories are not recognizable
and the picture is cluttered.

Traditionally, geographic information systems are designed for experts to support
decision making and for research purposes [93]. They are aimed at investigating

1In its original form, the statement “Computer science is no more about computers than astron-
omy is about telescopes” is sometimes attributed to E.W. Dijkstra.

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Example of an automatically generated map showing vessel trajectories.
(Source: Archipelagos Institute of Marine Conservation, http://www.archipelago.gr/)

complex questions, such as: Where should one build houses such that they will not
get flooded in the next twenty to fifty years? What are the prime locations for
new businesses which maximize the number of walk-in customers? How should radio
towers be distributed to provide maximal coverage of the served area and at the same
time minimize the interference?

Computer science is a research area that is nourished by problems arising in ap-
plication areas. Typically, a problem is first modelled in the form of a mathematical
question with the goal to solve the problem on this abstract level. For example, in-
stead of studying the problem of predicting surface flow for a particular geographical
region, we assume the terrain is given as a triangulated surface of points in three-
dimensional space and we assume any water stream follows the path of steepest de-
scent. We can define a watershed map that subdivides the surface into regions, where
each region consists of the surface points that send water to the same local minimum.
This helps us to predict the volumes of water that arrive at a certain point in the
river. During this process, the abstract problem may become disconnected from the
original application and may develop a life of its own, given that it is algorithmically
interesting enough. Much later and without anticipation, the same abstract problem
might appear in a different context again. Watershed maps, for example, are also
used in image segmentation. In this way, solutions become universally applicable and
are continuously extended. This is where computer science distinguishes itself as a
science from basic engineering. The statement at the beginning of this chapter alludes
to this fundamental difference. It could have been by E.W. Dijkstra, who was a vivid
promotor of the mathematical view onto problems which arise in the development of

1.1. MOTIVATION 3

computer programs [63, 66, 64, 65] and who received the Turing award for his eloquent
insistence. In a similar spirit, but less provocatively, Michael Goodchild distinguishes:

“geographic information science (GIScience), which is the research field
that studies the general principles underlying the acquisition, manage-
ment, processing, analysis, visualization, and storage of geographic data;
and geographic information systems (GIS), which are computer software
packages designed to carry out these activities” [80].

The analysis of geographical data stands in the long tradition of the old math-
ematical field of geometry. The origin of the word derives from ancient greek: geo-
“earth” and -metron “measurement”. Today, computational geometry is the branch
of theoretical computer science which has a focus on geometrical algorithms and data
structures. Thus, the algorithmic problems that arise in the development of GIS tech-
nology, besides being of interest to GIScience, also fall into the area of computational
geometry.

In theoretical computer science, the standard way to measure the efficiency of an
algorithm is to analyze its running time and space requirements in the worst case.
This fundamental technique helps us to distinguish hard problems from tractable ones
and thus to reason about the computational complexity of problems. However, the
worst-case analysis does not always predict the actual behaviour of an algorithm and
thus it is sometimes less suitable to measure the efficiency in practice. This is a
limitation of the abstraction process described earlier.

In this thesis, we want to bridge the gap between theory and practice by using
realistic analysis. It spans a collection of techniques that allow for a theoretical
analysis with provable bounds which are meaningful in practice. We will discuss
these techniques in more detail in Section 1.2. Next, we outline the general topics
of this thesis. The specific contributions in these subject areas are then discussed in
Section 1.3.

1.1.1 Trajectory analysis

A trajectory is a curve parametrized by time. Its representation usually follows the
way it is recorded, that is, as a series of time-stamped positions. The research area of
trajectory analysis is relatively young. With the advent and wide availability of dig-
ital tracking devices, such as GPS-sensors and mobile phones, an increasing amount
of tracking data is being collected [98, 106]. The research objectives are diverse. Re-
searchers might be interested, for example in the movement behaviour of animals,
which they have tagged with location sensors [39, 85]. Similarly, traffic analysts may
be interested in the navigational strategies used by taxi drivers or bicyclists in large
cities [160, 22]. Another source for trajectory data lies in meteorology. The ability
to trace and predict the trajectory of a hurricane can be crucial in disaster manage-
ment and evacuation planning [22, 152]. Figure 1.1 demonstrates the challenges in
visualizing and structuring the amount of data being collected.

With all of this data available, there is a growing demand for efficient algorithms
and data structures to manipulate, store and analyze this data. One of the problems
that are relevant here is the shape matching problem, which we discuss in detail further
below. A specific variant of this problem is finding the path of a moving object in a

4 CHAPTER 1. INTRODUCTION

street map. Assume we are given the trajectory of the object and a geometric graph
(the street map). To solve the problem, one can find the path in the graph which
has the closest similarity to the trajectory over all possible paths in the graph. We
study shape matching techniques for curves and data structures to support similarity
queries in Chapters 2-5.

Another problem is the trajectory segmentation problem. The goal is to partition
the trajectory into subsequences that are homogeneous according to some particular
measure. As a high-level example, consider the trajectory of a person commuting
between home and work. A meaningful segmentation would distinguish the time
periods where the person is either (i) walking, (ii) using the train, (ii) using the car,
(iii) using the bicycle, or (iv) staying in one place.2

1.1.2 Shape matching

The shape matching problem is to compute whether two given shapes are similar and
how similar they are. It is an active research topic within computational geometry [9],
as well as in many other research areas.

Input shapes may be handwritten characters [121,
138] or outlines of objects depicted in an image [134],
protein chains in structural biology [94] or trajectories
of moving objects [157, 32].

We can identify two fundamental problems:
(A) how to define similarity and
(B) how to compute this similarity efficiently.

For the first problem, one can define a similarity mea-
sure, which is a function that returns a high score if the
input curves are very similar. More commonly, a dis-
tance measure is defined, where the score is inversely proportional to the similarity.
For computational reasons it can be desirable if the triangle inequality is satisfied.
Ideally, this function closely models human perception and judgement.

Depending on the application setting, the appropriate definition of similarity might
be transformation invariant. For example, when comparing molecular structures,
their actual placement and orientation in three-dimensional space must be ignored
(invariance under rigid motions). In imaging, the same object might be depicted
from slightly different perspectives (invariance under affine transformations). The
semantics of the geographical positions visited by a trajectory are global and therefore
transformation invariance is usually not desirable in this case. The distance measures
which we discuss in this thesis are not invariant under transformations.

A very general and well-known distance measure in mathematics is the so-called
Hausdorff distance. Given two point sets A and B, consider the largest distance
that any point in A has to a closest point in B and the largest distance that any
point in B has to a closest point in A. The maximum over both directions is the
Hausdorff distance. Another distance measure is the so-called Fréchet distance, which
we formally define in Chapter 2. The Fréchet distance is very similar to the Hausdorff
distance, however it is better suitable for curves, since it takes the continuity of the

2The author of this thesis has published on this topic, see [38] and [18], however this material was
omitted from the thesis.

1.1. MOTIVATION 5

curves into account. Intuitively, it corresponds to the maximum distance a point
on the first curve has to travel as this curve is being continuously deformed into the
second curve. Hence, the Fréchet distance is dominated by the maximum distance (the
so-called bottleneck) that two points on the curves have under the Fréchet matching.

Compared to other distance measures which use an averaging mechanism, the
bottleneck makes it quite sensitive to noise and therefore less applicable to real-world
data. In Chapter 5 we introduce a new variant of the Fréchet distance which is more
robust against input noise and study the computational problems that arise from
this definition. Furthermore, in Chapter 3 we study the problem of computing the
standard Fréchet distance and in Chapter 4 we study data structures that support
queries for the Fréchet distance between partial curves. In Chapter 8 we come back
to these definitions in the context of protein structure comparison.

1.1.3 Terrain analysis

Naturally, many geographical questions involve the surface of the earth. Hydrological
modelling is an example of a research area within GIScience where the interplay of
elevations on the surface is of huge importance. The main question is where water
resulting from precipitation ends up once it hits the surface and how river networks
are formed resulting from this flow of water [26].

We can also ask the question the other way around:
Given a point on the terrain, which other places can it
possibly receive water from and how much?

Watershed maps can be computed to answer this
question [143, 49]. However, there are still many open
questions and challenges that remain. The computa-
tions have to be done on a digital model of the actual
geographic terrain, which inevitably contains measure-
ment errors. However, hydrological computations are
known to be extremely sensitive to elevation error [154, 26].

A mathematical model of a terrain is a height function on a two-dimensional
domain. We can distinguish two basic types of models. The model most commonly
used in computational geometry is the polyhedral terrain. In this model, a terrain is
defined by a triangulated set of points in the domain, where every point has a certain
height. The surface of the terrain is defined by the triangulation lifted according to
these heights. The second model which is very popular in GIS, is a grid terrain. In
this model, the domain is formed by a grid and here every grid point has a certain
height. One can picture the surface of this type of terrain as a bed of needles with
different lengths.

The main difference between the two models is that the polyhedral terrain pro-
vides a continuous model of the surface, whereas the grid terrain serves as a discrete
model of the same. The type of model (polyhedral vs. grid) used in hydrological
computations can have a large influence on the outcome and difficulty of the com-
putations. We study these relations in more detail in Chapter 6. In Chapter 8 we
give an extensive interdisciplinary literature review on flow computations on digital
terrains and evaluate our results in this context.

6 CHAPTER 1. INTRODUCTION

The second topic which lies in the area of terrain analysis and which we study
in this thesis involves the shortest paths along the terrain surface. Such a shortest
path is called a geodesic and the length of the path is called the geodesic distance.
Mathematically, the terrain surface induces a distance measure on the set of points
which forms its surface.

The Voronoi diagram is defined as a subdivision of
a space into cells according to a set of sites, which we
here define as a set of points. The cell that corresponds
to a site consists of all the points for which the site is
the nearest neighbor out of the set of sites.

One can define the Voronoi diagram on the terrain
surface with respect to the geodesic distances. Such

geodesic Voronoi diagrams are an important data structure used in wireless net-
works [107, 139], surface reconstruction and analysis [104, 117, 140], and many other
problems. An interesting question is thus, what the complexity of such a geodesic
Voronoi diagram is in practice. We give answers to this question in Chapter 7.

1.2 Realistic analysis

The worst-case analysis of the running time and space complexities as a function of the
input size is a fundamental method in algorithm design. However, it fails to describe
the actual behaviour when the worst case is a contrived geometric configuration which
would never occur in practice.

For instance in practice, the complexity of Voronoi diagrams on terrains can be
observed to be linear in the size of the terrain. In the example shown on page 7,
however, a construction of a terrain is described, such that the Voronoi diagram of
two particular points on the surface has quadratic complexity. Note that the terrain
is very specific and contrived in its shape and representation. The example illustrates
the discrepancy between the analysis and the reality which we are facing when working
with geographical input.

There are different approaches to reasoning about algorithms and data structures
for real data that allow a theoretical analysis with provable bounds. Known techniques
that have been used in computational geometry are approximation algorithms [86],
probabilistic analyses such as expected [128] and smoothed analysis [137], imprecise
input models [112], and realistic input models [56].

Thus, we have a collection of sophisticated tools at our disposal, which we make
use of in this thesis. In Chapter 3 and Chapter 5, we give several approximation algo-
rithms and use realistic input models in the analysis. In Chapter 6 we use imprecise
input models. In Chapter 7 we use a combination of realistic input models and a
probabilistic analysis.

1.2.1 Imprecise input models

Inarguably, real-world data is imprecise and contains measurement errors. Similarly,
the limitations of floating point arithmetic in modern processors can lead to the output
being incorrect. On the other hand, the worst-case configurations which we deal with

1.2. REALISTIC ANALYSIS 7

Example 1.2 A high complexity Voronoi diagram on a terrain.

A B
The bisector between two points A and B on a poly-
hedral terrain is formed by the set of points that
have equal geodesic distance to A and to B. Sub-
dividing the surface into two cells, it represents the
Voronoi diagram of A and B on the terrain. In the
worst case, the bisector can have a quadratic com-
plexity. A construction that shows this is depicted
in the figure to the right. We place A and B at the centers of two chinese fans,
each of linear complexity. The arms of the fans connect to a linear number of
ridges on two opposite sides and are shifted against each other. The construction
is such that the shortest path from any point on the bisector to either A or B will
follow one of the lines on top of the corresponding fan. This has the effect that
the bisector crosses the ridge triangles in a zig-zag manner leading to a quadratic
number of intersections with the triangles that form the terrain surface. This
example was previously mentioned in [119].

in the theoretical analysis are often very specific. In some cases, a perturbation in the
right place might break the mechanics of the construction. This problem is not specific
to geometrical data. To bound numerical errors in mathematical computations, the
theory of interval arithmetic has been developed long ago. Instead of doing the
computations with seemingly exact values, we can use intervals which contain the
true exact value to bound the computational error in every step of the computations.
In this way, the error in the output of the computations can be controlled.

In computational geometry, the input data is often described using higher dimen-
sional coordinates. Here, the equivalent to intervals are disks or balls, which contain
the true coordinates. In some cases, the increased correctness comes at the cost of
making the computational problems harder. In other cases, it is possible to prove a
lower complexity that is closer to the observed complexities, for example in [55].

1.2.2 Probabilistic analysis

Randomized algorithms, such as quicksort, are used in many state of the art software
libraries. The efficiency observed in practice can also be proven in theory if we use a
probabilistic analysis for the running time. The basic idea is the following. Instead
of bounding the complexity in the worst case, we assume a probability distribution
over all possible input instances and bound the complexity in the expected case.
Alternatively, if the algorithm is randomized, one can take the probability over the
internal randomness of the algorithm. We can also combine the idea of imprecise
input models, which we discussed above, with a probabilistic analysis. Indeed, the
idea of the so-called smoothed analysis is to analyze the expected complexity under
small perturbations of the input. Analysing the complexity of an algorithm often
reduces to analysing the complexity of a combinatorial or geometric structure. The
same holds true for analysing the costs and performance of a data structure. In both
cases a probabilistic analysis can give new insights.

8 CHAPTER 1. INTRODUCTION

r

p
p

r

(a) (b) (c)

Figure 1.3: Illustration to the definitions of (a) fatness, (b) low-density of a set of
triangles and (c) packedness of a curve.

1.2.3 Approximation algorithms

If we acknowledge that the input is imprecise, then we might also be satisfied with an
approximate answer to the studied questions. For this, the theory of approximation
algorithms has been developed. An approximation algorithm is an algorithm which
does not give the exact answer. However, the output can be proven to be correct
up to a certain factor. This factor is usually independent of the input size. In some
cases, the algorithm can even output a result which is arbitrarily close to the exact
result. This can be modeled by proving an approximation factor of (1 + ε), where
ε > 0 is an input parameter to the algorithm. In this case, the running time and
space complexities also depend on the value of ε and this parameter has to be taken
into account in the analysis.

1.2.4 Realistic input models

The idea behind so-called realistic input models is to carry out the worst-case analysis
with respect to parameters that describe how “unrealistic” the input is. Typically,
these parameters constrain shape or distribution in space. Using this technique,
one can sometimes explain an observed discrepancy between actual and theoretical
running times and reveal inherent properties of realistic input that make the problem
computationally easy or hard. More importantly, this gives rise to new algorithms
that are more efficient by exploiting the observed properties. The most commonly
used realistic input models are fatness and low density. In this thesis we introduce a
third model, called packedness and analyze its relationship to previous models. We
give a brief overview over these models. For a more extensive discussion we refer to
the paper by de Berg et al. [56].

Fatness. Arguably, fatness is one of the earliest realistic input models that have
been used in computational geometry, albeit without this particular label. Alt et al.
[11] show among other results that the union complexity of n wedges is in O(n) if
the opening angles of the wedges are bounded from below. Note that without this
restriction, the complexity is Θ(n2), since skinny wedges can be arranged to form a
grid-like structure with many holes. Later, this concept was used also by Matoušek
et al. in [115] when they introduced so-called fat triangles, the definition being again
that the inside angles are bounded from below. Over time, the concept of fatness has

1.2. REALISTIC ANALYSIS 9

Figure 1.4: Examples of curves that are c-packed for a small constant c.

been generalized further beyond geometric primitives. One of the most recent results
by de Berg [50] deals with fat objects which are not necessarily convex or polygonal.
According to this definition, an object is (locally) γ-fat, if for any ball centered inside
the object, and which does not fully contain the object, the connected component of
the object inside the ball, which contains the center, takes up at least a ratio of γ of
the volume of the ball. See Figure 1.3 (a) for an illustration.

The class of shapes defined by this definition is more general than a definition of
fatness previously suggested by Efrat, which is the class of (α, β)-covered shapes [74].

Low density. The idea of parametrizing the density of a set of geometric objects was
introduced initially for the robot motion planning problem [148, 147]. It also proved
to be a useful input assumption for shortest-path computations on polyhedra and
Voronoi diagrams on terrains [130, 17, 69]. A set of objects is γ-low-density, if for any
ball of any radius, the number of objects intersecting the ball that are larger than the
ball is less than γ. See Figure 1.3 (b) for an illustration. This definition allows for a
very general class of realistic input. A large ball can contain many triangles as long
as they are small. Furthermore, like the definition of fatness, it is scale independent.
There exists a strict hierarchy of models, as shown in [56]. According to this hierachy,
low-density is strictly more general than fatness, since a set of non-intersecting fat
objects is always low-density, but a set of low-density objects does not need to consist
of fat objects. We can also apply the low-density assumption to the set of edges of a
polygonal curve and obtain a very general class of curves.

Straightness and boundedness. Alt et al. study the problem of computing certain
similarity measures for restricted classes of curves in [14]. Following their definitions,
a curve is called γ-straight, if the euclidian distance between two points on the curve
is only a factor γ smaller than their distance along the curve. Secondly, a curve is
called γ-bounded, if for any two points on the curve, the portion connecting them
stays within a radius of γ to either point. These models bound the dilation or detour
of the curve, which is a natural way to restrict such a curve. However, note that the
resulting classes of curves are not very general, since the restriction on the detour
disallows the curve to revisit places.

10 CHAPTER 1. INTRODUCTION

Packedness. In this thesis, we introduce a new class of curves, called c-packed curves.
A curveX is c-packed if the total length ofX inside any ball is bounded by c times the
radius of the ball. See Figure 1.3 (c) for an illustration. A c-bounded curve might have
arbitrary length while maintaining a finite diameter, and as such may not be c-packed.
However, in some sense c-packed curves are considerably more general and a more
natural family of curves. For example, a c-packed curve might self cross and revisit
the same location several times, and concatenating two c-packed curves always results
in a (2c)-packed curve, none of which can be claimed for c-bounded curves. Figure 1.4
shows examples of curves which are c-packed for a small constant c. Like fatness and
low-density, the definition is scale independent. Intuitively, c-packed curves behave
reasonably in any resolution. We will see that the class of c-packed curves is strictly
more general than the class of low-density curves. In section Section 3.1 we study
basic properties of c-packed curves.

1.3 Contributions of this thesis

1.3.1 Approximating the Fréchet distance

The Fréchet distance is used in shape matching to define similarity between curves.
An intuitive definition can be given as follows. Imagine walking forwards along the
two curves simultaneously. At any point in time, the two positions have to stay within
distance δ from each other. The minimal δ for which such a traversal is possible is
the Fréchet distance. In Chapter 2 we give an extensive introduction to this distance
measure and explain standard concepts used in the literature.

To date, the best known algorithm to compute the Fréchet distance between two
polygonal curves takes time roughly quadratic in the number of vertices. The algo-
rithm consists of a decision procedure, which is used in a search over candidate values
for the Fréchet distance. In Chapter 3 we present a simple and practical (1 + ε)-
approximation algorithm for the Fréchet distance between two polygonal curves in IRd.
We show that our algorithm has near-linear running time for c-packed polygonal
curves and similar results for other input models. Underlying the algorithm are sev-
eral new insights. We simplify the input curves during the decision procedure to the
appropriate resolution to reduce the complexity of the algorithm. The choice of the
resolution has to be balanced to preserve enough information to reason about the orig-
inal curves. Secondly, we show how to approximate the candidate values, such that
the search for the Fréchet distance can be done efficiently without using parametric
search or random sampling.

We extend the analysis and show that also for low-density curves in the plane
the algorithm runs in near-linear time and is still subquadratic in higher dimensions.
This relies on a new packing lemma showing that, if the simplification of a low-density
curve is long inside a relatively small area, then the original curve must contain many
vertices in the vicinity of this region. We also improve upon the result by Alt et al.
[14] for κ-bounded curves and we show how to adapt our algorithm to handle closed
curves. These bounds imply that the presented algorithm provides fast approximation
for the Fréchet distance for all these types of curves. The new results are summarized
in Table 1.5. The material in Chapter 3 has been published in [70] and in [71].

1.3. CONTRIBUTIONS OF THIS THESIS 11

Curves type Running time See

c-packed O(cn/ε+ cn log n) Theorem 3.3.5

κ-straight Same as 2κ-packed Lemma 3.5.2

κ-bounded O
(
(κ/ε)dn log n

)
Theorem 3.5.6

O(1)-low-density O

(
n2(d−1)/d

ε2
log n

)
Theorem 3.4.7

c-packed & closed O
(
c2n/ε2 + c2n log n

)
Theorem 3.6.4

Table 1.5: Summary of new results for computing a (1 + ε)-approximation to the
Fréchet distance between two polygonal curves with n vertices in IRd. For κ-bounded
and low-density curves, the running time can be slightly improved, see [71].

1.3.2 Data structures for Fréchet-distance queries

In Chapter 4 we present a data structure that preprocesses a given polygonal curve Z,
such that given a query segment h, and two points p, p′ on Z (and the edges containing
them), it (1 + ε)-approximates the Fréchet distance between h and the subcurve of
Z between p and p′. This data structure is used by the algorithms described in the
proceeding Chapter 5. The data structure works for any polygonal curve, requires
O(n log2 n) time and O(n) space for preprocessing, regardless of the packedness or
density of the input, and can answer such queries in O(log n log log n) time (ignoring
the dependency on ε).

We extend the data structure as follows. First, we show how to preprocess a
polygonal curve in near-linear time and space, such that, given a number k ∈ IN, one
can compute a simplification in O(k) time which hasK = 2k−1 vertices of the original
curve and has approximately optimal Fréchet distance to the original curve, compared
to any curve which uses k vertices. Surprisingly, this can be done by computing a
permutation of the vertices of the input curve, such that this simplification is the
subcurve defined by the first K vertices in this permutation. Namely, we compute an
ordering of the vertices of the curves by their “Fréchet error”.

Secondly, we use this vertex permutation to extend the initial data structure to
support queries with polygonal curves of multiple segments (as opposed to single
segments). The resulting data structure can answer queries with a constant approxi-
mation factor in O(k2 log n log(k log n)) time, where k is the number of vertices of the
query curve. The preprocessing takes O(n log3 n) time and uses O(n log n) space.

To our knowledge these are the first data structures to support these types of
queries, apart from recent results by de Berg et al. [53] and Gudmundsson and
Smid [83]. De Berg et al. provide a data structure to count the number of subcurves
that are within a certain Fréchet distance from a query segment up to a constant
approximation factor. Gudmundsson and Smid study the problem under the packed-
ness assumption. In the concluding remarks of the chapter we outline how our data
structures could be extended to the case where the subcurve of Z is not fixed. The
material in Chapter 4 has been published in [67] and will be published in [68].

12 CHAPTER 1. INTRODUCTION

1.3.3 The Fréchet distance with shortcuts

The standard Fréchet distance is a bottleneck distance measure and hence quite sen-
sitive to outliers. In Chapter 5 we introduce the notion of a more robust Fréchet
distance. Again, imagine walking along the two curves simultaneously while main-
taining a maximal distance between the two positions. However, we are now allowed
to “shortcut” parts of the input curves. This is a natural approach for handling
noise, in particular batched outliers. Consider the example of a bird navigating along
a coastline. The bird ignores “detours” like harbors or river mouths and instead fol-
lows a shortcut across, see the figure to the right. Using the new shortcut Fréchet
distance, we can detect the similarity of the trajectory to the coastline. The distance
measure automatically cuts across outliers and ignores data specific “detours”. Hence
it can produce more meaningful results when dealing with real-world data than the
standard Fréchet distance. It can also be interpreted as a partial distance measure
which is parameter-free. We study the complexity of computing the shortcut Fréchet
distance in the case where shortcuts can be taken on one of the two curves. The
results can be summarized as follows.

We first study the shortcut Fréchet distance in the case where shortcuts have to
start and end at input vertices of one of the two curves. For a prescribed parameter
ε > 0, we present an algorithm for computing a (3+ε)-approximation to the shortcut
Fréchet distance between two given c-packed polygonal curves of total complexity n.
The running time of the new algorithm is near-linear if the number of shortcuts is
small or unbounded. More precisely, if we allow an unbounded number of shortcuts
the running time is O

(
c2n log3 n

)
. For the case that only k shortcuts are allowed, we

present a variant of this algorithm with running time O
(
c2kn log3 n

)
. In the analysis

we use techniques developed in Chapter 3 and follow the general approach of devising a
decision procedure which is used to search over the critical values, the candidate values
for the shortcut Fréchet distance. The shortcuts introduce a new type of candidate
value. We characterize these values and show how to compute them. Furthermore, we
show that these values have a certain monotonicity property, which makes it possible
to search over them efficiently. We also present a polynomial-time exact algorithm to
compute the shortcut Fréchet distance in the vertex-restricted case.

Figure 1.6: A trajectory (blue) of a seagull on the way to its nest, navigating along
the coastline of Zeeland (the Netherlands) while taking shortcuts (red).

1.3. CONTRIBUTIONS OF THIS THESIS 13

In the second part of the chapter, we show that, surprisingly, in the general case,
where shortcuts can be taken at any point along a curve, the problem of computing
the shortcut Fréchet distance exactly is NP-hard. This constitutes the first hardness
result for a variant of the Fréchet distance between two polygonal curves. Specifically,
we describe a polynomial-time reduction from SUBSET-SUM to the decision prob-
lem. An important observation is that the reachable free-space of the matchings may
fragment into an exponential number of components. We use this fact in our reduc-
tion together with a mechanism that controls the sequence of free-space components
that may be visited.

Furthermore, we show how to combine the algorithmic layout used in the first
part of the chapter with a line-stabbing algorithm of Guibas et al. [84] to obtain a
3-approximation algorithm for the decision problem which runs in O(n3 log n) time.
The approximation scheme used by this algorithm naturally prevents the reachable
free space from being fragmented. While traversing the free space diagram, the line-
stabbing algorithm enables us to compute the possible endpoints of shortcuts in the
interior of edges.

In the concluding remarks of the chapter we give an extensive discussion of open
problems. In particular we discuss some challenges in extending the decision algorithm
to the computation problem. Furthermore, we discuss the case where shortcuts can
be taken on both curves and conjecture that many of our results carry over.

The material in Chapter 5 has been partially published in [67] and in [37] and will
be partially published in [68].

1.3.4 Flow computations on imprecise terrains

In Chapter 6 we study water flow computation on imprecise terrains. The problem
has been extensively studied under the assumption that the given elevation data is
exact. The watershed of a point p is commonly defined as the set of points that
send water to p via a flow path. On imprecise terrains, we introduce the notion of
a potential watershed, which consists of the points that could potentially send water
to p via a flow path, and the persistent watershed, which consists of the points that
persistently send water to p in some way or another.

We consider two approaches to modeling flow on an imprecise terrain: one where
water flows across the surface of a polyhedral terrain in the direction of steepest
descent, and one where water only flows along the edges of a predefined graph, for
example a grid or a triangulation. The second model is widely adopted in GIS ap-
plications, for example in the form of the D-8 grid model. In both cases we allow
each vertex an imprecise elevation, given by an interval of possible values, while its
(x, y)-coordinates are fixed. For the first model, we show that the problem of deciding
whether one vertex may be contained in the watershed of another is NP-hard.

In contrast, for the second model we give a simple O(n log n)-time algorithm to
compute the potential and persistent watershed of a vertex, or a set of vertices, where
n is the number of edges of the graph. On a grid model, we can compute the same
in O(n) time. We extend these techniques and achieve the same running times for
computing the potential downstream area of a point.

In order to still extend these results, we define a certain class of imprecise terrains
which we call regular. We prove that persistent watersheds satisfy certain nesting

14 CHAPTER 1. INTRODUCTION

conditions on regular terrains and give an algorithm that turns a non-regular terrain
into a regular one. This leads to efficient computations of potential watershed bound-
aries, and to a natural definition of a potential ridge, which delineates the persistent
watersheds of the “main” minima of a regular terrain. On regular terrains, the po-
tential ridge is equal to the union of the areas where the potential watersheds of these
minima overlap and we can compute it in O(n log n) time.

The material in Chapter 6 has been previously published in [72] and will be pub-
lished in [73].

1.3.5 The complexity of Voronoi diagrams on terrains

In Chapter 7 we investigate the combinatorial complexity of geodesic Voronoi dia-
grams on polyhedral terrains using a probabilistic analysis. Aronov et al. [17] prove
that, if one makes certain realistic input assumptions on the terrain, this complexity
is Θ(n+m

√
n) in the worst case, where n denotes the number of triangles that define

the terrain and m denotes the number of Voronoi sites.
We prove that under a relaxed set of assumptions the Voronoi diagram has ex-

pected complexity O(n + m), given that the sites have a uniform distribution on
the domain of the terrain (or the surface of the terrain). Furthermore, we present
a worst-case construction of a terrain which implies a lower bound of Ω(nm2/3) on
the expected worst-case complexity if these assumptions on the terrain are dropped.
This lower bound may serve as a justification for the input assumptions made earlier,
since it implies that the randomness assumption by itself is not sufficient to prove
a low complexity in our analysis. The construction that leads to this lower bound
is intricate and requires a careful balancing of the variance of the distances of the
sampled sites, and how closely they can be packed together.

The material in Chapter 7 has been previously published in [69].

CHAPTER 2

Introduction to the Fréchet distance

2.1 Basic definitions

Basic notation. Let X be a curve in Rd; that is, a continuous mapping from [0, 1] to
IRd. We will identify X with its image X([0, 1]) ⊆ Rd if it is clear from the context.
The curve X is closed if X(0) = X(1). We use ‖·‖ to denote the Euclidean distance
as well as the length of a curve. Given two curves X and Y that share an endpoint,
let X ⊕ Y denote the concatenated curve. We denote with X[x, x′] the subcurve
of X from X(x) to X(x′) and with X〈p, p′〉 the subcurve of X between the two
points p, p′ ∈ X. In Section 2.5 we give an overview of the general notation used in
Chapters 3-5.

The Hausdorff distance. Let X : [0, 1] → IRd and Y : [0, 1] → IRd be two polygonal
curves. The directed Hausdorff distance is defined as

dH(X,Y) = max
x∈[0,1]

min
y∈[0,1]

‖X(x)− Y (y)‖ .

This corresponds to the maximum distance a point on X has to its closest point on Y .
The undirected Hausdorff distance is defined as the maximum over both directions.

The Fréchet distance. A reparameterization is a one-to-one and continuous func-
tion f : [0, 1] → [0, 1]. It is orientation-preserving if it maps f(0) = 0 and
f(1) = 1. The Fréchet distance is defined only for oriented curves, as we need to
match the start and end points of the curves. The orientation of the curves we use
will be understood from the context. We define the width of an orientation-preserving
reparameterization f of X with respect to Y as

widthX,Y (f) = max
α∈[0,1]

‖X(f(α))− Y (α)‖ .

15

16 CHAPTER 2. INTRODUCTION TO THE FRÉCHET DISTANCE

Now, the Fréchet distance between the two curves is

dF(X,Y) = inf
f :[0,1]→[0,1]

widthX,Y (f) .

The Fréchet distance can be interpreted as the maximum length of a leash one
needs to walk a dog, where the dog walks monotonically along X according to f , while
the handler walks monotonically along Y according to its original parametrization.
In this analogy, the Fréchet distance is the shortest possible leash admitting such a
traversal of the curves. For the discrete Fréchet distance , the handler and the dog
turn into frogs and the vertices are stepping stones between which the frogs are allowed
to jump during a traversal. The Fréchet distance complies with the triangle inequality;
that is, for any three curvesX,Y and Z we have that dF(X,Z) ≤ dF(X,Y)+dF(Y, Z).

2.2 State of the art

Comparing geometric shapes is a task that arises in a wide arena of applications. The
Fréchet distance and its variants (e.g., dynamic time-warping [100]) have been used as
similarity measures in applications such as matching of time series in databases [102],
comparing melodies in music information retrieval [133], speech recognition [105],
signature and handwriting recognition [121, 138], matching coastlines over time [114],
as well as in map-matching of vehicle tracking data [30, 157], and moving objects
analysis [31, 32].

Informally, the Fréchet distance between two curves is the
maximum distance a point on the first curve has to travel
as this curve is being continuously deformed into the second
curve. Unlike the Hausdorff distance, which is solely based on
nearest neighbor distances between points on the curves, the
Fréchet distance requires a continuous and order-preserving assignment of points to
measure these distances. The figure to the right shows an example of two dissimilar
curves that have a small Hausdorff distance, but a large Fréchet distance.

Moreover, the Fréchet distance between two curves might be arbitrar-
ily larger than their Hausdorff distance, as demonstrated by the figure on
the left. In many applications, the course of the curve is important, for
example when comparing trajectories. This makes the Fréchet distance

appear like a better measure of similarity in these cases and shows that it is better
suited for comparing curves with respect to their intrinsic structure.

For two polygonal curves in the plane of total complexity n, computing their Haus-
dorff distance can be done in O(n log n) time [9]. However, computing their Fréchet
distance takes roughly quadratic time according to the best known algorithms to date.
After publication in the seminal paper by Alt and Godau [12], their O(n2 log n)-time
algorithm remained the state of the art for more than a decade. This led Alt to
conjecture that the problem of deciding whether the Fréchet distance between two
curves is smaller or equal a given value is 3SUM-hard. It has been an open problem
to find a subquadratic algorithm for computing the Fréchet distance for two curves.
However, recently, there has been some progress in improving upon the quadratic run-
ning time of the decision algorithm. First, Agarwal et al. presented a subquadratic

2.3. BASIC CONCEPTS 17

time algorithm for the discrete Fréchet distance, which only considers distances be-
tween vertices of the curves [3]. Buchin et al. build upon their work and give an
algorithm for the original Fréchet distance [34]. Their algorithm is randomized and
takes o(n log n) expected time overall to compute the Fréchet distance. The decision
algorithm they present is deterministic and takes subquadratic time. The only lower
bound known for the decision problem is Ω(n log n) and was given by Buchin et al.
[33]. A randomized algorithm simpler than the one by Alt and Godau, which has
the same running time, but avoids parametric search (see Section 2.4), was recently
presented by Har-Peled and Raichel [88].

The only subquadratic algorithms known are for quite restricted classes of curves
such as for closed convex curves and for κ-bounded curves [14]. For closed convex
curves the Fréchet distance equals the Hausdorff distance and for κ-bounded curves
the Fréchet distance is at most (1 + κ) times the Hausdorff distance, and hence the
O(n log n) algorithm for the Hausdorff distance can be applied to compute a (1 + κ)-
approximation. Aronov et al. [20] provided a near-linear time (1 + ε)-approximation
algorithm for the discrete Fréchet distance for a restricted class of curves called back-
bone curves.

2.3 Basic concepts

Observation 2.3.1 We state a simple observation which is used throughout the
chapters on the Fréchet distance. Given two directed segments pq and uv, it holds
dF(pq, uv) = max(‖u− p‖, ‖v − q‖). To see this, consider the uniform parameteriza-
tion γ(t) = tp+(1− t)q and π(t) = tu+(1− t)v, for t ∈ [0, 1]. It is easy to verify that
f(t) = ‖γ(t)− π(t)‖ is convex, and as such f(t) ≤ max(f(0), f(1)), for any t ∈ [0, 1].

Free-space diagram. For two polygonal curves X : [0, 1] → IRd and Y : [0, 1] →
IRd the square [0, 1]2 represents their parametric space . We assume that the
parametrizations of the curves are uniform on an edge. We write VX and VY to
denote the set of vertices of the curves X and Y , respectively. For a point p =
(xp, yp) ∈ [0, 1]2, we define its elevation to be dist(p) = ‖X(xp)− Y (yp)‖ . For a
given parameter δ > 0, the δ-free space of X and Y is defined as

D≤δ(X,Y) =
{
p ∈ [0, 1]2

∣∣∣ dist(p) ≤ δ
}
.

This is a level set of the height function defined by the elevations of points in the
parametric space.

The parametric space can be broken into a (not necessarily uniform) grid called
the free-space diagram , where a vertical line corresponds to a vertex of X and a
horizontal line corresponds to a vertex of Y .

Every two segments ofX and Y define a free-space cell in this grid. In particular,
let Ci,j = Ci,j(X,Y) denote the (closed) free-space cell that corresponds to the ith
edge of X and the jth edge of Y . The cell Ci,j is located in the ith column and jth
row of the grid.

It is known that the free space, for a fixed δ, inside such a cell Ci,j (i.e.,D≤δ(X,Y)∩
Ci,j) is the clipping of an affine transformation of a disk to the cell [12], see the figure
on the right; as such, it is convex and of constant complexity. We call the intersection

18 CHAPTER 2. INTRODUCTION TO THE FRÉCHET DISTANCE

of the free space with an edge of the grid a free space interval . Let Ihi,j denote the
horizontal free space interval at the top boundary of Ci,j , and I

v
i,j denote the vertical

free-space interval at the right boundary.

R
v
i−1,j

Ci,j

R
v
i,j

R
h
i,j

I
h
i,j−1

I
h
i,j

I
v
i−1,j

I
v
i,j

We define the complexity of the free-space dia-
gram for distance δ, denoted by N≤δ(X,Y), as the
total number of grid cells that have a non-empty inter-
section with D≤δ(X,Y).

Reachable free space. The Fréchet distance between
X and Y is at most δ if and only if there exists a
monotone path in the free space diagram between (0, 0)
and (1, 1) that is fully contained in D≤δ(X,Y). The
reachable free space of two curvesX and Y , denoted
by R≤δ(X,Y), is the set of points in D≤δ(X,Y) that are reachable from (0, 0) by a
monotone path. Let the reachability intervals Rh

i,j ⊆ Ihi,j and Rv
i,j ⊆ Ivi,j consist

of the points p = (xp, yp) on the boundary of Ci,j that are reachable by a monotone
path from (0, 0) to p.

Fréchet matching. A reparameterization that realizes the Fréchet distance (i.e., a
reparametrization of width dF(X,Y)) does not always exist. Figure 2.1 shows such
a case. The depicted path is not strictly monotone and thus does not correspond to
a reparameterization. However, it can be perturbed to obtain a reparameterization
which has a width that is arbitrarily close to dF(X,Y). We call a monotone path from
(0, 0) to (1, 1) in the free-space diagram, which is not necessarily strictly monotone,
a matching between the two curves. Lifting the path onto the height function that
represents the elevations over the parametric space, we call the maximal elevation
reached by the path the width of the matching. We write X ⇔δ Y to denote a
matching of width δ and we omit δ from the notation if it is clear from the context.

Free-space events. We denote with b(p, δ) the ball of radius δ centered at a point p.
To compute the Fréchet distance consider increasing δ from 0 to ∞. As δ increases,
structural changes happen to the free-space diagram. We are interested in the radii

X(x)

δ

Y (y)

X(x′)

x x
′

y

(0, 0)

(1, 1)

Figure 2.1: Two curves X and Y and their free-space diagram with a matching
indicated, i.e., a monotone path. In this example dF(X,Y) coincides with a vertex-
vertex-edge event.

2.4. ALT AND GODAU’S ALGORITHM 19

(i.e., the value of δ) of these events. These values are called critical values. For a
set of numbers U , an atomic interval is a maximum interval of IR that does not
contain any point of U in its interior. The Fréchet distance can be computed using a
binary search on the atomic intervals of the critical values.

δ

u

p

Consider a segment u ∈ X and a vertex p ∈ Y , a
vertex-edge event corresponds to the minimum value
δ such that u is tangent to b(p, δ). In the free-space di-
agram, this corresponds to the event that a free-space
interval consists of one point only. The line supporting
this boundary edge corresponds to p, and the other di-

mension corresponds to u. Naturally, the event could happen at a vertex of u. The
second type of event, a vertex-vertex-edge event (also called monotonicity event),
corresponds to the common distance of two vertices on one curve to the intersection
point of their bisector with a segment on the other curve. See Figure 2.1 for an exam-
ple. The third type of event happens when two corresponding endpoints of the curves
are at distance δ to each other. More generally, we call the the distances between any
pair of points of VX ∪ VY vertex-vertex event values. Analogously, we refer to the
distance between two edges as edge-edge event value. This type of event happens
if two edges intersect in the plane or in higher dimension pass close to each other.1

Note that each one of the described critical values can be computed in O(1) time.

2.4 Alt and Godau’s algorithm

It is instructive to give a short summary of the algorithm by Alt and Godau which
computes the Fréchet distance. The basic layout has been adopted by all subsequent
algorithms to date, and the concepts introduced in their paper, which we discussed
in the previous section, are now standard in the literature.

So, let X : [0, 1]→ IRd be a polygonal curve with n vertices and let Y : [0, 1]→ IRd

be a polygonal curve with m vertices. One can compute the Fréchet distance between
X and Y in O(nm log nm) time using the algorithm sketched below [12].

Algorithm. The algorithm consists of two parts:
(A) a decision procedureDecider(X,Y, δ) to answer the question whether the Fréchet

distance between X and Y is smaller or equal than a given value δ and
(B) an algorithm that invokes Decider(X,Y, δ) in a search for the minimum value

of δ for which the decision procedure returns “yes”.
The decision procedure Decider(X,Y, δ) computes the δ-free space diagram and
searches for a monotone path from (0, 0) to (1, 1) which stays inside the free space.
Such a path can be computed, if it exists, in O(nm) time by dynamic programming.
The path also encodes the matching of width δ. To facilitate the search in (B), Alt
and Godau identify critical values (see Section 2.3) which are candidate values for
the Fréchet distance. These are the values of δ for which a free-space event happens.
The number of vertex-edge and vertex-vertex events is bounded by O(nm) and the
number of vertex-vertex-edge events is bounded by O(n2m + m2n). Each of these

1Edge-edge events only become relevant if one allows shortcuts on the input curves (Chapter 5).

20 CHAPTER 2. INTRODUCTION TO THE FRÉCHET DISTANCE

values can be computed in O(1) time. Alt and Godau showed that not all of these
critical event values have to be computed. Instead of doing a binary search on the
atomic intervals of the critical values, one can use a variant of the parametric search
technique based on sorting. The authors note that this technique, even though it
leads to a low asymptotic running time, is not really applicable in practice because of
the enormous constants involved. To avoid the parametric search, one can use a more
recent algorithm by Har-Peled and Raichel [88], which has the same running time.

2.5 Notation

X curve parametrized by x ∈ [0, 1]
Y curve parametrized by y ∈ [0, 1]
xp x-coordinate of point p
yp y-coordinate of point p
dist(p) elevation of p ∈ [0, 1]2

X ⊕ Y concatenation of X and Y
X[x, x′] subcurve of X from X(x) to X(x′)
X〈p, p′〉 subcurve of X between the two points p, p′ ∈ X
b(p, r) ball centered at p with radius r
S(p, r) sphere centered at p with radius r
‖p− q‖ Euclidean distance between points p and q

‖X‖ length of curve X
dF(X,Y) Fréchet distance between X and Y
dS(k,X, Y) k-shortcut Fréchet distance between X and Y
dS(X,Y) shortcut Fréchet distance between X and Y
X ⇔δ Y matching of width δ between X and Y
D≤δ δ-free space
R≤δ reachable free space
N≤δ complexity of the δ-free space diagram
Ci,j free space cell in the ith column and the jth row
Ivi,j vertical free space interval at the right side of Ci,j

Ihi,j horizontal free space interval at the top side of of Ci,j

Rv
i,j vertical reachability interval at the right side of Ci,j

Rh
i,j horizontal reachability interval at the top side of Ci,j

VX vertex set of polygonal curve X
D(P) pairwise distances of elements in point set P

CHAPTER 3

Approximating the Fréchet distance

In this chapter we study the problem of approximating the Fréchet distance between
two given polygonal curves X and Y in IRd. In Section 3.1, we introduce the notion
of c-packed curves, and study their behavior under simplification. In Section 3.2, we
describe the basic elements of the approximation algorithm. We present an approx-
imate decider procedure which uses curve simplification to reduce the complexity of
the input curves. In Section 3.3 we analyze the correctness and running time of the
resulting algorithm for c-packed curves. In Sections 3.4 and 3.5 we extend the analysis
to other families of curves, in particular to low-density curves and κ-bounded curves.
In Section 3.6, we extend the algorithm to closed curves. As an additional result, we
show in Section 3.7 that the outlines of fat objects are c-packed. We conclude with a
discussion in Section 3.8.

3.1 On c-packed curves

We introduce a new family of curves, called c-packed curves, for which we can approx-
imate the Fréchet distance quickly, given that the constant c is a small. We expect
this to be the case for most curves arising in practical applications. We prove that
the free-space complexity is linear for any two c-packed curves X and Y , if they are
simplified to the appropriate resolution. This will imply that our algorithm works in
near-linear time for c-packed curves, which is one of our main results.

3.1.1 Definition and basic properties

Definition 3.1.1 A curve X in IRd is c-packed if for any point p in IRd and any
radius r > 0, the total length of X inside the ball b(p, r) is at most cr.

21

22 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

Comparison to other models. The boundary of convex polygons, algebraic curves
of bounded maximum degree, the boundary of (α, β)-covered shapes [74], and the
boundary of γ-fat shapes [50] are all c-packed. Indeed, the boundaries of (α, β)-
covered shapes and γ-fat shapes are assumed to be formed by a bounded number of
algebraic curves of bounded maximum degree. If one removes the requirement that
a γ-fat curve be of bounded descriptive complexity, then also fractal curves, like the
Koch’s snowflake, which can have infinite length within a bounded area, can be fat
[29]. Naturally, these curves cannot be c-packed. Interestingly, one can show that
(α, β)-covered polygons are c-packed even if they have unbounded complexity, see
Section 3.7 and also the result of Bose et al. [29]. It is easy to verify that c-packed
curves are also low-density [56], but a low-density curve might not be c-packed, for
any constant c, see Section 3.4.

3.1.2 Curve simplification

During the course of the algorithm, we will simplify the input curves. A simplifica-
tion of a polygonal curve X is a curve which is similar to X, but has fewer vertices.
We suggest a straightforward greedy algorithm for curve simplification, which is suf-
ficient for our purposes. We will see that the simplification algorithm preserves the
c-packedness up to a constant factor, see Lemma 3.1.5. We comment that Agarwal
et al. [4] suggested a more aggressive (but slightly slower and more complicated)
simplification algorithm that could be used instead.

Algorithm 3.1.2 Given a polygonal curve X = p1p2p3 . . . pk and a parameter µ > 0,
consider the following simplification algorithm: First mark the initial vertex p1 and
set it as the current vertex. Now scan the polygonal curve from the current vertex
until it reaches the first vertex pi that is within distance at least µ from the current
vertex. Mark pi and set it as the current vertex. Repeat this until reaching the final
vertex of the curve, and also mark this final vertex. Consider the curve that connects
only the marked vertices, in their order along X. We refer to the resulting curve as
the µ-simplification of X and we denote it with X ′ = simpl(X,µ).

The simplified curve has the useful property that all its edges are of length at least
µ, except for the last edge, which might be shorter. For simplicity of exposition, we
assume that the last segment in the simplified curve also has length at least µ. Our
arguments can be easily modified to handle the case that the last edge has length less
than µ. The next lemma does not require the input curve to be c-packed.

Lemma 3.1.3 Any polygonal curve X in IRd is within Fréchet distance µ to its µ-

simplified curve; that is, dF

(
X, simpl(X,µ)

)
≤ µ, for any µ ≥ 0.

u

X̂

Proof : Consider a segment u of simpl(X,µ) and the portion X̂ of

X that corresponds to it. Clearly, all the vertices of X̂ are contained
inside a ball of radius µ centered at the first endpoint of u visited
by X, except the last vertex of X̂. As such, one can parameterize u

and X̂, such that initially the point stays on the vertex of u while
visiting all vertices of X̂ (except the last one), and then simultaneously move on u

and the last segment of X̂, in such a way that the distance is always at most µ. �

3.1. ON C-PACKED CURVES 23

We now study the class of c-packed curves under the curve simplification described
above. The following two lemmas testify that when curve simplification is applied to
a c-packed curve, the packedness constant increases by at most a constant factor
independent of the simplification parameter.

Lemma 3.1.4 Let X be a curve in IRd, let µ > 0 be a parameter, and let X ′ =
simpl(X,µ) be the simplified curve. Then ‖X ∩ b(p, r + µ)‖ ≥ ‖X ′ ∩ b(p, r)‖ for
any ball b(p, r).

Proof : Let u be a segment of X ′ that intersects b(p, r) and let v = u ∩ b(p, r) be
this intersection. Let Xu be the portion of X that got simplified into u. Observe that
Xu is a polygonal curve that lies inside a hippodrome of radius µ around u; that is,
Xu ⊆ Hu = u⊕ b(0, µ), where ⊕ denotes the Minkowski sum of the two sets, see the
figure on the right.

v

u

Xu Hv

Erect two hyperplanes passing through
the endpoints of v that are orthogonal to
v, and observe that Xu must intersect both
hyperplanes. Hence, we conclude that the
portions of Xu in the hippodrome Hv = v⊕
b(0, µ) are of length at least ‖v‖. Clearly, v ⊆ b(p, r) implies that Hv ⊆ b(p, r + µ),
which in turn implies that Xu ∩Hv ⊆ b(p, r + µ) and thus ‖Xu ∩ b(p, r + µ)‖ ≥ ‖v‖.

Summing over all segments v in X ′ ∩ b(p, r) implies the claim. �

Lemma 3.1.5 Let X be a c-packed curve in IRd, let µ > 0 be a parameter, and let
X ′ = simpl(X,µ) be the simplified curve. Then X ′ is a 6c-packed curve.

Proof : Let µ = dF(X,X
′). Assume, for the sake of contradiction, that ‖X ′ ∩ b(p, r)‖ >

6cr for some b(p, r) in IRd. If r ≥ µ, then set r′ = 2r and Lemma 3.1.4 implies that

‖X ∩ b(p, r′)‖ ≥ ‖X ∩ b(p, r + µ)‖ ≥ ‖X ′ ∩ b(p, r)‖ > 6cr = 3cr′,

which contradicts the fact that X is c-packed.
If r < µ then let U denote the segments of X ′ intersecting b(p, r) and let k = |U |.

Observe that k > 6cr/2r = 3c, as any segment can contribute at most 2r to the length
of X ′ inside b(p, r). Therefore we have that

‖X ′ ∩ b(p, 2µ)‖ ≥ ‖X ′ ∩ b(p, r + µ)‖ ≥ ‖U ∩ b(p, r + µ)‖ ≥ kµ,

since every segment of the simplified curve X ′ has a minimal length of µ. By
Lemma 3.1.4, this implies that ‖X ∩ b(p, 3µ)‖ ≥ ‖X ′ ∩ b(p, 2µ)‖ ≥ kµ > 3cµ, which
is a contradiction to the c-packedness of X.

�

3.1.3 Bounding the free-space complexity

In the following, we are interested in the maximum complexity of the reachable free
space of two c-packed curves when considering any radius δ and simplifying the curves
with radius εδ. The reasons will become apparent only shortly after, in Lemma 3.2.3

24 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

and Lemma 3.2.4, where we show that the simplification radius chosen this way en-
ables us to either (i) compute a (1 + ε)-approximation of the Fréchet distance, or
(ii) solve the decision problem exactly using the simplified curves (see Section 3.2.3.6).

Recall from Section 2.3 that the free-space complexity N≤δ is the number of free-
space cells that have non-empty intersection with the δ-free space (see Section 2.3).

Lemma 3.1.6 Given two c-packed curves X and Y with a total number of n vertices
in IRd, and parameters ε > 0 and δ > 0. For µ = εδ, let X ′ = simpl(X,µ) and Y ′ =
simpl(Y, µ) denote their simplifications. It holds that N≤δ(X

′, Y ′) ≤ n(9c+ 6c/ε).

Proof : A free space cell of D≤δ(X
′, Y ′) corresponds to two segments u ∈ X ′ and

v ∈ Y ′.

u

δ

b

v

‖u‖

X
′

The free space in this cell is non-empty if and only if
there are two points p ∈ u and q ∈ v such that ‖p− q‖ ≤ δ.
We charge this pair of points to the shorter of the two
segments. We claim that a segment cannot be charged
too many times.

Indeed, consider a segment u ∈ X ′, and consider the
ball b of radius r = (3/2) ‖u‖+δ centered at the midpoint
of u, see the figure on the right. Every segment v ∈ Y ′

that participates in a close pair as above and charges u for
it, is of length at least ‖u‖, and the length of v ∩ b is at
least ‖u‖. Since Y ′ is 6c-packed, by Lemma 3.1.5, we have that the number of such
charges is at most

c′ =
‖Y ′ ∩ b‖
‖u‖ ≤ 6cr

‖u‖ =
6c((3/2)‖u‖+ δ)

‖u‖ ≤ 9c+
6cδ

µ
= 9c+

6c

ε
,

since ‖u‖ ≥ µ and δ = µ/ε. We conclude that there are at most c′n free-space cells
that contain a point of D≤δ. �

3.2 The algorithm

In this section we devise the basic approximation algorithm for the Fréchet distance
between two given polygonal curves. In the general layout we follow Alt and Godau
(see Section 2.4) by first defining a decision procedure and then a search strategy
which uses the decision procedure. In the section after (Section 3.3) we then analyze
the correctness and running time of the resulting algorithm assuming that the input
curves are c-packed and show how to use the algorithm to get a faster approximation
algorithm.

3.2.1 Computing the reachable free space

The reachable free space, denoted by R≤δ (see Section 2.3), has finite complexity
inside each grid cell, and we need to describe it only for the grid cells that have non-
empty intersection with R≤δ. Clearly, generating only those grid cells is sufficient
to decide if there is a monotone path between (0, 0) and (1, 1), which is equivalent

3.2. THE ALGORITHM 25

to deciding if the Fréchet distance between X and Y is smaller or equal to δ. In
particular, to fully describe R≤δ, we will specify the reachability intervals Rh

i,j and
Rv

i,j for each cell Ci,j , which describe the intersection of R≤δ with the top and right
boundary of Ci,j . These intervals contain all the needed information, since R≤δ ∩Ci,j

is convex.
The complexity of the reachable free space, for distance δ, denoted by N≤δ(X,Y),

is the total number of grid cells which have non-empty intersection with R≤δ. One
can compute this set of cells and extract an existing monotone path in O(N≤δ(X,Y))
time, by performing a bfs of the grid cells that visits only the reachable cells. This
yields the following relatively easy result. We include the details both for the sake of
completeness and because the algorithm we suggest is engagingly simple.

Lemma 3.2.1 Given two polygonal curves X and Y in IRd, and a parameter δ ≥ 0,
one can compute a representation of R≤δ(X,Y) in O(N≤δ(X,Y)) time. Furthermore,
one can decide if dF(X,Y) ≤ δ, and if this is the case also extract a matching of
width at most δ in O(N≤δ(X,Y)) time. We denote the algorithm which computes this
information with exactDecider(X,Y, δ).

Proof : We create a directed graph G that has a node v(i, j) for every reachable free-
space cell Ci,j . With each node v(i, j) we store the free-space intervals Ihi,j and Ivi,j
as well as the reachability intervals Rh

i,j ⊆ Ihi,j and Rv
i,j ⊆ Ivi,j .

Each node v(i, j) can have an outgoing edge to its right and top neighbor; an edge
between these vertices exists if and only if the corresponding reachability interval
between them is nonempty. In particular, a monotone path from (0, 0) to a point
(x, y) ∈ Ci,j in R≤δ corresponds to a monotone path in the graph G from v(1, 1) to
v(i, j). Furthermore, any such monotone path has exactly k = i+ j − 2 edges.

We compute the graph G on the fly by performing a bfs on it, starting from
v(1, 1), and ensuring that when the bfs visits a node v(i, j) it enqueues the vertices
v(i, j + 1) and v(i + 1, j), in this order, to the bfs queue (if they are connected to
v(i, j), naturally).

This implies that at any point in time, and for any k, the
bfs queue contains the reachable nodes on the kth diagonal
(i.e., all nodes v(i, j) such that i+ j = k− 1) of the diagram
sorted from left to right. However, the same node might
appear twice (consecutively) in this queue.

In every iteration, the bfs dequeues the one or two copies
of the same node v(i, j) and merges the two copies of the same vertex into one if
necessary. Now, the one or two vertices (i.e., v(i − 1, j) and v(i, j − 1)) that have
incoming edges to v(i, j) are known, as are their reachability intervals. Therefore one
can compute the reachability intervals for v(i, j) in constant time. Now, v(i, j + 1) is
enqueued if and only if the top side of the cell Ci,j is reachable by a monotone path
(i.e., Rh

i,j 6= ∅), and v(i+ 1, j) is enqueued if and only if the right side of the cell Ci,j

is reachable by a monotone path (i.e., Rv
i,j 6= ∅). Since R≤δ(X,Y) ∩ Ci,j is convex

and of constant complexity, this can be done in constant time.
Clearly, the bfs takes time linear in the size of G and it computes the reachability

information for all reachable free-space cells of R≤δ(X,Y). Now, one can check if (1, 1)
is reachable by inspecting the last cell handled. If this cell is not the cell in the top

26 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

X

Y

≤ µ

dF(X
′, Y ′)

≤ µ

dF(X,Y)

Y ′

X ′

Figure 3.1: The idea of the approximate decision procedure using simplification.

right corner of the free-space diagram, then we conclude that (1, 1) is not reachable.
Otherwise, we check if the top right corner of this cell is monotonically reachable
from the origin by inspecting the computed reachability intervals. The monotone
path realizing this can be extracted in linear time, by introducing backward edges in
the graph and tracing a path back to the origin. �

Observation 3.2.2 One can compute all vertex-edge events with radius at most δ in
O(N≤δ(X,Y)) time as follows. We compute the graph representation of R≤δ(X,Y)
using exactDecider(X,Y, δ) (Lemma 3.2.1). Next, for each reachable cell consider
the vertex-edge events at its top and right boundaries and compute their event radii.
Recall that a cell boundary corresponds to an edge from the one curve and a vertex
from the other curve. Clearly, any cell boundary can be used by the matching of
width at most δ, if and only if the corresponding event radius is smaller or equal δ.

3.2.2 The approximate decision procedure

The idea underlying this approximate decision procedure is illustrated in Figure 3.1.
We simplify the two input curves to a resolution that is (roughly) an ε-fraction of
the radius we care about (i.e., δ), and we then use the exact decision procedure
on these two simplified curves. Since the Fréchet distance complies with the triangle
inequality and by Lemma 3.1.3, we can approximately infer the original distance from
this information.

Lemma 3.2.3 Let X and Y be c-packed polygonal curves in IRd, and let 0 < ε ≤ 1
and δ > 0 be two parameters. Then there is an algorithm decider(X,Y, ε, δ) that
outputs in O(nc/ε) time one of the following:

(A) “dF(X,Y) ≤ (1 + ε)δ”, and a matching X ⇔ Y of width at most (1 + ε)δ,
and this happens if dF(X,Y) ≤ δ.

(B) “dF(X,Y) > δ” if dF(X,Y) > (1 + ε)δ.
(C) If dF(X,Y) ∈ (δ, (1 + ε)δ] then the algorithm outputs either of the above

outcomes.

3.2. THE ALGORITHM 27

Proof : Set µ = (ε/4)δ. Compute in linear time the curves X ′ = simpl(X,µ) and
Y ′ = simpl(Y, µ) using Algorithm 3.1.2. Let δ′ = δ + 2µ and let ε′ = µ/δ′ =
ε/(4 + 2ε). Using exactDecider(X ′, Y ′, δ′) (Lemma 3.2.1) we can decide whether
dF(X

′, Y ′) ≤ δ′ in

O(N≤δ′(X
′, Y ′)) = O(nc/ε′) = O(nc/ε)

time, by Lemma 3.1.6 (with δ′ and ε′) and since ε/(4 + 2ε) ≥ ε/6 for ε ≤ 1.

If so, we output the matching as a proof that

dF(X,Y) ≤ dF(X,X ′) + dF(X
′, Y ′) + dF(Y

′, Y) ≤ δ′ + 2µ = δ + 4(ε/4)δ = (1 + ε)δ.

On the other hand, if dF(X
′, Y ′) > δ′, then this implies, by the triangle inequality,

that

dF(X,Y) ≥ dF(X ′, Y ′)− dF(X,X ′)− dF(Y ′, Y) > δ′ − 2µ = δ.

Therefore, the algorithm outputs “dF(X,Y) > δ” in this case. �

3.2.2.1 How to use the approximate decider in a binary search

In order to use Lemma 3.2.3 to perform a binary search for the Fréchet distance, we
can turn the approximate decision procedure into a precise one as follows.

Lemma 3.2.4 Let X and Y be two c-packed polygonal curves in IRd, and let 0 < ε ≤
1 and δ ≥ 0 be two parameters. Then, there is an algorithm Decider(X,Y, δ, ε) that,
in O(cn/ε) time, returns one of the following outputs: (i) a (1 + ε)-approximation to
dF(X,Y), (ii) dF(X,Y) < δ, or (iii) dF(X,Y) > δ. The answer returned is correct.

Proof : If δ = 0, then we can determine in O(n) time if the two curves are identical and
return either dF(X,Y) = δ or dF(X,Y) > δ correspondingly. So assume that δ > 0.
Let δ′ = δ/(1 + ε′), for ε′ = ε/3. We call decider(X,Y, ε′, δ) (see Lemma 3.2.3). If
the call returns “dF(X,Y) > δ”, then we return this result.

Otherwise, we call decider(X,Y, ε′, δ′). If it returns that “dF(X,Y) ≤ (1+ ε′)δ′”
then dF(X,Y) ≤ (1 + ε′)δ′ = δ, and we return this result.

The only remaining possibility is that the two calls returned “dF(X,Y) ≤ (1+ε′)δ”
and “dF(X,Y) > δ′”. But then we have found the required approximation, since
(1+ε′)δ

δ′ = (1 + ε′)2 < (1 + ε) for 0 < ε ≤ 1.

�

3.2.3 Searching for the Fréchet distance

In the previous sections we studied the decision problem. In this section, we will
devise a search strategy to find the minimal value of δ for which the decision pro-
cedure returns “yes”. The resulting algorithm is described in the following section
(Section 3.2.4).

28 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

3.2.3.1 Searching in a fixed interval

It is straightforward to perform a binary search on an interval [α, β] to approximate
the value of the Fréchet distance, if it falls inside this interval. Indeed, partition
this interval into subintervals of length εα and perform a binary search to find the
interval that contains the Fréchet distance. There are O(β/εα) intervals, and this
would require O(log(β/εα)) calls to Decider. By using exponential subintervals, one
can do slightly better, as testified by the following lemma.

Lemma 3.2.5 Given two curves X and Y in IRd, a parameter 0 < ε ≤ 1, and
an interval [α, β] with α, β > 0, one can perform a binary search in [α, β] and
obtain a (1 + ε)-approximation to dF(X,Y) if dF(X,Y) ∈ [α, β], or report that
dF(X,Y) /∈ [α, β]. The algorithm, denoted by searchInterval(X,Y, [α, β], ε), takes

O

(
log

log(β/α)

ε

)
calls to Decider.

Proof : Let αi = α(1+ ε)i for i = 0, . . . ,M =
⌊
log1+ε(β/α)

⌋
and αM+1 = β. Perform

a binary search, using Decider(X,Y, δ, ε) to find the two values αi and αi+1 such
that αi ≤ δ = dF(X,Y) ≤ αi+1. Since αi+1 = (1 + ε)αi, we conclude that we found
the required approximation.

It might be that during this procedure one of the calls to Decider(X,Y, δ, ε)
found the required approximation, and in this case we abort the binary search and
just return this approximation.

This process requires O(logM) = O
(
log log1+ε(β/α)

)
calls to Decider. Observe

that

M = log1+ε

β

α
=

ln(β/α)

ln(1 + ε)
= O

(
1

ε
log

β

α

)
.

Indeed, ex/2 ≤ 1 + x ≤ ex for x ∈ [0, 1], and this implies that x/2 ≤ ln(1 + x) ≤ x,
which is the inequality used above. �

3.2.3.2 Searching over events

Clearly, the procedure searchInterval(X,Y, [α, β], ε) alone does not suffice to solve
our main problem, since the interval of distances we are searching over might have
arbitrarily large “spread” (i.e., log β/α might be arbitrarily large). However, the
Fréchet distance must be sufficiently close to a free-space event in one of the “approx-
imate” diagrams, i.e., a free-space diagram of the two simplified curves. Thus, we
can identify two kinds of critical values to search over, which are candidate values for
the approximate Fréchet distance. These are the events where (i) the simplification
of an input curve changes, or (ii) the reachability within the approximate free-space
diagram changes (i.e., a free-space event; see Section 2.1).

The traditional solution to overcome this problem is to use parametric search.
However, in our case, since we are only interested in approximation, we can use a
simpler, “approximate”, search. It is sufficient to search over a set of values which
approximate the event values by a constant factor, since we will use Lemma 3.2.5
to refine the resulting search interval in the main algorithm. In effect, we will use
this lemma to turn a constant factor approximation of the Fréchet distance into a
(1 + ε)-approximation.

3.2. THE ALGORITHM 29

Algorithm 3.2.6 Let searchEvents(X,Y, Z, ε) denote the algorithm that performs
a binary search over the values of Z, to compute the atomic interval of Z that contains
the Fréchet distance between X and Y . This procedure uses Decider (Lemma 3.2.4)
to perform the decisions during the search. The decision procedure may also return
a (1 + ε)-approximation to dF(X,Y) if it fails to make an exact decision.

3.2.3.3 Simplification events

Consider the events when the simplified curves change, see Algorithm 3.1.2. Consider
the set of all pairwise distances between vertices of X and Y (i.e., VX ∪VY). Observe
that it breaks the real line into

(
n
2

)
+ 1 atomic intervals, such that in each such

interval the simplification does not change. Thus simpl(X,µ) (resp. simpl(Y, µ))
might result in O(n2) different curves depending on the value of µ, where n is the
total number of vertices of X and Y . As a first step we would therefore like to use
searchEvents (Algorithm 3.2.6) to perform a binary search over those distances to
find the atomic interval that contains the required Fréchet distance. Naively, this
would require us to perform distance selection. However, it is believed that exact
distance selection requires Ω

(
n4/3

)
time in the worst case [76]. To overcome this we

will perform an approximate distance selection, as suggested by Aronov et al. [20].

Lemma 3.2.7 Given a set P of n points in IRd, let D(P) be the set of all pairwise
distances of points in P. Then, one can compute in O(n log n) time a set Z of O(n)
numbers, such that for any y ∈ D(P), there exist numbers x, x′ ∈ Z such that x ≤
y ≤ x′ ≤ 2x. Let approxDistances(P) denote this algorithm.

Proof : Compute an 8-well-separated pairs decomposition of P. Using the algorithm
of Callahan and Kosaraju [41] this can be done in O(n log n) time, and it results in
a set of pairs of subsets {(A1, B1), . . . , (Am, Bm)}, where m = O(n), such that for
any two points p, q ∈ P there exists a pair (Ai, Bi) in the above decomposition, such
that: (i) p ∈ Ai and q ∈ Bi (or vice versa), and (ii) max(diam(Ai) , diam(Bi)) ≤
minpi∈Ai,qi∈Bi

‖pi − qi‖ /8.
This implies that the distance of any pair of points in Ai and Bi, respectively, are

the same up to a small constant. As such, for every pair (Ai, Bi), for i = 1, . . . ,m,
we pick representative points pi ∈ Ai and qi ∈ Bi, and set ℓi = (3/4) ‖pi − qi‖. Let
Z = {ℓ1, . . . , ℓm, 2ℓ1, . . . , 2ℓm} be the computed set of values.

Consider any pair of points p, q ∈ P. For the specific pair (Ai, Bi) that contains
the pair of points p and q that we are interested in, we have that

ℓi = (3/4) ‖pi − qi‖ ≤ ‖pi − qi‖ − diam(Ai)− diam(Bi) ≤ ‖p− q‖ .

At the same time, we have that

‖p− q‖ ≤ ‖pi − qi‖+ diam(Ai) + diam(Bi) ≤ (5/4) ‖pi − qi‖ ≤ 2ℓi,

thus establishing the claim. �

3.2.3.4 Monotonicity events

The following lemma testifies that the radius of a vertex-vertex-edge event must be
“close” to either a vertex-edge event or to the distance between two vertices. Since

30 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

we will approximate the vertex-vertex distances (i.e., the simplification events) and
perform a binary search over them, this implies that we further only need to con-
sider vertex-edge events. Furthermore, by Observation 3.2.2, the number of those
vertex-edge events which remain in the resulting search range can be bounded by the
complexity of the reachable free space.

Lemma 3.2.8 Let x be the radius of a vertex-vertex-edge event involving vertices
p, q ∈ IRd and a segment u ∈ IRd. Let W be the set of pairwise distances of the vertex
set VX ∪ VY . Then there exists a number y such that y/2 ≤ x ≤ 3y, and y is either
in W or y is the radius of a vertex-edge event.

Proof : Let s be the intersection point of S(p, x) ∩ S(q, x) which lies on u. Let p′

(resp., q′) be the closest point on u to p (resp., q).

Clearly ‖p′ − q′‖ ≤ ‖p− q‖. Indeed, let ℓ be the line
supporting u. Project the line segment pq perpendicular
to ℓ onto ℓ. The resulting line segment is shorter that
‖p− q‖ and contains both p′ and q′, unless p′ = q′ co-
incide with an endpoint of u. Furthermore, since the ε-
environment around s on u is covered by b(p, x)∪b(q, x),
the point s lies on the segment p′q′.

u

p
′

p

q
′

q

s

x

By the triangle inequality, this implies that

x = ‖p− s‖ ≤ ‖p− p′‖+ ‖p′ − s‖ ≤ ‖p− p′‖+ ‖p′ − q′‖ ≤ ‖p− p′‖+ ‖p− q‖ .

A similar argument implies that

x = ‖p− s‖ ≥ ‖p− p′‖ − ‖p′ − s‖ ≥ ‖p− p′‖ − ‖p′ − q′‖ ≥ ‖p− p′‖ − ‖p− q‖ .

If ‖p− p′‖ ≥ 2 ‖p− q‖ then the above implies that x ∈ [1/2, 3/2] ‖p− p′‖. If p′

is an endpoint of u then ‖p− p′‖ is in W. Otherwise, ‖p− p′‖ is the radius of the
vertex-edge event between p and u. In either case, this implies the claim.

If ‖p− p′‖ ≤ 2 ‖p− q‖ then

x = ‖p− s‖ ≤ ‖p− p′‖+ ‖p− q‖ ≤ 2 ‖p− q‖+ ‖p− q‖ = 3 ‖p− q‖ ,

and of course ‖p− q‖ ∈ W . Now, the two balls of radius x centered at p and q,
respectively, cover the segment pq, and we have that ‖p− q‖ /2 ≤ x, which implies
the claim. �

3.2.3.5 Edge-edge events

It might happen that two long edges intersect in their middle (or in higher dimension
pass close to each other), and thus contribute an isolated connected component to
D≤δ(X,Y). Such a connected component is a convex set lying completely in the
interior of the grid cell of the two segments. In Section 2.3, we referred to the event
that such a component is created in the free space as edge-edge event. Since it is not
reachable by a monotone path in the diagram from (0, 0), we can just ignore it. The
corresponding component will grow as δ increases until it hits the boundary of the
grid cell. At this point, a vertex-edge event will happen.

3.3. ANALYSIS OF THE ALGORITHM 31

3.2.3.6 Searching with a fixed simplification

We will use the decision procedure in a binary search over the simplfication events
for the atomic interval that contains the desired (1 + ε)-approximation. Intuitively,
when further refining the search in this interval, the simplification of the input curves
carried out by Decider, will always yield the same simplified curves, since there
are no simplification events in this interval. Thus, we have found simplifications X ′

and Y ′, such that dF(X
′, Y ′) yields the desired (1 + ε)-approximation. Clearly, an

approximation of dF(X
′, Y ′) suffices for our result.

Let searchIntervalExact(X,Y, [α, β], ε) be the variant of searchInterval from
Lemma 3.2.5 that uses exactDecider (Lemma 3.2.1) directly instead of calling De-
cider. This version searches for the Fréchet distance in the given interval, but does
not perform simplification before calling the decision procedure. It returns a (1 + ε)-
approximation of the Fréchet distance, given that it is contained in this interval. Note
that the correctness of Lemma 3.2.5 is not affected by this modification. Similarly,
let searchEventsExact be the variant of searchEvents (Algorithm 3.2.6) that uses
exactDecider directly instead of calling Decider.

3.2.4 The resulting algorithm

The resulting approximation algorithm is layed out in Algorithm 3.2.9. It will be
used by the final approximation algorithm as a subroutine. We first analyze this ba-
sic algorithm. We will then show how to use it, in Lemma 3.3.4 below, to get a faster
approximation algorithm. The algorithm in Algorithm 3.2.9 performs numerous calls
to Decider, with approximation parameter ε > 0. If any of these calls discover the
approximate distance, then the algorithm immediately stops and returns the approx-
imation. Therefore, at any point in the execution of the algorithm, the assumption
is that all previous calls to Decider returned a direction where the optimal distance
must lie. In particular, a call to searchInterval(X,Y, I, ε), would either find the
approximate distance in the interval I and return immediately, or the desired value
is outside this interval.

3.3 Analysis of the algorithm

3.3.1 Correctness

Lemma 3.3.1 For any x, y ∈ (2α, β/2), for α, β computed in line 3, it holds that
simpl(X,x) = simpl(X, y) and simpl(Y, x) = simpl(Y, y).

Proof : The interval (α, β) does not contain any value of Z. Hence, by Lemma 3.2.7,
(2α, β/2) does not contain any value of the pairwise distances between vertices of the
vertex set of X and Y which implies that the simplification is the same for any value
inside this interval. �

Lemma 3.3.2 Given two polygonal curves X and Y , and a parameter 0 < ε ≤ 1, the
algorithm approxFréchet(X,Y, ε) computes a (1 + ε)-approximation to dF(X,Y).

32 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

Algorithm 3.2.9 approxFréchet(X, Y , ε)

Input: polygonal curves X and Y ; approximation error ε ∈ (0, 1]

1: Assert that dF(X,Y) > 0 by checking if X is identical to Y
2: Z ← approxDistances(P), where P = VX ∪ VY (Lemma 3.2.7)
3: [α, β]← searchEvents(X,Y, Z, ε) (Algorithm 3.2.6)
4: If (α > 0) call searchInterval(X,Y, [α, 4α′], ε), where α′ = (30/ε)α

(Lemma 3.2.5)
5: If (β > 0) call searchInterval(X,Y, [β′/4, β], ε), where β′ = β/3
6: Let X ′ = simpl(X,µ) and Y ′ = simpl(Y, µ), for µ = 3α

(Algorithm 3.1.2)
7: Let V′ be the set of all vertex-edge distances of X ′ and Y ′

8: Compute Z ′ = {v ∈ V′ | α′ ≤ v ≤ β′} using exactDecider(X ′, Y ′, β′)
(see Observation 3.2.2)

9: [α′′, β′′]← searchEventsExact(X ′, Y ′, Z ′, ε) (Algorithm 3.2.6)
10: If (α′′ > 0) call searchIntervalExact(X ′, Y ′, [α′′, 4α′′], ε/4)
11: If (β′′ > 0) call searchIntervalExact(X ′, Y ′, [β′′/4, β′′], ε/4)
12: The algorithm terminated in one of the lines above. Let f be the matching

X ′ ⇔ Y ′, let g be the matching X ⇔ X ′ and let h be the matching Y ⇔ Y ′

resulting from the last executed search.
13: Return the matching X ⇔ Y resulting from chaining f, g and h and the

resulting width ∆ as an approximation to dF(X,Y)

Proof : If the algorithm found the approximation before line 6, then clearly it is
the desired approximation, and we are done. In particular, this is the case if (i)
the assertion in line 1 fails or (ii) if 4α′ > β′/4. Otherwise, by Lemma 3.2.4 we
know that dF(X,Y) ∈ [α, β] computed in line 3. By line 4 and 5 it must be that
dF(X,Y) ∈ [4α′, β′/4]. Since µ = 3α = (ε/10)α′ ≤ 4α′ ≤ β′/4, it follows, by the
triangle inequality, that

dF(X
′, Y ′) ≤ dF(X ′, X) + dF(X,Y) + dF(Y, Y

′) ≤ 2µ+ β′/4 < β′.

A similar argument shows that dF(X
′, Y ′) > α′. We conclude that dF(X

′, Y ′) ∈
[α′, β′] and the algorithm continues the search with the simplified curves X ′ and Y ′.

The binary search in line 9 over the vertex-edge distances of X ′ and Y ′ returns
an atomic interval [α′′, β′′] of this set that contains dF(X

′, Y ′). By Lemma 3.2.5,
one of the two searches in line 10 and line 11 will return a (1 + ε)-approximation to
dF(X

′, Y ′), given that this Fréchet distance lies in one of the respective intervals that
we perform the search on. We claim that this is the case.

Indeed, the interior of [α′′, β′′] does not contain any of
(i) W: the pairwise distances of VX′ and VY ′ , or
(ii) V′: the vertex-edge distances of X ′ and Y ′.

Therefore, the interval [α′′, β′′] might contain only vertex-vertex-edge events of X ′

and Y ′. By Lemma 3.2.8, for a vertex-vertex-edge event with radius r there exists a
value y ∈ V′ ∪W that 3-approximates r; that is, such that y/2 ≤ r ≤ 3y. But since
there is no value of V′ ∪ W in the interior of [α′′, β′′], and therefore, for any such
r ∈ [4α′′, β′′/4], we have that r /∈ [y/3, 3y] for any y ∈ V′ ∪W

3.3. ANALYSIS OF THE ALGORITHM 33

We conclude that no vertex-vertex-edge event, vertex-edge event, or vertex-vertex
event of X ′ and Y ′ lies in the interval [4α′′, β′′/4]. Since the Fréchet distance must be
equal to one such value, it follows that dF(X

′, Y ′) /∈ (4α′′, β′′/4), but this implies that
either dF(X

′, Y ′) ∈ [α′′, 4α′′] or dF(X ′, Y ′) ∈ [β′′/4, β′′]. In either case, the above
algorithm would have found the approximate distance (either in line 10 or 11). Thus,
we found a value δ, such that δ ∈ [dF(X

′, Y ′) , (1 + ε/4)dF(X
′, Y ′)].

By the triangle inequality we conclude that the returned value ∆ satisfies

∆ ≤ dF(X,X ′) + δ + dF(Y, Y
′) ≤ dF(X,X ′) + (1 + ε/4)dF(X

′, Y ′) + dF(Y
′, Y)

≤ (1 + ε/4)(2µ+ dF(X,Y) + 2µ) ≤ 5µ+ (1 + ε/4)dF(X,Y) ≤ (1 + ε)dF(X,Y) ,

since 5µ = 15α = (ε/2)(30/ε)α = (ε/2)α′ ≤ (ε/2)dF(X,Y).
Note that ∆ ≥ dF(X,Y) since it is the width of a specific matching between the

two curves. �

3.3.2 Running time

Lemma 3.3.3 Given two c-packed polygonal curves X and Y with a total num-
ber of n vertices in IRd, and a parameter 0 < ε ≤ 1, the running time of ap-
proxFréchet(X,Y, ε) is O((cn/ε) log n).

Proof : Checking if the two curves are identical takes O(n) time in line 1. Computing
Z (and sorting it) takes O(n log n) time by Lemma 3.2.7. The calls in line 3, 4 and
5 perform O(log n + log(1/ε)) = O(log n) calls to Decider, by Lemma 3.2.5. (Here,
we assume that ε > 1/n, otherwise we can just use the algorithm of Alt and Godau
[12] since its running time is faster than our approximation algorithm in this case.)
Each call to Decider takes O(nc/ε) time, so overall this takes O(cn/ε log n) time.
Computing the simplifications in line 6 with Algorithm 3.1.2 takes O(n) time.

Computing and sorting the set of vertex-edge events in line 8 takes O(N logN)
time, where N = N≤β′(X ′, Y ′), since |Z ′| ≤ N by Observation 3.2.2. The binary
search in line 9 requires O(logN) calls to the algorithm exactDecider (Lemma 3.2.1).
The two calls to searchIntervalExact require O(log(1/ε)) calls to exactDecider.
Now, observe that all these calls to exactDecider are done with values of δ ∈ [α′, β′].
Since the complexity of the reachable free space is monotone in δ, we can bound the
running time of such a call to exactDecider by O(N). Thus, the overall running
time of line 8 - 11 is O((n+N) log(N/ε)).

Now, 3α and β′ are both inside the interval (2α, β/2), and as such, by Lemma 3.3.1,
we have that

X ′ = simpl(X, 3α) = simpl(X, β′)

and similarly Y ′ = simpl(Y, 3α) = simpl(Y, β′) . Therefore, we have that

N = N≤β′(X ′, Y ′) = N≤β′(simpl(X, β′) , simpl(Y, β′)) = O(cn),

by Lemma 3.1.6 (with δ′ = β′ and ε′ = 1). Thus, line 8 - 11 take overall T =
O(cn log(cn/ε)) = O(cn log n) time, since c ∈ O(n) and ε > 1/n.

Finally, in order to compute the resulting matching in line 13, we compute the
matching X ⇔ X ′ and Y ⇔ Y ′ as described in the proof of Lemma 3.1.3 and chain1

1Note that these matchings are not necessarily one-to-one, but they can be perturbed to obtain
one-to-one matchings, see Section 2.3.

34 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

them with the matching of the simplified curvesX ′ ⇔ Y ′. Clearly, this and computing
the resulting width takes O(n) time. �

The running time of Lemma 3.3.3 can be slightly improved.

Lemma 3.3.4 The algorithm approxFréchet in Algorithm 3.2.9 can be modified to
run in time O(cn/ε+ cn log n)

Proof : Use Lemma 3.3.3, with ε0 = 1/2, to get a 2-approximation ζ for the Fréchet
distance between X and Y . This takes O(cn log n) time. time. Let I0 = [ζ, 2ζ] be
the corresponding interval that contains the distance. We could call searchInter-
val(X,Y, I0, ε) and get a (1+ε)-approximation spending an additionalO((cn/ε) log 1/ε)
amount of time. One can do better by starting with a “large” ε and decreasing it
during the binary search for the right value performed by searchInterval. This is a
standard idea and it was also used by Aronov and Har-Peled [19].

Indeed, assume that in the beginning of the ith step, we know that the required
Fréchet distance lies in an interval Ii−1 = [αi−1, βi−1] and βi−1 − αi−1 = ‖I0‖ εi−1,
where εi−1 = 1/2i−1.

Let ∆i−1 = ‖Ii−1‖ = βi−1−αi−1, and let xi,j = αi−1+j∆i−1/4, for j = 0, 1, 2, 3, 4.
Call the procedureDecider on three values xi,1, xi,2, and xi,3, with the approximation
parameter being c1εi, for c1 > 0 being a sufficiently small constant. Based on the
outcome of these three calls, we can determine in constant time which of the three
intervals Ji,1 = [xi,0, xi,2], Ji,2 = [xi,1, xi,3], or Ji,3 = [xi,2, xi,4] must contain the
Fréchet distance. We set this interval to be Ii.

We repeat this process for M steps, where M = ⌈lg 1/ε⌉. It is easy to verify that
the final interval now provides the required approximation. The running time of the
second part of this algorithm is in

O

(
M∑

i=1

cn/εi +M

)
= O

(
cn

M∑

i=1

2i +M

)
= O(cn/ε) ,

and this implies the claim. �

3.3.3 The result

Putting the above together, we get the following result.

Theorem 3.3.5 Given two c-packed polygonal curves X and Y with a total of n
vertices in IRd, and a parameter 1 > ε > 0, one can (1 + ε)-approximate the Fréchet
distance between X and Y in O(cn/ε+ cn log n) time.

Interestingly, simplification is critical for the efficiency of the above
algorithm. Indeed, consider the two nicely behaved curves depicted
on the right. The reachable portion of the free-space diagram of these
two curves, for the distance realizing the Fréchet distance, covers a
quadratic number of cells.

3.4. EXTENSION TO LOW-DENSITY CURVES 35

The use of simplification by itself is not sufficient to guarantee
that the presented algorithm is efficient. Indeed, it might not be
possible to simplify the input curves at all without losing too much
information. In such contrived worst case examples, the free-space
diagram still has quadratic complexity due to the inherent structure
of the curves. See the figure to the left for one such example. Thus,

we need the input curves to be c-packed or to satisfy some other realistic input model.
In the next section we will analyze the relative free space complexity using existing
realistic input models and prove the efficiency of the above algorithm also for these
known classes of curves.

3.4 Extension to low-density curves

Definition 3.4.1 A polygonal curve X in IRd is φ-low-density if any ball b(p, r)
intersects at most φ segments of X that are longer than r.

First, observe that this input model is less restrictive than the input model which
describes c-packed curves. It can be easily seen by a simple packing argument that
a polygonal c-packed curve is φ-low-density, for φ = 2c. For any ball b = b(p, r),
consider the ball with the same center that has radius r′ = 2r. Any edge intersecting
b that is longer than r must contribute at least r to the length of the intersection
of the curve with the larger ball, which is bounded by cr′. There can be at most
cr′/r = 2c edges of this type.

A curve that is low-density, however, is not necessarily c-packed
for a small value of c. Indeed, a low-density curve X might have an
arbitrarily long intersection with a ball by having sufficiently small
segments, see the figure on the right. However, in this case X must
have many vertices in the areas where its length cannot be bounded,
as we will show in the following section.

3.4.1 Low density curves can be long only if they pay for it

Claim 3.4.2 Let X be a φ-low-density polygonal curve, and let C be a hypercube in
IRd with side length ℓ. Then, the number of edges of length ≥ ℓ of X that intersect C

is bounded by cdφ, where cd =
⌈√

d/2
⌉d
.

Proof : Partition the cube C into a D ×D × · · · ×D grid, for D =
⌈√

d/2
⌉
. Clearly,

any edge that intersects C that has length ≥ ℓ must intersect one of the hypercubes
in this grid. A hypercube of this grid has diameter

√
dℓ

D
≤
√
dℓ√
d/2
≤ 2ℓ,

and is included in a ball of radius ℓ. Thus, a hypercube in this grid intersects at
most φ such long edges. We conclude that there can be at most φDd long edges
intersecting C. �

36 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

Lemma 3.4.3 Let X be a φ-low-density curve in IRd, which is not O(φ)-packed and
let C be a cube in IRd with side length r. Let α = ‖X ∩ C‖. There must be at least
Ω((α/r)1+1/(d−1)) vertices of X contained in 3C, where 3C is the scaling of C by a
factor of 3 around its center.

Proof : 2 Let X be the set of edges of X that intersect C. Let X0 be the set of
segments of X of length at least diam(C). Similarly, let Xi be all the segments in X
which have a length in the interval [diam(C) /2i, diam(C) /2i−1], for i = 1, . . . ,∞.

We have that

α = ‖X ∩ C‖ ≤
∞∑

i=0

|Xi| · diam(C)

2i−1
≤ r
√
d

∞∑

i=0

|Xi|
2i−1

. (3.1)

Similarly, let Gi be the partition of C into a grid by subcubes with side length
r/2i, for i = 1, . . . ,∞. Associate each segment u of Xi with some cube of Gi that it
intersects. By Claim 3.4.2, no cube can be associated with more than cdφ cubes since
X is φ-low-density. Therefore,

|Xi| ≤ cdφ2di. (3.2)

Now, let c = cdφ
√
d and let K =

⌊
1

d− 1
lg
α

cr

⌋
− 3. Since X is not O(φ)-packed,

we can assume that K > 0. We have by Eq. (3.1) and Eq. (3.2) that

r
√
d

K∑

i=0

|Xi|
2i−1

≤ cr
K∑

i=0

2di

2i−1
≤ cr

K∑

i=0

2 · 2(d−1)i ≤ 4cr2(d−1)K ≤ α

2
.

This means that the edges of the curve associated with the first K levels of the grid
partition can have a total length of at most α/2. Therefore, at least half of the length
of the curve is distributed over levels which lie beyond K. Note, however, that every
segment of Xi, for i > K, can contribute at most diam(C) /2K+1 to the total length
of ‖X ∩ C‖. Setting N =

∑∞
i=K+1|Xi| we conclude that

N
diam(C)

2K+1
≥ α

2
=⇒ N = Ω

(α
r
· 2K

)
= Ω

(
α

r
·
(α
r

)1/(d−1)
)

= Ω

((α
r

)1+1/(d−1)
)
.

Now, each of these segments of Xi, for i > K, has its endpoints inside 3C, thus
implying the claim. �

Observation 3.4.4 The bound in Lemma 3.4.3 is tight. For any m > 0 and any
d > 0, consider the integer grid in IRd with coordinates in the range 1, . . . ,m, and
compute a path that visits all these grid points using only the grid edges of unit
length, which is clearly possible.

Now, the resulting curve is 2d-low-density and has length α = md − 1 and its
diameter is r =

√
dm. Lemma 3.4.3 implies that it has Ω

(
(α/r)d/(d−1)

)
= Ω

(
md
)

vertices. Since this grid has md vertices, this is tight.

2Note that an alternative proof to Lemma 3.4.3 can be found in [71].

3.4. EXTENSION TO LOW-DENSITY CURVES 37

3.4.2 Accounting for many reachable free-space cells

If many columns of the free-space diagram of the two simplified low-density curves
contain a linear number of reachable cells, then the curve must be “long” in the
vicinity of the edges corresponding to those columns, since the simplification ensures
a minimal edge length. A similar argument holds for the rows. Therefore, using
Lemma 3.4.3, we can charge the additional reachable cells to vertices of the original
curves. This yields the following result.

Lemma 3.4.5 Given two low-density curves X and Y with a total number of n
vertices in IRd, and parameters 0 < ε ≤ 1 and δ > 0. For µ = εδ, let X ′ =
simpl(X,µ) and Y ′ = simpl(Y, µ) denote their simplifications. Then N≤δ(X

′, Y ′) =

O
(

n2(d−1)/d

ε2

)
.

Proof : It suffices to bound the number of vertex-edge pairs (p, u), where p is a vertex
of X ′, u is an edge of Y ′, and the distance between p and u is at most δ (naturally,
we need to apply the same argument to pairs with vertices in Y ′ and edges in X ′).
The total number of such pairs bounds the total complexity of R≤δ = R≤δ(X

′, Y ′).
To account for the number of such vertex-edge pairs, where the vertices are of X ′

and the edges are of Y ′, we charge vertex-edge pairs to vertices of both the original
curves X and Y . To this end, let M = O

(
n1−2/d/ε2

)
. For every vertex-edge pair

(p, u) that appears in the free-space diagram R≤δ we associate u with p.

δ

X
′

Y
′

︸
︷
︷
︸

dg

vg

C

Consider a grid G of side length δ. For a grid cell
g, consider the vertex of X ′ in g that is associated
with the largest number of edges, and say it is be-
ing associated with dg edges, and let vg denote this
“popular” vertex of X ′. The total number of edges
associated with vertices of X ′ inside g is bounded by
Ug = n(X ′, g)dg, where n(X ′, g) denotes the number
of vertices of X ′ that lie inside g.

If dg ≤M then Ug ≤ n(X ′, g)M , and we charge
M vertex-edge pairs to each vertex of X inside g.

If dg > M then we want to charge M vertex-
edge pairs to each vertex of the original curve Y (or the original curve X) inside 3C,
where C is a cube centered at vg with side length 2(δ + µ) ≤ 4δ and 3C is the same
cube scaled by a factor of 3. We argue that this pays for the number of edges. For
this we will use Lemma 3.4.3. First, observe that the length of the simplified curve
Y ′ inside C is at least dgµ. Indeed, the number of vertex-edge pairs dg arise from
different segments of Y ′ that are within distance at most δ from vg, and each such
segment has length at least µ. Thus, by Lemma 3.4.3, we have that Y must have at
least

Ω
(
(dgµ/δ)

d/(d−1)
)
= Ω

(
(dgε)

d/(d−1)
)

vertices inside 3C, i.e., there is some constant c such that c(εdg)
d/(d−1) ≤ n(Y, 3C).

Thus,

dg ≤
1

ε

(
n(Y, 3C)

c

)(d−1)/d

,

38 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

and we can derive

d2g ≤ n(Y, 3C)
1

cε2

(
n(Y, 3C)

c

)1−2/d

≤ 1

cε2

(n
c

)1−2/d

n(Y, 3C) ≤Mn(Y, 3C),

for the constant in M chosen sufficiently large.

Now we can distinguish two cases. First assume that n(X ′, g) ≤ dg (i.e., the
number of vertices of X ′ in the grid cell is small). In this case,

Ug = n(X ′, g)dg ≤ d2g ≤Mn(Y, 3C).

Hence, we can charge M vertex-edge pairs to each vertex of Y inside the cube 3C.

Otherwise, n(X ′, g) > dg > M and the number of vertices of X ′ in the grid cell is
large. But then, the length of X ′ inside C is at least n(X ′, g)µ, and by Lemma 3.4.3,
we have that X must have at least Ω

(
(n(X ′, g)ε)d/(d−1)

)
vertices inside 3C. Arguing

as above, this implies that n(X ′, g)2 ≤Mn(X, 3C). Hence,

Ug = n(X ′, g)dg ≤ n(X ′, g)2 ≤Mn(X, 3C).

Thus, we chargeM vertex-edge pairs to each vertex of X inside the cube 3C. In other
words, since the curve X is long, it can pay for the vertex-edge pairs itself.

Since 3C intersects a constant number of cells of the grid, no vertex would get
charged more than a constant number of times by the above scheme. Thus, every
vertex, of either curve, gets charged O(M) vertex-edge pairs overall, and the total
number of vertex-edge pairs present in R≤δ is O(nM), as claimed. �

Observation 3.4.6 One can extend the construction of Observation 3.4.4 to show
that Lemma 3.4.5 is close to being tight. Indeed, consider the grid curve of Observa-
tion 3.4.4 in d − 1 dimensions, for an integer m. We now lift it to d dimensions by
considering the [1,m]d cube and placing two copies of the above curve on two opposite
faces of the cube, denoted by f and f ′. Let X1 and X2 denote these two copies.

Next, delete the even edges from X1 and the odd edges from X2. Connect every
vertex v1 of X1 to its corresponding (copied) vertex v2 in X2 by a path made out of
the m − 1 unit edges along the grid line connecting the two vertices. This results in
a curve X that is similar to the curve constructed in Observation 3.4.4, but has the
advantage that when simplified for the distance µ = m it results in a curve with md−1

segments of length ≥ m that connect points that lie on f and on f ′, respectively.
Let Y be a copy of X. For a fixed ε > 0, we can add a single segment to X

such that the Fréchet distance between the resulting curves is exactly δ = m/ε. Now,
these two curves have n = 2md+2 vertices overall, and furthermore, when we simplify
them for the distance µ = εδ = m, we end up with two curves such that every long
edge of X ′ is going to be within distance ≤ δ = m/ε from a constant fraction of the
edges of Y ′ (this would be all the edges if 1/ε >

√
d). Therefore the complexity of the

reachable free space is Ω(nX′nY ′) = Ω
((
md−1

)2)
= Ω

(
n2(d−1)/d

)
, where nX′ denotes

the number of vertices of X ′. The upper bound of Lemma 3.4.5 is (only) larger by a
factor of O(1/ε2).

3.5. EXTENSION TO BOUNDED CURVES 39

=⇒ =⇒ =⇒ =⇒. . .

Figure 3.2: Koch’s snowflake is an example of a κ-bounded curve that has infinite
length but a finite diameter.

By using Lemma 3.4.5 instead of Lemma 3.1.6 in the proof of Lemma 3.3.3 we get
the following result. Note that one can use the technique in the proof of Lemma 3.3.4
to get a slightly faster algorithm, see [71].

Theorem 3.4.7 Given two low-density curves X and Y with a total of n vertices in
IRd, and a parameter ε > 0, there exists an algorithm which (1 + ε)-approximates the

Fréchet distance between X and Y in O

(
n2(d−1)/d

ε2
log n

)
time.

3.5 Extension to κ-bounded curves

We revisit the definitions of Alt et al. [14] of κ-bounded and κ-straight curves. Note
that these definitions describe a very restricted class of curves while c-packed curves
form a fairly general and natural class of curves. However, it is not true that any
κ-bounded curve is O(κ)-packed. We therefore give a separate proof to bound the
relative free space complexity of κ-bounded curves in order to improve upon the result
in [14].

r

p
q

Definition 3.5.1 Let κ ≥ 1 be a given parameter. A curve X
is κ-straight if for any two points p and q on the curve, it holds
that ‖X〈p, q〉‖ ≤ κ ‖p− q‖.

A curve X is a κ-bounded if for all p, q ∈ X it holds that
the curve X〈p, q〉 is contained inside b(p, r)∪b(q, r), where r =
(κ/2) ‖p− q‖, see the figure on the right.

Lemma 3.5.2 A κ-straight curve is 2κ-packed.

Proof : Let X be a κ-straight curve in IRd, and consider any ball b(p, r) that inter-
sects it. Let q and s be the first and last points, respectively, along X that are in
b(p, r). Clearly, ‖q− s‖ ≤ 2r, and by the κ-straightness ‖X ∩ b(p, r)‖ ≤ ‖X〈q, s〉‖ ≤
κ ‖q− s‖ ≤ 2κr. �

Remark 3.5.3 It is easy to verify that a κ-straight curve is also κ-bounded. However,
κ-bounded curves, counterintuitively, can have infinite length even when contained
inside a finite domain. An example of this is Koch’s snowflake , which is a fractal
curve depicted in Figure 3.2.

40 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

To see, intuitively, why Koch’s snowflake is κ-bounded, let Xi be the ith polygonal
curve generated by this process. There is a natural mapping between any point of
Xi and Xi+1, for all i. In particular, consider two points p and q on the final curve
X∗, and consider the two sequences of points pi, qi ∈ Xi, where pi+1 ∈ Xi+1 (resp.
qi+1 ∈ Xi+1) is the natural image of pi (resp. qi); that is, limi→∞ pi = p, and
limi→∞ qi = q.

Now, assume that r = ‖p− q‖. Observe that, for all i, the polygonal curve Xi is
made out of segments that are all of the same length. In particular, consider the first
index k, such that this segment length of Xk is of length ≤ r/20. It is easy to argue
that ‖pk − p‖ ≤ r/5 and ‖qk − q‖ ≤ r/5. In fact, one can argue that no point of Xk

moves more than a distance larger than r/5 to its final location on X∗.
Now, a tedious argument shows that there are O(1) segments of Xk separating pk

from qk. Therefore this portion of the curve Xk is covered by a disk of radius O(r),
and the corresponding portion of the final curve between p and q is also covered by a
disk of radius O(r). This implies that Koch’s snowflake is κ-bounded.

A formal proof of this fact is considerably more tedious and is omitted.

Lemma 3.5.4 Let X be a κ-bounded polygonal curve in IRd, and let µ ≤ δ be param-
eters. Let X ′ = simpl(X,µ). Then the number of segments of X ′ intersecting b(p, δ)
is bounded by O

(
κd(1 + δ/µ)d

)
, for any p ∈ IRd.

Proof : For X ′ = u1u2 . . . uk, let SO = {u1, u3, . . .} and SE = {u2, u4, . . .} be the sets
of odd and even segments of X ′, respectively.

Let AO ⊆ SO be the set of odd segments of X ′ intersecting b(p, δ). For all i, pick
an arbitrary point pi on the ith segment of AO that lies inside b(p, δ). Next, pick an
original point qi of X within distance at most µ from pi, for i = 1, . . . ,M = |AO|.
Observe, that for all i we have that ‖p− qi‖ ≤ δ + µ. Furthermore, between any two
distinct points pi and pj on the simplified curve X ′ there must lie an even segment
of SE in between them along the curve, and the length of this segment is at least µ
(because the simplification algorithm generates segments of length at least µ). Also,
the endpoints of this even segment lie on the original curve X.

We claim that no two points of A = {q1, . . . , qM} can be too close to each other;
that is, there are no two points q′, q′′ ∈ A, such that r = ‖q′ − q′′‖ ≤ µ/(4κ). Indeed,
assume for the sake of contradiction, that there exist two such points. Then, by
the above, the portion of X connecting them contains two points v′, v′′ that are at
least µ apart. Let R = b(q′, (κ/2)r) ∪ b(q′′, (κ/2)r) and observe that X〈v′, v′′〉 ⊆ R.
However, the maximum distance between two points that are included inside R is
bounded by its diameter. We have that

µ ≤ ‖v − v′‖ ≤ diam(R) = 2(κ/2)r + ‖q′ − q′′‖ ≤ µ

4
+

µ

4κ
≤ µ

2
,

since κ > 1. A contradiction.
However, all the points of A lie inside a ball of radius δ + µ centered at p. Now,

placing a ball of radius µ′ = µ/(8κ) around each point of A, results in a set of interior
disjoint balls. This implies, by a standard packing argument, that the number of
points of A is bounded by vol(b(p, δ + µ)) /vol(b(·, µ′)) = O

(
(δ + µ)d/(µ/κ)d

)
=(

(1 + δ/µ)dκd
)
.

3.6. EXTENSION TO CLOSED PACKED CURVES 41

This bounds the number of odd segments of X ′ intersecting the ball b(p, δ), and
a similar argument holds for the even segments intersecting this ball. �

Lemma 3.5.5 Given two κ-bounded curves X and Y with a total number of n vertices
in IRd, and parameters 0 < ε ≤ 1 and δ > 0. For µ = εδ, let X ′ = simpl(X,µ) and
Y ′ = simpl(Y, µ) denote their simplifications. Then N≤δ(X

′, Y ′) = O
(
(κ/ε)dn

)
.

Proof : Let δ ≥ 0 be an arbitrary radius, and set µ = εδ. Let X ′ = simpl(X,µ) and
Y ′ = simpl(Y, µ). We need to show that the complexity of the reachable free space
R≤δ(X

′, Y ′) is O
(
κd(1 + δ/µ)dn

)
= O

(
(κ/ε)dn

)
.

The boundary of a reachable cell in the free-space diagram has a non-empty inter-
section with D≤δ(X

′, Y ′). Otherwise its interior could not be reached by a monotone
path from (0, 0). Therefore, using an argument similar to the proof of Lemma 3.1.6,
Lemma 3.5.4 implies the desired bound. �

By using Lemma 3.5.5 instead of Lemma 3.1.6 in the proof of Lemma 3.3.3 we get
the following result. Note that one can use the technique in the proof of Lemma 3.3.4
to get a slightly faster algorithm, see [71].

Theorem 3.5.6 Given two κ-bounded polygonal curves X and Y with a total of n
vertices in IRd, and a parameter 0 < ε ≤ 1, there exists an algorithm which (1 + ε)-
approximates the Fréchet distance between X and Y in O

(
(κ/ε)dn log n

)
time.

3.6 Extension to closed packed curves

The Fréchet distance for closed curves is defined as in Section 2.1 with the altered
condition that the reparameterization f is an orientation-preserving homeomorphism
on the one-dimensional sphere. Note that in this case the constraint that the end-
points of the curves have to be matched to each other is dropped and the set of
reparameterizations one has to consider is larger.

To apply our simplification algorithm (Algorithm 3.1.2) to a closed curve X, we
pick an arbitrary vertex ofX and run the algorithm as written. In the end, we connect
the vertices in their circular order along X.

The decision problem for closed curves can be reduced to the previously considered
case of open curves. Given two closed c-packed curves X and Y and a parameter δ.
Pick a vertex p of the curve X, and assume that we know a point q on Y that is
being matched to p by a matching of X and Y of width at most δ. Clearly, if we
break X open at p, and Y at q, we retrieve two open curves X̂ and Ŷ , and we can

use the previous method to decide if dF

(
X̂, Ŷ

)
≤ δ. Hence we only need to generate

a suitable set of candidates for q to determine if the Fréchet distance between X and
Y is at most δ within a certain approximation error.

Lemma 3.6.1 Let X be a closed c-packed polygonal curve in IRd, and let µ ≤ δ be
parameters. Let X ′ = simpl(X,µ). Then the number of edges of X ′ intersecting
b(p, δ) is bounded by O(cδ/µ), for any p ∈ IRd.

42 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

Proof : Consider the ball b = b(p, r) of radius r = µ + δ. Any edge u of X ′ that
intersects b(p, δ) has to contribute at least µ to the length of the intersection with b,
as the simplification guarantees that every edge of X ′ is of length at least µ. Since
X ′ is 6c-packed, by Lemma 3.1.5, we have that ‖b ∩X ′‖ ≤ 6cr, and the number
of intersections of X ′ with b(p, δ) is N ≤ ‖b ∩X ′‖ /µ ≤ 6cr/µ = 6c(µ + δ)/µ =
O(c+ cδ/µ), which implies the claim. �

Lemma 3.6.2 Given two closed c-packed polygonal curves X and Y with a total
number of n vertices and parameters δ and 0 < ε < 1. Let X ′ = simpl(X,µ) and
Y ′ = simpl(Y, µ) denote the curves simplified with µ ≤ εδ. For any point p ∈ X ′, we
can compute a set of points K ⊆ Y ′ of size O(c/ε), in O(n + c/ε) time, such that if
dF(X

′, Y ′) ≤ δ then there exists a matching of width at most (1 + ε)δ that matches p

to an element of K.

Proof : We walk along the curve Y ′ starting from an arbitrary point. If the starting
point is within distance δ from p, then we add it to the candidate set K. As we follow
along the curve we create a candidate if we

(a) (re-)enter the ball b(p, δ), or
(b) have traveled a distance εδ along Y ′ since the last creation of a candidate,

unless we have exited the ball b(p, δ) in the meantime.

Clearly this takes O(n+ |K|) time.
The number of events of type (a) is bounded (up to a factor of 2) by the number

of intersections of Y ′ with the sphere S(p, δ), and by Lemma 3.6.1, this number is
bounded by O(cδ/µ) = O(c/ε). By Lemma 3.1.5 the simplified curve Y ′ is 6c-packed
and therefore the length of its intersection with b(p, δ) is at most 6cδ. This implies
that we can have at most O(6cδ/µ) = O(6c/ε) candidates that were created at events
of type (b).

q

q
′

p

Ŷ

X̂

Y
′

p
′

X
′Consider a matching of X ′ and Y ′ of width at

most δ under this matching. Next, consider a point
q ∈ Y ′ that is matched to p ∈ X ′. Observe that q ∈
b(p, δ) and there exists, by construction, a point
q′ ∈ K such that the entire curve segment Y ′〈q, q′〉
is within distance δ from q.

Secondly, let p′ be a point onX ′ that is matched
to q′ under this matching. We match the curve
segment Ŷ between q and q′ to p and the curve
segment X̂ between p and p′ to q, see the figure to
the right. Clearly this preserves the monotonicity of the matching. By the triangle
inequality, any point on Ŷ has distance at most (1+ ε)δ to p. Similarly, for any point

on X̂ there is a point on Ŷ that is within distance δ, therefore q′ is within distance
(1 + ε)δ from X̂.

We conclude that the Fréchet distance between X ′ and Y ′ is at most (1+ε)δ when
restricted to matchings that associate p to q′. �

One can adapt Lemma 3.2.3 to the closed curves case, by considering the O(cn/ε)
open curves that result from breaking Y ′ at any point of K. The details of the
adaption are straightforward, and we only state the result.

3.7. FATNESS IMPLIES PACKEDNESS 43

Lemma 3.6.3 Given two closed polygonal c-packed curves X and Y with a total of
n vertices in IRd, and parameters δ and 1 > ε > 0. Then, there exists an algorithm
which, in O

(
(c/ε)2n

)
time, correctly outputs one of the following:

(A) If dF(X,Y) ≤ δ then the algorithm outputs “≤ (1 + ε)δ”.
(B) If dF(X,Y) > (1 + ε)δ then the algorithm outputs “dF(X,Y) > δ”.
(C) If dF(X,Y) ∈ [δ, (1 + ε)δ] then the algorithm outputs either of the above out-

comes.

Plugging Lemma 3.6.3 into the algorithm of Theorem 3.3.5, we get the following
result.

Theorem 3.6.4 Given two closed polygonal c-packed curves X and Y with a total of
n vertices in IRd, and a parameter 1 > ε > 0, one can (1+ε)-approximate the Fréchet
distance between X and Y in O

(
c2n
(
ε−2 + log n

))
time.

3.7 Fatness implies packedness

We show that the boundary of an (α, β)-covered shape is c-packed even if the shape
does not have a finite descriptive complexity. A somewhat similar result (which
however is too weak to prove this result) is the packing lemma of de Berg [50] that
shows that the boundary of the union of γ-fat shapes has low density. This implies
that a connected component of this boundary has low density.

As mentioned before, since Koch’s snowflake is γ-fat, if the finiteness requirement
is removed, it follows that the boundary of γ-fat shapes with unbounded descriptive
complexity are not c-packed, for any finite c.

Definition 3.7.1 A bounded simply connected region P in the plane is (α, β)-covered
if for each point p ∈ ∂P , there exists a triangle Tp, called a good triangle of p, such
that: (i) p is a vertex of Tp, (ii) Tp ⊆ P , (iii) all the angles of Tp are at least α, and
(iv) the length of all the edges of Tp is at least βdiam(P).

Note, that our definition is different from the standard definition of (α, β)-covered
shapes, since we do not require that the region P has a finite descriptive complexity.

Lemma 3.7.2 Let S be a set of segments contained inside a disk with radius r, such
that for any point p lying on a segment of S, there is an infinite cone V of angle at
least α ≤ π with an apex at p, such that the intersection of the interior of V with S
is empty. Then, ‖S‖ ≤ 10πr/(α sin(α/4)).

Proof : Let F be a family of ⌈2π/(α/2)⌉ cones, centered at the origin, such that they
cover all directions, and each cone has angle α/2. Clearly, for any point p lying on a
segment of S, there must be a cone V ∈ F , such that the interior of p + V does not
intersect S. We will say that p is exposed by V.

So, fix such a cone V ∈ F and consider the direction ~v that splits the angle of
V into two. Rotate the plane such that ~v is the direction of the negative y axis,
and observe that any point of S that is exposed by (the rotated) V lies on the lower
envelope of the segments of S.

44 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

α

Furthermore, the segment u ∈ S that contains
this point must have an angle in the range (−π/2+
α/4, π/2− α/4) with the positive direction of the
x-axis (we assume u is oriented from left to right).

Now, since the projection of S on the x-axis
has length at most 2r, it follows that the total
length of the segments exposed by V is at most
2r/ sin(α/4).

Hence, the total length of segments of S is
bounded by

|F|
(

2r

sin(α/4)

)
=

(
4π

α
+ 1

)(
2r

sin(α/4)

)
≤ 10πr

α sin(α/4)
.

�

Lemma 3.7.3 If P is an (α, β)-covered polygon in the plane then it is c-packed, for

c = O

(
1

αβ sin(α/4) tan(α)

)
.

Proof : Let S = ∂P , and consider any disk D of radius r in the plane. Observe that
the height of a good triangle is at least ρ = (s/2) tan(α), for s = βdiam(P), and
this also bounds the distance of any vertex of a good triangle to its facing edge. If
r ≤ ρ/2, then any good triangle for a point of S behaves like a cone as far as S ∩D
is concerned, and Lemma 3.7.2 implies that ‖S ∩D‖ ≤ 10πr/(α sin(α/4)) as desired.

If r ≤ diam(P), then cover D by m = (2
√
2r/ρ+ 1)2 disks of radius ρ/2. Clearly,

for each such disk, the total length of segments of S inside it, by Lemma 3.7.2, is at
most 5πρ/(α sin(α/4)). Therefore the total length of S inside D is

5πρ

(α sin(α/4))

(
2
√
2r

ρ
+ 1

)2

≤ 160π

α sin(α/4)
· r
ρ
· r ≤ 320π

αβ sin(α/4) tan(α)
r.

Observe that the total length of ∂P is bounded by the above expression, by taking
D to be a disk of radius r = diam(P) centered at some point of P . Therefore the
claim trivially holds in the case r ≥ diam(P). �

3.8 Concluding remarks

In this chapter, we saw a new approximation algorithm for the Fréchet distance for
polygonal curves in any fixed dimension. The algorithm is surprisingly simple and
should be practical. Furthermore it works for any kind of polygonal curves. Since
the algorithm simplifies the curves to the “right” resolution during the execution, we
expect the algorithm to be fast in practice.

3.8. CONCLUDING REMARKS 45

To analyze the complexity of the algorithm, we used realistic input models. In
particular, we used the new concept of c-packedness. While not all curves are c-
packed, it seems that many real-life curves are c-packed. The algorithm’s analysis
relies on the concept of the relative free space complexity of curves, which tries to
capture the complexity of the free-space diagram when simplification is being used.
We showed that the relative free space complexity of c-packed curves is linear and the
algorithm therefore runs in near-linear time for these curves.

We extended the analysis of the algorithm to known families of curves, and in
particular low-density curves. Here, we faced the challenge that, unlike for c-packed
curves, simplifying a φ-low-density curve does not neccessarily yield an O(φ)-low-
density curve under our simplification algorithm. However, we showed that the rel-
ative free space complexity of low-density curves can be high only if the curve has
many vertices in a small area. By using a sophisticated charging scheme, we were
able to bound the relative free space complexity also of low density curves and as a
result we showed that the algorithm runs in near-linear time for low-density curves in
the plane. We also saw that in higher dimensions low-density curves are considerably
less restriced than c-packed curves. Therefore, the relative free space complexity of
two φ-low-density curves can be high even for a small value of φ.

Finally, we extended the analysis to κ-bounded curves, thereby improving upon
a previous result and we also showed that the algorithm can be modified to handle
closed curves efficiently. Despite the wealth of results many interesting open problems
remain. We conclude by discussing a few of them in more detail.

Open Problem 3.1 It is an open problem if one can compute the Fréchet distance
exactly in subquadratic time if the input curves are c-packed. In particular, it is
an open problem if the running time of the algorithm by Buchin et al. [34] (and
likewise the algorithm by Agarwal et al. [3] for the discrete Fréchet distance) can be
improved under this assumption. Both algorithms use a look-up table to speed up the
computations. The size of the table is determined by the number of combinatorially
different partial solutions. In both cases, it is conceivable that the number of partial
solutions that have to be considered by the algorithm is reduced by the packedness
assumption.

Open Problem 3.2 The approximation algorithm described in this chapter has
been extended to the case of map-matching a trajectory in a road network, see [43].
More recently, the so-called highway dimension was suggested as a realistic input
model for continental-scale road networks by Abraham et al. [2]. This model restricts
the minimal number of transit points needed to cover all shortest paths of length O(r)
in a ball of radius r. A low highway dimension of real-life road networks would explain
the success of many seemingly different route-planning algorithms used in practice.
However, computing the highway dimension for a given road-network is conjectured
to be NP-hard. It would be interesting to study the relation between the highway
dimension and the packedness of planar geometric graphs. Note that computing the
packedness constant can be done in polynomial time.

Open Problem 3.3 Exact algorithms that minimize the Fréchet distance under
translations in the plane run in O(n8 log n) time [13] or in O(n10polylog(n)) time [75].

46 CHAPTER 3. APPROXIMATING THE FRÉCHET DISTANCE

An extension by Wenk to transformations in higher dimensions with k degrees of free-
dom runs in O(n3k+2 log n) time [156].

Wenk et al. show that it is sufficient to test the Fréchet distance for certain critical
transformations. Their algorithm invokes the original decision procedure by Alt and
Godau on the input curves for each such critical transformation. Thus, improving
upon the quadratic-time decision algorithm immediately implies a better running
time for this algorithm. However, the number of critical transformation is believed
to be high. Even for translations in the plane, their number lies between O(n6) and
Ω(n2) in the worst case, see [156].

In order to design a faster algorithm for the Fréchet distance under transforma-
tions, one could try to approximate the critical transformations. For translations in
the plane, it is easy to see that the optimal translation has to lie within a constant
factor of the two translations that map the endpoints onto one another. Furthermore,
assuming c-packedness of the input curves should have a positive effect on the number
and the distribution of the critical transformations.

Approximation algorithms known in the literature only work for the case of trans-
lations in the plane. A (1 + ε)-approximation algorithm that runs in O(n2/ε2) time
was presented by Wenk et al. [13]. A constant factor approximation algorithm which
runs in O(n2 log n) was presented by Efrat et al. [75].

Open Problem 3.4 The discrete Fréchet distance has been studied under impreci-
sion by Ahn et al. [7]. In this setting the exact location of the input vertices is not
known. Instead their possible locations are assumed to lie within given ball-shaped
regions. Now the objective is to compute conservative upper and lower bounds on the
Fréchet distance of the two curves. Ahn et al. give an O(n2 log2 n)-time algorithm
for the planar case and constant factor approximation algorithms that run in O(n2)
time for fixed dimensions. It is an open problem how to combine this imprecise input
model with realistic input models, such as c-packedness. It is conceivable that one
can improve the running times of these algorithms by making such realistic input
assumptions.

CHAPTER 4

Data structures for Fréchet-distance queries

In this chapter we describe several data structures to preprocess a polygonal curve
Z in IRd to answer different types of Fréchet-distance queries. For the first type of
query, we are given a query curve Q and two values u, v ∈ [0, 1], which we interpret as
points Z(u) and Z(v) on the curve, and we return the Fréchet distance dF(Q,Z[u, v]).
The second type is a query for a simplification of Z. More specifically, we are given
a parameter k and we want to extract a polygonal curve with k segments which has
the smallest Fréchet distance to Z over all such k-segment curves and thus serves as
a simplification of Z. Both types of queries are answered approximately. The chapter
is organized as follows. We first establish some basic facts in Section 4.1. Then, in
Section 4.2 we describe data structures for queries of the first type where Q is a single
line segment. The data structure is described in several stages. In Section 4.3 we
extend this data structure to support queries with polygonal curves of k segments.
For this, we first define an ordering of the vertices of an input curve that allows to
extract a simplification quickly. We call this ordering a universal vertex permutation.
Then we show how to use this ordering to extend the data structure of Section 4.2 to
support queries with polygonal curves of low complexity.

4.1 Useful lemmas for curves and segments

Definition 4.1.1 For a curve Z, the segment connecting its endpoints is its spine ,
denoted by spine(Z).

The following is a sequence of technical lemmas that we need later on. These
lemmas testify that:

(A) The spine of a curve is, up to a factor of two, the closest segment to this curve
with respect to the Fréchet distance, see Lemma 4.1.2.

(B) The Fréchet distance between a curve and its spine is monotone, up to a factor
of two, with respect to subcurves, see Lemma 4.1.3.

47

48 CHAPTER 4. DATA STRUCTURES FOR FRÉCHET-DISTANCE QUERIES

(C) Shortcutting a curve cannot increase the Fréchet distance of the curve to a line
segment, see Lemma 4.1.4 or [36].

Lemma 4.1.2 Let pq be a segment and Z be a curve. Then, (i) dF(pq, Z) ≥
dF(pq, spine(Z)), and (ii) dF(pq, Z) ≥ dF(spine(Z) , Z) /2.

Proof : Let r and u be the endpoints of Z; that is spine(Z) = ru.
(i) Since in any matching of pq with Z it must be that p is matched to r, and q

is matched to u, it follows that dF(pq, Z) ≥ max(‖p− u‖ , ‖q− v‖) = dF(pq, ru) =
dF(pq, spine(Z)), by Observation 2.3.1.

(ii) By (i) and the triangle inequality, we have that

dF(spine(Z) , Z) ≤ dF(spine(Z) , pq) + dF(pq, Z) ≤ 2dF(pq, Z) ,

which implies the claim. �

Lemma 4.1.3 Given two curves Z and Ẑ, such that Ẑ is a subcurve of Z. Then, we

have that dF

(
spine

(
Ẑ
)
, Ẑ
)
≤ 2dF(spine(Z) , Z).

Proof : Consider the matching that realizes the Fréchet distance between Z and
spine(Z). It has to match the endpoints of Ẑ to points q and r on spine(Z). We have

that dF

(
Ẑ, qr

)
≤ dF(Z, spine(Z)). By Lemma 4.1.2 (i), we have dF

(
spine

(
Ẑ
)
, qr
)
≤

dF

(
Ẑ, qr

)
≤ dF(Z, spine(Z)). Now, by the triangle inequality, we have that

dF

(
Ẑ, spine

(
Ẑ
))
≤ dF

(
Ẑ, qr

)
+ dF

(
qr, spine

(
Ẑ
))
≤ 2dF(Z, spine(Z)) .

�

Lemma 4.1.4 Let Z = u1u2 . . . un be a polygonal curve, pq be a segment, and let
i < j be any two indices. Then, for Z ′ = Z〈u1, ui〉 ⊕ uiuj ⊕ Z〈uj , un〉, we have
dF(Z

′, pq) ≤ dF(Z, pq).

Proof : Consider the matching realizing dF(Z, pq), and break it into three portions:
• the portion matching Z〈u1, ui〉 with a “prefix” pp′ ⊆ pq,
• the portion matching Z〈ui, uj〉 with a subsegment p′q′ ⊆ pq, and
• the portion matching Z〈uj , un〉 with a “suffix” q′q ⊆ pq.

Now, by Lemma 4.1.2 (i), we have that

dF(Z, pq) = max
(
dF(Z〈u1, ui〉 , pp′) , dF(Z〈ui, uj〉 , p′q′) , dF(Z〈uj , un〉 , q′q)

)

≥ max
(
dF(Z〈u1, ui〉 , pp′) , dF(uiuj , p′q′) , dF(Z〈uj , un〉 , q′q)

)

≥ dF(Z ′, pq) .
�

The following lemma is an extension of Lemma 4.1.3. Here, the spine is replaced
by an arbitrary line segment. It will also be used in Chapter 5.

4.2. DATA STRUCTURE FOR QUERIES WITH SINGLE SEGMENTS 49

Lemma 4.1.5 Given a value δ > 0 and two curves X1 and X2, such that X2 is a
subcurve of X1, and given two line segments Y 1 and Y 2, such that dF

(
X1, Y 1

)
≤ δ

and the start (resp., end) point of X2 is in distance δ to the start (resp., end) point
of Y 2, then dF

(
X2, Y 2

)
≤ 3δ.

Proof : Let u denote the subsegment of Y 1 that is matched
to X2 under a matching realizing the Fréchet distance be-
tween X1 and Y 1. We know that dF(X2, u) ≤ δ by this
mapping. The start point of Y 2 is in distance 2δ to the
start point of u, since they are both in distance δ to the
start point of X2 and the same holds for the end points.
This implies that dF

(
u, Y 2

)
≤ 2δ. Now, by the triangle

inequality, dF
(
X2, Y 2

)
≤ dF(X2, u) + dF

(
u, Y 2

)
≤ 3δ. �

X1

X2

≤ δ

Y 1

Y 2

u

4.2 Data structure for queries with single segments

Given a polygonal curve Z in Rd, we want to build a data structure that supports
queries for the Fréchet distance of subcurves of Z to query segments pq. We describe
the data structure in three stages. We first describe a data structure that achieves
a constant factor approximation in Section 4.2.1. We proceed by describing a data
structure that answers queries for the Fréchet distance of the entire curve to a query
segment up to an approximation factor of (1+ε) in Section 4.2.2. Finally, we describe
how to combine these two results to obtain the final data structure for segment queries
in Section 4.2.3.

4.2.1 Stage 1: Achieving a constant-factor approximation

In this section we describe a data structure that preprocesses a curve Z to answer
queries for the Fréchet distance of a subcurve of Z to a query segment up to a constant
approximation factor. This data structure will be the basis for later extensions.

A query is specified by points u, v, p and q. Here u and v are points on Z (and
we are also given the edges of Z containing these two points), and the points p and q

define the query segment. Our goal is to approximate dF(pq, Z〈u, v〉).

4.2.1.1 The data structure

Preprocessing. Build a balanced binary tree T on the edges of Z. Every internal
node ν of T corresponds to a subcurve of Z, denoted by cr(ν). Let seg(ν) denote the
spine of cr(ν) (Definition 4.1.1). For every node, we precompute its Fréchet distance
of the curve cr(ν) to the segment seg(ν). Let dν denote this distance.

Answering a query. For the time being, assume that u and v are vertices of Z. In
this case, one can compute, in O(log n) time, k = O(log n) nodes ν1, . . . , νk of T ,
such that Z〈u, v〉 = cr(ν1) ⊕ cr(ν2) ⊕ · · · ⊕ cr(νk). We compute the polygonal curve
Y = seg(ν1) ⊕ · · · ⊕ seg(νk), and compute its Fréchet distance from the segment pq.

50 CHAPTER 4. DATA STRUCTURES FOR FRÉCHET-DISTANCE QUERIES

We denote this distance by d = dF(pq, Y). We return

∆ = d+
k

max
i=1

dνi

as the approximate distance between pq and the subcurve Z〈u, v〉.

4.2.1.2 Analysis

Lemma 4.2.1 Given a polygonal curve Z with n edges, one can preprocess it in
O(n log2 n) time, such that for any pair u, v of vertices of Z and a segment pq, one
can compute, in O(log n log log n) time, a 3-approximation to dF(pq, Z〈u, v〉).

Proof : The construction of the data structure and how to answer a query is described
above. For the preprocessing time, observe that computing the Fréchet distance of a
segment to a polygonal curve with k segments takes O(k log k) time [12]. Hence, the
distance computations in each level of the tree T take O(n log n) time, and O(n log2 n)
time overall.

As for the query time, computing Y takes O(log n) time, and computing its Fréchet
distance from pq takes O(log n log log n) time [12].

Finally, observe that the returned distance ∆ is a realizable Fréchet distance, as
we can take the matching between pq and Y , and chain it with the matching of every
edge of Y with its corresponding subcurve of Z. Clearly, the resulting matching has
width at most ∆.

Let t be the index realizing maxki=1 dνi
. Then, by repeated application of Lemma 4.1.4,

we have that d = dF(pq, Y) ≤ dF(pq, Z). Thus,

∆ = d+
k

max
i=1

dνi = dF(pq, Y) + dνt ≤ dF(pq, Z) + dF(seg(vt) , cr(vt))

≤ dF(pq, Z) + 2 min
p′q′⊆pq

dF(p
′q′, cr(vt)) ≤ 3dF(pq, Z) .

To see the last step, consider the matching realizing dF(pq, Z), and consider the
subsegment p′q′ of pq that is being matched to cr(vt) ⊆ Z. Clearly, dF(p′q′, cr(vt)) ≤
dF(pq, Z). �

Theorem 4.2.2 Given a polygonal curve Z with n edges, one can preprocess it in
O(n log2 n) time and using O(n) space, such that, given a query specified by

(i) a pair of points u and v on the curve Z,
(ii) the edges containing these two points, and
(iii) a pair of points p and q,

one can compute, in O(log n log log n) time, a 3-approximation to dF(pq, Z〈u, v〉).

Proof : This follows by a relatively minor modification of the above algorithm and
analysis. Indeed, given u and v (and the edges containing them), the data structure
computes the two vertices u′, v′ that are endpoints of these edges that lie between u
and v on the curve. The data structure then concatenates the segments uu′ and v′v to
the approximation Y (here Y is computed for the vertices u′ and v′). The remaining
details are as described above. �

4.2. DATA STRUCTURE FOR QUERIES WITH SINGLE SEGMENTS 51

4.2.2 Stage 2: A segment query to the entire curve

In this section we describe a data structure that preprocesses a curve to answer queries
for the Fréchet distance of the entire curve to a query segment up to an approximation
factor of (1+ε). We will use this data structure as a component in our later extensions.

4.2.2.1 The data structure

We use the following lemma for constructing an exponential grid.

Lemma 4.2.3 Given a point u ∈ IRd, a parameter 0 < ε ≤ 1 and an interval [α, β] ⊆
IR one can compute in O

(
ε−d log(β/α)

)
time and space an exponential grid of points

G(u), such that for any point p ∈ IRd with ‖p− u‖ ∈ [α, β], one can compute in
constant time a grid point p′ ∈ G(u) with ‖p− p′‖ ≤ (ε/2) ‖p− u‖.
Proof : We construct a series of axis-parallel hypercubes Ci centered at u and of side
lengths λi = 2i+2α for i = 0, . . . ,m = ⌈log(β/α)⌉. Let Vi be the set of vertices of the
grid Gi of side length ελi/c1, inside Ci \ Ci−1 (resp., C0), where c1 = 4

√
d.

Let G(u) =
⋃m

i=0 Vi. The grid G(u) satisfies the claimed properties. First observe
that its size is bounded by

|G(u)| =
m∑

i=0

|Vi| =
m∑

i=0

O(1/εd) = O
(
ε−d log(β/α)

)
.

Secondly, for any point p ∈ IRd, such that α ≤ ‖p− u‖ ≤ β, let i be the maximal
index such that p ∈ Ci (since, Cm covers all such points, i is well defined).

By assumption ‖p− u‖ ≥ α. Furthermore, if i ≥ 1, then p ∈ Ci \ Ci−1 and thus

‖p− u‖ ≥ λi−1/2 = 2iα.

So, consider the grid cell C′ of Gi that contains p, and let p′ be the closest vertex of
this grid to p. We have that

‖p− p′‖ ≤ diam(C′)

2
≤
√
d

2
· ελi
c1

=

√
d

2
· ε2

i+2α

4
√
d
≤ ε

2
‖p− u‖ ,

as claimed.
As for computing p′, observe that one can easily compute, in constant time, the

index i such that p ∈ Ci \ Ci−1 using the floor function. Then, one can look-up the
grid cell that contains p in constant time, and scan the vertices of this cell to find the
closest to p in constant time. �

Preprocessing. We are given a polygonal curve Z in IRd with n segments, and we
would like to preprocess it for (1 + ε)-approximate Fréchet distance queries against a
query segment. To this end, let L = dF(uv, Z), where uv is the spine of Z. We con-
struct an exponential grid G(u) of points around u with the range [α, β] = [εL/2, L/ε]
as described in Lemma 4.2.3 and illustrated in Figure 4.1. We construct the same
grid G(v) around the vertex v.

Now, for every pair of points (p′, q′) ∈ G(u) × G(v) we compute the Fréchet
distance D[p′, q′] = dF(p

′q′, Z) and store it. Thus, we take O
(
χ2n log n

)
time to

build a data structure that requires O
(
χ2
)
space, where χ = ε−d log(1/ε).

52 CHAPTER 4. DATA STRUCTURES FOR FRÉCHET-DISTANCE QUERIES

u
Z

L

v

q

p
′

p

Figure 4.1: We build an exponential grid around each endpoint of the curve, such
that for any point p, which has distance to the endpoint in the range [εL/2, L/ε],
there exists a grid point p′ which is relatively close by.

Answering a query. Given a query segment pq, we compute the distance

r = max
(
‖p− u‖ , ‖q− v‖

)
.

If r ≤ εL/2, then we return L− r as the approximation to the distance dF(pq, Z). If
r ≥ L/ε then we return r as the approximation. Otherwise, let p′ (resp., q′) be the
nearest neighbor to p in G(u) (resp., G(v)). We return the distance

∆ = D[p′, q′]−max(‖p− p′‖ , ‖q− q′‖)

as the approximation.

4.2.2.2 Analysis

Lemma 4.2.4 Given a polygonal curve Z with n vertices in IRd, one can build a data
structure, in O

(
χ2n log n)

)
time, that uses O

(
χ2
)
space, such that given a query seg-

ment pq one can (1+ε)-approximate dF(pq, Z) in O(1) time, where χ = ε−d log(1/ε).

Proof : The data structure is described above. Given pq we compute the distance of
the endpoints of this segment from the endpoints of Z. If they are too close, or if one
of them is too far away, then we are done since in this case the Fréchet distance is
dominated either by these distances or by the precomputed value L. Otherwise, we
find the two cells in the exponential grid that contain p and q (that is, the indices
of the grid points that are close to them) as described above. Using the indices of
the grid points, we can directly look-up the approximation of the Fréchet distance in
constant time.

4.2. DATA STRUCTURE FOR QUERIES WITH SINGLE SEGMENTS 53

Now, we argue about the quality of the approximation using the notation which
is also used above. There are three cases: either (i) r ≤ εL/2, or (ii) L ≤ εr, or
(iii) εL/2 ≤ r ≤ L/ε. Let ∆ be the returned value. We claim that in all three cases,
it holds that

∆ ≤ dF(pq, Z) ≤ (1 + ε)∆. (4.1)

First note that by the triangle inequality,

L− r ≤ dF(pq, Z) ≤ L+ r. (4.2)

Now, in case (i) above, L dominates the distance value and we return ∆ = L − r.
Thus, Eq. (4.1) follows from Eq. (4.2).

In case (ii), r dominates the distance value and we return ∆ = r. Since r is at
most dF(pq, Z), again Eq. (4.1) follows from Eq. (4.2).

In case (iii), the precomputed Fréchet distance of p′q′ to Z dominates the distance.
Recall that we return ∆ = dF(p

′q′, Z)−dF(p′q′, pq) in this case. Again, by the triangle
inequality, it holds that

dF(p
′q′, Z)− dF(p′q′, pq) ≤ dF(pq, Z) ≤ dF(p′q′, Z) + dF(p

′q′, pq) . (4.3)

Since r is at least εL/2 and by Observation 2.3.1, Lemma 4.2.3 implies that

dF(p
′q′, pq) ≤ max(‖p− p′‖ , ‖q− q′‖) ≤ (ε/2)r,

thus, since also r is at most dF(pq, Z) it follows by Eq. (4.3) that

∆ ≤ dF(pq, Z) ≤ ∆+ 2dF(p
′q′, pq) ≤ ∆+ εr ≤ (1 + ε)∆.

This implies the claim.

�

4.2.3 Stage 3: A segment query to a subcurve

In this section we describe a data structure that preprocesses a curve Z to answer
queries for the Fréchet distance of a subcurve of Z to a query segment up to an
approximation factor of (1 + ε). For this we combine the data structures developed
in the previous sections.

As in Section 4.2.1, a query is defined by two points u and v on Z and a segment
with endpoints p and q. The goal is now a (1 + ε)-approximation to dF(pq, Z〈u, v〉).

4.2.3.1 The data structure

Preprocessing. Let Z be a given polygonal curve with n vertices. We build the data
structure of Theorem 4.2.2. Next, for each node of the resulting tree T , we build for
its subcurve the data structure of Lemma 4.2.4 using ε′ = ε/3.

54 CHAPTER 4. DATA STRUCTURES FOR FRÉCHET-DISTANCE QUERIES

v0
v1

v2

v3

v4

v6

v5

vm

V1

V2

V3

V4

V5

V6

p

q

V0

Vm

Figure 4.2: Schematic illustration of the graph G on the vertex set
⋃
Vi.

Answering a query. Using the data structure of Theorem 4.2.2 we first compute a
3-approximation r to dF(pq, Z〈u, v〉); that is, dF(pq, Z〈u, v〉) ≤ r ≤ 3dF(pq, Z〈u, v〉).
This query also results in a decomposition of Z〈u, v〉 into m = O(log n) subcurves.
Let u = v0, v1, . . . , vm−1, vm = v be the vertices of these subcurves, where v0v1 and
vm−1vm are subsegments of Z.

We want to find points on pq that can be matched to v1, . . . , vm−1 under a (1+ε)-
approximate Fréchet matching. To this end, we uniformly partition the segment pq

into segments of length at most εr/c1, where c1 is a sufficiently large constant which
we define later. Let Π be the set of vertices of this implicit partition. For each vertex
vi, for i = 1, . . . ,m − 1, we compute its nearest point on pq, and let Vi ⊆ Π be the
set of all vertices in Π that are in distance at most 2r from vi. The set Vi is the set
of candidate points to match vi in the matching that realizes the Fréchet distance.

Now, we build a graph G where
⋃

i Vi is the multiset of vertices. Two points x ∈ Vi
and y ∈ Vi+1 are connected by a direct edge in this graph if and only if y is after x in
the oriented segment pq. See Figure 4.2 for a schematic illustration. The price of such
an edge(x, y) is a (1+ε/4)-approximation to the Fréchet distance between Z〈vi, vi+1〉
and xy. The portion Z〈vi, vi+1〉 of the curve corresponds to a node in T , and this
node has an associated data structure that can answer such queries in constant time
(see Lemma 4.2.4). For any point x ∈ V1, we directly compute the Fréchet distance
v0v1 with px. Similarly, we compute, for each y ∈ Vm−1, the Fréchet distance of the
segment vm−1vm to the segment yq. We add the corresponding edges to G together
with the vertices p and q.

Using a variant of Dijkstra’s algorithm for bottleneck shortest paths, we now
compute a path in this graph which minimizes the maximum cost of any single edge
visited by the path, connecting p with q. The cost of this path is returned as the
approximation to the Fréchet distance between Z〈u, v〉 and pq. Intuitively, this path
corresponds to the cheapest matching of Z〈u, v〉 (broken into subcurves by the vertices

4.2. DATA STRUCTURE FOR QUERIES WITH SINGLE SEGMENTS 55

Z

p

qv0

v1

v2

v3

Figure 4.3: Illustration of the error introduced by snapping.

v0, . . . , vm) with V0 × V1 × · · ·Vm−1 × Vm, where V0 = {p}, Vm = {q}, and every
subcurve Z〈vi, vi+1〉 is matched with two points in the corresponding sets Vi and
Vi+1.

4.2.3.2 Analysis

Query time. Computing the set of vertices v0, v1, . . . , vm takes O(m) = O(log n)
time. The graph G has N = O(m/ε) vertices and they can be computed in O(m/ε)
time. In particular, the number of vertices in Vi is bounded by O(1/ε), since they are
spread apart on a line segment by εr/c1 and contained inside a ball of radius 2r. Thus,

the graph has O
(
(1/ε)

−2
)
edges connecting Vi with Vi+1 and M = O

(
m/ε2

)
edges

in total. The cost of each edge can be computed in constant time, see Lemma 4.2.4.
Computing the cheapest path between p and q in G can be done in O(N logN+M) =
O
(
(m/ε) log(m/ε) +m/ε2

)
time, using Dijkstra’s algorithm for bottleneck shortest

paths. Overall, the query time is

O
(
m+ (m/ε) log(m/ε) +m/ε2

)
= O

(
ε−2 log n log log n

)
.

Quality of approximation. Consider the matching that realizes the Fréchet distance
between the query segment pq and the subcurve Z〈u, v〉, and break it at the vertices
of v0, . . . , vm. Now, snap the matching such that the endpoints of Z〈vi, vi+1〉 are
mapped to their closest vertices in Vi and Vi+1, respectively, for all i. This introduces
an error of at most εr/c1 ≤ (ε/3)dF(Z〈u, v〉 , pq), if we choose c1 ≥ 9, see Figure 4.3
for an illustration. We get another factor of (1 + ε′) = (1 + ε/3) error since we
are approximating the price of these portions using Lemma 4.2.4. Therefore, the
approximation has price at most

(1 + ε/3)(1 + ε/3) · dF(Z〈u, v〉 , pq) ≤ (1 + ε) · dF(Z〈u, v〉 , pq) .

Preprocessing time and space. Building the data structure described in Theorem 4.2.2
takes O(n log2 n) time. For each node v of this tree, building the data structure of
Lemma 4.2.4 takes O

(
χ2nv log nv

)
time per node, where nv is the number of vertices

of the curve stored in the subtree of v. As such, overall, the preprocessing time is
O
(
χ2n log2 n

)
. For each node, this data structure requires O

(
χ2
)
space and thus the

overall space usage is O
(
χ2n

)
, where χ = ε−d log(1/ε).

Putting the above together, we get the following result.

56 CHAPTER 4. DATA STRUCTURES FOR FRÉCHET-DISTANCE QUERIES

Theorem 4.2.5 Given a polygonal curve Z with n vertices in IRd, one can build
a data structure, in O

(
χ2n log2 n

)
time, that uses O

(
nχ2

)
space, such that for a

query segment pq, and any two points u and v on the curve (and the segments of the
curve that contain them), one can (1 + ε)-approximate the distance dF(Z〈u, v〉 , pq)
in O

(
ε−2 log n log log n

)
time, and χ = ε−d log(1/ε).

We emphasize that the result of Theorem 4.2.5 assumed nothing on the input
curve Z. In particular, the curve Z is not necessarily c-packed.

4.3 Data structure for queries with polygonal curves

of low complexity

We would like to extend the data structure described in Section 4.2.1 to support
queries with curves of more than one segment. For this, we first introduce a new
method to represent a polygonal curve in a way such that we can extract a sim-
plification with a small number of segments quickly. We describe this method in
Section 4.3.1 and we describe the extension of the data structure in Section 4.3.2.

4.3.1 Universal vertex permutation

We use the data structure described in Section 4.2.3 to preprocess Z, such that, given
a number of vertices k ∈ IN, we can quickly return a simplification of Z which has
(i) 2k − 1 vertices of the original curve and
(ii) minimal Fréchet distance to Z, up to a constant factor, compared to any sim-

plification of Z with only k vertices.
The idea is to compute a permutation of the vertices, such that the curve formed
by the first k vertices in this permutation is a good approximation to the optimal
simplification of a curve using (roughly) k vertices.

Related Work. There is a large body of literature on curve simplification. Since
this is not the main subject of this chapter, we only discuss a selection of results
which we consider most relevant, since they use the Fréchet distance as a quality
measure. Agarwal et al. [4] give a near-linear time approximation algorithm to
compute a simplification which is has Fréchet distance at most ε to the original curve
and whose size is at most the size of the optimal simplification with error ε/2. Abam
et al. [1] study the problem in the streaming setting, where one wishes to maintain a
simplification of the prefix seen so far. Their algorithm achieves an O(1) competitive
ratio using O(k2) additional storage and maintains a curve with 2k vertices which
has a smaller Fréchet distance to the prefix than the optimal Fréchet simplification
with k vertices. Bereg et al. [23] give an exact O(n log n) algorithm that minimizes
the number of vertices in the simplification, but using the discrete Fréchet distance,
where only distances between the vertices of the curves are considered. Simplification
under the Fréchet distance has also been studied by Guibas et al. [84].

Definition 4.3.1 Let Z be a polygonal curve with vertices VZ . Let V ⊆ VZ be a
subset of the vertices that contains the endpoints of Z. We call the polygonal curve

4.3. DATA STRUCTURE FOR QUERIES WITH POLYGONAL CURVES 57

obtained by connecting the vertices in V in their order along Z a spine curve of Z
and we denote it with ZV . Additionally we may call ZV a k-spine curve of Z if it
has k vertices.

Definition 4.3.2 Given a polygonal curve Z and a permutation Φ = 〈v1, . . . , vn〉
of the vertices of Z, where v1 and v2 are the endpoints of Z, let Vi be the subset
{vj | 1 ≤ j ≤ i} of the vertices for any 2 ≤ i ≤ n. We call Φ a universal vertex

permutation if it holds that

(i) c1dF(ZVi
, Z) ≥ dF

(
ZVi+1

, Z
)
, for any 2 ≤ i < n, and

(ii) dF(ZVi , Z) ≤ c2dF(Y, Z), for any polygonal curve Y with ⌈i/c3⌉ vertices,
where c1, c2 and c3 are constants larger than one which do not depend on n.

4.3.1.1 Construction of the permutation

We compute a universal vertex permutation of Z. The idea of the algorithm is to
estimate for each vertex the error introduced by removing it, and repeatedly remove
the vertex with the lowest error in a greedy fashion.

Specifically, for each vertex v that is not an endpoint of Z, let v− be its prede-
cessor on Z and let v+ be its successor on Z. Let φv be a (11/10)-approximation of
dF(Z〈v−, v+〉 , v−v+). Insert the vertex v with weight φv into a min-heap H. Repeat
this for all the internal vertices of Z.

At each step, the algorithm extracts the vertex v from the heapH having minimum
weight. Let u = v−(ZH) and w = v+(ZH) be the predecessor and successor of v in
the curve ZH, respectively, where H denotes the set of vertices currently in the heap
with the addition of the two endpoints of Z.

The algorithm removes v from H and updates the weight of u and w in H (if the
vertex being updated is an endpoint of Z its weight is +∞ and its weight is not being
updated). Updating the weight of a vertex u is done by computing its predecessor and
successor vertices in the current curve ZH (i.e., u− = u−(ZH) and u+ = u+(ZH)) and
approximating the Fréchet distance of the subcurve of (the original curve) Z between
these two vertices and the segment u−u+. Formally, the updated weight of u is φu,
which is a (11/10)-approximation to

dF
(
Z
〈
u−, u+

〉
, u−u+

)
.

The updated weight of w is computed in a similar fashion.

The algorithm stops when H is empty. Reversing the order of the handled vertices,
results in a permutation 〈v1, . . . , vn〉, where v1 and v2 are the two endpoints of Z.

Implementation details. Using Theorem 4.2.5, the initialization takes O
(
n log2 n

)

time overall, using ε = 1/10. In addition, the algorithm keeps the current set of
vertices of H in a doubly linked list in the order in which the vertices appear along
the original curve Z. In each iteration, the algorithm performs one extract-min from
the min-heap H, and calls the data structure of Theorem 4.2.5 twice to update the
weight of the two neighbors of the extracted vertex. As such, overall, the running
time of this algorithm is O

(
n log2 n

)
.

58 CHAPTER 4. DATA STRUCTURES FOR FRÉCHET-DISTANCE QUERIES

Extracting a spine curve quickly. Given a parameter K, we would like to be able
to quickly compute the spine curve ZVK

, where VK = {v1, . . . , vK}. To this end, we
compute for i = 1, . . . ⌊log2 n⌋, the spine curve ZV2i

by removing the unused vertices
from ZV2i+1 . Naturally, we also store the original curve Z. Clearly, one can store
these O(log n) curves in O(n) space, and compute them in linear time. Now, given
K, one can find the first curve in this collection that has more vertices than K, copy
it, and remove from it all the unused vertices. Clearly, this query can be answered in
O(K) time.

4.3.1.2 Analysis

Lemma 4.3.3 Let 〈v1, . . . , vn〉 be the permutation computed above. Consider a value
k, and let Vk = {u1, . . . , uk} be an ordering of the vertices of v1, . . . , vk by their order
along Z. Then, it holds that dF(Z,ZVk

) ≤ max1≤i≤k−1 dF(Z〈ui, ui+1〉 , uiui+1).

Proof : This is immediate as one can combine for i = 1, . . . , k − 1, the matchings
realizing dF(Z〈ui, ui+1〉 , viui+1) to obtain matchings of ZVk

and Z, and such that the
Fréchet distance is the maximum used in any of these matchings. �

Let v1, . . . , vn be the permutation of the vertices of Z as computed in the prepro-
cessing stage, and let φ(vi) denote weight of vertex vi at the time of its extraction. We
have the following three lemmas to prove that the computed permutation is universal.

Lemma 4.3.4 For any 1 ≤ i ≤ n, it holds that maxi≤j≤n φ(vj) ≤ 4φ(vi).

Proof : We show that the weight of a vertex at the time of extraction is at most 4 times
smaller than the final weight of any of the vertices extracted before this vertex. Let vi
be a vertex and let φj(vi) be the weight of this vertex at the time of extraction of some
other vertex vj , with j > i. Clearly, φ(vj) = φj(vj) ≤ φj(vi), since the algorithm
extracted vj with the minimum weight at the time. If φ(vi) = φi(vi) ≥ φj(vi) then
the claim holds.

Otherwise, if φ(vi) = φi(vi) < φj(vi), then there must be a vertex which caused
the weight of vi to be updated. Let k be the minimum index such that j ≥ k > i and
φj(vi) = φk(vi). We have that φ(vi) is a 11

10 -approximation of the Fréchet distance
dF
(
uiwi, Z

〈
ui, wi

〉)
for two vertices ui and wi. Similarly, we have that φk(vi) is a

11
10 -

approximation of the Fréchet distance dF
(
ukwk, Z

〈
uk, wk

〉)
for two vertices uk and

wk. Observe that since the extraction of vk caused the weight of vi to be updated, it
must be that Z

〈
uk, wk

〉
is a subcurve of Z

〈
ui, wi

〉
. Hence, by Lemma 4.1.5, we have

that

10

11
· φk(vi) ≤ dF

(
ukwk, Z

〈
uk, wk

〉)
≤ 3dF

(
uiwi, Z

〈
ui, wi

〉)
≤ 3 · 11

10
· φ(vi) .

Now it follows that φ(vj) ≤ φj(vi) = φk(vi) ≤ 4φ(vi), which proves the claim. �

Lemma 4.3.5 For any 3 ≤ i ≤ n it holds that dF(ZVi , Z) ≤ 5φ(vi+1).

4.3. DATA STRUCTURE FOR QUERIES WITH POLYGONAL CURVES 59

Proof : Let u1, . . . , ui be the vertices in Vi in the order in which they appear on ZVi
.

Consider the mapping between Z and this spine curve, which associates every edge
ujuj+1 of ZVi

with the subcurve Z〈uj , uj+1〉. Clearly, it holds that

dF(Z,ZVi
) ≤ max

1≤j<i
dF(Z〈uj , uj+1〉 , ujuj+1) ≤

11

10
max
i<j≤n

φ(vj) .

Indeed, if uj+1 is the successor of uj on Z, then dF(Z〈uj , uj+1〉 , ujuj+1) = 0, other-
wise, there must be a vertex which appears on Z in between uj and uj+1, which is con-
tained in Vn \Vi and the weight of this vertex is the approximation of this distance at
the time of extraction. Now it follows by Lemma 4.3.4 that dF(Z,ZVi) ≤ 5φ(vi+1). �

Lemma 4.3.6 For any 2 ≤ k ≤ n/2−1, let Y ∗
k be the curve with the smallest Fréchet

distance from Z with k vertices (note, that Y ∗
k is not restricted to have its vertices

lying on Z). We have that dF(Z, Y
∗
k) ≥ (5/11)φ(vK+1), where K = 2k − 1.

Proof : Let f : Y ∗
k → Z be the mapping realizing the Fréchet distance between Y ∗

k

and Z. Let Vi = 〈v1, . . . , vi〉, for i = 1, . . . , n.

Y
∗

k

Z

wj

wj+1

ui

ui+1 ui+2

f(wj)

f(wj+1)
f−1(ui)

f−1(ui+2)

Since Y ∗
k has only k vertices, it breaks Z into

k − 1 subcurves. Since, K ≥ 2(k − 1) + 1, there
must be three consecutive vertices ui, ui+1, ui+2

on ZVK
and two vertices wj , wj+1 of Y ∗

k , such
that the vertices ui, ui+1, ui+2 appear on the
subcurve Z ′ = Z〈f(wj), f(wj+1)〉, see the fig-
ure on the right.

Now, f−1(ui)f
−1(ui+2) ⊆ wjwj+1 and by

Lemma 4.1.2, we have

dF(Z, Y
∗
k) ≥ dF

(
Z
〈
f(wj), f(wj+1)

〉
, wjwj+1

)
≥ dF

(
Z〈ui, ui+2〉 , f−1(ui)f

−1(ui+2)
)

≥ dF
(
Z〈ui, ui+2〉 , f−1(ui)f

−1(ui+2)
)
≥ 1

2
dF

(
Z〈ui, ui+2〉 , spine(Z〈ui, ui+2〉)

)

≥ 1

2
· 10
11
φK+1(ui+1) ≥

5

11
φK+1(vK+1) =

5

11
φ(vK+1) ,

as the simplification algorithm removed the minimum weight vertex at time K + 1
(i.e., vK+1). �

4.3.1.3 The result

Theorem 4.3.7 Given a polygonal curve Z with n edges, we can preprocess it using
O(n) space and O

(
n log2 n

)
time, such that, given a parameter k ∈ IN, we can output

in O(k) time a (2k − 1)-spine curve Z ′ of Z and a value δ, such that

(i) δ/11 ≤ dF(Y ∗
k , Z), and

(ii) dF(Z
′, Z) ≤ δ,

where Y ∗
k is the polygonal curve with k vertices with minimal Fréchet distance from Z.

(For k ≥ n/2 we output Z and δ = 0).

60 CHAPTER 4. DATA STRUCTURES FOR FRÉCHET-DISTANCE QUERIES

Proof : The algorithm computing the universal vertex permutation and its associated
data structure is described above, for K = 2k − 1. Specifically, it returns the spine
curve Z ′ = ZVK

as the required approximation, with the value δ = 5φ(vK+1). Com-
puting Z ′ takes O(k) time. By Lemma 4.3.5 and Lemma 4.3.6, we have that Z ′ and
δ satisfy the claim.

Building the data structure takes O
(
n log2 n

)
time, and it uses O(n) space using

ε = 1/10. Each query to this data structure takes O(log n log log n) time. We perform
a constant number of these queries to the data structure per extraction from the heap,
thus getting the claimed preprocessing time. �

4.3.2 Extending the data structure

We use the universal vertex permutation described in the previous section to extend
our data structure of Section 4.2.1 to support queries with more than one segment.

4.3.2.1 The data structure

The input is a polygonal curve Z ∈ IRd with n vertices.

Preprocessing. Similar to the algorithm of Section 4.2.1, build a balanced binary tree
T on Z. For every internal node ν of T construct the data structure of Theorem 4.3.7
for cr(ν), denoted by Dν , and store it at ν.

Answering a query. Given any two vertices u and v of Z, and a query polygonal curve
Q with k segments, the task is to approximate dF(Q,Z〈u, v〉). We initially proceed
as in Section 4.2.1, computing in O(log n) time, m = O(log n) nodes ν1, . . . , νm of T ,
such that Z〈u, v〉 = cr(ν1) ⊕ cr(ν2) ⊕ · · · ⊕ cr(νk). Now, extract a simplified curve
with K vertices from Dνi , denoted by simplK(νi), for i = 1, . . . ,m, where K = 2k−1.
For i = 1, . . . ,m, let δi denote the simplification error (as returned by Dνi), where
dF(simplK(νi) , cr(νi)) ≤ δi and δi/11 is a lower bound to the Fréchet distance of any
curve with at most k vertices from cr(νi), for i = 1, . . . ,m (see Theorem 4.3.7).

Next, compute the polygonal curve S = simplK(ν1) ⊕ · · · ⊕ simplK(νm), and its
Fréchet distance from Q; that is, d = dF(S,Q). We return

∆ = d+
m

max
1≤i

δi, (4.4)

as the approximate distance between Q and Z〈u, v〉.

4.3.2.2 Analysis

Query time. Extracting them = O(log n) relevant nodes takesO(log n) time. Query-
ing these m data structures for the simplification of the respective subcurves, takes
O(km) overall, by Theorem 4.3.7. Computing the Fréchet distance between the result-
ing simplification S of Z〈u, v〉, which has O(mk) edges, and Q takes O(k2m log(k2m))
time [12]. Thus the overall time used for answering a query is bounded by

O
(
m+ km+ k2m log(k2m)

)
= O

(
k2m log(km)

)
= O

(
k2 log n log(k log n)

)
.

4.3. DATA STRUCTURE FOR QUERIES WITH POLYGONAL CURVES 61

Preprocessing time and space. Building the initial tree T takes O(n) time and it
requires O(n) space. Let nν denote the number of vertices of cr(ν). For each
node ν, computing the additional information and storing it requires O(nν) space
and O

(
nν log

2 nν

)
time. Recall that T is a balanced binary tree and for the nodes

ν1, . . . , νt contained in one level of the tree it holds that
∑t

1≤i nνi
= n. Thus, com-

puting and storing the additional information takes an additional O
(
n log3 n

)
time

and O(n log n) space by Theorem 4.3.7.

Quality of approximation. By the following lemma the data structure achieves a
constant-factor approximation.

Lemma 4.3.8 Given a polygonal curve Z and a query curve Q with k segments,
the value ∆ (see Eq. (4.4)) returned by the above data structure is a constant-factor
approximation to dF(Q,Z〈u, v〉).

Proof : Clearly, ∆ bounds the required distance from above, as one can extract a
matching of Q and Z〈u, v〉 realizing ∆. As such, we need to prove that ∆ = O(r),
where r = dF(Q,Z〈u, v〉).

So, let f : Q → Z〈u, v〉 be the mapping realizing r = dF(Q,Z〈u, v〉), and let
Qi = f−1(cr(νi)), for i = 1, . . . ,m. Clearly, r = maxi dF(Qi, cr(νi)). Since Qi has at
most k vertices, by Theorem 4.3.7, we have

δi
11
≤ dF(Qi, cr(νi)) ≤ r, and dF(simplK(νi) , cr(νi)) ≤ δi, (4.5)

for i = 1, . . . ,m. In particular, we have δi ≤ 11r. Now, by the triangle inequality, we
have that

dF(simplK(νi) , Qi) ≤ dF(simplK(νi) , cr(νi)) + dF(cr(νi) , Qi) ≤ δi + r ≤ 12r.

As such, d = dF(S,Q) ≤ maxi dF(simplK(νi) , Qi) ≤ 12r. Now, ∆ = d + maxi δi ≤
12r + 11r = 23r. �

The result. Putting the above together, we get the following result. We emphasize
that k is being specified together with the query curve, and the data structure works
for any value of k.

Theorem 4.3.9 Given a polygonal curve Z with n edges, we can preprocess it in
O(n log3 n) time and O(n log n) space, such that, given a query specified by

(i) a pair of points u and v on the curve Z,
(ii) the edges containing these two points, and
(iii) a query curve Q with k segments,

one can approximate dF(Q,Z〈u, v〉) up to a constant factor in O
(
k2 log n log(k log n)

)

time.

Proof : The preprocessing is described and analyzed above. The query procedure
needs to be modified slightly since the u and v are not necessarily vertices of Z. How-
ever, this can be done the same way as for the initial data structure in Theorem 4.2.2.

62 CHAPTER 4. DATA STRUCTURES FOR FRÉCHET-DISTANCE QUERIES

Let u′, v′ be the first and last vertices of Z contained in Z〈u, v〉. We now extract the
m = O(log n) nodes ν1, . . . , νm of T , such that

X = uu′ ⊕ cr(ν1)⊕ . . .⊕ cr(νm)⊕ v′v = Z〈u, v〉 .

We continue with the procedure as described above using this node set. The analysis
of Lemma 4.3.8 applies with minor modifications. �

4.4 Concluding remarks

In this chapter we saw several data structures to preprocess a polygonal curve Z in
IRd to answer different types of Fréchet-distance queries between subcurves of Z and
a query curve. In this setting, we assumed that the endpoints of the subcurve of Z
are given with the query. This will be useful in the next chapter, where we discuss
a variant of the Fréchet distance that allows shortcuts on the input curves, which
have to be matched under the Fréchet distance. However one can also imagine other
settings. For example,
(i) Given a query curve Q, report the subcurve of Z that minimizes the Fréchet

distance.
(ii) Given a query curve Q and a distance threshold δ, report all subcurves that are

within distance δ, or report the number of those curves.
(iii) Given a query curve Q and a distance threshold δ, report all subcurves that are

within distance δ to a transformed copy of Q.
There is little previous work on this topic. The problem variant in (ii) has been

studied by de Berg et al. [53] and recently also by Gudmundsson and Smid under
the c-packedness assumption [83]. To our knowledge theirs and ours are the first data
structures of this kind.

One can also imagine Z to be a geometric graph. In this case, the problem variant
(i) becomes a map-matching problem. There is more work on map-matching curves
under the Fréchet distance, see [43] and references therein. In particular, the problem
has first been studied by Alt et al. [10].

Furthermore, we studied the new concept of a universal vertex permutation, which
defines an ordering of the vertices of Z by their “Fréchet error”. By removing the ver-
tices in this order, one obtains a series of simplifications of Z which are approximately
optimal with respect to their Fréchet distance to Z. This enables a fast extraction of
a simplification of Z of a given resolution. We expect this concept to be used in the
design of future data structures for Fréchet-distance queries.

Finally, it would be interesting to extend the data structures in this chapter to
other settings as discussed above. We conclude by outlining some ideas in this direc-
tion.

Open Problem 4.1 In order to extend our data structure to a query setting, where
the subcurve of Z is not fixed, in particular (ii) described above, one needs to compute
candidate endpoints for such subcurves of Z. If Z can be assumed to be c-packed, then
the maximal number of such candidate endpoints is considerably restricted compared
to the general case. Naively, one would have to consider one point per component of

4.4. CONCLUDING REMARKS 63

Z inside the two balls of radius δ centered at the endpoints of Q. Even under the
c-packedness assumption there might be many such components. However, to achieve
a (1 + ε)-approximation, it suffices to consider one point per component in the ball
of radius (1 + ε)δ and only of those components that intersect the ball of radius δ.
Refer to Figure 4.4 for an example of such a candidate set. In this case, the number
of query candidates can be bounded by O(c/ε). If we can preprocess the curve for
queries of this type, we can use the data structures in this chapter to approximate the
Fréchet distance for every pair of candidate endpoints, one from each ball, to obtain
a data structure with polylogarithmic query time.

Z

Z

Z

Q
δ

Figure 4.4: A small candidate set of endpoints of subcurves of Z which may be within
Fréchet distance 2δ to the query curve Q.

64 CHAPTER 4. DATA STRUCTURES FOR FRÉCHET-DISTANCE QUERIES

CHAPTER 5

The Fréchet distance with shortcuts

In this chapter, we introduce a variant of the Fréchet distance, where one is allowed
to take shortcuts on the input curves in order to decrease the Fréchet distance. The
goal is to define a partial distance measure which is more robust against noise than
the standard Fréchet distance. We motivate the problem in Section 5.1 and give the
definition of the directed k-shortcut Fréchet distance in Section 5.2. In Section 5.3
we study the problem of computing this distance measure for two given polygonal
curves in the case where k shortcuts are allowed between vertices of one of the two
input curves. We study the case that k is bounded and the unbounded case. We
develop polynomial-time exact algorithms and faster approximation algorithms for
these cases. In Section 5.4 we study the more general case where shortcuts can start
and end at any point along one of the two curves. We show that computing this version
of the shortcut Fréchet distance is weakly NP-complete if an unbounded number of
shortcuts is allowed. Furthermore, we extend some of our approximation results from
the previous sections to this more general case. We conclude with discussion and
some open problems in Section 5.5. In particular we discuss the undirected case,
where shortcuts are allowed on both curves.

5.1 Introduction

A major drawback of the Fréchet distance is its sensitivity to local noise, which
is frequent in real data. Unlike similarity measures such as the root-mean-square
deviation (RMSD), which averages over a set of similarity values, and dynamic time
warping, which minimizes the sum of distances along the curves, the Fréchet distance
is a so-called bottleneck measure and can therefore be affected to an extent which is
generally unrelated to the relative amount of noise across the curves. In practice,
curves might be generated by physical tracking devices, such as GPS, which is known
to be inaccurate when the connection to the satellites is temporarily disturbed due

65

66 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

to atmospheric conditions or reflections of the positioning signal on high buildings.
Such inaccurate data points are commonly referred to as “outliers”. Note that outliers
come in batches if they are due to such a temporary external condition. Similarly, in
computer vision applications, the silhouette of an object could be partially occluded,
and in sound recordings, outliers may be introduced due to background sounds or
breathing.

Detecting outliers in time series has been studied extensively in the literature
[113]. One may also be interested in outliers as a deviation from a certain expected
behavior or because they carry some meaning.

It could be, for instance, that trajectories
of two hikers deviate locally, because one hiker
chose to take a detour to a panoramic view point,
see the figure depicted to the right. Outlier de-
tection is inherently non-trivial if not much is
known about the underlying probability distribu-
tions and the data is sparse [6]. We circumvent
this problem in the computation of the Fréchet
distance by minimizing over all possibilities for outlier-removal. In a sense, our ap-
proach is similar to computing a certain notion of partial similarity. Unlike other
partial distance measures, the distance measure we propose is parameter-free. For
comparison, in the partial Fréchet distance, as it was studied by Buchin et al. [35],
one is interested in maximizing the portions of the curves which can be matched within
a certain Fréchet distance (the parameter). In this case, the dissimilar portions of
the curves are ignored. In our case, they are replaced by shortcuts, which have to be
matched under the Fréchet distance. Buchin et al. [35] showed how to compute the
partial Fréchet distance under the L1 and L∞ metric in roughly O

(
n3 log n

)
time. To

the best of our knowledge the problem of computing the Fréchet distance when one
is allowed to introduce shortcuts has not been studied before.

The task at hand. We are given two polygonal curves X and Y in IRd, which we
perceive as a sequence of linearly interpolated measurement points. We believe that Y
is similar to X but it might contain considerable noise that is occluding this similarity.
That is, it might contain erroneous measurement points (outliers), which need to be
ignored when assessing the similarity. We would like to apply a few edit operations
to Y so that it becomes as similar to X as possible, in the process hopefully removing
the noise in Y and judging how similar it really is to X. To this end, we conceptually
remove subsequences of measurement points, which we suspect to be outliers, and
minimize over all possibilities for such a removal.

Shortcut Fréchet distance. A shortcut replaces a subcurve between two vertices by a
straight segment that connects these vertices. The part being shortcut is not ignored,
but rather the new curve with the shortcuts has to be matched entirely to the other
curve under the Fréchet distance. As a concrete example, consider the figure below.
The Fréchet distance between X and Y is quite large, but after we shortcut the
outlier “bump” in Y , the resulting new curve Z has a considerably smaller Fréchet
distance to X. We are interested in computing the minimum such distance allowing
an unbounded number of shortcuts.

5.1. INTRODUCTION 67

Naturally, there are many other possibilities to try and tackle the task at hand,
for example:

(i) bounding the number of shortcuts by a parameter k
(ii) allowing shortcuts on both curves,
(iii) allowing only shortcuts between vertices that are close-by along the curve,
(iv) ignoring the part being shortcut and maximizing the length of the remaining

portions,
(v) allowing shortcuts to start and end anywhere along the curve,
(vi) allowing curved shortcuts, etc.

h

X

Y

Z

If one is interested in (iii) then the problem turns into a
map-matching problem, where the start and end points are
fixed and the graph is formed by the curve and its eligible
shortcuts. For this problem, results can be found in the liter-
ature [43, 10]. A recent result by Har-Peled and Raichel [87]
is applicable to the variant where one allows such shortcuts
on both curves, i.e. (ii)+(iii). The version in (iv) has been studied under the name
of partial Fréchet distance [35].

In this chapter, we first concentrate on the vertex-restricted shortcut Fréchet dis-
tance (see Section 5.2.1 for the exact definition) because computing it efficiently seems
like a first step in understanding how to solve some of the more difficult variants,
e.g., (v). Surprisingly, computing this simpler version of the shortcut Fréchet distance
is already quite challenging, especially if one is interested in an efficient algorithm, see
Section 5.3. As it turns out, the problem is weakly NP-hard for exact computations
for variant (v), where we allow shortcuts to start and end anywhere along the curve.
We will see this later in Section 5.4. Furthermore, we also discuss efficient solutions
for variant (i), i.e., where at most k shortcuts are allowed.

Note that allowing shortcuts on both curves does not always yield a meaningful
measure, especially if shortcuts on both curves may be matched to each other. In
particular, if one of the two curves is more accurately sampled and can act as a model
curve, allowing shortcuts on only one of the two curves seems reasonable.

Informal restatement of the problem. In the parametric space of the two input curves,
we are given a terrain defined over a grid partitioning [0, 1]2, where the height at each
point is defined as the distance between the two associated points on the two curves
and the grid lines correspond to the vertices of the two curves. As in the regular
Fréchet distance, we are interested in finding a path between (0, 0) and (1, 1) on the
terrain, such that the maximum height on the path does not exceed some δ (the
minimum such δ is the desired distance). This might not be possible as there might
be “mountain chains” blocking the way. To overcome this, we are allowed to introduce
tunnels that go through such obstacles. Each of these tunnels connects two points that
lie on the horizontal lines of the grid, as these correspond to the vertices of one curve.
Naturally, we require that the starting and ending points of such a tunnel have height
at most δ (the current distance threshold being considered), and furthermore, the
price of such a tunnel (i.e., the Fréchet distance between the corresponding shortcut
and subcurve) is smaller than δ. Once we introduce these tunnels, we need to compute
a monotone path from (0, 0) to (1, 1) in the grid which uses at most k tunnels. Finally,
we need to search for the minimum δ for which there is a feasible solution.

68 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Challenge and ideas. Let n be the total number of vertices of the input curves. A
priori there are potentially O(n2) horizontal edges of the grid that might contain
endpoints of a tunnel, and as such, there are potentially O(n4) different families of
tunnels that the algorithm might have to consider. A careful analysis of the structure
of these families shows that, in general, it is sufficient to consider one (canonical)
tunnel per family. Using c-packedness and simplification, we can reduce the number
of relevant grid edges to near linear. This in turn reduces the number of potential
tunnels that need to be inspected to O(n2). This is still insufficient to get a near-linear
time algorithm. Surprisingly, we prove that if we are interested only in a constant
factor approximation, for every horizontal edge of the grid we need to inspect only
a constant number of tunnels. Thus, we reduce the number of tunnels that the
algorithm needs to inspect to near-linear.

And yet we are not done, as naively computing the price of a tunnel requires time
near-linear in the size of the associated subcurve. To overcome this, we develop a new
data structure, so that after preprocessing we can compute the price of a tunnel in
polylogarithmic time per tunnel. Now, carefully putting all these insights together, we
get a near-linear time algorithm for the approximate decision version of the problem.

However, to compute the minimum δ, for which the decision version returns true—
which is the shortcut Fréchet distance—we need to search over the critical values of
δ. To this end, we investigate and characterize the critical values introduced by the
shortcut version of the problem. Using the decision procedure, we perform a binary
search of several stages over these values, in the spirit of Chapter 3, to get the required
approximation.

5.2 Preliminaries

5.2.1 The k-shortcut Fréchet distance

For the definitions of the standard Fréchet distance and standard concepts such
as the free space diagram, refer to Section 2.1. For a polygonal curve Y , we use
Y [y, y′] to denote the line segment between the points Y (y) to Y (y′) and we call
this a shortcut of Y . We refer to any order-preserving concatenation of k + 1 non-
overlapping (possibly empty) subcurves of Y with k shortcuts connecting the end-
points of the subcurves in the order along the curve, as a k-shortcut curve of Y .
Formally, for values 0 ≤ y1 ≤ y2 ≤ · · · ≤ y2k ≤ 1, the shortcut curve is defined as
Y [0, y1]+Y [y1, y2]+Y [y2, y3]+ · · ·+Y [y2k−1, y2k]+Y [y2k, 1]. If each Y (yi) is a vertex
of Y, we refer to the shortcut curve as being vertex-restricted , otherwise we say it
is unrestricted .

Given two polygonal curves X and Y , we define their continuous k-shortcut
Fréchet distance as the minimal Fréchet distance between the curve X and any
unrestricted k-shortcut curve of Y . We denote it with dS(k,X, Y). If we do not
want to bound the number of shortcuts, we omit the parameter k and denote it with
dS(X,Y). The vertex-restricted k-shortcut Fréchet distance is defined as above
using only vertex-restricted shortcut curves of Y . Furthermore, note that in all cases
we allow only one of the input curves to be shortcut, namely Y , thus we call the
distance measure directed .

5.2. PRELIMINARIES 69

X

Y

Z

Figure 5.1: The directed k-shortcut Fréchet does not satisfy the triangle inequality.
In the depicted counter-example it holds that dS(k,X,Z) > dS(k,X, Y) + dS(k, Y, Z)
for any value of k and for k unbounded. This holds true in the vertex-restricted and
in the continuous case.

Unlike the standard Fréchet distance, the directed k-shortcut Fréchet distance
does not satisfy the triangle inequality, see Figure 5.1. In the following, we will omit
the predicates directed, vertex-restricted and continuous when it is clear from the
context.

5.2.2 Tunnels in the free space diagram

In the parametric space, a shortcut Y [yp, yq] and the subcurve X[xp, xq], that it
is being matched to, correspond to a the rectangle with corners p and q, where
p = (xp, yp) and q = (xq, yq). By shortcutting the curve on the vertical axis, we
are collapsing this rectangle to a single row, see Example 5.2. More precisely, this
is the free space diagram of the shortcut and the subcurve. We call this row a
tunnel and denote it by τ(p, q). We require xp ≤ xq and yp ≤ yq for monotonicity.
Example 5.2 shows the full example of a tunnel. We call the Fréchet distance of
the shortcut segment to the subcurve the price of this tunnel and denote it with
prc(τ(p, q)) = dF

(
X[xp, xq] , Y [yp, yq]

)
. A tunnel τ(p, q) is feasible for δ if it holds

that dist(p) ≤ δ and dist(q) ≤ δ, i.e., if p, q ∈ D≤δ(X,Y). Note that the feasibility of
a tunnel is not equivalent with the feasibility of a monotone path in the free space of
the tunnel.

We define the k-reachable free space Rk
≤δ(X,Y) as

Rk
≤δ(X,Y) =

{
p = (xp, yp) ∈ [0, 1]2

∣∣∣ dS(k,X[0, xp] , Y [0, yp]) ≤ δ
}
.

This is the set of points that have an (x, y)-monotone path from (0, 0) that stays
inside the free space and otherwise uses at most k tunnels.

Horizontal, vertical and diagonal tunnels. We can distinguish three types of tunnels.
We call a tunnel that stays within a column of the grid, a vertical tunnel . Likewise,
a tunnel that stays within a row is called a horizontal tunnel . Tunnels that span
across rows and columns are diagonal tunnels. Note that vertical tunnels that are
feasible are always affordable by Observation 2.3.1, since the corresponding rectangle
in the free space diagram collapses to a single free space cell in this case. Furthermore,
the shortcut which corresponds to a horizontal tunnel lies within an edge of the input

70 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Example 5.2 Shortcuts and tunnels

p

Y (yp)

Y (yq)

xp xq

yp

yq

X

Y

X

Z

(0, 0)

(1, 1)

(A)

(C)(B)

(D)

Y (yp)

Y (yq)

X(xq)

X(xp)

(E)

q

q

p

Two dissimilar curves X and Y are depicted in (A) that can be made similar
by shortcutting one of them. The curve Z resulting from shortcutting Y is de-
picted in (B). Its (regular) Fréchet distance from X is dramatically reduced. The
free space diagram is shown in (C). The tunnel τ(p, q) connects previously dis-
connected components of the free space and corresponds to the shortcut and the
subcurve matched to each other depicted in (D) and their free space diagram (E).

curve. Thus, shortcutting the curve does not have any effect in this case and we can
safely ignore such horizontal tunnels.

5.2.2.1 Monotonicity of the prices of tunnels

Lemma 4.1.5 which we used in Chapter 4 implies readily that under certain condi-
tions the prices of tunnels which share an endpoint are approximately monotone with
respect to the x-coordinate of their starting point. We will exploit this in the approx-
imation algorithm that computes the reachability in the free-space diagram. We will
see in Section 5.3.5.1 that this drastically reduces the number of tunnels that need to
be inspected in order to decide if a particular cell is reachable.

Lemma 5.2.1 Given two polygonal curves X and Y and a value of δ ≥ 0, for any
three points p, q and r in the δ-free space such that xp ≤ xq ≤ xr it holds that

prc(τ(q, r)) ≤ 3max
(
δ, prc(τ(p, r))

)
.

Proof : Let X1 be the subcurve X[xp, xr], and let X2 = X[xq, xr]. Similarly, let Y 1 be
the shortcut Y [yp, yr] and let Y 2 = Y [yq, yr]. By Lemma 4.1.5 prc(τ(q, r)) ≤ 3δ′ for
δ′ = max

(
dF
(
X1, Y 1

)
, δ
)
. �

5.2. PRELIMINARIES 71

We will see in Section 5.3.5.5 that the monotonicity property of Lemma 5.2.1 also
enables a faster search over tunnel events. The property holds even if the tunnels
under consideration are not valid. For example if xp < xr and yp > yr then the tunnel
τ(p, r) is not a valid tunnel and it cannot be used by a valid solution. Neverthe-
less, τ(p, r) has a well defined price, and these prices have the required monotonicity
property. The following is an easy consequence of Lemma 5.2.1.

Lemma 5.2.2 For a parameter δ ≥ 0, let p1, . . . , pm be m points in the δ-free space
ordered ascendingly by their x-coordinates, and let ψi = prc(τ(pi, pm)) for any 1 ≤
i ≤ m. Then, we have:

(A) If ψi ≥ δ then for all j > i, we have prc(τ(pj , pm)) ≤ 3ψi.
(B) If ψi > 3δ then for all j < i, we have prc(τ(pj , pm)) ≥ ψi/3.

Proof : To see the first part of the claim, note that by Lemma 5.2.1, prc(τ(pj , pm)) ≤
3max(δ, ψi) ≤ 3ψi. As for the second part, we have by the same lemma that δ <
ψi/3 ≤ max(δ, prc(τ(pj , pm))), and thus ψi/3 ≤ prc(τ(pj , pm)). �

5.2.2.2 Curve simplification

During the course of the approximation algorithm we simplify the input curves using
Algorithm 3.1.2 in order to reduce the complexity of the free space. The directed
k-shortcut Fréchet distance does not satisfy the triangle inequality, as can be seen
by the counter-example shown in Figure 5.1. Therefore, we need the next lemma to
ensure that the computed distance between the simplified curves approximates the
distance between the original curves.

Lemma 5.2.3 Given a simplification parameter µ and two polygonal curves XXX and
YYY , let X = simpl(XXX,µ) and Y = simpl(YYY , µ) denote their µ-simplifications, respec-
tively. For any k ∈ IN, it holds that dS(k,X, Y)−2µ ≤ dS(k,XXX,YYY) ≤ dS(k,X, Y)+2µ.
Similarly, dS(X,Y)− 2µ ≤ dS(XXX,YYY) ≤ dS(X,Y) + 2µ.

Proof : The proof is straightforward and is included for the sake of completeness.
First, we show that dS(k,XXX,YYY) ≤ dS(k,X, Y)+2µ. Let Y ′ = Y1⊕Y 2⊕· · ·⊕Y2k′+1

be a k′-shortcut curve of Y , with k′ ≤ k, and such that dF(X,Y
′) ≤ dS(k,X, Y) and

let X = X1⊕X2⊕· · ·⊕X2k′+1 be the decomposition1 of X induced by the matching
realizing the k-shortcut Fréchet distance between X and Y ′. We have that

dS(k,X, Y) = max

(
max

0≤i≤k′
dF(X2i+1, Y2i+1) , max

1≤i≤k′
dF
(
X2i, Y 2i

))
,

which implies that the Fréchet distance between Yi (resp., Y i) and Xi is at most
dS(k,X, Y) for any 1 ≤ i ≤ 2k′ + 1.

Consider a matching between X andXXX that realizes the Fréchet distance between
them and consider the decomposition ofXXX =XXX1⊕XXX2⊕· · ·⊕XXX2k′+1, such that Xi is
matched to XXXi under this matching. It holds that dF(Xi,XXXi) ≤ µ, by Lemma 3.1.3.

Now, in a similar way, let YYY ′ = YYY 1⊕YYY 2⊕· · ·⊕YYY 2k′+1 be a k′-shortcut curve of YYY ,
such that for any 0 ≤ i ≤ k′, the subcurve Y2i+1 is matched to YYY 2i+1 under a matching

1Note that the matching is not necessarily one-to-one but we can obtain a suitable decomposition
by breaking ties arbitrarily.

72 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

that realizes the Fréchet distance between Y and YYY . We have that dF
(
Y i,YYY i

)
≤ µ

for any of the shortcuts, since their endpoints are in distance µ. It holds that

dS(k,XXX,YYY) ≤ dF(XXX,YYY ′) = max

(
max

0≤i≤k′
dF(XXX2i+1,YYY 2i+1) , max

0≤i≤k′
dF
(
XXX2i,YYY 2i

))
.

By the triangle inequality, we have that

dF(XXX2i+1,YYY 2i+1) ≤ dF(XXX2i+1, X2i+1) + dF(X2i+1, Y2i+1) + dF(Y2i+1,YYY 2i+1)

≤ dS(k,X, Y) + 2µ.

Similarly, we have

dF
(
XXX2i,YYY 2i

)
≤ dF(XXX2i, X2i) + dF

(
X2i, Y 2i

)
+ dF

(
Y 2i,YYY 2i

)
≤ dS(k,X, Y) + 2µ.

This implies the second inequality in the claim. We can argue in the same way
that dS(k,X, Y) ≤ dS(k,XXX,YYY) + 2µ, which implies the first inequality. �

5.3 The vertex-restricted shortcut Fréchet distance

In this section we study the directed, vertex-restricted k-shortcut Fréchet distance for
the case of bounded and unbounded k. We will further omit the predicates directed
and vertex-restricted if it is clear from the context. We give several algorithmic results
for computing this distance measure. We first assume that k is unbounded and give
a polynomial-time exact algorithm in Section 5.3.2. The algorithm uses a decision
procedure in a binary search over a set of candidate values. Since the shortcuts
introduce a new set of candidate values, we provide an elaborate study of these new
events in Section 5.3.3. Based on the algorithm described in Section 5.3.2, and by
using techniques developed in Chapter 3 and Chapter 4, we give a considerably faster
approximation algorithm in Section 5.3.5, which runs in near-linear time if the input
curves are c-packed. In Section 5.3.7 we extend the algorithm to the case where k is
bounded by a given value. We begin by establishing some basic concepts and notation.

5.3.1 Canonical tunnels and gates

Let u = Y (yp) and v = Y (yq) and let e be the edge of X that contains X(xp) (resp., e
′

the edge that contains X(xq)) for the tunnel τ(p, q). We denote with T (e, e′, u, v) the
family of tunnels that τ(p, q) belongs to. Furthermore, let T≤δ(e, e

′, u, v) denote
the subset of these tunnels that are feasible for δ.

The canonical tunnel of the tunnel family T (e, e′, u, v), denoted by τmin(e, e
′, u, v),

is the tunnel that matches the shortcut uv to the subcurve X[s, t], such that s and t
are the values realizing

rmin(e, e
′, u, v) = min

X(s)∈e,X(t)∈e′,
s≤t

max(‖X(s)− u‖ , ‖X(t)− v‖) . (5.1)

We refer to rmin(e, e
′, u, v) as the minimum radius of this family. The canonical

tunnel may not be uniquely defined if only one of the two values s or t determines the

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 73

minimum radius. In this case, we define s and t as the values minimizing ‖X(s)− u‖
and ‖X(t)− v‖ for X(s) ∈ e and X(t) ∈ e′, individually. We call the price of the
canonical tunnel the canonical price of this tunnel family.

Clearly, one can compute the canonical tunnel T (e, e′, u, v) in constant time. In
particular, the price of this canonical tunnel is

prc(τmin(e, e
′, u, v)) = dF(X[s, t] , uv) . (5.2)

We emphasize that a shortcut is always a segment connecting two vertices of the
curve Y , and a tunnel always lies in the parametric space; that is, they exist in two
completely different domains.

Observation 5.3.1 The minimum radius of a tunnel family rmin(e, e
′, u, v) corre-

sponds to either (i) the distance of u to its closest point on e, (ii) the distance of v
to its closest point on e′, or (iii) the common distance of u and v to the intersection
of their bisector with the edge e (i.e., a vertex-vertex-edge distance, see Section 2.1).
Note that the event in case (iii) can only happen if e = e′.

Ci,j

U

p qGates. Let U be a subset of the parametric space that is convex
in every cell. Let Ihi,j be a free space interval. We call the left

and right endpoints of U ∩ Ihi,j the left and right gates of U in
the cell Ci,j . The figure to the right shows an example of gates p
and q. The set of gates of U are the gates with respect to all
cells in the free space diagram. We define the canonical gate of
a vertex-edge pair as the point in parametric space that minimizes the vertex-edge
distance. Note that canonical gates serve as endpoints of diagonal canonical tunnels.

5.3.2 A polynomial-time exact algorithm

Here we describe a polynomial-time exact algorithm for the shortcut Fréchet distance
for case that the number of shortcuts is unbounded. Following the approach of Alt
and Godau’s algorithm (see Section 2.4), we devise a decision procedure which is
used in a search for the optimal distance value. We first describe the algorithm. The
analysis can be found in Section 5.3.4.

5.3.2.1 The xTunnel procedure

A key element in the decision procedure is the xTunnel procedure (Algorithm 5.3.2).
Intuitively, this procedure receives as input a set of reachable points in the paramet-
ric space and a free space interval (in the form of the left gate) and we are asking if
there exists an affordable tunnel connecting a reachable point to the interval. Here,
affordable means that its price is at most δ. Furthermore, we are interested in the
leftmost possible endpoint of such a tunnel. More precisely, the procedure receives a
set of gates R and a gate p as input and returns the endpoint of an affordable tunnel
that starts at a gate of R and ends either at p or the closest point to the right of
p in the same free space interval. During the decision procedure, we will repeatedly
invoke the xTunnel procedure with a set of gates R, for which we already know that
they are contained in the reachable free space R∞

≤δ(X,Y), and the left gate associated

74 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Algorithm 5.3.2 xTunnel(R, p, δ)

Input: set of gates R; gate p ∈ [0, 1]2; distance δ ∈ R

1: Let xmin = null // leftmost reachable x-coordinate
2: for q = (xq, yq) ∈ R do
3: if xq ≤ xp and yq ≤ yp then
4: if prc(τ(q, p)) ≤ δ then
5: Return p // tunnel τ(q, p)
6: if xq ≥ xp and yq ≤ yp and not(xmin ≤ xq) then
7: v = (xq, yp) // vertical tunnel τ(q, v)
8: if dist(v) ≤ δ then
9: xmin ← xq

10: if xmin 6= null then
11: Return (xmin, yp)
12: else
13: Return null

with a horizontal free space interval of D≤δ(X,Y), in order to determine, if and to
which extent this interval is reachable.

The xTunnel procedure can be described as follows. We simply test all tunnels
that connect a gate q of R to p. This can be done by testing the Fréchet distance
between the shortcut Y [yq, yp] and the subcurve X[xq, xp] using the algorithm by Alt
and Godau, see Section 2.4. For gates that lie to the right of p, we check if the
corresponding vertical tunnel ends inside the free space interval connected to p. We
ignore gates that lie above p. We return the leftmost point in the free space interval
connected to p that can be reached by a tunnel of price at most δ, if such a point exists.
Otherwise, we return null. The resulting procedure is layed out in Algorithm 5.3.2.

5.3.2.2 The decision algorithm

In the decision problem we want to know whether the shortcut Fréchet distance
between two curves, X and Y , is at most a given value δ. The free space diagram
D≤δ(X,Y) may consist of a certain number of disconnected components and our
task is to find a monotone path from (0, 0) to (1, 1) that traverses these components
while using shortcuts between vertices of Y to “bridge” between points in different
components or where there is no monotone path connecting them (see Example 5.2).
The procedure is layed out in Algorithm 5.3.3 and described in detail below.

Detailed description of the decision procedure. The algorithm uses a directed graph
G that has a node v(i, j) for every free space cell Ci,j . For any path along the edges
of the graph G from v(1, 1) to v(i, j), there exists a monotone path that traverses
the corresponding cells of D≤δ(X,Y) while using zero or more affordable tunnels.
A node v(i, j) can have an incoming edge from another node v(i′, j′), if i′ ≤ i and
j′ ≤ j and either v(i′, j′) is a neighboring node, or the two cells can be connected by
an affordable tunnel which starts at the lower boundary of the cell corresponding to
v(i′, j′) and ends at the upper boundary of the cell corresponding to v(i, j). Note that
a node in this graph may have up to a quadratic number of incoming edges, one from

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 75

Algorithm 5.3.3 xDecider(X,Y, δ)

Input: polygonal curves X and Y ; distance δ ∈ R

1: Assert that dist(0, 0) = ‖X(0)− Y (0)‖ ≤ δ and dist(1, 1) ≤ δ
2: Let A be an array with A[i] = ∅ for 0 ≤ i ≤ n1

3: Let R = {(0, 0)}
4: for j = 1, . . . , n2 do
5: for i = 1, . . . , n1 do
6: if i = 1 and j = 1 then
7: Let Rh

i,j = Ihi,j and Rv
i,j = Ivi,j

8: else
9: Retrieve Rv

i−1,j from A[i− 1]

10: Retrieve Rh
i,j−1 from A[i]

11: Let p be the left gate of Ihi,j
12: v = xTunnel(R, p, δ)
13: Compute Rh

i,j and Rv
i,j from v, Rv

i−1,j , R
h
i,j−1, I

v
i,j and Ihi,j

14: Store Rh
i,j and Rv

i,j in A[i]

15: if Rh
i,j 6= ∅ then

16: Add gates of Rh
i,j to R

17: if (1, 1) ∈ R then
18: Return “dS(X,Y) ≤ δ”
19: else
20: Return “dS(X,Y) > δ”

each free space cell in its lower left quadrant, from which it could be reachable via
a tunnel. The idea of the algorithm is to propagate reachability intervals Rv

i,j ⊆ Ivi,j
and Rh

i,j ⊆ Ihi,j along the edges of the graph. To this end, the algorithm will implicitly
traverse the entire graph.

The algorithm handles the nodes in the lexicographical order of the indices j and
i of the nodes, thereby handling the corresponding cells of the free space diagram
row by row from bottom to top and from left to right. During the traversal we store
reachability intervals of the cells from the current and the previous row in an array A

by the index i. When handling node v(i, j), we can retrieve the reachability intervals
of its direct neighbors v(i, j − 1) and v(i− 1, j) from A[i− 1] and A[i]. Furthermore
we maintain the set of gates R, which are the endpoints of the horizontal reachability
intervals computed so far. The cell v(i, j) might also be reachable via a tunnel of
price at most δ. Let p be the left endpoint of Ihi,j . We invoke xTunnel(R, p, δ) to
test if this is the case. If the call returns null, then there is no such affordable tunnel.
Otherwise, if q is the returned point and r is the right endpoint of Ihi,j , then we know
that the line segment qr is reachable. Now we can compute the reachability intervals
of the current cell as follows. We compute the set of points at the right side of Ci,j ,
which are reachable by a monotone path from Rh

i−1,j and Rv
i,j−1. This is the interval

Rv
i,j . We do the same for the top side of the cell and take the union of the obtained

set of points with qr to obtain the interval Rh
i,j . Since the free space within a cell is

convex and of constant complexity, computing the reachability intervals can be done

76 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

in constant time. We store these intervals in A[i] and we add the endpoints of Rh
i,j

to R. After handling the last node, we can check if the top-right corner of the free
space diagram is reachable by testing if (1, 1) is contained in R.

5.3.2.3 The main algorithm

We are given two curves X and Y and we want to compute their shortcut Fréchet
distance. We want to use the decision procedure described in Section 5.3.2.2 to
perform a binary search for this distance. To this end, we need to compute a set
of candidate values for the shortcut Fréchet distance. These are the values of δ,
where structural changes happen in the free space diagram and a monotone path
from (0, 0) to (1, 1) might become feasible. This could be a classical free space event,
such as a vertex-vertex event, a vertex-edge event or a vertex-vertex-edge event (see
Chapter 2). A second possibility is that a monotone path becomes feasible by using a
tunnel. Thus, the shortcuts introduce a new type of event, which we need to analyze.
This analysis can be found in the next section. The algorithm will simply compute all
of these event values, perform a binary search over them using the decision algorithm
and output the resulting value as the shortcut Fréchet distance between X and Y .

5.3.3 Tunnel events

The main algorithm uses the decision procedure to perform a binary search for the
minimum δ for which the decision procedure returns “yes”. In the problem at hand
we are allowed to use tunnels to traverse the free space diagram, and it is possible
that a path becomes feasible by introducing a tunnel. The algorithm has to consider
this new type of critical events.

Consider the first time (i.e., the minimal value of δ) that a decision procedure
would try to use a tunnel of a certain family.

Definition 5.3.4 Given a tunnel family T (ei, ej , u, v), we call the minimal value of
δ such that T≤δ(ei, ej , u, v) is non-empty the creation radius of the tunnel family
and we denote it with rcrt(ei, ej , u, v). (Note that the price of a tunnel might be
considerably larger than its creation radius.)

Lemma 5.3.5 The creation radius is equal to the minimum radius of a tunnel family;
that is, rcrt(ei, ej , u, v) = rmin(ei, ej , u, v).

Proof : Recall that the creation radius of the tunnel family is the minimal value of δ
such that any tunnel in this family is feasible. Let u′ be the closest point of u on ei
and v′ the closest point of v on ej . If u′ appears before v′ on X, then the canonical
tunnel is realized by X(xq) = u′ and X(xq) = v′ and the claim holds. In particular,
this is the case if i < j.

Now, the only remaining possibility is that u′ appears after v′ on e. It must be
that i = j, therefore let e = ei = ej . Observe that in this case any tunnel in the
family which is feasible for δ also has a price that is at most δ. Consider the point r
realizing the quantity

min
r∈e

max(‖r − u‖ , ‖r − v‖).

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 77

u v

v
′

u
′

v̂

û

u v

v
′

u
′

v̂

û

Figure 5.3: Two cases: v′ appears either before or after û along e, assuming that u′

appears after v′ on e.

Note that r is the subcurve of X corresponding to the (vertical) canonical tunnel in
this case. We claim that for any subsegment ûv̂ ⊆ e (agreeing with the orientation of
e) we have that dF(ûv̂, uv) ≥ dF(r, uv). If û = v̂ then the claim trivially holds.

Assume that v′ appears after û along e (the case depicted in Figure 5.3). Since u′

appears after v′ along e, we have that ‖v′ − u‖ ≤ ‖û− u‖, as moving away from u′

only increases the distance from u. Therefore,

dF(r, uv) ≤ dF(v′, uv) = max(‖v′ − u‖ , ‖v′ − v‖) ≤ max(‖û− u‖ , ‖v̂ − v‖) = dF(ûv̂, uv) .

Otherwise, if v′ appears before û along e, as depicted in Figure 5.3 on the right,
then

dF(r, uv) ≤ dF(û, uv) = max(‖û− u‖ , ‖û− v‖) ≤ max(‖û− u‖ , ‖v̂ − v‖) = dF(ûv̂, uv) ,

since moving away from v′ only increases the distance from v.
This implies that the minimum δ for a tunnel in T (ei, ei, u, v) to be feasible is at

least dF(r, uv) = rcrt(ei, ei, u, v). And r testifies that there is a tunnel in this family
that is feasible for this value. �

The following lemma describes the behavior when δ rises above a tunnel price,
such that the area in the free space that lies beyond this tunnel potentially becomes
reachable by using this tunnel. More specifically, it implies that the first time (i.e.,
the minimal value of δ) that any tunnel of a family T (ei, ej , u, v) is usable (i.e., its
price is at most δ), any tunnel in the feasible set T≤δ(ei, ej , u, v) associated with this
family will be usable.

Lemma 5.3.6 Given a value δ ≥ 0, we have for any tunnel τ(f, g) in the feasible
subset of a given tunnel family T≤δ(ei, ej , u, v), that
(i) if δ ≤ prc(τmin(ei, ej , u, v)), then prc(τ(f, g)) = prc(τmin(ei, ej , u, v)),
(ii) otherwise, prc(τ(f, g)) ≤ δ.

Proof : We first handle the case that i 6= j. Let ei = pipi+1 and ej = pjpj+1.

78 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

u v
pi

pi+1 pj

pj+1p q

uα vα
uopt voptLet p ∈ ei and q ∈ ej be some

points on these edges, that correspond
to f and g, respectively. Observe that
since this is a feasible tunnel in this
family, we have that

max(‖p− u‖ , ‖q− v‖) ≤ δ.
Consider the matching realizing the Fréchet distance of X〈p, q〉 with uv, and let uopt
and vopt be the points on uv that are matched to pi+1 and pj by this matching. Let
α = dF(X〈pi+1, pj〉 , uαvα), where uαvα is the subsegment of uv minimizing α.

We have, by Observation 2.3.1, that

dF(X〈p, q〉 , uv)
= max

(
dF(ppi+1, uuopt) , dF

(
X〈pi+1, pj〉 , uoptvopt

)
, dF(pjq, voptv)

)

= max
(
‖p− u‖ , ‖pi+1 − uopt‖ , dF(X〈pi+1, pj〉 , uoptvopt) , ‖pj − vopt‖ , ‖q− v‖

)

= max
(
‖p− u‖ , dF(X〈pi+1, pj〉 , uoptvopt) , ‖q− v‖

)

≥ max(‖p− u‖ , dF(X〈pi+1, pj〉 , uαvα) , ‖q− v‖)
= max

(
dF(ppi+1, uuα) , dF(X〈pi+1, pj〉 , uαvα) , dF(pjq, v1v)

)

≥ dF(X〈p, q〉 , uv) .

For α = dF(X〈pi+1, pj〉 , uαvα), this implies

dF(X〈p, q〉 , uv) = max(‖p− u‖ , α, ‖q− v‖),

where α ≤ max(α, δ) is equal for all tunnels in the family.
Now, if δ ≤ prc(τmin(ei, ej , u, v)) then we have prc(τmin(ei, ej , u, v)) = α ≥ δ and

prc(τ(f, g)) = dF(X〈p, q〉 , uv) = max(‖p− u‖ , α, ‖q− v‖) ≤ max(α, δ) = α.

This proves (i). Otherwise, we have prc(τmin(ei, ej , u, v)) < δ. Which implies that
α < δ, but then prc(τ(f, g)) ≤ δ, implying (ii).

If i = j then the Fréchet distance is between the shortcut segment and a subseg-
ment of ei. But this distance is the maximum distance between the corresponding
endpoints, by Observation 2.3.1. As the distance between endpoints of shortcuts and
subcurves corresponding to tunnels of T≤δ(ei, ej , u, v) is at most δ, and by Lemma 5.3.5
the claim follows. �

5.3.4 Analysis of the exact algorithm

Lemma 5.3.7 Given the left gate p of a free space interval Ihi,j and a set of gates R,
and a parameter δ > 0, the algorithm xTunnel (Algorithm 5.3.2) outputs the leftmost
point v ∈ Ihi,j that is the endpoint of a tunnel τ(q, v) of price prc(τ(q, v)) ≤ δ from a
gate q ∈ R. If no such point exists, then the algorithm returns null.

Proof : The algorithm returns a point v either in line 5 or in line 11 or it returns null.
In the first case, it follows from the correctness of the algorithm by Alt and Godau

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 79

that this is the endpoint of a tunnel of price at most δ. In the second case, this follows
from the fact that vertical tunnels are always affordable if they are feasible. There
can be no tunnel τ(q, r) from a point q ∈ R which ends to the left of v and which
has price at most δ. Indeed, either v = p, or q has to be considered in the main
for-loop of the algorithm. If q lies in the lower left quadrant of p, then the tunnel
would be tested in line 4 and returned in line 5. Otherwise it is a vertical tunnel and
its feasibility is tested in line 8. Since the algorithm maintains the leftmost feasible
vertical tunnel seen so far, v cannot lie to the left of the returned point. �

Lemma 5.3.8 Given two curves X and Y and a parameter δ > 0. The algorithm
xDecider (Algorithm 5.3.3) outputs if dS(X,Y) ≤ δ.

Proof : We claim that, after handling the cell Ci,j , it holds that

(i) the reachability intervals Rv
i,j ⊆ Ivi,j and Rh

i,j ⊆ Ihi,j are computed correctly, and

(ii) R contains all endpoints of Rh
i′,j′ of all previously handled cells Ci′,j′ and {(0, 0)}.

We prove this by induction on the cells in the order in which they are handled by the
algorithm. For i = 1 and j = 1, the claim trivially follows from the convexity of the
free space inside the cell C1,1 and by the assumption that (0, 0) ∈ D≤δ(X,Y). Now
consider part (i) of the induction hypothesis for general i and j. Let v be the output
of xTunnel and let r be the right endpoint of the corresponding free space interval.
We first prove that the line segment vr is exactly the set of endpoints of monotone
paths starting from (0, 0) and ending with a tunnel in Ihi,j . Let π be such a monotone
path. Let

Ui,j =
⋃

1≤i′≤i

1≤j′≤j

Ci′,j′ \ Ci,j .

The set Ui,j contains all cells that are traversable by π before reaching Ci,j . Thus,
any possible starting point of the tunnel of π that ends in Ihi,j , has to be contained in
a reachability interval of a cell of Ui,j . Since we are only concerned with the directed,
vertex-restricted shortcut Fréchet distance, tunnels are only possible between the
horizontal free space intervals. Note that the algorithm has handled all cells in Ui,j

before handling Ci,j and by the induction hypothesis, the set R contains all endpoints
of the horizontal reachability intervals of Ui,j . Lemma 5.3.6 implies that, in order
to determine if the tunnels of the feasible subset of a tunnel family are affordable
(i.e., have price at most δ), it is sufficient to test any tunnel in this feasible subset.2

The fact that π has its endpoint on vr now follows from Lemma 5.3.7. The second
possibility for points in Ihi,j and Ivi,j to be reachable is via a monotone path which
enters the cell Ci,j through a reachability interval of one of its direct neighbors. By
induction the two neighboring cells are also contained in the set Ui,j and thus their
reachability intervals are correctly considered by the algorithm. This proves part (i)
of the induction hypothesis. Now part (ii) follows from line 16 of the algorithm. Since
the induction hypothesis also holds for the upper right cell of the free space diagram,
the lemma follows. �

2Interestingly, the canonical price of the tunnel family which is independent of δ would suffice
to perform this test. However, computing the canonical tunnel prices naively one by one takes
O(n5 logn) time and storing them explicitly takes O(n4) space.

80 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Lemma 5.3.9 Given two curves X and Y of total complexity n = n1 + n2 and a
parameter δ > 0. The algorithm xDecider (Algorithm 5.3.3) takes O

(
n5
)
time and

O(n) space.

Proof : The algorithm uses the xTunnel procedure (Algorithm 5.3.2). This procedure
iterates over the given set R, which has size at most O(n2), and invokes the decision
algorithm of Alt and Godau once in every step of the iteration on a polygonal curve
of complexity O(n) and a line segment to test the price of the corresponding tunnel.
This test takes O(n) time, see Section 2.4. Thus, the running time for one call to
xTunnel can be bounded by O(n3).

The algorithm invokes the xTunnel procedure O(n2) times leading to an overall
running time in O(n5). The algorithm uses an array of length O(n) and the algorithm
of Alt and Godau uses space in O(n). Thus the overall space requirement is in
O(n). �

Theorem 5.3.10 Given two curves X and Y in IRd of total complexity n, one can
compute the shortcut Fréchet distance dS(X,Y) in O

(
n5 log n

)
time and O(n4) space.

Proof : The algorithm is described in Section 5.3.2.3. The correctness follows from
Lemma 5.3.8 and from the analysis of the tunnel events in Section 5.3.3. Recall that
there are two types of such tunnel events: (i) the event that the endpoints of a tunnel
between two cells becomes feasible (i.e., a creation radius, Definition 5.3.4) and (ii)
the event that the price of a tunnel on a monotone path becomes affordable (i.e., the
price of a canonical tunnel, see Section 5.3.1). A creation radius is either a vertex-
edge distance or a vertex-vertex-edge distance, by Observation 5.3.1. Computing the
canonical price of a tunnel family (i.e., event (ii)), can be done in O(n log n) time by
computing the price of the canonical tunnel using the algorithm by Alt and Godau, see
Section 2.4. There are O(n2) vertex-vertex and vertex-edges events, there are O(n3)
vertex-vertex-edge events and there are O(n4) tunnel families. Thus, the running time
for computing the critical values is dominated by the computation of the canonical
tunnel prices which takes O(n5 log n) time. The algorithm performs a binary search
on these critical values, thus it requires O(n4) space. The binary search uses the
decision algorithm described in Section 5.3.2.2. By Lemma 5.3.8, this takes O(n5)
time and O(n) space per call. Thus, we have an overall running time of O(n5 log n)
and the theorem follows. �

5.3.5 A near-linear time approximation algorithm

Here, we describe the approximation algorithm for the case that the number of short-
cuts used is unbounded. The algorithm runs in near-linear time if the input curves
are c-packed. We use the following two non-trivial data structures.

Data Structure 5.3.11 Given a polygonal curve Z with n vertices in IRd, one can
build a data structure, in O

(
ε−2dn log2(1/ε) log2 n

)
time, using O

(
ε−2dn log2(1/ε)

)

space, that supports a procedure price(p, q, ε) which receives two points p and q in
the parametric space of X and Y and returns in O

(
ε−3 log n log log n

)
time a value

φ, such that φ ≤ prc(τ(p, q)) ≤ (1 + ε)φ. See Section 4 and Theorem 4.2.5.

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 81

Algorithm 5.3.13 tunnel(R, p, ε, δ)

Input: set of gates R; gate p ∈ [0, 1]2; error ε ∈ (0, 1]; distance δ ∈ R

1: Let q = (xq, yq) be a point in R with max value of xq,
such that xq ≤ xp and yq < yp, where p = (xp, yp).

2: φ = price(q, p, ε), see Data Structure 5.3.11.
3: if φ ≤ 3δ then
4: Return p // tunnel τ(q, p)
5: Compute j such that xp ∈ Iedge(X, j) = [xj , xj+1]
6: Let q = (xq, yq) be a point in R with min value of xq,

such that xq ∈ Iedge(X, j), xq ≥ xp, and yq < yp
7: if q does not exist then
8: Return null.
9: v = (xq, yp)

10: if dist(v) ≤ δ then
11: Return v // vertical tunnel τ(q, v)
12: else
13: Return null.

Data Structure 5.3.12 For given parameters ε and δ, and two c-packed curves XXX
and YYY in IRd, let X = simpl(XXX,µ) and X = simpl(YYY , µ), where µ = εδ. One can
compute all the vertex-edge pairs of the two simplified curves X and Y in distance at
most δ from each other, in time O(n log n+ c2n/ε). See below for details.

We describe how to realize Data Structure 5.3.12. Observe that X and Y have
density φ = O(c), see Definition 3.4.1. Now, we build the data structure of de Berg
and Streppel [57] for the segments of Y (with ε = 1/2). For each vertex of X we
compute all the segments of Y that are in distance at most δ from it, using the data
structure [57]. Each query takes O(log n+ kφ) time, where k is the number of edges
reported. Lemma 3.1.6 implies that the total sum of the k’s is O(cn/ε). We now
repeat this for the other direction. This way, one can realize Data Structure 5.3.12.

5.3.5.1 The tunnel procedure

Like the exact xTunnel procedure described in Section 5.3.2.1, the tunnel procedure
(see Algorithm 5.3.13) receives a set of gates R and a gate p as input and returns
the endpoint of an affordable tunnel that starts at a gate of R and ends either at p

or the closest point to the right of p in the same free space interval. However, we
are allowed to answer this query approximately. More precisely, if a tunnel between
a gate in R and the free space interval of p exists, which has price at most δ, then
the algorithm will return the endpoint of a tunnel of price at most (1 + ε)3δ. If the
algorithm returns null, then we know that no such tunnel of price at most δ exists.

The main idea of the tunnel procedure is the following. For a given tunnel, we
can (1 + ε)-approximate its price, using a data structure which answers these queries
in polylogarithmic time, see Data Structure 5.3.11. The desired tunnel could be either
a tunnel between a gate of R and p, or it could be a vertical tunnel from a gate of
R which lies to the right of p. Naively, one could test all tunnels that start from

82 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Algorithm 5.3.14 decider(X,Y, ε, δ)

Input: polygonal curves X and Y ; error ε ∈ (0, 1]; distance δ ∈ R

1: Assert that dist(0, 0) = ‖X(0)− Y (0)‖ ≤ δ and dist(1, 1) ≤ δ
2: Let Q be a min-priority queue for nodes v(i, j) with keys (jn+ i)
3: Compute and enqueue the cells Ci,j that have non-empty Ihi,j or Ivi,j
4: Let R = {(0, 0)} // set of gates
5: Let R be an empty set and let j = 1 // current row
6: while Q 6= ∅ do
7: Dequeue node v(i, j) and its copies from Q
8: if j < j then
9: Add all elements of R to R and let j = j

10: Let p be the left gate of Ihi,j
11: v = tunnel(R, p, ε, δ)
12: Compute Rh

i,j and Rv
i,j from v, Rv

i−1,j , R
h
i,j−1, I

v
i,j and Ihi,j

13: if Rv
i,j 6= ∅ then

14: Enqueue v(i+ 1, j) and insert edge between v(i, j) and v(i+ 1, j)
15: if Rh

i,j 6= ∅ then
16: Enqueue v(i, j + 1) and insert edge between v(i, j) and v(i, j + 1)
17: Add gates of Rh

i,j to R
18: if (1, 1) ∈ R then
19: Return “dS(X,Y) ≤ (1 + ε)3δ”
20: else
21: Return “dS(X,Y) > δ”

a gate in R and end in p, however, this takes time at least linear in the size of R.
Since we are only interested in a constant factor approximation, it is sufficient, by
Lemma 5.2.1, to test only the tunnel which corresponds to the shortest subcurve of
X. The corresponding gates can be found in logarithmic time using a data structure,
which is built on the set R and we assume is available to us. We can maintain this data
structure during the decision procedure layed out in Algorithm 5.3.14. The technical
details are described in the proof of Lemma 5.3.17.

5.3.5.2 The decision algorithm

Given two curvesX and Y , and a parameter δ, we want to know if the shortcut Fréchet
distance is at most δ. Like in the exact decision algorithm described in Section 5.3.2.2,
we traverse the free space diagram in search for a monotone path. However, we will
compute the reachable space only approximately and in turn achieve a better running
time. The decision algorithm exploits the monotonicity of the tunnel prices shown
in Lemma 5.2.1 and is based on a breadth first search in the free space diagram (a
similar idea was used in Chapter 3, but here the details are more involved).

The decision algorithm answers the initial question with either
(i) “dS(X,Y) ≤ (3+ ε)δ” (an equivalent to “yes”) if a shortcut curve Y ′ of Y , such

that dF(X,Y
′) ≤ (3 + ε)δ is found, or it answers with

(ii) dS(X,Y) > δ (an equivalent “no”) if we conclude that no shortcut curve with
dF(X,Y

′) ≤ δ exists.

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 83

Algorithm 5.3.15 Decider(XXX,YYY , ε, δ)

Input: polygonal curves XXX and YYY ; error ε ∈ (0, 1]; distance δ ∈ R

1: Let ε′ = ε/10
2: Compute X = simpl(XXX,µ) and Y = simpl(YYY , µ) with µ = ε′δ
3: Call decider(X,Y, ε′, δ′) with δ′ = (1 + 2ε′)δ
4: Return either “dS(XXX,YYY) ≤ (1 + ε)3δ” or “dS(XXX,YYY) > δ”

Detailed description of the decision procedure. The decision algorithm is layed out
in Algorithm 5.3.15 (and Algorithm 5.3.14). Like in the exact decision algorithm
described in Section 5.3.2.2, we use a directed graph G, which stores the reachability
within the free space diagram. The graph has a node v(i, j) for every free space cell
Ci,j whose boundary has a non-empty intersection with the free space D≤δ(X,Y).
These intersections are defined as the free space intervals Ihi,j , I

v
i,j , I

h
i−1,j and I

v
i,j−1, see

Chapter 2. The idea of the algorithm is to propagate reachability intervals Rv
i,j ⊆ Ivi,j

and Rh
i,j ⊆ Ihi,j while traversing a sufficiently large subgraph starting from v(1, 1), and

computing the necessary parts of this subgraph on the fly. We store these intervals
with the cell v(i, j) that has them on the top (resp., right) boundary. The reachability
intervals Rv

i,j being computed satisfy

R∞
≤δ(X,Y) ∩ Ivi,j ⊆ Rv

i,j ⊆ R∞
≤(1+ε)3δ(X,Y) ∩ Ivi,j , (5.3)

and an analogous statement applies to Rh
i,j . The aim is to determine if either (1, 1) ∈

R∞
≤(1+ε)3δ(X,Y) or (1, 1) /∈ R∞

≤δ(X,Y). Throughout the whole algorithm we also
maintain a set of gates R, which represents the endpoints of the horizontal reachability
intervals computed so far. (Technically, the gates which are computed in the current
row are maintained in a separate set R and are only added to the set R when moving
to the next row. This simplifies the range queries on R in the tunnel procedure.)

We will traverse the graph by handling the nodes in a row-by-row order, thereby
handling any node v(i, j) only after we handled the nodes v(i′, j′), where j′ ≤ j, i′ ≤ i
and (i′ + j′) < (i+ j). To this end we keep the nodes in a min-priority queue where
the node v(i, j) has the key (jn + i). The correctness of the computed reachability
intervals will follow by induction on the order of these keys. Furthermore, it will
ensure that we handle each node at most once and that we traverse at most three of
the incoming edges to each node of the graph.

The queue is initialized with the entire node set at once. To compute this initial
node set and the corresponding free space intervals we use Data Structure 5.3.12.
The algorithm then proceeds by handling nodes in the order of extraction from this
queue. When dequeuing nodes from the queue, the same node might appear three
times (consecutively) in this queue. Once from each of its direct neighbors in the grid
and once from the initial enqueuing.

In every iteration, the algorithm dequeues the one or more copies of the same
node v(i, j) and merges them into one node if necessary. Assume that v(i, j) has
an incoming edge that corresponds to an affordable tunnel. Let p be the left gate
of Ihi,j . We invoke tunnel(R, p, ε, δ) to test if this is the case. If the call returns
null, then there is no such affordable tunnel. Otherwise, we know that the returned
point v is contained in Rh

i,j . If there were more than one copies of this node in the

84 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

queue, we also access the reachability intervals of the one or two neighboring vertices
(i.e., Rv

i−1,j and Rh
i,j−1). Using the reachability information from the at most three

incoming edges obtained this way, we can determine if the cells Ci,j+1 and Ci+1,j are
reachable, by computing the resulting reachability intervals Rh

i,j at the top side and
Rv

i,j the right side of the cell Ci,j . Since the free space within a cell is convex and of
constant complexity, this can be done in constant time.

Now, if Rh
i,j 6= ∅ we create a node v(i, j + 1), connect it to v(i, j) by an edge, we

enqueue it, and add the gates of Rh
i,j to R. If Rv

i,j 6= ∅ we create a node v(i + 1, j),
connect it to v(i, j) by an edge, and we enqueue it. If we discover that the top-right
corner of the free space diagram is reachable this way, we output the equivalent to
“yes” and the algorithm terminates. In this case we must have added (1, 1) as a gate
to R. The algorithm may also terminate before this happens if there are no more
nodes in the queue, in this case we output that no suitable shortcut curve exists.

5.3.5.3 The main algorithm

The given input is two curves X and Y . We want to use the approximate decision
procedure Decider, described above, in a binary search like fashion to compute the
shortcut Fréchet distance. Conceptually, one can think of the decider as being exact.
In particular, the algorithm would, for a given value of δ, call the decision procedure
twice with parameters δ and δ′ = δ/4 (using ε = 1/3). If the two calls agree, then
we can make an exact decision, if the two calls disagree, then we can output a O(1)-
approximation of the shortcut Fréchet distance.

The challenge is how to choose the right subset of candidate values to guide this
binary search. Some of the techniques used for this search have been introduced in
previous papers. In particular, this holds for the search over vertex-vertex, vertex-
edge and vertex-vertex-edge distances which we describe as preliminary computations
in Section 5.3.5.4. This first stage of the algorithm eliminates the candidate values
that also need to be considered for the approximation of the standard Fréchet distance
and it is almost identical to the algorithm presented in Chapter 3.

As mentioned before, a monotone path could also become usable by taking a
tunnel. There are two types of events associated with a tunnel family: The first
time such that any tunnel in this family is feasible, which is the creation radius.
Fortunately, the creation radii of all tunnels are approximated by the set of vertex-
vertex and vertex-edge event radii, and our first stage search (see Section 5.3.5.4)
would thus take care of such events.

Another event we need to consider is the first time that the feasible subset of a
tunnel family becomes usable (i.e., the price of some tunnel in this family is below the
distance threshold δ). Luckily, it turns out that it is sufficient to search over the price
of the canonical tunnel associated with such a family. The price of a specific tunnel
can be approximated quickly using Data Structure 5.3.11. However, there are Θ(n4)
tunnel families, and potentially the algorithm has to consider all of them. Fortunately,
because of c-packedness, only O(n2) of these events are relevant. A further reduction
in running time is achieved by using the monotonicity property of the prices of these
tunnels (see Section 5.2.2.1) and our ability to represent them implicitly to search
over them efficiently.

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 85

5.3.5.4 The algorithm – First stage

We are given two c-packed polygonal curves XXX and YYY with total complexity n. We
repeatedly compute sets of event values and perform binary searches on these values
as follows.

We compute the set of vertices V of the two curves, and using well-separated
pairs decomposition (Lemma 3.2.7), we compute, in O(n log n) time, a set U of O(n)
distances that, up to a factor of two, represents any distance between any two vertices
of V .

Next, we use Decider (with fixed ε = 1/3) to perform a binary search for the
atomic interval in U that contains the desired distance. Let [α, β] denote this interval.
If 10α ≥ β/10 then we are done, since we found a constant size interval that contains
the Fréchet distance. Otherwise, we use the decision procedure to verify that the
desired radius is not in the range [α, 10α] and [β/10, β]. For α′ = 3α, β′ = β/3, let
I ′ = [α′, β′] denote the obtained interval.

We now continue the search using only decider and the simplified curves X =
simpl(XXX,µ) and Y = simpl(YYY , µ), where µ = α′. We extract the vertex-edge events
of X and Y that are smaller than β′, see Chapter 2. To this end, we compute all
edges of X that are in distance at most β′ of any vertex of Y and vice versa using
Data Structure 5.3.12. Let U ′ be the set of resulting distances. We perform a binary
search, using decider to find the atomic interval I ′′ = [α′′, β′′] of U ′∩I ′ that contains
the shortcut Fréchet distance between X and Y .

Finally, we again search the margins of this interval, so that either we found the
desired approximation, or alternatively we output the interval [10α′′, β′′/10],

5.3.5.5 Second stage – Searching over tunnel prices

It remains to search over the canonical prices of tunnel families T (e, e′, u, v), where
e 6= e′ (since for the case where e = e′ the canonical price coincides with the creation
event value). After the first stage, we have an interval [α, β] = [10α′′, β′′/10], and
simplified curves X and Y of which the shortcut Fréchet distance is contained in
[α, β] and approximates dS(XXX,YYY). By Lemma 3.1.6, the number of vertex-edge pairs
in distance β is bounded by O(cn/ε). The corresponding horizontal grid edges in the
parametric space contain the canonical gates which are feasible for any value in [α, β].
Let P denote the m = O(cn/ε) points in the parametric space that correspond to the
canonical gates of these vertex-edge pairs; that is, for every feasible pair p (a vertex
of Y) and e (an edge of X), we compute the closest point q on e to p, and place the
point corresponding to (q, p) in the free space into P.

It is sufficient to consider the tunnel families between these vertex-edge pairs, since
all other families are not feasible in the remaining search interval. Thus, if we did
not care about the running time, we could compute and search over the prices of the
tunnels P×P, using Data Structure 5.3.11. Naively, this would take roughly quadratic
time. Instead, we use a more involved implicit representation of these tunnels to carry
out this task.

Implicit search over tunnel prices. Consider the implicit matrix of tunnel pricesM =
P×P where the entry M(i, j) is a (1+ ε)-approximation to the price of the canonical
tunnel τ(pi, pj). By Lemma 5.2.2, the first j values of the jth row of this matrix are

86 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

monotonically decreasing up to a constant factor, since they correspond to tunnels
that share the same endpoint pj and are ordered by their starting points pi (we ignore
the values in this matrix above the diagonal). Using Data Structure 5.3.11 we can
(1+ε)-approximate a value in the matrix in polylogarithmic time per entry. Similarly,
the lower triangle of this matrix is sorted in increasing order in each column. As
such, this matrix is sorted in both rows and columns and one can apply the algorithm
of Frederickson and Johnson [78] to find the desired value. This requires O(logm)
calls to Decider, the evaluation of O(m) entries in the matrix, and takes O(m)
time otherwise. Here, we are using Decider as an exact decision procedure. The
algorithm will terminate this search with the desired constant factor approximation
to the shortcut Fréchet distance.

5.3.6 Analysis of the approximation algorithm

5.3.6.1 Analysis of the tunnel procedure

Lemma 5.3.16 Given the left gate p of a free space interval Ihi,j and a set of gates
R, and parameters 0 < ε ≤ 1 and δ > 0, the algorithm tunnel (Algorithm 5.3.13)
outputs one of the following:
(i) A point v ∈ Ihi,j, such that there exists a tunnel τ(q, v) of price prc(τ(q, v)) ≤

(1 + ε)3δ from a gate q ∈ R, or
(ii) null, in this case, there exists no tunnel of price at most δ between a gate of R

and a point in Ihi,j.
Furthermore, in case (i), there exists no other point r ∈ [p, v] that is the endpoint of
a tunnel from R with price at most δ.

Proof : The correctness of this procedure follows from the monotonicity of the tunnel
prices, which is testified by Lemma 5.2.1. Let φ be the (1 + ε)-approximation to the
price of the tunnel, that we compute in line 3. This tunnel starts at a point in R and
ends in p and it corresponds to the shortest subcurve X̂ of X over any such tunnel.
Lemma 5.2.1 implies that if φ > 3δ then there can be no other tunnel of price at most
δ that corresponds to a subcurve of X that contains X̂. Therefore, the price of any
tunnel from a point q ∈ R that lies in the lower left quadrant of p, to a point that lies
in the upper right quadrant of p has a price larger than δ. In particular, this holds
for those tunnels that end to the right of p in the same free space interval. The only
other possibility for a tunnel from R to Ihi,j is a vertical tunnel that lies to the right
of p. Observe that a vertical tunnel that is feasible for δ always has price at most δ,
since it corresponds to a subcurve of X that is equal to a point that is in distance δ
to the shortcut edge. In line 5 and line 6 we compute the leftmost gate of R in the
lower right quadrant of p that lies in the same column as p. If there exists such a
point with a vertical tunnel that ends in the free space interval Ihi,j , then we return
the endpoint of this tunnel. Otherwise we can correctly output the equivalent to the
answer that there exists no tunnel of price at most δ. �

5.3.6.2 Analysis of the decision algorithm

Clearly, the priority queue operations take time in O(N logN) and space in O(N),
where N = N≤δ(X,Y) is the size of the node set, which corresponds to the complexity

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 87

of the free space diagram. We invoke the tunnel procedure once for each node. Since
we add at most a constant number of gates for every cell to R, the size of this set
is also bounded by O(N). Therefore, after the initialization, the algorithm takes
time near linear in the complexity of the free space diagram. We can reduce this
complexity by first simplifying the input curves with µ = Θ(εδ) before invoking the
decider procedure, thereby paying another approximation factor. We denote the
resulting wrapper algorithm with Decider, it is layed out in Algorithm 5.3.15. Now,
the initial computation of the nodes takes near-linear time by Data Structure 5.3.12
and therefore the overall running time is near-linear. A more detailed analysis of the
running time can be found in the following lemma.

Lemma 5.3.17 Given parameters δ > 0 and 0 < ε ≤ 1 and two c-packed polygo-
nal curves XXX and YYY in IRd of total complexity n. The algorithm Decider (Algo-
rithm 5.3.15) outputs one of the following:

(i) “dS(XXX,YYY) ≤ (1 + ε)3δ”, or
(ii) “dS(XXX,YYY) > δ”.

In any case, the output returned is correct.

The running time is O
(
Cn log2 n

)
, where C = c2ε−2d log(1/ε).

Proof : The algorithm Decider computes the simplified curves X = simpl(XXX,µ)
and Y = simpl(YYY , µ) with µ = Θ(εδ), before invoking the algorithm decider (Al-
gorithm 5.3.14) on these curves. By the correctness of the tunnel procedure (i.e.,
Lemma 5.3.16), one can argue by induction that the subsets of points of R∞

≤δ(X,Y)
intersecting a grid edge are sufficiently approximated by the reachable intervals com-
puted by decider (see Eq. (5.3)). By Lemma 5.2.3, this approximates the decision
with respect to the original curves sufficiently.

It remains to analyze the running time. By Lemma 3.1.6, the size of the node
set of the traversed subgraph of G is bounded by N = O(cn/ε). This also bounds
the size of the point set R and the number of calls to the tunnel procedure, since
there are at most a constant number of those per node. During the tunnel procedure
(Algorithm 5.3.13) we

(A) approximate the price of one tunnel in line 3, and
(B) invoke two orthogonal range queries on the set R in line 1 and line 6.

As for (A), building the data structure that supports this kind of queries takes T1 =
O
(
nε−2d log2(1/ε) log2 n

)
time by Data Structure 5.3.11. Since we perform O(N)

such queries, this takes T2 = O
(
Nε−3 log n log log n

)
= O

(
cnε−4 log n log log n

)
time

overall. As for (B) since we traverse the free space diagram in a row-by-row order from
bottom to top, the entire set of points stored in R lies inside the vertical range which
is queried. Therefore, for answering the queries for the leftmost and rightmost points
within a quadrant, it is sufficient to store the points in a balanced binary search tree
ordered by their x-coordinate. Overall, maintaining this data structure and answering
the orthogonal range queries takes T3 = O(N logN) time. During the algorithm, we
maintain a priority queue, where each node is added and extracted at most three
times. As such, the priority queue operations take time in O(N logN). The initial
computation of the node set takes T4 = O(n log n+ c2n/ε) by Data Structure 5.3.12.

88 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Therefore, the overall running time is T1 + T2 + T3 + T4, which is

O
(
nε−2d log2(1/ε) log2 n+ cnε−4 log n log log n+ cn log n+ n log n+ c2n/ε

)

= O
(
Cn log2 n

)
,

where C = c2ε−2d log(1/ε). �

Observation 5.3.18 It is easy to modify the decider algorithm such that it also out-
puts the respective shortcut curve and matching which realizes the Fréchet distance.
We would modify the tunnel procedure such that it returns not only the endpoint, but
also the starting point of the computed tunnel. During the algorithm, we then insert
an edge for each computed tunnel, thereby creating at most three incoming edges to
each node. After the algorithm terminates, we can trace any path backwards from
(1, 1) to (0, 0) in the subgraph computed this way. This path encodes the shortcut
curves as well as the matchings.

5.3.6.3 Analysis of the main algorithm

The following lemma can be obtained using similar arguments as in the analysis of
the main algorithm in Chapter 3. We provide a simplified proof for the case here,
where we are only interested in a constant factor approximation.

Lemma 5.3.19 Given two c-packed polygonal curves XXX and YYY in IRd with total com-
plexity n, the first stage of the algorithm (see Section 5.3.5.4) outputs one of the
following:
(A) a O(1)-approximation to the shortcut Fréchet distance between XXX and YYY ;

(B) an interval Î, and curves X and Y with the following properties:

(i) dS(X,Y) is contained in Î and dS(X,Y) /3 ≤ dS(XXX,YYY) ≤ 3dS(X,Y),

(ii) Î contains no vertex-edge, vertex-vertex, or vertex-vertex-edge distance and
no tunnel creation radii (as defined in Section 5.3.3) of X and Y .

The running time is O
(
c2n log3 n

)
.

Proof : We first prove the correctness of the algorithm as stated in the claim. The
set U approximates the vertex-vertex distances of the vertices of XXX and YYY up to a
factor of two. Therefore, the interval I = [α, β], which we obtain from the first binary
search, contains no vertex-vertex distance ofXXX that is more than a factor of two away
from its boundary. This implies that the simplification X = simpl(XXX,µ) results in
the same curve for any µ ∈ [3α, β/3]. An analogous statement holds for YYY . Unless, a
constant factor approximation is found either in the interval [α, 10α] or the interval
[β/10, β], the algorithm continues the search using the procedure decider and the
curves simplified with µ = 3α.

It is now sufficient to search for a constant factor approximation to dS(X,Y) in the
interval I ′ = [3α, β/3], since this will approximate the desired Fréchet distance by a
constant factor. Indeed, by the result of the initial searches, we have that 3µ ≤ 10α ≤
dS(XXX,YYY). Lemma 5.2.3 implies that dS(X,Y) ≤ dS(XXX,YYY)+2µ ≤ 3dS(XXX,YYY) . On the
other hand, the same lemma implies that dS(X,Y) ≥ dS(XXX,YYY) − 2µ ≥ dS(XXX,YYY) /3.
This implies, that dS(X,Y) ∈ I ′ = [3α, β/3], since dS(XXX,YYY) ∈ [10α, β/10]. Note that
this also proves the correctness of (i), since the returned interval is contained in I ′.

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 89

Observe that the set of vertex-vertex distances of X and Y is contained in the set
of vertex-vertex distances of XXX and YYY . Clearly, I ′ cannot contain any vertex-vertex
distances of X and Y . The algorithm therefore extracts the remaining vertex-edge
events U ′ from the free space diagram and performs a binary search on them. We
obtain the atomic interval I ′′ = [α′′, β′′], which contains no vertex-edge events of X
and Y . By Lemma 5.3.5 the tunnel creation radius of a tunnel family corresponds
to the minimum radius of the family and by Observation 5.3.1 a minimum radius is
either a vertex-edge distance or a vertex-vertex-edge distance. By Lemma 3.2.8 these
event values would have to lie within a factor two of the boundaries of the interval I ′′.
Therefore, we again search the margins of this interval, so that either we found the
desired approximation, or alternatively, it must be in the interval I ′′′ = [10α′′, β′′/10],
which now contains no vertex-vertex, vertex-edge, vertex-vertex-edge distance or tun-
nel creation event of X and Y . Since I ′′′ is the interval that the algorithm returns,
unless it finds a constant factor approximation to the desired Fréchet distance, the
above argumentation implies (i) and (ii).

As for the running time, computing the set U using well-separated pairs decompo-
sition can be done in O(n log n) time, see Chapter 3. Computing the set U ′ takes time
in O(n log n+ c2n), by Data Structure 5.3.12 with µ = β/3 and δ = β. The algorithm
invokes the decision procedure O(log n) times, and this dominates the overall running
time, see Lemma 5.3.17. �

Lemma 5.3.20 Given two c-packed polygonal curves XXX and YYY in IRd of total com-
plexity n, one can compute a constant factor approximation to dS(XXX,YYY). The running
time is O

(
c2n log3 n

)
.

Proof : First, the algorithm performs the preliminary computations as described in
Section 5.3.5.4. By Lemma 5.3.19, we either find a constant factor approximation, or
we obtain an interval [α, β] and simplified curves X and Y . Furthermore, the interval
[α, β] does not contain any vertex-vertex, vertex-edge, vertex-vertex-edge distance, or
tunnel creation event of X and Y . Let P be the canonical gates that are feasible in
the β-free space of X and Y . We have that m = |P| = O(n) and we can compute
them using Data Structure 5.3.12 in O(n log n + c2n) time, for ε = 1/3. Thus, the
running time up to this stage is bounded by O

(
c2n log3 n

)
, by Lemma 5.3.19.

Now, we invoke the second stage of the algorithm described in Section 5.3.5.5 on
the matrix of implicit tunnel prices defined by P and return the output as our solution.

Consider a monotone path in the parametric space that corresponds to the optimal
solution. If the price of this path is determined by either a vertex-vertex, a vertex-edge
or a vertex-vertex-edge event then we have found an approximation to the shortcut
Fréchet distance already in the first stage of the search algorithm. If it is dominated by
a tunnel price and this tunnel has both endpoints in the same column of the free space,
then by Observation 2.3.1 it is a creation radius. By Lemma 5.3.5 this is equivalent
to the minimum radius of the corresponding tunnel family and by Observation 5.3.1
the price of such a tunnel is outside the interval [α, β], since by Lemma 5.3.19 these
critical values were eliminated in the first stage. Otherwise, this critical tunnel has
to be between two columns. Let δ be the price of this tunnel (which is also the price
of the whole solution). Consider what happens to this path if we slightly decrease δ.
Since δ is optimal, then the critical tunnel either ceases to be feasible or its price is
not affordable anymore.

90 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

If the critical tunnel is no longer feasible, then one of its endpoints is also an
endpoint of the free space interval it lies on. Consider the modified path in the free
space, which uses the new endpoint of the free space interval. If the free space interval
is empty, then this corresponds to a vertex edge event, and this is not possible inside
the interval [α, β]. The other possibility is that the path is no longer monotone.
However, this corresponds to a vertex-vertex-edge event, which again we already
handled because of Lemma 5.3.19.

If the tunnel is still feasible, then it must be that the endpoints of this tunnel
are contained in the interior of the free space interval and not on its boundary. Now
Lemma 5.3.6 (i) implies that the price of this tunnel is equal to the price of the
canonical tunnel. As such, the price of the optimal solution is being approximated
correctly in this case.

Observe that in the second stage we are searching over all tunnel events that lie in
the remaining search interval (whether they are relevant in our case or not). Hence,
the search would find the correct critical value, as it is one of the values considered
in the search.

The running time of second stage is bounded by:

(A) O(n log n log log n) time to compute the needed entries in the matrix, using Data
Structure 5.3.11.

(B) O
((
c2n log2 n

)
log n

)
time for the O(log n) calls to Decider.

(C) O(n) for other computations.

Therefore, the overall running time of the algorithm is O
(
c2n log3 n

)
. �

5.3.6.4 The result

Theorem 5.3.21 Given two c-packed polygonal curves XXX and YYY in IRd with total
complexity n, and a parameter ε > 0, the algorithm of Section 5.3.5 computes a
(3 + ε)-approximation to the shortcut Fréchet distance between X and Y in time in
O
(
Cn log3 n

)
, where C = c2ε−2d log(1/ε). The algorithm also outputs the shortcut

curve of YYY and the matchings that realize the approximated shortcut Fréchet distance.

Proof : The result follows from Lemma 5.3.20. We can turn any constant factor
approximation into a (3+ε)-approximation, using Decider with ε′ = ε/3 in a binary
search over a constant number of subintervals [α, β] where β = (3+ ε)α. It is easy to
modify the algorithm, such that it also outputs the shortcut curve and the matchings
realizing the approximate Fréchet distance, see Observation 5.3.18. �

5.3.7 Extension to the k-shortcut Fréchet distance

In this section, we describe an algorithm that can be used if the number of shortcuts
desired is bounded by a prespecified integer k. The running time of this algorithm is
also near-linear in n and has linear dependency on k.

The main algorithm is identical to the algorithm used in the unbounded case (see
Section 5.3.5.3), except that it uses k-Decider (Algorithm 5.3.24) instead of Decider
(Algorithm 5.3.15). Therefore, we only describe and analyze the decision procedure.

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 91

Algorithm 5.3.23 k-decider(k,X, Y, ε, δ)

Input: k ∈ IN; polygonal curves X and Y ; error ε ∈ (0, 1]; distance δ ∈ R

1: Assert that dist(0, 0) = ‖X(0)− Y (0)‖ ≤ δ and dist(1, 1) ≤ δ
2: Let L0 be the set of gates of D≤δ(X,Y)
3: Let S0 = {(0, 0)}
4: for i = 1, . . . , k do
5: Compute R≤δ(Si−1)
6: Let Li = Li−1 \ R≤δ(Si−1)
7: Let Ri be the set of gates of R≤δ(Si−1)
8: for p = (xp, yp) ∈ Li do
9: v = tunnel(Ri, p, ε, δ)

10: if v 6= null then
11: Add v to Si

12: if (1, 1) is contained in R≤δ(S0) ∪ · · · ∪ R≤δ(Sk) then
13: Return “dS(k,X, Y) ≤ (1 + ε)3δ”
14: else
15: Return “dS(k,X, Y) > δ”

5.3.7.1 Basic tools

Given a finite set of points P in the parametric space of X and Y , the points that
are reachable by an (x, y)-monotone path from a point in P that stays inside the free
space is the locally reachable free space from P (denoted by R≤δ(P)).

Lemma 5.3.22 Given a finite set of points P in the δ-free space diagram of two
polygonal curves X and Y in IRd of total complexity n (such that no cell in the
free space contains more than O(1) points of P), one can compute R≤δ(P) in time
O(|P|+N≤δ(X,Y)).

Proof : For each point of P we know the cell of the free space that contains it. So,
consider the subset of P contained in a particular cell Ci,j . Out of this subset, we only
need to consider the leftmost and lowermost point that is contained in D≤δ(X,Y) for
the computation of the reachability intervals at the top and right boundary of this
cell. The other points have no effect on the outcome. Recall that the complexity of
the free space inside a cell is constant. We know for each p ∈ P the cell Ci,j that
contains it on the inside or has it on its lower or left boundary. We can in linear time
filter out the irrelevant points. As such, assume that P contains only relevant points.

We sort the points P by the indices of the cells that contain them (i.e., a point
associated with Ci,j appears before a point associated with Ci′,j′ , if j < j′ or j = j′

and i < i′). This sorting can be done in linear time using radix-sort. Now, we deploy
the bfs approach, as used in Section 5.3.5.2, to compute the reachable free space.
The bfs uses two queues, one for the currently visited cells, and the precomputed one
(i.e., the ordering computed by the radix sort), to figure out which cells needs to be
explored. In each iteration it takes the minimum cell of the two queues. �

92 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Algorithm 5.3.24 k-Decider(k,XXX,YYY , ε, δ)

Input: k ∈ IN; polygonal curves XXX and YYY ; error ε ∈ (0, 1]; distance δ ∈ R

1: Let ε′ = ε/10
2: Compute X = simpl(XXX,µ) and Y = simpl(YYY , µ) with µ = ε′δ
3: k-decider(k,X, Y, ε′, δ′) with δ′ = (1 + 2ε′)δ
4: Return either “dS(k,XXX,YYY) ≤ (1 + ε)3δ” or “dS(k,XXX,YYY) > δ”

5.3.7.2 The decision algorithm

We now describe an approximate decision procedure for the k-shortcut Fréchet dis-
tance, where k is a prespecified number of shortcuts allowed. As in the previous
algorithm, we will use the tunnel procedure described in Section 5.3.5.1. The new
decision procedure k-decider is layed out in Algorithm 5.3.23. The idea of this al-
gorithm is to incrementally approximate the i-reachable free space, for i ≤ k. In
each step of the iteration we compute the free space that is locally reachable from
the endpoints of the tunnels that were computed in the previous iteration (line 6).
This can be done efficiently using Lemma 5.3.22. We extract the set of gates Ri from
this reachable free space. Let Li denote the set of gates in D≤δ(X,Y) that have not
been reached so far. Now we would like to connect from gates in Ri to gates in Li

via affordable tunnels using the tunnel procedure (Algorithm 5.3.13) and which we
described and analyzed already. By Lemma 5.3.16, this procedure returns a tunnel
of price at most (1 + ε)3δ, given that there exists such a tunnel of price at most δ.
The quadrant queries are performed on a static two-dimensional range tree, which we
build on the set of discovered gates Ri for each iteration. The initial set of “undiscov-
ered” gates L0 can be computed using Data Structure 5.3.12. If, after k steps of this
algorithm, the point (1, 1) has not been reached, then we know that dS(k,X, Y) > δ.
Otherwise, we know that there exists a k′-shortcut curve Y ′ for 0 ≤ k′ ≤ k, such
that dF(X,Y

′) ≤ (1 + ε)3δ. As in the previous algorithm, we simplify the curves
with µ = Θ(εδ) before invoking the k-decider procedure in order to ensure that the
complexity of the free space diagram is near-linear. The resulting wrapper algorithm
is called k-Decider and layed out in Algorithm 5.3.24.

5.3.7.3 Analysis

Here, we analyze the decision algorithm. The analysis of the main algorithm is pre-
sented in Section 5.3.6.3.

Lemma 5.3.25 For every r = (xr, yr) ∈ R≤δ(Si), as computed by k-decider (Algo-
rithm 5.3.23), it holds that r ∈ Ri

≤(1+ε)3δ(X,Y).

Proof : We prove that for any such r, it holds that dS(i,X[0, xr] , Y [0, yr]) ≤ (1+ ε)3δ.
This is equivalent to showing that there exists a decomposition X[0, x] = X0 ⊕X1 ⊕
X2⊕· · ·⊕X2i and a decomposition Y [0, y] = Y0⊕Y1⊕Y2⊕· · ·⊕Y2i, such that for j =
0, . . . , i, it holds that dF(X2j−1, Y2j−1) ≤ (1+ ε)3δ and dF

(
X2j , Y 2j

)
≤ (1+ ε)3δ. By

the definition of the locally reachable free space, dF(X[0, xr] , Y [0, yr]) ≤ δ ≤ (1+ ε)3δ
for any point r in R≤δ(S0). Therefore, the claim is clearly true for i = 0.

5.3. THE VERTEX-RESTRICTED SHORTCUT FRÉCHET DISTANCE 93

For i > 0, we inductively decompose the curves such that the pieces satisfy the
above condition. For any point r in R≤δ(Si) there exists a point u = (xu, yu) ∈ Si, such
that u is connected by a (x, y)-monotone path to r. This is ensured by Lemma 5.3.22.
Let X2i = X[xu, xr] and Y2i = Y [yu, yr]. We have that dF(X2i, Y2i) ≤ δ ≤ (1 + ε)3δ,
since this path is contained in D≤δ(X2i, Y2i).

The point u was added to Si because it was returned as the endpoint of a tunnel
by the tunnel procedure in line 9. By Lemma 5.2.1, this tunnel starts at a point
q ∈ Ri ⊆ R≤δ(Si−1) and has the property that dF

(
X[xq, xu] , Y [yq, yu]

)
≤ (1 + ε)3δ.

We set X2i−1 = X[xq, xu] and Y 2i−1 = Y [yq, yu]. By induction, there exists an (i−1)-
shortcut curve of Y [0, yq] that has Fréchet distance at most (1 + ε)3δ to X[0, xq].
Concatenating these curves with the tunnel τ(q, u), and the monotone path from u

to r implies the claim. �

Lemma 5.3.26 After each iteration of the outer for-loop as executed by the algorithm
k-decider (Algorithm 5.3.23) it holds that the i-reachable free space Ci = Ri

≤δ(X,Y)
is contained in

⋃
0≤j≤i R≤δ(Sj).

Proof : By the definition of the locally reachable free space, the claim is clearly true
for i = 0. For i > 0, assume for the sake of contradiction, that the claim was false,
and furthermore, that this is the minimal i for which the claim fails. Therefore, we
can assume that the claim is true for any smaller value of i. That is, for any q, such
that dS(i− 1, X[0, xq] , Y [0, yq]) ≤ δ, we have that q ∈ R≤δ(Sj) for some j ≤ (i − 1),
in other words, the (i − 1)-reachable free space is computed correctly in previous
iterations of the loop. Now, failing the claim means that the algorithm missed a
point p ∈ Ci \ R≤δ(Si), such that there exists a i-shortcut curve of Y [0, xp] which is
within Fréchet distance δ to X[0, yp]. Let P denote the path in the parametric space
realizing this distance. We will show that the existence of such a path P implies that
p ∈ R≤δ(Si) as computed by the algorithm, which then implies the claim.

Let u and r be the points in the parametric space, such that ur is the last tunnel
taken by P , and P connects r to p by a monotone path inside D≤δ(X,Y). We have
that prc(τ(u, r)) ≤ δ. Furthermore, it must be that u ∈ R≤δ(Si−1), since u is part of
the (i − 1)-reachable free space which was computed correctly. So, let u′ and u′′ be
the gates of the reachability interval of R≤δ(Si−1), which contains u (as computed by
Lemma 5.3.22). Similarly, let r′ be the left gate of the edge containing r. Observe
that u′, u′′ ∈ Ri and r′ ∈ Li. Consider the tunnel τ(u′, r). It must be that its price
is at most δ, since prc(τ(u, r)) ≤ δ. The algorithm will invoke the tunnel procedure
with the parameters Ri and r′. By Lemma 5.3.16, and since prc(τ(u′, r)) ≤ δ, it must
return the endpoint v of an affordable tunnel that lies in the free space interval of r.
Furthermore, the returned point is the leftmost such point, that is, no other tunnel
from Ri of price at most δ can end at a point in [r′, v]. Therefore, v must lie to the
left of r or be equal to r. The algorithm would then add v to the set Si. This implies
that r, and therefore also p, are contained in R≤δ(Si). �

We now prove the correctness and running time of k-Decider for approximating
the k-shortcut Fréchet distance.

Lemma 5.3.27 Given three parameters k ∈ IN, δ > 0 and 0 < ε ≤ 1 and two c-packed
polygonal curves XXX and YYY in IRd of total complexity n. The algorithm k-Decider

94 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

(Algorithm 5.3.24) outputs one of the following: (i) “dS(k,XXX,YYY) ≤ (1 + ε)3δ”, or
(ii) “dS(k,XXX,YYY) > δ”. In any case, the output returned is correct. The running time
is O

(
Ckn log2 n

)
, where C = c2ε−2d log(1/ε).

Proof : The algorithm k-Decider computes the simplified curves X = simpl(XXX,µ)
and Y = simpl(YYY , µ) with µ = Θ(εδ), before invoking the algorithm k-decider
(Algorithm 5.3.23) on these curves. If, by the end of the computations, (1, 1) ∈
R≤δ(S0) ∪ · · · ∪ R≤δ(Sk), as tested in line 12, then Lemma 5.3.25 proves that the
output returned in line 13 is correct with respect to the simplified curves. Other-
wise, Lemma 5.3.26 shows that the output in line 15 is correct with respect to them.
By Lemma 5.2.3, this approximates the decision with respect to the original curves
sufficiently.

We assume that we have an annotated graph representation of the free space
diagram as used in Lemma 5.3.22. In this case, we can easily extract the gates
contained in R≤δ(Si) during its computation in line 6, as well as, to check whether it
contains (1, 1).

The sets Ri, Si and Li are finite sets of two-dimensional points, and as such, we
can use static two dimensional range trees for the orthogonal range queries in line 1

and line 6 in the tunnel procedure.
As for the running time, observe that by Lemma 3.1.6 there are at most N =

O(cn/ε) points in Li, Si and Ri, at any point in time. As such, building the range
trees on them, in each iteration, takes O(N logN) time, and this also accounts for all
the queries performed on these data structures. Note that computing the reachable
free space in line 6 in each iteration takes time in O(|Si| log n+N logN) = O(N logN)
by Lemma 5.3.22. Therefore, maintaining the sets Ri, Si and Li and all operations
on them takes T1 = O(kN logN) time overall. Computing the initial set of gates L0

in line 3, takes T2 = O(n log n+ c2n/ε) time by Data Structure 5.3.12.
Building the data structure that supports the queries for the price of a tunnel

takes T3 = O
(
nε−2d log2(1/ε) log2 n)

)
time by Data Structure 5.3.11. Throughout

the algorithm execution, we perform O(kN) such queries on this data structure,
which takes

T4 = O
(
kNε−3 log n log log n

)
= O

(
cknε−4 log n log log n

)

time overall.
As such, the overall running time is

T1 + T2 + T3 + T4 = O
(
nckε−4 log n+ kN logN + nε−2d log2(1/ε) log2 n+ c2n/ε

)

= O
(
Ckn log2 n

)
,

where C = c2ε−2d log(1/ε). �

5.3.7.4 The result

Theorem 5.3.28 Given an integer k > 0, a parameter ε > 0, and two c-packed
polygonal curves X and Y in IRd, with total complexity n, the algorithm described
above computes a (3 + ε)-approximation to the k-shortcut Fréchet distance between
X and Y in time in O

(
Ckn log2 n

)
, where C = c2ε−2d log(1/ε). The algorithm also

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 95

outputs the shortcut curve of YYY and the matchings that realize the respective k-shortcut
Fréchet distance.

Proof : The main algorithm is described in Section 5.3.5.3 and analyzed in Sec-
tion 5.3.6.3. We use the decision procedure k-Decider (Section 5.3.7.2) instead of
Decider. The running time and correctness therefore follows from the proof of The-
orem 5.3.21, except that we use Lemma 5.3.27 for the decision procedure. �

5.4 The continuous shortcut Fréchet distance

In this section we study the directed shortcut Fréchet distance in the general case
where shortcuts can start and end at any point along one of the two curves and the
number of shortcuts is unbounded. We will further omit the predicates directed and
continuous in this section and simply refer to it as the shortcut Fréchet distance.
In Section 5.4.1 we give an NP-hardness reduction and prove its correctness in Sec-
tion 5.4.2. In Section 5.4.3 we extend some of our approximation results from the
previous sections to this more general case.

5.4.1 NP-hardness reduction

We prove that deciding if the shortcut Fréchet distance between two given curves is
smaller or equal a given value is weakly NP-hard by a reduction from SUBSET-SUM.
We first discuss the main ideas and challenges in Section 5.4.1.1, then we formally
describe the reduction in Section 5.4.1.2. The correctness is proven in Section 5.4.2.

5.4.1.1 General idea

The SUBSET-SUM instance is given as a set of input values and a designated sum
value. A solution to the instance is a subset of these values that has the specified
sum. We describe how to construct a target curve X and a base curve Y , such
that there exists a shortcut curve of Y which is in Fréchet distance 1 to X if and
only if there exists a solution to the SUBSET-SUM instance. We call such a shortcut
curve feasible if it lies within Fréchet distance 1. The construction of the curves is
split into gadgets, each of them encoding one of the input values.

Idea of the reduction. We construct the target curve to lie on a horizontal line going
mostly rightwards. The base curve has several horizontal edges which lie at distance
1 to the target curve and which go leftwards. The monotonicity requirement on the
matchings considered by the Fréchet distance (see Section 2.1) forces a feasible short-
cut curve to “jump” rightwards along the edges of the base curve using shortcuts
in between and visiting each edge in exactly one point. We can further control the
feasible shortcut curves by adding occasional “twists” to the target curve. The mono-
tonicity requirement forces the shortcuts to go through the centers of these twists.
See Figure 5.4 for an illustration. In our construction this mechanism is used as fol-
lows. Intuitively, an edge visited by the shortcut curve acts as a mirror and a shortcut
matching to a twist acts as a projection onto such a mirror3 where the center of the

3However, Snell’s law does not hold in this analogy.

96 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

base curve

e
i−1

∗
e
i

∗

1
target curve

e
i

si

e
i

twist

mirror edge

Figure 5.4: Simplistic version of the gadget encoding one of the input values si. A
feasible shortcut curve entering from a position on the edge ei−1

∗ has the choice to
visit either ei or ei, resulting in different visiting positions on ei∗.

twist corresponds to the projection center. A shortcut curve that enters a gadget via
a projection center will have two different edges of the base curve available to visit.
Depending on the choice of the edge, the two projections cascade through the next
projection center until they hit the following mirror edge where their distance to each
other encodes one of the input values. The choice of the initial edge (i.e., ei vs. ei

in Figure 5.4) encodes whether this input value is selected by the shortcut curve. If
yes, then the shortcut curve will end up further to the right on the last mirror edge
of the gadget (i.e., ei∗ in Figure 5.4), from which it enters the next gadget. Due to
the resulting horizontal shift, the value is implicitly copied to the next gadget. By
visiting a number of such gadgets, which have been threaded together, a shortcut
curve accumulates the sum of the selected subset in the visiting position on the last
edge of each gadget. We construct the terminal gadget such that only those shortcut
curves that encode a subset which sums to the designated value can connect through
the last projection center to the endpoint of the base curve.

Challenges. We would like to construct gadgets such as the one shown in Figure 5.4
which have the behavior as described above. A key element in the construction is
the fact that a feasible shortcut curve visiting a mirror edge at distance exactly 1 to
the target curve has to leave the mirror edge immediately. However, if we want to
offer a choice of destination edges for a shortcut, then one of the two edges has to lie
within distance 1. In this case, it may happen that a shortcut curve visits the edge in
more than one point by moving leftward on the edge before leaving again in rightward
direction. Therefore, the visiting position which encodes the current partial sum will
be only approximated. We will use a scaling parameter to prevent influence of this
approximation error on the solution. The second challenge is that we need to space the
two edges ei and ei horizontally apart to prevent the shortcut curve from visiting both
of them. We will use more than two twists per gadget to realize the spacing and the
correct distances of the projections. After selecting the initial edge, the projections
of different shortcut curves will cascade through the remaining projection centers of
the gadget while bouncing off from the mirrors in order to be bundled again on the
last edge of the gadget, where their distance to each other encodes one of the input
values.

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 97

5.4.1.2 Reduction

We describe how to construct the curves X and Y from an instance of SUBSET-SUM
and how to extract a solution.

Input. We are given n positive integers {s1, s2, . . . , sn} and a positive integer σ. The
problem is to decide whether there exists an index set I, such that

∑
i∈I si = σ. For

any index set I, we call σi =
∑

1≤j≤i,j∈I sj the ith partial sum of the corresponding
subset.

Layout and notation. Our construction consists of n + 2 gadgets: an initialization
gadget g0, a terminal gadget gn+1, and intermediate gadgets gi for each value si, for
i = 1, . . . , n. A gadget gi consists of curves Xi and Yi. We concatenate these in the
order of i to form X and Y . We denote with Hy the horizontal line at y. The edges
of Xi lie on H0 running in positive x-direction, except for occasional twists, which
we define as follows. A twist centered at a point p = (p, 0) is a subcurve defined by
the vertices (p− 1, 0),(p+ 1, 0),(p− 1, 0),(p+ 1, 0) which we connect by straight line
segments in this order. We call p the projection center of the twist. Let ζ be a
global parameter of the construction, we call the open rectangle of width ζ and height
3 and centered at p a buffer zone of the twist. The idea is that the base curve stays
outside the buffer zones of the twists of the target curve. We call the locus of points
that are within distance 1 to the target curve the hippodrome . The curve Yi is
defined by placing leftward horizontal edges on H−1, H1 and Hα, where 0 < α < 1 is
another global parameter of the construction. We call these edgesmirror edges. The
remaining edges of Yi, which are used to connect the mirror edges to each other, are
called connector edges. The mirror edges located on H1 and H−1 can be connected
using curves that lie outside the hippodrome. Since those connector edges cannot be
visited by any feasible shortcut curve, their exact placement is irrelevant. The edges
connecting to mirror edges located on Hα and which intersect the hippodrome are
placed carefully such that no feasible shortcut curve can visit them. Since all relevant
points of the construction lie on a small set of horizontal lines, we take the liberty to
slightly abuse notation by denoting the x-coordinate of a point and the point itself
with the same variable, albeit using a different font. For example, we denote with
aij the point that has x-coordinate aij . In the figures, we omit the top index i of the

variables of gadget gi to make the description less cluttered. We use ab to denote
the line through the points a and b.

Global variables. The construction uses four global variables. The parameter 0 <
α < 1 is besides 1 and −1 the y-coordinate of a horizontal line that supports mirror
edges. The parameter β > 0 controls the minimal horizontal distance between mirror
edges that lie between two consecutive buffer zones. The parameter δ > 0 acts as a
scaling parameter to ensure (i) that the projections stay inside the designated mirror
edges and (ii) that the projections of two different partial sums are kept disjoint
despite the approximation error. The fourth parameter ζ defines the width of a
buffer zone, this is the minimum horizontal distance that a point on the base curve
has to a projection center. How to choose the exact values of these variables will
follow from Lemma 5.4.13.

98 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Main gadgets. The construction of the gadgets is incremental. Given the endpoints
of the last mirror edge of gadget gi−1 and the value si, we construct gadget gi. The
overall structure is depicted in Figure 5.6. The curve Yi for 1 ≤ i ≤ n has seven mirror
edges. These are eij = aijb

i
j , and eij = cijd

i
j , for 1 ≤ j ≤ 3, and the edge ei∗ = ai∗b

i
∗. We

connect the mirror edges using additional edges to define the following order along the
base curve: ei−1

∗ , ei1, e
i
1, e

i
2, e

i
2, e

i
3, e

i
3, e

i
∗. The mirror edges lie on the horizontal linesH1,

H−1 and Hα. We use vertical connector edges which run in positive y-direction and
additional connector edges which lie completely outside the hippodrome to connect
the mirror edges on Hα. The curve Xi for 1 ≤ i ≤ n consists of four twists centered
at the projection centers pij for 1 ≤ j ≤ 4 which are connected in the order of j
by rightward edges on H0. To choose the exact coordinates of these points, we go
through several rounds of fixing the position of the next projection center and then
projecting the endpoints of mirror edges to obtain the endpoints of the next set of
mirror edges. The construction is defined in four steps in Table 5.5 and illustrated
in Figure 5.6 (bottom right and bottom left). The intuition behind this choice of
projection centers is the following. In every step we make sure that the base curve
stays out of the buffer zones. Furthermore, in Step 1 we choose the projection center
far enough to the right such that two mirror edges located between two consecutive
buffer zones have distance at least β. In Step 4 we align the projections of the two
edges ei3 and ei3. In this alignment, the visiting position that represents “0” on ei3
(i.e., in its distance to ai3) and the visiting position that represents “si” on ei3 (i.e.,
in its distance to ci3) both project to the same point on ei∗ (i.e., the visiting position
that represents “si” in its distance to bi∗). In this way, the projections from ei3 are
horizontally shifted by si (scaled by δ) with respect to the projections from ei3.

Initialization gadget. We let both curves start on the vertical line at a00 = 0 by
placing the first vertex of X0 at (a00, 0) and the first vertex of the Y 0 at (a00, 1). The
base curve Y0 then continues to the left on H1 while the target curve X0 continues to
the right on H0. See Figure 5.6 (top left) for an illustration. The curve X0 has one
twist centered at p01 = a00 + δ + ζ/2. The curve Y 0 has one mirror edge e0∗ = a0∗b

0
∗,

which we define by setting b0∗ = p01 + ζ/2 and a0∗ = p01 + 2δ + ζ/2.

Terminal gadget. Assume we have constructed the gadgets g0,. . . ,gn and now want
to construct gadget gn+1 from e∗n. The curve Xn+1 has one twist centered at pn+1

1 =
an∗ + ζ/2. Let pσ = (bn∗ + δ(σ+ 1)) and project the point (pσ,−1) through pn+1

1 onto
H1 to obtain a point (aσ, 1). We finish the construction by letting both the target
curve Xn+1 and the base curve Yn+1 end on a vertical line at aσ. The curve Xn+1

ends on H0 approaching from the left, while the curve Yn+1 ends on H1 approaching
from the right. Figure 5.6 (top right) shows an illustration.

Encoding of a subset. In our reduction, any shortcut curve of the base curve encodes
a subset of the SUBSET-SUM instance. We say that the value si is included in the
encoded subset if and only if the shortcut curve visits the edge ei1. The ith partial
sum of the encoded subset will be represented by the point where the shortcut curve
visits the edge e∗i . In particular, the distance of the visiting point to the endpoint of
the edge represents this value, scaled by δ and up to a small additive error.

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 99

Step 1: p1 = ai−1
∗ (φi,−α) ∩H0 with φi = ai−1

∗
+ β + λi

λi = ai−1

∗
− bi−1

∗

a1 = bi−1
∗ p1 ∩H1 b1 = ai−1

∗ p1 ∩H1

c1 = bi−1
∗ p1 ∩Hα d1 = ai−1

∗ p1 ∩Hα

Step 2: p2 =(a1 + ζ/2, 0)

a2 = b1p2 ∩H−1 b2 = a1p2 ∩H−1

c2 = d1p2 ∩H−1 d2 = c1p2 ∩H−1

Step 3: p3 =(c2 + ζ/2, 0)

a3 = b2p3 ∩Hα b3 = a2p3 ∩Hα

c3 = d2p3 ∩H1 d3 = c2p3 ∩H1

Step 4: p4 = (c3 − δsi, 1)a3 ∩H0

a4 = b3p4 ∩H−1 b4 = a3p4 ∩H−1

c4 = d3p4 ∩H−1 d4 = c3p4 ∩H−1

a∗ = (max(a4, b4, c4, d4) ,−1) b∗ = (min(a4, b4, c4, d4) ,−1)

Table 5.5: Construction of the main gadgets gi for 1 ≤ i ≤ n. We omitted the top
index i of the variables. Thus, b∗ stands for bi∗, etc. H1, H−1 and Hα denote the
horizontal lines at 1,−1 and α respectively.

100 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

α
0

1

−1

bi−1

∗
ai−1

∗
p1

e
i−1

∗
e1 e1 e2

≥ β

α
0

1

−1

e
0

∗

b0
∗

a0
∗

p0
1

a0
0

Y (0)

X(0)

δ

≥ β≥ ζ

p2b1 a1d1 c1 b2 a2

≥ ζ

v
i−1

∗

v
i

1

v
0

∗

= v
0

0

Figure 5.6: top: initialization gadget g0; bottom: the left part of gadget gi. The
target curve is shown in green, the base curve in blue. An example shortcut curve
is shown in red. Buffer zones and the hippodrome are shown as shaded regions. For
the sake of presentation, the target curve is distorted to show its topology, and the
lengths of the mirror edges have been assumed smaller. The top index i has been
omitted from the variables.

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 101

e3 e3 e∗

≥ β

α
0

1

−1

bn
∗

an
∗

e
n

∗

pn+1

1 aσ

e2

Y (1)

≥ β

p3 p4b3 a3 b∗ a∗d2 c2 d3 c3

≥ ζ ≥ ζ

v
i

3

v
i

∗

= v
n+1

v
n

∗

σ

v
i

2

X(1)

Figure 5.6: (continued) top: terminal gadget gn+1; bottom: the right part of gadget
gi with example shortcut curve.

102 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

5.4.2 Correctness of the reduction

Now we prove that the construction has the desired behavior. That is, we prove
that any feasible shortcut curve encodes a subset that constitutes a solution to the
SUBSET-SUM instance (Lemma 5.4.13) and for any solution of the SUBSET-SUM
instance, we can construct a feasible shortcut curve (Lemma 5.4.11).

We call a shortcut curve one-touch if it visits any edge of the base curve in at
most one point. Intuitively, for any feasible shortcut curve of Y , there exists a one-
touch shortcut curve that “approximates” it. We first prove the correctness of the
reduction for this restricted type of shortcut curve (Lemma 5.4.11), before we turn
to general shortcut curves. In Definition 5.4.2 we define a one-touch encoding ,
which is a one-touch shortcut curve that is feasible if and only if the encoded subset
constitutes a valid solution. For such curves, Lemma 5.4.4 describes the correspon-
dence of the current partial sum with the visiting position on the last edge of each
gadget. It readily follows that we can construct a feasible shortcut curve from a valid
solution (Lemma 5.4.11). For the other direction of the correctness proof we need
some lemmas to testify that any feasible shortcut curve is approximately monotone
(Lemma 5.4.7), has its vertices outside the buffer zones (Lemma 5.4.6), and therefore
has to go through all projection centers (Lemma 5.4.8). We generalize Lemma 5.4.4
to bound the approximation error in the representation of the current partial sum
(Lemma 5.4.12). As a result, Lemma 5.4.13 implies that any feasible shortcut curve
encodes a valid solution.

p

b1 a1

a2b2

−1

0

α

1

∆1

∆2

In the proofs to these lemmas we often reason using
projections of distances between H1,H−1 and Hα. The
common argument is captured in the following observa-
tion.

Observation 5.4.1 (Distance projection) If ∆1 is a
triangle defined by two points a1 and b1 that lie on H−1

and a point p that lies on H0, and if ∆2 is a triangle
defined by the points p, and the two points b2 = a1p ∩ Hα and a2 = b1p ∩ Hα,
which are the projections onto Hα, then it holds that α(a1 − b1) = a2 − b2, where
a1, b1, a2 and b2 are the respective x-coordinates of the points.

5.4.2.1 Correctness for one-touch shortcut curves

We first do the analysis under the simplifying assumption that only shortcut curves
are allowed that are one-touch, i.e., shortcut curves can visit the base curve in at
most one point per edge. In the next section we will build upon this analysis for the
general case.

Definition 5.4.2 (One-touch encoding) Let I be an index set of a subset S′ ⊆ S.
We construct a one-touch shortcut curve YI of the base curve incrementally. The first
two vertices on the initial gadget are defined as follows. We choose the first vertex of
the base curve Y (0) for v00, then we project it through the first projection center p01
onto e0∗ to obtain v0∗. Now for i > 0, if i ∈ I, then we project vi−1

∗ through pi1 onto ei1,
otherwise onto ei1 to obtain vi1. We continue by projecting vij through pij+1 onto Yi to

obtain vij+1, for 1 ≤ j ≤ 4. Let vi∗ = vi4. We continue this construction throughout

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 103

p1 p2 p3

bi−1

∗
vi−1

∗
d4

a1

a3

v1

v3

−1

0

α

1

v∗

c3
δsi

ai−1

∗

p4

b1

d1
c1

d3

b3

a4b4 c4b2 v2 c2d2 a2

b∗ a∗

Figure 5.7: The path of a shortcut curve through the gadget gi in the case where si is
included in the selected set (Lemma 5.4.4). For presentation purposes, we allowed the
mirror edges to overlap horizontally and we omitted the top index i of the variables.

all gadgets in the order of i. Finally, we choose Y (1) = (aσ, 1) as the last vertex of
our shortcut curve. Figure 5.6 shows an example.

Lemma 5.4.3 For any 1 ≤ i ≤ n, it holds that bi4 = bi∗ + δsi and that di4 = bi∗.

Proof : By construction, the projection center pi4 lies on a common line with ai3 and
bi4. Recall that we chose pi4 such that this line intersects H1 at the x-coordinate
ci3 − δsi (see Table 5.5 and Figure 5.7). Thus, by Observation 5.4.1, it holds that
bi4 − di4 = δsi. Furthermore, di4 is the point with minimum x-coordinate out of the
projections of ai3, b

i
3, c

i
3, and di3 through pi4 onto H−1, since δsi ≥ 0. Since we chose

bi∗ as such point with minimum x-coordinate, the claim is implied. �

Lemma 5.4.4 Given a shortcut curve YI which is a one-touch encoding (Defini-
tion 5.4.2), let vi∗ be the vertex of YI on ei∗, for any 0 ≤ i ≤ n. It holds for the
distance of vi∗ to the endpoint of this edge that

∥∥vi∗ − bi∗
∥∥ = δ(σi + 1), where σi is the

ith partial sum of the subset encoded by YI .

Proof : We prove the claim by induction on i. For i = 0, the claim is true by the
construction of the initialization gadget, since the partial sum σ0 = 0 and

∥∥v0∗ − b0∗
∥∥ =

δ. For i > 0, there are two possibilities, either i ∈ I or i /∈ I. Consider the case that si
is included in the set encoded by YI . In that case, the curve has to visit the edge ei1.

By a repeated application of Observation 5.4.1 we can derive that

∥∥vi−1
∗ − bi−1

∗
∥∥ =

∥∥vi1 − ai1
∥∥ =

∥∥vi2 − bi2
∥∥ =

∥∥vi3 − ai3
∥∥

α
=
∥∥vi∗ − bi4

∥∥ .

Refer to Figure 5.7 for an illustration of the geometry of the path through the gadget.
The shaded region shows the triangles that transport the distances. Therefore, by
induction and by Lemma 5.4.3,

∥∥vi∗ − bi∗
∥∥ =

∥∥vi∗ − bi4
∥∥+

∥∥bi4 − di4
∥∥ = δ(σi−1 + 1) + δsi = δ(σi + 1).

104 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Thus, the claim follows for the case that si is selected. For the second case, the curve
has to visit the edge ei1. Again, by Observation 5.4.1 it holds that

∥∥vi−1
∗ − bi−1

∗
∥∥ =

∥∥vi1 − ci1
∥∥

α
=
∥∥vi2 − di2

∥∥ =
∥∥vi3 − ci3

∥∥ =
∥∥vi∗ − di4

∥∥ .

Thus
∥∥vi∗ − di4

∥∥ = δ(σi−1 + 1) = δ(σi + 1). By Lemma 5.4.3, di4 = bi∗, thus the claim
is implied also in this case. �

Using the arguments from the proof of Lemma 5.4.4 one can derive the following
corollary.

Corollary 5.4.5 For any 0 ≤ i ≤ n the length of the edge ei∗ is equal to

δ

 ∑

1≤j≤i

sj + 2

 .

Lemma 5.4.6 If α ∈ [1/2, 1) and β ≥ ζ/2, then the base curve does not enter any
of the buffer zones.

Proof : For the buffer zones centered at pi2 and pi3 for 1 ≤ i ≤ n the claim is implied
by construction. The same holds for the projection centers of the initialization gadget
and the terminal gadget. Thus, we only need to argue about the first and the last
projection center of the intermediate gadgets gi for 1 ≤ i ≤ n. Consider pi1, by
construction and since α ≥ 1/2, it holds that

di1 − pi1 = pi1 − φi ≥ φi − ai−1
∗ = β + λi > β ≥ ζ/2,

where λi and φi are defined as in the construction of the gadgets. Since di1 is the
closest x-coordinate of the base curve to pi1, the claim follows for the first projection
center of a gadget.

For the last projection center, pi4, we use the fact that it lies to the right of the
point where the line through ai3 and ci3 passes through H0. Let the x-coordinate of
this point be denoted ci. Now, let ∆1 be the triangle defined by pi2, d

i
1 and ci1 and let

∆2 be the triangle defined by pi3, a
i
3 and bi3. By the symmetry of the construction,

the two triangles are the same up to reflection at the bisector between pi2 and pi3.
Therefore,

pi4 − ai3 ≥ ci − ai3 = di1 − pi1 > ζ/2,

and this implies the claim. �

Lemma 5.4.7 Any feasible shortcut curve is rightwards 4-monotone. That is, if
x1 and x2 are the x-coordinates of two points that appear on the shortcut curve in
that order, then x2 + 4 ≥ x1. Furthermore, it lies inside or on the boundary of the
hippodrome.

Proof : Any point on the feasible shortcut curve has to lie within distance 1 to some
point of the target curve, thus the curve cannot leave the hippodrome. As for the
montonicity, assume for the sake of contradiction, that there exist two points such that

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 105

x2+4 < x1. Let x̂1 be the x-coordinate of the point on target curve matched to x1 and
let x̂2 be the one for x2. By the Fréchet matching it follows that x̂2 − 1+ 4 < x̂1 +1.
This would imply that the target curve is not 2-monotone, which contradicts the way
we constructed it. �

Lemma 5.4.8 If α ∈ [1/2, 1), ζ > 4 and if β ≥ ζ/2, then a feasible shortcut curve
passes through every buffer zone of the target curve via its projection center and
furthermore it does so from left to right.

Proof : Any feasible shortcut curve has to start at Y (0) and end at Y (1), and all of
its vertices must lie in the hippodrome or on its boundary. By Lemma 5.4.6 the base
curve does not enter any of the buffer zones and therefore the feasible shortcut curve
has to pass through the buffer zone by using a shortcut. If we choose the width of a
buffer zone ζ > 4, then the only manner possible to do this while matching to the two
associated vertices of the target curve in their respective order, is to go through the
intersection of their unit disks that lies at the center of the buffer zone. This is the
projection center associated with the buffer zone. By the order in which the mirror
edges are connected to form the base curve, it must do so in positive x-direction and
it must do so exactly once. �

Lemma 5.4.9 For any 1 ≤ i ≤ n it holds that bi1 − ci1 ≥ β, di2 − ai2 ≥ β, and
bi3 − ci3 ≥ β.

Proof : Recall that we chose pi1 by constructing the point (φi,−α), where φi = ai−1
∗ +

λi + β and λi = ai−1
∗ − bi−1

∗ . The construction is such that (φi,−α), pi1 and ai−1
∗ lie

on the same line. Consider the point (ri,−α) that lies on the line through bi−1
∗ and

pi1. We have that the triangle ∆1 defined by (ri,−1), pi1 and ai−1
∗ is the same up to

rotation as the triangle ∆2 defined by (ci1, 1), p
i
1 and bi1. Refer to Figure 5.8 for an

illustration. By Observation 5.4.1,

bi1 − ci1 = ri − ai−1
∗ = β + λi − (φi − ri) ≥ β,

since (φi − ri) = αλi. This proves the first part of the claim. Now it readily follows
that also di2 − ai2 ≥ β. Indeed, it follows by Observation 5.4.1 that qi − ai2 = bi1 − ci1,
where qi is the x-coordinate of the projection of (ci1, 1) through pi2 onto H−1, and
this projection lies between di2 and ai2. Again, refer to Figure 5.8 and in particular to
triangles ∆′

1 and ∆′
2.

The claim bi3−ci3 ≥ β follows from the symmetry of the middle part of the gadget.
Consider the triangle ∆3 defined by (ci1, 1), p

i
2 and (bi1, 1) and the triangle ∆4 defined

by (ci3, 1), p
i
3 and (bi3, 1). By construction ∆3 is a reflected version of ∆4, where the

axis of reflection is the bisector of the two projection centers. Thus, by the above
argument we have that bi3 − ci3 = bi1 − ci1 ≥ β.

�

Lemma 5.4.10 If α ∈ [1/2, 1), ζ > 4 and if β > 4, then a feasible shortcut curve
that is one-touch visits either eij or eij for any 1 ≤ i ≤ n and 1 ≤ j ≤ 3. Furthermore,

it visits all edges ei∗ for 0 ≤ i ≤ n.

106 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

bi−1

∗
ai−1

∗

p1 p2

a2 d2

b1 a1

d1

c1

φiri
−1

−α

0

α

1

∆1

∆2
∆′

2

∆′

1

qi

c1

Figure 5.8: The geometry used in the proof of Lemma 5.4.9. We omitted the top
index i of the variables.

Proof : By Lemma 5.4.7, any feasible shortcut curve is 4-monotone. Furthermore, it
starts at Y (0) and ends at Y (1) and by Lemma 5.4.8, it goes through all projection
centers of the target curve from left to right. We first want to argue that it visits at
least one mirror edge between two projection centers, i.e., that it cannot “skip” such
a mirror edge by matching to two twists in one shortcut. Such a shortcut would have
to lie on H0, since it has to go through the two corresponding projection centers lying
on H0. By construction, the only possible endpoints of such a shortcut lie on the
connector edges that connect to mirror edges on Hα. Assume such a shortcut could
be taken by a shortcut curve starting from Y (0). Then, there must be a connector
edge which intersects a line from a point on a mirror edge through a projection center.
In particular, since the curve has to go through all projection centers, one or more
of the following must be true for some 1 ≤ i ≤ n: (i) there exists a line through pi1
intersecting a mirror edge ei−1

∗ and a connector edge of ei1, or (ii) there exists a line
through pi3 intersecting a mirror edge ei2 or ei2 and a connector edge of ei3. However,
this was prevented by the careful placement of these connector edges.

It remains to prove that the shortcut curve cannot visit both eij and eij for any i
and j, and therefore visits at most one mirror edge between two projection centers.
First of all, the shortcut curve has to lie inside or on the boundary of the hippodrome
and is 4-monotone (Lemma 5.4.7). At the same time, we constructed the gadget such
that the mirror edges between two consecutive projection centers have distance at
least β by Lemma 5.4.9 and that the left mirror edge comes after the right mirror
edge along their order of Y . Since we chose β > 4, the shortcut curve cannot visit
both mirror edges. �

Putting the above lemmas together implies the correctness of the reduction for
shortcut curves that are one-touch, i.e., which visit every edge in at most one point.

Lemma 5.4.11 If α ∈ [1/2, 1), ζ > 4 and if β > 4, then for any feasible one-touch
shortcut curve Y♦, it holds that the subset encoded by Y♦ sums to σ. Furthermore, for
any subset of s that sums to σ, there exists a feasible one-touch shortcut curve that
encodes it.

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 107

Proof : Lemma 5.4.10 and Lemma 5.4.8 imply that Y♦ must be a one-touch encoding
as defined in Definition 5.4.2 if it is feasible. By Lemma 5.4.4, the second last vertex
of Y♦ is the point on the edge en∗ , which is in distance δ(σ♦ + 1) to bn∗ , where σ♦ is
the sum encoded by the subset selected by Y♦. The last vertex of Y♦ is equal to Y (1),
which we placed in distance δ(σ + 1) to the projection of bn∗ through pn+1

1 . Thus, if
and ony if σ♦ = σ, then the last shortcut of Y♦ passes through the last projection
center of the target curve. It follows that if σ♦ 6= σ, then Y♦ cannot be feasible.
For the second part of the claim, we construct a one-touch encoding as defined in
Definition 5.4.2. By the above analysis, it will be feasible if the subset sums to σ,
since the curve visits every edge of Y in at most one point and in between uses
shortcuts which pass through every buffer zone from left to right and via the buffer
zone’s projection center. �

5.4.2.2 Correctness for general shortcut curves

Next, we generalize Lemma 5.4.4 to bound the incremental approximation error of
the visiting positions on the last edge of each gadget for general shortcut curves, that
is, assuming shortcut curves are not necessarily one-touch.

Lemma 5.4.12 Choose α ∈ [1/2, 1), ζ > 4 and β > 4. Given a feasible shortcut
curve Y♦, let v

i
∗ be any point of Y♦ on ei∗ and let vi∗ denote its x-coordinate. For any

0 ≤ i ≤ n let σi denote the ith partial sum of the subset encoded by Y♦. If we choose
δ > εi, then it holds that

bi∗ + δi − εi ≤ vi∗ ≤ bi∗ + δi + εi

where δi = δ(σi + 1) and εi =
8i+4
α .

Proof : We prove the claim by induction on i. For i = 0 the claim follows by the
construction of the initialization gadget. Indeed, the curve Y♦ has to start at Y (0) =
a00 and by Lemma 5.4.8 it has to pass through both p01 and p11. Since the three points
a00, p

0
1, and p11 do not lie on a common line, there must be an edge of the base curve in

between the two projection centers visited by Y♦. By Lemma 5.4.7, the shortcut curve
cannot leave the hippodrome. However, the only edge available in the hippodrome is
e0∗. By construction, the only possible shortcut to this edge ends at the center of the
edge in distance δ to b0∗. Since the mirror edge runs leftwards, the only other points
that can be visited by Y♦ lie therefore in this direction. However, by Lemma 5.4.7,
Y♦ is rightwards 4-monotone. It follows that

b0∗ + δ − 4 ≤ v0∗ ≤ bi∗ + δ.

Since ε0 = 4/α > 4 and σ0 = 0, this implies the claim for i = 0.
For i > 0, the curve Y♦ entering gadget gi from the edge ei−1

∗ has to pass through
the first buffer zone via the projection center pi1. By induction,

bi−1
∗ + δmin ≤ vi−1

∗ ≤ bi−1
∗ + δmax,

where δmin = δi−1 − εi−1 and δmax = δi−1 + εi−1 denote the minimal and maximal
distances of the visiting position to the left endpoint on the edge ei−1

∗ . Since δ > εi =
εi−1 + 8/α, and σi−1 ≥ 0, it follows that

δmin = δ(σi−1 + 1)− εi−1 ≥ δ − εi−1 > 8/α. (5.4)

108 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Furthermore, by Corollary 5.4.5,

δmax ≤ δ

 ∑

1≤j≤i−1

sj + 1

+ εi−1 ≤(λi − δ) + εi−1 ≤ λi − 8/α, (5.5)

where λi = ai−1
∗ − bi−1

∗ is the length of edge ei−1
∗ . Thus, vi−1

∗ lies at distance at least
8/α from each endpoint of ei−1

∗ . Therefore, the only two edges of the base curve which

intersect the line vi−1
∗ pi1 within the hippodrome are ei1 and ei1. Note that also the

vertical connector edges at ei1 do not intersect any such line within the hippodrome.
Now, there are two cases, either the shortcut ends on ei1 or on ei1. Assume the

latter case. By Observation 5.4.1 the x-coordinate of the endpoint of the shortcut lies
in the interval [

ci1 − αδmax , c
i
1 − αδmin

]
.

By the same observation, the length of the edge ei1 is equal to αλi. Thus, the endpoint
of the shortcut lies inside the edge.

We now argue that the shortcut curve has to leave the edge by using a shortcut,
i.e., the shortcut curve cannot “walk” out of the edge by using a subcurve of Y . The
mirror edges are oriented leftwards. Since the shortcut curve has to be rightwards
4-monotone (Lemma 5.4.7), it can only walk by a distance 4 on each such edge. Let
Iij denote the range of x-coordinates of Y♦ on eij . By the above,

Ii1 ⊆
[
ci1 − αδmax − 4 , ci1 − αδmin

]

Thus, by Eq. (5.5) and Eq. (5.4) and since ci1 − di1 = αλi, it holds that Ii1 ⊆ [di1, c
i
1],

i.e., the shortcut curve must leave the edge ei1 by using a shortcut. A shortcut to ei1
would violate the order along the base curve Y . Since the shortcut curve is rightwards
4-monotone (Lemma 5.4.7) and must pass a through a buffer zone via its projection
center (Lemma 5.4.8), the only way to leave the edge is to take a shortcut through
pi2. The only edge intersecting a line through pi2 and a point on ei1 is ei2. Thus, ei2
must be the next edge visited. Now we can again use Observation 5.4.1 to project
the set of visiting points onto the next edge and use the fact that the shortcut curve
can only walk rightwards and only by a distance at most 4 on a mirror edge to derive
that

Ii2 ⊆
[
di2 + δmin − 4 , di2 + (δmax + 4/α)

]
⊆ [di2, c

i
2].

By repeated application of the above arguments, we obtain that ei3 is visited within

Ii3 ⊆
[
ci3 − (δmax + 4/α)− 4 , ci3 − (δmin − 4)

]
⊆ [di3, c

i
3],

and that ei∗ is visited within

Ii∗ ⊆
[
di4 + (δmin − 4)− 4 , di4 + (δmax + 4/α+ 4)

]
⊆ [di4, c

i
4] ⊆ [bi∗, a

i
∗]

For each visited edge, it follows by Eq. (5.5) and Eq. (5.4) that the shortcut curve
visits the edge in the interior.

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 109

Now, since the shortcut curve did not visit ei1, the input value si is not included
in the selected subset, therefore δi = δi−1. Using the interval Ii∗ derived above, and
the fact that di4 = bi∗ (Lemma 5.4.3) it follows that

vi∗ ≥ di4 + δmin − 8 ≥ di4 + (δi−1 − εi−1)− 8 ≥ bi∗ + δi − εi,

and similarly,

vi∗ ≤ di4 + δmax + 8/α ≤ di4 + (δi−1 + εi−1) + 8/α ≤ bi∗ + δi + εi

Thus, the claim follows in the case that Y♦ visits ei1.

The case that Y♦ visits ei1 can be proven along the same lines. However, now si is
included in the selected subset, and therefore δi = δi−1 + δsi. Using the arguments
above we can derive

Ii∗ ⊆
[
bi4 + δmin − 8/α , bi4 + δmax + 8/α

]

By Lemma 5.4.3, bi4 = bi∗+δsi. (Note that the same argument was used in Lemma 5.4.4).
Thus, analogous to the above

vi∗ ≥ bi4 + δi−1 − εi ≥ bi∗ + δsi + δi−1 − εi ≥ bi∗ + δi − εi

and similarly,

vi∗ ≤ bi4 + δi−1 + εi ≤ bi∗ + δsi + δi−1 + εi ≤ bi∗ + δi + εi

Therefore the claim is implied also in this case. �

Lemma 5.4.13 If we choose α ∈ [1/2, 1), β > 4, ζ > 4, and δ ≥ 25, then any feasible
shortcut curve Y♦ encodes a subset S′ ⊆ S that sums to σ.

Proof : Since Y♦ is feasible, it must be that it visits en∗ at distance δ(σ+1) to bn∗ , since
this is the only point to connect via a shortcut through the last projection center to
the endpoint of Y and by Lemma 5.4.8 all projection centers have to be visited. So
let vn∗ = bn∗ + δ(σ + 1) be the x-coordinate of this visiting point (the starting point
of the last shortcut), and let σn be the sum of the subset encoded by Y♦. Since we
chose δ > εn, Lemma 5.4.12 implies that

bn∗ + δ(σn + 1)− εn ≤ bn∗ + δ(σ + 1) ≤ bn∗ + δ(σn + 1) + εn.

Therefore,

σn − εn/δ ≤ σ ≤ σn + εn/δ

For our choice of parameters εn/δ < 1. Therefore, it must be that σ = σn, since both
values are integers.

�

110 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

5.4.2.3 The result

Given a shortcut curve and target curve, one can compute their Fréchet distance in
polynomial time using the algorithm by Alt and Godau (see Section 2.4). Thus, the
problem of deciding if the shortcut Fréchet distance between two given polygonal
curves is smaller or equal a given value is in NP. Each of the constructed gadgets
has constant size and the sizes of coordinates are polynomial, and thus the overall
construction is of polynomial size. Now, together with Lemma 5.4.11 and the fact
that the reduction is polynomial, Lemma 5.4.13 implies the NP-completeness of the
problem.

Theorem 5.4.14 The problem of deciding whether the shortcut Fréchet distance be-
tween two given curves is less or equal a given distance is NP-complete.

5.4.3 Algorithmic results

We describe an approximate decision algorithm for the directed continuous shortcut
Fréchet distance. Given a value of δ and two polygonal curves X and Y in IR2 of
total complexity n = n1 + n2, the algorithm outputs either (i) ”dS(X,Y) ≤ 3δ“,
or (ii) ”dS(X,Y) > δ“. The algorithm runs in O(n3 log n) time and O(n) space
regardless if the curves are c-packed. We first describe the main idea of the algorithm
in Section 5.4.3.1. The algorithmic layout is based on the algorithms described in
Section 5.3.2.2 and Section 5.3.5.2. As the decision algorithms in the previous sections,
the algorithm invokes a subroutine to test for the reachability via tunnels. Here,
we split the subroutine into two procedures verticalTunnel and diagonalTunnel,
which we describe in Section 5.4.3.2 and Section 5.4.3.3. Furthermore, the range
queries from Section 5.3.5.2 are handled by storing the extremal points within the
columns in an array, instead of a range tree. The resulting decision algorithm is
described in Section 5.4.3.4 and analyzed in Section 5.4.3.5.

5.4.3.1 Challenge and ideas

The standard way to solve the decision problem for the Fréchet distance and its
variants is to search for monotone paths in the free space diagram, see Section 2.1. In
the case of the shortcut Fréchet distance, this path can now use shortcuts on Y , if the
matched subcurve of X is within Fréchet distance. To formalize this, we introduced
the concept of tunnels in Section 5.2.2. In the general version of the shortcut Fréchet
distance, the tunnels can now start and end anywhere inside the free space cells, while
in the vertex-restricted case they are constrained to the grid of the parametric space.
In order to extend the algorithms from the previous sections to this case, we need a
new method to compute the space which is reachable within a free space cell. For
this we use the known concept of line-stabbing. Guibas et al. [84] study the problem
of stabbing an ordered set of unit radius disks with a line. In particular, one of the
problems studied is the following. Given a series of disks D1, . . . , Dn, of the same
radius does there exist a directed line ℓ, with n points pi that lie along ℓ in the order
of i, such that pi ∈ Di? It is known that this relates to the Fréchet distance as
follows: an ordered line stabbing of disks of radius δ is equivalent to a line segment
with Fréchet distance δ to the polygonal curves through the centers of the disks. The

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 111

D1

D2

D3

D4

Y (yp)
Y (yq)

X(xp) X(xq)

(a) (b)

xq

qyq

Figure 5.9: (a) Example of a tunnel τ(p, q) computed by the diagonalTunnel proce-
dure. The shaded area shows the line-stabbing wedge. (b) The free space cell which
contains the endpoint of the tunnel.

algorithm described by Guibas et al. maintains a so called line-stabbing wedge that
contains all points b, such that there is a line through b that visits the first i disks
before visiting b. We will use this algorithm to compute all tunnels τ(p, q) of price
at most δ starting from a particular point p in the parametric space and ending in
a particular cell. By intersecting the line-stabbing wedge with the edge of Y that
corresponds to the cell, we obtain a horizontal strip which represents the set of such
tunnel endpoints q. See Figure 5.9 for an illustration.

The second challenge is that the reachable free space can fragment into exponen-
tially many of such horizontal strips. However, we can exploit the monotonicity of the
tunnel prices to approximate the reachable free space as done in the previous algo-
rithms. In this approximation scheme, the combinatorial complexity of the reachable
space is constant per cell.

5.4.3.2 The diagonalTunnel procedure

This procedure receives as input a cell Ci,i and a point p ∈ D≤δ, such that p lies
in the lower left quadrant of the lower left corner of the cell Ci,i and a parameter
δ > 0. The output will be a set of points P ⊆ Ci,i, such that prc(τ(p, q)) ≤ δ if
and only if q ∈ P. We use the line-stabbing algorithm mentioned above with minor
modifications. Let xp = x− be the x-coordinate of p and let x+ be the x-coordinate of
some point in the interior of Ci,i. Let D1, . . . , Dk be the disks of radius δ centered at
the vertices of X that are spanned by the subcurve X[x−, x+]. There are two cases,
either Y (yp) is contained in Di for all 1 ≤ i ≤ k, or there exists some i, such that
Y (yp) lies outside of Di. In the first case, we return P = Ci,i ∩D≤δ. In the second
case we initialize the line-stabbing wedge of [84] with the tangents of Y (yp) to the
disk Di, where i is the smallest index such that Y (yp) /∈ Di. We then proceed with
the algorithm as written by handling the disks Di+1, . . . , Dk. Finally, we intersect the
line-stabbing wedge with the edge of Y that corresponds to Ci,i. Refer to Figure 5.9
for an illustration. This yields a horizontal slab of points that lie in Ci,i which we
then intersect with the δ-free space and return as our set P.

112 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Algorithm 5.4.15 Decider(X,Y, δ)

Input: polygonal curves X and Y ; distance δ ∈ R

1: Assert that dist(0, 0) = ‖X(0)− Y (0)‖ ≤ δ and dist(1, 1) ≤ δ
2: Let A, A, gℓ, gℓ, gr, and gr be arrays of size n1
3: for j = 1, . . . , n2 do
4: Update A← A, gℓ ← gℓ, and gr ← gr

5: for i = 1, . . . , n1 do
6: if i = 1 and j = 1 then

7: Let Pi,j = D
(i,j)
≤δ

8: else
9: Retrieve Rv

i−1,j and Rh
i,j−1 from A[i− 1] and A[i]

10: Step 1: Compute P1
i,j from Rv

i−1,j and Rh
i,j−1

11: Step 2: Let P2
i,j = verticalTunnel

(
gℓ[i], Ci,j , δ

)
.

12: Step 3: Let P3
i,j = diagonalTunnel(gr[i− 1], Ci,j , 3δ).

13: Let Pi,j = Q
(
P1
i,j ∪ P2

i,j ∪ P3
i,j

)
∩D

(i,j)
≤δ

14: if Pi,j 6= ∅ then
15: Update gℓ[i] and gr[i] using the gates of Pi,j

16: Compute Rv
i,j and Rh

i,j from Pi,j and store them in A[i]
17: else
18: Update gr[i] using gr[i− 1]
19: if (1, 1) ∈ A[n1] then
20: Return “dS(X,Y) ≤ 3δ”
21: else
22: Return “dS(X,Y) > δ”

5.4.3.3 The verticalTunnel procedure

This procedure receives as input a cell Ci,i and a point p which lies below this cell in
the same column and a parameter δ ≥ 0. Let Hp be the closed halfplane which lies
to the right of the vertical line through p. The procedure returns the intersection of
Hp with the δ-free space in Ci,i.

5.4.3.4 The decision algorithm

The algorithm is layed out in Algorithm 5.4.15. We traverse the free space diagram
as done in Section 5.3.2.2 and approximate the reachable free space as done in Sec-
tion 5.3.5.2. That is, we traverse the free space diagram in a row-by-row order from
bottom to top and from left to right. For every cell, we compute a set of reachable
points Pi,j ⊆ Ci,j , such that

R
(i,j)
≤δ (X,Y) ⊆ Pi,j ⊆ R

(i,j)
≤3δ (X,Y) .

Thus, the set of computed points approximates the reachable free space. From Pi,j

we compute reachability intervals Rv
i,j and Rh

i,j , which we define as the intersections
of Pi,j with the top and right cell boundary. Furthermore we compute the gates of
Pi,j , which we now define as the two points of the set with minimum and maximum

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 113

x-coordinates. (Recall that in Section 5.3, where tunnels were confined to the hori-
zontal edges of the grid, gates were defined as the extremal points of the reachability
intervals.) We keep this information for the cells in the current and previous row in
one-dimensional arrays by the index i. We use three arrays A, gℓ and gr to write the
information of the current row and three arrays A, gℓ and gr to store the information
from the previous row. Here, A and A are used to store the reachability intervals,
and gℓ, gℓ, gr gr are used to store extremal points (i.e., gates) of the computed
reachable space. In particular, gℓ[i] and gℓ[i] store the leftmost reachable point (i.e.,
gate) discovered so far that lies inside column i and in gr[i] and gr[i] we maintain the
rightmost reachable point (i.e., gate) discovered so far that lies to the left of column
i+ 1. During the traversal, we can update this information in constant time per cell
using the gates of Pi,j , and the gates stored in gr[i− 1], gr[i] and gℓ[i]. (Recall that
in Section 5.3.5.2 the gates were maintained in a search tree to enable queries for the
leftmost and rightmost gates. The same approach would work here, however it would
require superlinear space since the number of gates might be quadratic in the worst
case.)

P
1

i,j

We handle a cell Ci,j in three steps. We first compute the set
of points P1

i,j in this cell that are reachable by a monotone path via

Rv
i,j−1 or R

h
i−1,j . Since these reachability intervals have been computed

in previous steps, they can be retrieved from A[i − 1] and A[i]. More
specifically, to compute P1

i,j , we take the closed halfplane above the
horizontal line at the lower endpoint of Rv

i,j−1 and intersect it with the δ-free space
inside the cell, which we can compute ad-hoc from the two corresponding edges.
Similarly, we take the closed halfplane to the right of the left endpoint of Rh

i−1,j and

intersect it with the δ-free space. The union of those two sets is P1
i,j . See the figure to

the right for an example. In a second step, we compute the set of points P2
i,j in Ci,j

that are reachable by a vertical tunnel from below. For this, we retrieve the leftmost
reachable point in the current column by probing gℓ[i]. Assume there exists such a
point and denote it by p2. We invoke verticalTunnel (p2, Ci,j , δ) and let P2

i,j be the

output of this procedure. In the third step, we compute the set of points P3
i,j in Ci,j

that are reachable by a diagonal tunnel. For this, we retrieve the rightmost reachable
point in the cells that are spanned by the lower left quadrant of the lower left corner
of Ci,j . This point is stored in gr[i− 1]. Let this point be p3, if it exists. We invoke
diagonalTunnel (p3, Ci,j , 3δ) and let P3

i,j be the output of this procedure. Now, we
compute

Pi,j = Q
(
P1
i,j ∪ P2

i,j ∪ P3
i,j

)
∩D

(i,j)
≤δ ,

where Q(P) is defined as the union of the upper right quadrants of the points of P.
We store the intersection of Pi,j with the top and right side of the cell in A[i] and
update the gates stored in gr[i] and gℓ[i]. After handling the last cell, we can check
if the upper right corner of the parametric space is reachable by probing A[n1] and
output the corresponding answer.

Computation of the gates. The gates of Pi,j can be computed in constant time. A
gate of this set either lies on the grid of the parametric space, or it may be internal
to the free space cell. The endpoints of a free space interval can be computed using
the intersection of the corresponding edge and a disk of radius δ centered at the

114 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Y (yp)

X(xp)

Y (ys)

X(xs)

X(xr)

Y (yr)
(a) (b)

δ

s
r

xsxr

yr
ysu

Figure 5.10: Computation of the gates r = (xr, yr) and s = (xs, ys) of P
3
i,j .

corresponding vertex. Internal gates of the free space can be computed in a similar
way. One can use the Minkowski sum of the edge of Y with a disk of radius δ. The
intersection points of the resulting hippodrome with the edge of X correspond to the
x-coordinates of the gates, while we can obtain the y-coordinates by projecting the
intersection point back onto the edge of Y . A gate might also be the intersection
point of a horizontal line with the free space as computed in Step 1 and Step 3 of
the decision algorithm. Consider the diagonalTunnel procedure which we use to
compute P3

i,j . The procedure computes a portion u of the edge ej of Y by intersection
with the line-stabbing wedge. In order to obtain the extremal points of the returned
set in parametric space, we can take the Minkowski sum of u with a disk of radius δ
and intersect the resulting hippodrome with the edge ei of X. See Figure 5.10 for an
illustration. We can a similar method for P1

i,j . The actual gates of Pi,j can then be
computed using a simple case distinction.

5.4.3.5 Analysis

We now analyze the correctness and running time of the algorithm described above.

Lemma 5.4.16 Given a cell Ci,i, a point p ∈ D≤δ and a parameter δ ≥ 0, the
diagonalTunnel procedure described in Section 5.4.3.2 returns a set of points P ⊆
Ci,i, such that for any q ∈ Ci,i, it holds that prc(τ(p, q)) ≤ δ if and only if q ∈ P.

Proof : The correctness of the procedure follows from the correctness of the line-
stabbing algorithm as analyzed in [84]. Recall that we intersect the line-stabbing
wedge of Y (yp) and the disks D1, . . . , Dk with the edge of Y that corresponds to
Ci,i to retrieve the horizontal slab in Ci,i that defines P. Refer to Figure 5.9 for an

illustration. It follows that any directed line segment Y (yp)Y (yq), where yq is the
y-coordinate of a point q ∈ P, contains points pi for 1 ≤ i ≤ k in the order of i along
the segment, such that pi ∈ Di. (For the case that Y (yp) is contained in each of the
disks D1, . . . , Dk, any line through Y (yp) stabs the disks in any order, by choosing
pi = Y (yp) for all 1 ≤ i ≤ k.) Thus, we can match the shortcut Y [yp, yq] to the
subcurve X[xp, xq] within Fréchet distance δ as follows. For any two inner vertices

5.4. THE CONTINUOUS SHORTCUT FRÉCHET DISTANCE 115

vi, vi+1 of X[xp, xq], we can match the edge connecting them to the line segment
pipi+1 by Observation 2.3.1. For the first segment, note that we required p ∈ D≤δ.
For the last segment, we ensured that P ⊆ D≤δ by construction. Thus, also here
we can apply Observation 2.3.1. As for the other direction, let q ∈ Ci,i, such that
prc(τ(p, q)) ≤ δ. It must be, that the line segment from Y (yp) to Y (yq) stabs the
disks D1, . . . , Dk in the correct order. Thus, Y (yq) would be included in the computed
line-stabbing wedge and subsequently, q would be included in P. �

Lemma 5.4.17 For two polygonal curves X and Y in IR2 of total complexity n, the
diagonalTunnel procedure described in Section 5.4.3.2 takes O(n log n) time and
O(n) space.

Proof : Our modification of the line-stabbing algorithm does not increase the running
time and space requirements of the algorithm, which is O(k log k) with k being the
number of disks handled. Intersecting the line-stabbing wedge with a line segment
can be done in time O(log k), since the complexity of the wedge is O(k). Thus, the
claim follows directly from the analysis of the line-stabbing algorithm in [84] and by
the fact that the algorithm handles at most n disks. �

Lemma 5.4.18 For any 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, let P3
i,j be the set com-

puted in Step 3 of the decision algorithm layed out in Algorithm 5.4.15 and let
R =

⋃i−1
k=1

⋃i−1
ℓ=1 Pk,ℓ, i.e., the reachable points computed in the lower left quadrant

of the cell. It holds that:
(i) There exists a point p ∈ R, such that for any q ∈ Ci,j, the diagonal tunnel

τ(p, q) has price prc(τ(p, q)) ≤ 3δ if and only if q ∈ P3
i,j.

(ii) There exists no other point b ∈ Ci,j \ P3
i,j that is the endpoint of a diagonal

tunnel from R with price at most δ.

Proof : The lemma follows from the monotonicity of the tunnel prices, which is tes-
tified by Lemma 5.2.1 and from the correctness of the diagonalTunnel procedure
(Lemma 5.4.16). Note that the algorithm computes the gates of R within every cell.
Furthermore, the gates are maintained in the arrays gr and gr, such that, when han-
dling the cell Ci,j , we can retrieve the rightmost gate in the lower left quadrant of the
lower left corner of Ci,j from gr[i− 1]. (This can be easily shown by induction on the
cells in the order in which they are handled.) Let p be the point stored in gr[i − 1].
Part (i) of the claim follows from Lemma 5.4.16, since diagonalTunnel is called with
the parameter p to obtain P3

i,j . Part (ii) of the claim follows from Lemma 5.2.1, since
p is the rightmost point in R that could serve as a starting point for a diagonal tunnel
ending in Ci,j . Indeed, assume that there would exist such points b ∈ Ci,j \ P3

i,j and
c ∈ R with tunnel price prc(τ(c, b)) ≤ δ. It must be that b lies to the left of p, since p
was the rightmost possible gate. By (i), prc(τ(p, b)) > 3δ and therefore Lemma 5.2.1
implies that prc(τ(c, b)) > δ, a contradiction. �

Lemma 5.4.19 For any 1 ≤ i ≤ n1 and 1 ≤ j ≤ n2, let P
2
i,j be the set computed in

Step 2 of the decision algorithm layed out in Algorithm 5.4.15. and let R =
⋃j−1

ℓ=1 Pi,ℓ,
i.e., the reachable points computed in column i below the cell. For any q ∈ Ci,j, the
vertical tunnel τ(p, q) has price prc(τ(p, q)) ≤ δ for some p ∈ R if and only if q ∈ P2

i,j.

116 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Proof : Note that vertical tunnels are always affordable if they are feasible by Obser-
vation 2.3.1. As in the proof of Lemma 5.4.18, we note that the algorithm computes
the gates of R within every cell. Furthermore, gates are maintained in the arrays gℓ

and gℓ, such that, when handling the cell Ci,j , we can retrieve the leftmost gate below
Ci,j in the same column from gℓ[i]. (Again, this can be easily shown by induction on
the cells in the order in which they are handled.) Let p be the point stored in gℓ[i]
when handling the cell Ci,j . Since P2

i,j is computed by calling verticalTunnel on p,
the claim follows. �

Lemma 5.4.20 The output of Decider (Algorithm 5.4.15) is correct.

Proof : The proof goes by induction on the order of the handled cells. We claim that
for any point q ∈ Ci,j it holds that (a) if q ∈ Pi,j , then q ∈ R≤3δ, and (b) if q ∈ R≤δ

then q ∈ Pi,j . For the first cell C1,1, this is clearly true. Indeed, a shortcut from
Y (0) to any point on the first edge of Y , results in a shortcut curve that has Fréchet
distance zero to Y . By the convexity of the free space in a single cell, it follows that

R
(1,1)
≤δ = D

(1,1)
≤δ = P1,1 ⊆ R

(1,1)
≤3δ given that (0, 0) ∈ D≤δ.

Now, consider a cell Ci,j that is handled by the algorithm. We argue that part (a)
of the induction hypothesis holds. It must be that either (i) q ∈ P1

i,j , (ii) q ∈ P2
i,j , (iii)

q ∈ P3
i,j , or (iv) q is in the upper right quadrant of some point q′ in one of P1

i,j ,P
2
i,j or

P3
i,j . In cases (i), the claim follows by induction since Pi−1,j and Pi,j−1 are computed

before Pi,j . In case (ii) the claim follows by induction, since the rows are handled from
bottom to top and by Lemma 5.4.19. In case (iii) the claim follows by Lemma 5.4.18
and by induction, since the algorithm traverses the free space diagram in a row-by-
row manner from bottom to top and in every row from left to right. Now, in case
(iv), the claim follows from (i),(ii), or (iii). Indeed, we can always connect q′ with
q by a straight line segment, and since D≤δ is convex inside any cell, these straight
monotone paths are preserved in the intersection with the free space.

It remains to prove part (b). Let q ∈ Ci,j be the endpoint of a monotone path
from (0, 0) that stays inside the δ-free space and otherwise uses tunnels of price
at most δ. There are three possibilities for π to enter Ci,j : (i) via the boundary
with its direct neighbors, (ii) via a vertical tunnel, or (iii) via a diagonal tunnel.
(As for horizontal tunnels, we can always replace such a horizontal tunnel by the
corresponding monotone path through the free space.) We can show in each of these
cases that q should be included Pi,j . In case (i) we can apply the induction hypothesis
for Pi−1,j and Pi,j−1, in case (ii) we can apply Lemma 5.4.19 and the induction
hypothesis for cells below Pi,j in the same column and in case (iii) we can apply
Lemma 5.4.18 and the induction hypothesis for cells in the lower left quadrant of the
cell. �

Lemma 5.4.21 Given two polygonal curves X and Y in IR2 of complexity n = n1 +
n2, the algorithm Decider (Algorithm 5.4.15) takes time in O(n3 log n) and space in
O(n).

Proof : The algorithm keeps six arrays of length n1, which store objects of constant
complexity. The tunnel procedure takes space in O(n), by Lemma 5.4.17. Thus, over-
all, the algorithm requires O(n) space. As for the running time, the algorithm handles
O(n2) cells. Each cell is handled in three steps of which the first and second step take

5.5. CONCLUDING REMARKS 117

constant time each and the third step takes time in O(n log n) by Lemma 5.4.17. The
computation of the gates can be done in constant time per cell. Furthermore, the
algorithm takes O(n) time per row to update the arrays. Overall, the running time
can be bounded by O(n3 log n) time. �

5.4.3.6 The result

Theorem 5.4.22 Given two curves X and Y of complexity n = n1 +n2 and a value
of δ, the decision algorithm outputs one of the following, either
(i) dS(X,Y) ≤ 3δ, or
(ii) dS(X,Y) > δ.
In any case, the output is correct. The algorithm runs in O(n3 log n) time and O(n)
space.

5.5 Concluding remarks

In this chapter, we studied the problem of how to introduce shortcuts on one of two
given polygonal curves in order to minimize the Fréchet distance between the two
curves. There are many different variants of this problem. We showed that it is
possible to compute a (3+ ε)-approximation in a running time which is near-linear in
the complexity of the input curves if
(i) the number of shortcuts is unbounded (or small),
(ii) shortcuts have to start and end at input vertices, and
(iii) the input curves are c-packed.
More specifically, the algorithm runs in O(c2n log3 n) time, where n is the total num-
ber of vertices of the two input curves. The exact version of the algorithm runs in
O(n5 log n) time. We extended the approximate decision procedure used by this al-
gorithm to the more general case where shortcuts can start and end anywhere along
one of the input curves by combining it with a line-stabbing algorithm. The result-
ing algorithm runs in O(n3 log n) time also for non-packed curves.4 Extending the
decision procedure to the computation problem in the general case is still open (see
Problem 5.2 below). For exact computations we showed NP-hardness in this case.

In light of the algorithmic results, the NP-hardness comes
as a surprise. Note that the vertex-restricted and the con-
tinuous variant of the problem are closely related. One
way to compute an approximation to the continuous vari-
ant (with additive error) is to sample the input curve along
the edges and to use the vertex-restricted exact algorithm
on the resulting curves. Thus, we can get arbitrarily close
to the correct distance value by using a pseudo-polynomial algorithm. However, it
is unclear if this helps in finding an exact solution. Note that there may be many
combinatorially different shortcut curves which are close to the target curve under
the Fréchet distance, as demonstrated by the example depicted to the right.

4For a comparison of the bounds, observe that any polygonal curve is c-packed for c ∈ O(n). For
the exact algorithm we also did not use the c-packedness assumption in the analysis.

118 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

δ

Y

X

Figure 5.11: Example of a geometric configuration of the curves X and Y that de-
termines their directed continuous shortcut Fréchet distance. The realizing shortcut
curve of Y is shown in red.

There are many open questions for further research. The most immediate ques-
tions are how to extend our results to other definitions of a shortcut Fréchet distance
as mentioned in the introduction, and how to improve the approximation factor. We
conclude by discussing a few of these problems in more detail.

Open Problem 5.1 In Section 5.4 we studied the problem of computing the di-
rected continuous shortcut Fréchet distance. We described an approximate decision
algorithm which is based on the near-linear-time decision algorithm described in Sec-
tion 5.3.5 and which runs in O(n3 log n) time (see Theorem 5.4.22). The increase in
running time stems from the fact that the algorithm computes the line-stabbing wedge
for every free space cell. Assuming the input curves are c-packed, and deploying the
simplification technique from Chapter 3, one can achieve a better running time. For
this, the algorithm first needs to compute all edge-edge pairs that are in distance at
most δ from each other. These correspond to the relevant free space cells. If the
input curves lie in the plane, then the distance between two edge is either attained
at a vertex, or the two edges intersect each other. Since the curves are c-packed,
there can be at most O(c) intersections. Thus, one would use Data Structure 5.3.12
to compute all vertex-edge pairs and in addition compute the intersecting edge pairs.
In this way, the whole framework of the algorithm described in Section 5.3.5 could be
used and lead to a much faster algorithm. At the expense of a higher approximation
factor, one might also be able to design a near-linear-time decision algorithm.

Open Problem 5.2 An important open question is how to compute (or even ap-
proximate) the directed continuous shortcut Fréchet distance. The standard way to
compute the Fréchet distance is to use a decision procedure in a binary search over
critical values. As described in Chapter 2, these are determined by local geomet-
ric configurations such as the distance between a vertex and an edge. Also for the
vertex-restricted shortcut Fréchet distance, there are at most a polynomial number of
critical values that need to be considered in the search. The situation becomes more
intricate in the general case where shortcuts are not confined to input vertices. In
the example depicted in Figure 5.11, the shortcut Fréchet distance coincides with the
minimum value of δ such that three tunnels can be connected monotonically along

5.5. CONCLUDING REMARKS 119

the base curve. The realizing shortcut curve is also shown. For any input size one can
construct an example of this type where the critical value depends on the geometric
configuration of a linear-size subset of edges. Thus, in order to compute all critical
values of this type one would have to consider an exponential number of geometric
configurations. A full characterization of the events and algorithms to compute or
approximate the critical values is subject for further research. Figure 5.12 shows
other relevant examples of events that can determine the continuous shortcut Fréchet
distance and which cannot happen in the vertex-restricted case.

Open Problem 5.3 Another open problem is to determine whether the shortcut
Fréchet distance is fixed-parameter tractable in the number of shortcuts k. Our
reduction does not readily translate to a reduction from k-SUM: In our construction,
shortcuts are taken in each gadget, regardless of whether a value of the SUBSET
instance is chosen or not. In a reduction from k-SUM, a shortcut curve encoding a
valid solution must use at most k shortcuts. It seems more likely, that the problem
is fixed-parameter tractable in k, since there are at most nk combinatorially different
shortcut curves in this case.

Open Problem 5.4 The base curve in our NP-hardness reduction self-intersects and
is not c-packed. In fact, it cannot be c-packed for any placement of the connector edges
for any constant c. Whether the problem is NP-hard or polynomial time computable
for c-packed, non-intersecting, or even monotone curves is currently unclear.

Open Problem 5.5 It seems natural to allow shortcuts on both curves and hence to
define an undirected version of the shortcut Fréchet distance. It is an open problem
how to define this in a reasonable way and how to compute it. One needs to restrict the
set of eligible shortcuts, otherwise the optimization algorithm would simply shortcut
both curves from start to end and this does not yield a meaningful distance measure.

A reasonable restriction could be to disallow shortcuts to be matched to each other
under the Fréchet distance. Note that for such a definition of the undirected shortcut
Fréchet distance the presented NP-hardness proof also applies. Intuitively, shortcuts
can only affect the target curve by either shortening or eliminating one or more twists.
However, any feasible shortcut curve of the base curve has to pass through the buffer
zones corresponding to these twists by using a shortcut. As a result, any shortcut on
the target curve has to be matched at least partially to a shortcut of the base curve
in order to affect the feasible solutions and this is prevented by definition. Thus, we
believe that the problem of computing an undirected shortcut Fréchet distance is also
NP-hard for this definition.

Open Problem 5.6 Another direction of research would be to study the computa-
tional complexity of a discrete variant of the shortcut Fréchet distance. The discrete
Fréchet distance only considers matchings between the vertices of the curves and
can be computed using dynamic programming. In practice, such a discrete shortcut
Fréchet distance might approximate the continuous version and it might be easier to
compute. Thus it deserves further attention.

120 CHAPTER 5. THE FRÉCHET DISTANCE WITH SHORTCUTS

Y (yp)

X(xp)
Y (yq)

X(xq)

(b)

Y (yp)

X(xp)X(xs)

Y (ys)

Y (yr)Y (yq)

X(xq)

yq

yr

xq = xr

q

r

(0, 0) = p

s = (1, 1)

(c)

yq

yp

xq

q

p

(1, 1)

xp(0, 0)

Y (yp)

X(xp)

δ δ

p

q

xp = xq

yp

yq

Y (yq)

(a)

Figure 5.12: (a) The common distance of two edges to the intersection of their bisector
with another edge; (b) Example of the event that the line stabbing wedge of disks
centered at vertices of the target curve becomes non-empty; (c) Example of the event
that two tunnels can be connected monotonically along the target curve.

CHAPTER 6

Flow computations on imprecise terrains

In this chapter we study the computation of water flow on terrains in which the
elevations are imprecise. We motivate the problem and discuss the basic terminology
in Sections 6.1. In Section 6.2 we show that the problem of deciding whether water can
flow between two given points on a polyhedral terrain is NP-hard. In the remaining
sections we study the problem in a different setting, namely where water can flow along
the edges of a graph. We will see various results using this model in Section 6.3. We
devise an algorithm to compute the maximal upstream area of a set of points, which
we call the potential watershed. We extend this concept and our techniques to the
maximal downstream area and the minimal upstream area (the persistent watershed)
of a set of points. In Section 6.4 we study these concepts for a certain class of imprecise
terrains which we call regular. We prove that persistent watersheds satisfy certain
nesting conditions on regular terrains. This leads to efficient computations of fuzzy
watershed boundaries and to the definition of the potential ridge, which delineates the
persistent watersheds of the “main” minima of a regular terrain. We conclude with a
critical discussion of the introduced concepts and open problems in Section 6.5.

6.1 Introduction

Simulating the flow of water on a terrain is a problem that has been studied for
a long time in geographic information science (gis), and has received considerable
attention from the computational-geometry community [51, 52, 116]. It can be an
important tool in analyzing flash floods for risk management [28], for stream flow
forecasting [103], and in the general study of geomorphological processes [46], and it
could contribute to obtaining more reliable climate change predictions [145].

When modeling the flow of water across a terrain, it is generally assumed that
water flows downward in the direction of steepest descent. It is common practice
to compute drainage networks and catchment areas directly from a digital elevation

121

122 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

Figure 6.1: Left: An imprecise terrain. Each vertex of the triangulation has a
elevation interval (gray). Center: a realization of the imprecise terrain. Right: the
same realization together with the highest and lowest possible realizations of the
imprecise terrain.

model of the terrain. Most hydrological research in gismodels the terrain surface with
a grid in which each cell can drain to one or more of its eight neighbors (e.g. [143]).
This can also be modeled as a computation on a graph, in which each node repre-
sents a grid cell and each edge represents the adjacency of two neighbors in the grid.
Alternatively, one could use an irregular network in which each node drains to one or
more of its neighbors, which may reduce the required storage space by allowing less
interesting parts of the terrain to have a lower sampling density. We will refer to this
as the network model, and we assume that, from every node, water flows down along
the steepest incident edge. Assuming the elevation data is exact, drainage networks
can be computed efficiently in this model (e.g. [49]). In computational geometry and
topology, researchers have studied flow path and drainage network computations on
triangulated polyhedral surfaces (e.g. [52, 54, 111]). In this model, which we call the
surface model, the flow of water can be traced across the surface of a triangle. This
avoids creating certain artifacts that arise when working with grid models. However,
the computations on polyhedral surfaces may be significantly more difficult than on
network models [58].

Naturally, all computations based on terrain data are subject to uncertainty, which
comes from various sources like measurement, interpolation, and numerical errors.
The gis community has recognized the importance of dealing with uncertainty ex-
plicitly, in particular for hydrological modeling [154, 26]. A natural approach is to
model the elevation at a point of the terrain using stochastic methods. However,
the models available in the hydrology literature are unsatisfactory [40, 120, 136] and
computationally expensive [150]. A particular challenge is posed by the fact that hy-
drological computations can be extremely sensitive to small elevation errors [91, 109].
While most of these studies have been done in the network model, we note that there
also exists work on the behavior of watersheds under noise in the surface model [90].

A non-probabilistic model of imprecision that is often used in computational ge-
ometry consists in representing an imprecise attribute (such as location) by a region
that is guaranteed to contain the true value. This approach has also been applied to
polyhedral terrains (e.g. [82, 101]), replacing the exact elevation of each surface point
by an imprecision interval (see Figure 6.1). In this way, each terrain vertex does not
have one fixed elevation, but a whole range of possible elevations which includes the
true elevation. Choosing a concrete elevation for each vertex results in a realization
of the imprecise terrain. The realization is a (precise) polyhedral terrain. Since the

6.2. NP-HARDNESS IN THE SURFACE MODEL 123

set of all possible realizations is guaranteed to include the true (unknown) terrain,
one can now obtain bounds on parameters of the true terrain by computing the best-
and worst-case values of these parameters over the set of all possible realizations.
Note that we assume that there is only an error in the z-coordinate (and not in the
x, y-coordinates). This is partially motivated by the fact that commercial terrain
data suppliers often only report elevation error [77]. However, it is also a natural
simplification of the model.

In this chapter we apply this model of imprecise terrains to problems related to
the simulation of water flow, both on terrains represented by surface models and on
terrains represented by network models. One of the most fundamental questions one
may ask about water flow on terrains is whether water flows from a point p to another
point q. In the context of imprecise terrains, reasonable answers may be “definitely
not”, “possibly”, and “definitely”. The watershed of a point in a terrain is the part
of the terrain that drains to this point. Phrasing the same question in terms of
watersheds leads us to introduce the concepts of potential (maximal) and persistent
(minimal) watersheds.

6.1.1 Basic definitions and notation

We define an imprecise terrain T as a possibly non-planar geometric graph G with
nodes V ⊂ IR2 and edges E ⊆ V × V , where each node v ∈ V has an imprecise third
coordinate, which represents its elevation . We denote the bounds of the elevation
of v with low(v) and high(v). A realization R of an imprecise terrain T consists
of the given graph together with an assignment of elevations to nodes, such that for
each node v its elevation elevR(v) is at least low(v) and at most high(v). We denote
with R− the realization such that elevR−(v) = low(v) for every node v and, similarly,
we denote with R+ the realization such that elevR+(v) = high(v). The set of all
realizations of an imprecise terrain T is denoted RT .

For any set of nodes P ⊆ V , we define the neighborhood of P as the set of
nodes N(P) = {s : s /∈ P ∧ ∃ t ∈ P : (s, t) ∈ E}. Now, consider a realization R of
an imprecise terrain as defined above. A set of nodes P ⊆ V constitutes a local

minimum in R if the following conditions are met: (i) the subgraph of G induced
by P is connected, (ii) all nodes of P have the same elevation according to R, and
(iii) their elevation is strictly lower than the elevation of any node in N(P) according
to R. Likewise, a local maximum is a set of nodes at the same elevation of which the
neighborhood is strictly lower.

6.2 NP-hardness in the surface model

In the surface model water flows across the surface of a polyhedral terrain. In this
section we prove that it is NP-hard to decide whether water potentially flows from a
point s to another point t in this model. The reduction is from 3-SAT; the input is a
3-CNF formula with n variables and m clauses. We first define the details of the flow
model in Section 6.2.1. Next, we describe the general idea of the proof in Section 6.2.2,
then we proceed with a detailed description of the construction in Section 6.2.3, and
finally we prove the correctness in Section 6.2.4 and Section 6.2.5.

124 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

6.2.1 Flow model

Consider an imprecise terrain, where the graph that represents the terrain forms a
planar triangulation in the (x, y)-domain. Any realization of this terrain is a polyhe-
dral terrain with a triangulated surface. If we assume that the water which arrives at
a particular point p on this surface will always flow in the true direction of steepest
descent at p across the surface, possibly across the interior of a triangle, then we
obtain a continuous model of water flow. Since the steepest-descent paths do not
necessarily follow along the edges of the graph, but instead lead across the surface
formed by the graph, we call this model the surface model . This model has also
been used before, for example in [52, 54, 111].

6.2.2 Overview of the construction

The main idea of the NP-hardness construction is to encode the variables and clauses
of the 3-SAT instance in an imprecise terrain, such that a truth assignment to the
variables corresponds to a realization—i.e., an assignment of elevations—of this ter-
rain. If and only if all clauses are satisfied, water will flow from a certain starting
vertex s to a certain target vertex t. We first introduce the basic elements of the
construction: channels and switch gadgets.

Channels. We can mold channels in a fixed terrain sur-
face to route water along any path, as long as the path
is monotone in the direction of steepest descent on the
terrain. We do this by giving vertices next to the path a
higher elevation, thus building walls that force the water
to stay in the channel. We can end a channel in a local
minimum at any point, if needed.

Switch gadgets. The general idea of a switch gadget is that it provides a way for
water to switch between channels. A simple switch gadget has one incoming channel,
three outgoing channels, and two control vertices a and b, placed on the boundary of
the switch. The water from the incoming channel has to flow across a central triangle,
which is connected to a and b. Depending on their elevations, the two vertices a and
b divert the water from the incoming channel to a particular outgoing channel and
thereby “control” the behavior of the switch gadget. This is possible, since the slopes
of the central triangles, which the water needs to pass, depend on the elevations of a
and b and those two are the only vertices with imprecise elevations. The elevations of
the remaining vertices which define the gadget are fixed. We lead the middle outgoing
channel to a local minimum as shown in the examples. In this way, we ensure that, if
any water can pass the switch, the elevations of its control vertices are at unambiguous
extremal elevations. Depending on the particular construction of the switch, we may
want the control vertices to be at opposite extremal elevations or at corresponding
extremal elevations. Refer to Figure 6.2 for an illustration.

We can also build switches for multiple incoming channels. In this case, every
incoming channel has its own dedicated set of outgoing channels, but all channels are
controlled by the same two vertices, see Figure 6.3.

6.2. NP-HARDNESS IN THE SURFACE MODEL 125

a

b

a

b

a

b

Figure 6.2: Three different states of a simplistic switch gadget.

a

b

a

b

Figure 6.3: Sketch of a switch with multiple incoming channels.

Global layout. The global layout of the construction is depicted in Figure 6.4. The
construction contains a grid of m × n cells, in which each clause corresponds to a
column and each variable to a row of the grid. The grid is placed on the western
slope of a “mountain”; columns are oriented north-south and rows are oriented east-
west. We create a system of channels that spirals around this mountain, starting from
s at the top and ending in t at the bottom of the mountain. We ensure that in no
realization, water from s can escape this channel system and, if it reaches t, we know
that it followed a strict course that passes through every cell of the grid exactly once,
column by column from east to west, and within each column, from north to south.
Embedded in this channel system, we place a switch gadget in every cell of the grid,
which allows the water from s to “switch” from one channel to another within the
current column depending on the elevations of the vertices that control the gadget.
In this way, the switch gadgets of a row encode the state of a variable. To ensure
that the state of a variable is encoded consistently across a row of the grid, the switch
gadgets in a row are linked by their control vertices. Every column has a dedicated
entry point at its north end, and a dedicated exit point at its south end. If and only
if water flows between these two points, the clause that is encoded in this column
is satisfied by the corresponding truth assignment to the variables. The slope of the
mountain is such that columns descend towards the south, and the exit point of each
column (except the westernmost one) is higher than the entry point of the adjacent
column to the west; water can flow between these points through a channel around
the back of the mountain. The easternmost column’s entry point is the starting vertex
s, and the westernmost column’s exit point is the target vertex t.

126 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

s

N E

S
W

xy

t

x4

x3

x2

x1 ∨ ¬x2 ∨ x4

x1

Figure 6.4: Left: Global view of the NP-hardness construction, showing the grid on
the mountain slope. The fixed parts are shown in gray, the variable parts are shown
light yellow and the imprecise vertices are filled light green; Right: Detail of a clause,
which forms one of the columns of the grid.

Clause columns. To encode each clause, we connect the switch gadgets in a column
of the global grid by channels in a tree-like manner. By construction, water will
arrive in a different channel at the bottom of the column for each of the eight possible
combinations of truth values for the variables in the clause. This is possible because
a switch gadget can switch multiple channels simultaneously. We let the channel in
which water would end up if the clause is not satisfied lead to a local minimum; the
other seven channels merge into one channel that leads to the exit point of the clause.
The possible courses that water can take will also cross switch gadgets of variables
that are not part of the clause: in that case, each course splits into two courses, which
are merged again immediately after emerging from the switch gadget. Figure 6.4
(right) shows an example.

Sloped switch gadgets. Since the grid is placed on the western slope of a mountain,
water on the central triangle of a switch will veer off towards the west, regardless of
the elevations of its control vertices. However, as we will see, we can still design a
working switch gadget in this case. Recall that we link the switch gadgets of a variable
row by their control vertices, such that each switch gadget shares one control vertex
with its neighboring cell to the west and one with its neighboring cell to the east. As
mentioned before, such a row encodes the state of a particular variable. We say that
it is in a consistent state if either all control vertices of the switches are high or all
control vertices are low. Thus, we will use the following assignment of truth values to
the elevations of the control vertices of our switch gadgets: both vertices set to their
highest elevation encodes true; both vertices set to their lowest elevation encodes
false; other combinations encode confused. Depending on the truth value encoded
by the elevations of the imprecise vertices, water that enters the gadget will flow to
different channels. The channels in which the water ends up when the gadget reads
confused always lead to a local minimum. For the other channels, their destination
depends on the clause. In Figure 6.5 you can see a sketch of a sloped switch gadget
which works the way described above.

6.2. NP-HARDNESS IN THE SURFACE MODEL 127

false true confused

Figure 6.5: Illustration of a sloped switch gadget similar to the one used in the final
construction. The final gadget has multiple incoming channels, which is not shown in
this figure.

6.2.3 Details of the construction

Recall that we are given a 3-SAT instance with n variables andm clauses. The central
part of the construction, which will contain the gadgets, consists of a grid of n rows—
one for each variable—and m columns—one for each clause. We denote the width of
each row, measured from north to south, by B = 400, and the width of a column,
measured from west to east, by A = max((n + 1) · B, 4000). Ignoring local details,
on any line from north to south in this part of the construction, the terrain descends
at a rate of dz/dy = 1, and on any line from east to west, it descends at a rate of
dz/dx = 1; thus we have z = x + y. Observe that each column measures nB < A
from north to south; thus the southern edge of each column is at a higher elevation
than the northern edge of the next column to the west. The dedicated entrance and
exit points of column 1 ≤ j ≤ m are placed at (jA − 1

2A, nB, jA − 1
2A + nB) and

(jA − 1
2A, 0, jA − 1

2A), thus allowing the construction of a descending channel from
each column’s exit point to the entry point of the column to the west.

For every variable vi, 1 ≤ i ≤ n, we place m + 1 imprecise vertices vij , for
0 ≤ j ≤ m, in row i, on the boundaries of the columns corresponding to them clauses.
Vertex vij has x-coordinate jA, y-coordinate iB− 1

2B, and an imprecise z-coordinate
[jA+ iB− 1

2B, jA+ iB− 1
2B+20]. On every pair of imprecise vertices vi(j−1), vij we

build a switch gadget Gij ; thus there is a switch gadget for each variable/clause pair.
The coordinates of the vertices in each gadget, relative to the coordinates of vi(j−1),
can be found in Box 6.6.

Switch gadget construction. We use the sloped switch gadget described above and
illustrated in Figure 6.5. Our switch gadget occupies a rectangular area that is A
wide from west to east, and 41 wide from north to south. Its key vertices and their
coordinates, relative to each other, can be found in Box 6.6. There are two imprecise

128 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

Box 6.6 Distances and gradients on a connector gadget

0
1
2A A

40

0

−1

A+ 20β

−1

20α

A− 1

z = 40 A+ 40

1
1−α/2

1
1+20α

1
1−β/2

1
1+20β

a cb

d e

f g h

sij1 sij2 sij3 sij4

1
2A+ 90

1
2A− 172

tij1 cij1 fij1 tij2 cij2 fij2 tij3 cij3 fij3 tij4 cij4 fij4

1+20(β−α)/A
1+10(α+β)

1
2A− 1

1+20(β−α)/A
1−(α+β)/4

1
2A+ 40

x

y

All coordinates are relative to the lowermost position of the control vertex d =
vi(j−1). The other control vertex is e = vij . Thus, e and d are the only imprecise
vertices. The x- and y-coordinates of the vertices are indicated on the axes. The
elevations of the key vertices are written next to the vertices. The elevations of
the control vertices are expressed as a function of α, β ∈ [0, 1]. The directions
of steepest descent on the different faces of the gadget (marked with arrows) are
expressed in the form dx/dy, as a function of α and β.

vertices, d and e, with elevation range [0, 20] and [A,A + 20], respectively—so in
any realization, their elevations have the form 20α and A + 20β, respectively, where
α, β ∈ [0, 1].

On the north edge of the gadget, there may be many more vertices, all collinear
with a, b and c. The vertices on the western half of the north edge are connected to
the western control vertex, and the vertices on the eastern half of the north edge are
connected to the eastern control vertex. In particular, each gadget Gij is designed
to receive water from four channels that arrive at four points sij1, sij2, sij3, sij4 on
the north edge, close to b; the coordinates of these points are sijk = (12A − 150 +
60k, 40, 12A− 110 + 60k).

On the south edge of the gadget, there is a similar row of vertices, all collinear
with f , g and h, that are connected to the control vertices. To the south, the gadget
is connected to twelve channels that catch all water that arrives at certain intervals
on the south edge: for each k ∈ {1, 2, 3, 4}, there is a western channel tijk catching all
water arriving between sijk − (82, 41, 123) and sijk − (77, 41, 118), a middle channel
cijk catching all water arriving between sijk− (77, 41, 118) and sijk− (44, 41, 85), and

6.2. NP-HARDNESS IN THE SURFACE MODEL 129

an eastern channel fijk catching all water arriving between sijk − (44, 41, 85) and
sijk − (39, 41, 80).

In a particular realization R, we define the switch gadget to be in a false state if
α = β = 0, in a true state if α = β = 1, and in a confused state if α ≤ 1

2 while β ≥ 1
2 ,

or if α ≥ 1
2 while β ≤ 1

2 . As we will show below, in the true, false, and confused
states the gadget leads any water that comes in at any point sijk into tijk, fijk, and
cijk, respectively.

We model the fixed part of the terrain such that the middle channels all lead
to local minima. The western and eastern channels correspond to a (partial) truth
assignment of the variables of the clause that is represented by the column that
contains the gadget; these channels lead to a local minimum or to the next row, as
described below.

Constructing the clause columns. Each clause is modeled in a column j by making
certain connections between the outgoing channels of each gadget to the dedicated
entrance points of the gadget in the next row. Observe that by our choice of B,
the entrance point of column j lies above all entrance points of Gnj , all outgoing
channels of any gadget G(i+1)j start at higher elevations than all entrance points of
Gij , and all outgoing channels of G1j start at an elevation higher than the exit point
of the column. This ensures that all channels described below can indeed be built as
monotonously descending channels, so that water can flow through it. We will now
explain the connections which we use to build a clause.

Let p > q > r be the indices of the variables that appear in the clause. The water
courses modeling the clause start at the entry point of the column, from which any
flow path is led through a channel to entry point snj1 of gadget Gnj .

For i 6= {p, q, r}, k ∈ {1, 2, 3, 4}, we connect both tijk and fijk to s(i−1)jk (if i > 1)
or to the exit point of the column (if i = 1).

We connect tpj1 and fpj1 to s(p−1)j1 and s(p−1)j2, respectively. Thus, for i ∈
{q, ..., p− 1}, water that enters Gij at sij1 and sij2 represents the cases that p is true
and p is false, respectively.

We connect tqj1, fqj1, tqj2 and fqj2 to s(q−1)j1, s(q−1)j2, s(q−1)j3 and s(q−1)j4, re-
spectively. Thus, for i ∈ {r, ..., q − 1}, water that enters Gij at sij1, sij2, sij3 and sij4
represents the four different possible combinations of truth assignments to p and q,
respectively.

The eight channels trj1, frj1, trj2, frj2, trj3, frj3, trj4, frj4 now represent the eight
different possible combinations of truth assignments to the variables of the clause.
The channel that corresponds to the truth assignment that renders the clause false, is
constructed such that it ends in a local minimum. The other seven channels all lead
to s(r−1)j1 (if r > 1) or to the exit point of the clause column (if r = 1).

6.2.4 Analysis of flow through a gadget

Below we will analyze where water may leave a gadget Gij after entering the gadget
at point sijk, with x-coordinate xk. In the discussion below, all coordinates are
relative to the lowermost position of the western control vertex of the gadget—refer
to Box 6.6, which also shows the directions of steepest descent (i.e. the surface
gradients, expressed as dx/dy) on each face of the gadget.

130 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

First observe that in any case, the directions of steepest descent on △abd, △bce
and △bed are at least 1− 20/A ≥ 199/200 = 0.995 and at most (1 + 20/A)/(1/2) ≤
201/100 = 2.01. Thus, when the water reaches y-coordinate 38, it will be at x-
coordinate at least xk − 4.02 and at most xk − 1.99.

Note that the line bd intersects the plane y = 38 at x = 1
2A− 1

40A ≤ 1
2A−100, and

the line be intersects the plane y = 38 at x = 1
2A+ 1

40A ≥ 1
2A+100. By our choice of

coordinates for the entrance points sijk, we have |xk − 1
2A| ≤ 90; therefore the water

will be on △bed when it reaches y = 38. Let gmax and gmin be the maximum and
minimum possible gradients dx/dy on △bed, respectively. Thus, the water will reach
the line de at x-coordinate at least xk−4.02−38gmax and at most xk−1.99−38gmin.

Finally, the directions of steepest descent on △dgf , △egh and △deg are more
than 0 and less than 1 + 20/A ≤ 201/200 < 1.01. Thus, the water will reach the line
fh at x-coordinate more than xk − 5.03− 38gmax and less than xk − 1.99− 38gmin.

We will now consider five classes of configurations of the control vertices in the
gadget, and compute the interval of x-coordinates where water may reach the line fh
in each case.

• α = β = 1 (true state) In this case we have gmax = gmin = 2, so water will reach
the line fh within the x-coordinate interval (xk − 81.03, xk − 77.99), and thus
it will flow into channel tijk.

• α+ β > 3
2 (true-ish state) In this case we have gmax ≤ (1 + 20/A)/(1/2) ≤ 2.01

and gmin ≥ (1− 20/A)/(1− 3/8) ≥ 199/125 > 1.59. Thus water will reach the
line fh within the x-coordinate interval (xk−81.41, xk−62.41), and thus it will
flow into channel tijk or cijk.

• 1
2 ≤ α + β ≤ 3

2 (this includes all proper confused states) In this case we have
gmax ≤ (1+20/A)/(1−3/8) ≤ 201/125 < 1.61 and gmin ≥ (1−20/A)/(1−1/8) ≥
199/175 > 1.13. Thus water will reach the line fh within the x-coordinate
interval (xk − 66.21, xk − 44.93), and thus it will flow into channel cijk.

• α+ β < 1
2 (false-ish state) In this case we have gmax ≤ (1 + 20/A)/(1− 1/8) ≤

201/175 < 1.15 and gmin ≥ (1−20/A) ≥ 199/200 > 0.99. Thus water will reach
the line fh within the x-coordinate interval (xk − 48.73, xk − 39.61), and thus
it will flow into channel cijk or fijk.

• α = β = 0 (false state) In this case we have gmax = gmin = 1, so water will
reach the line fh within the x-coordinate interval (xk − 43.03, xk − 39.99), and
thus it will flow into channel fijk.

6.2.5 Correctness of the NP-hardness reduction

Lemma 6.2.1 If water flows from s to t in some realization, then there is a truth
assignment that satisfies the 3-CNF formula.

Proof : Water that starts flowing from s, which is the entrance point of the clause
columnm, is immediately forced into a channel to entrance point snm1 of gadget Gnm.
As calculated above, any water that enters a gadget at one of its designated entrance
points will leave the gadget in one of its designated channels, which leads either to

6.3. WATERSHEDS IN THE NETWORK MODEL 131

a local minimum, or to a designated entrance point of the next gadget. Therefore,
water from s can only reach t after flowing through all switch gadgets.

Since all middle outgoing channels cijk lead to local minima, we know that if
there is a flow path from s to t, then the water from s is nowhere forced into a
middle outgoing channel. It follows that no gadget is in a proper confused state. As
a consequence, in any row, either all gadgets have their control vertices in the lower
open half of their elevation range, or all gadgets have their control vertices in the
upper open half of their elevation range. In the first case, all gadgets in the row are
in a false-ish state, and any incoming water from s leaves those gadgets in the same
channels as if the gadgets were in a proper false state. In the second case, all gadgets
in the row are in a true-ish state, and any incoming water from s leaves those gadgets
in the same channels as if the gadgets were in a proper true state.

We can now construct a truth assignmentA to the variables, in which each variable
is true if the control vertices in the corresponding row are in the upper halves of
their elevation ranges, and false otherwise. It follows from the way in which channel
networks in clause columns are constructed, that in each clause column, water will flow
into one of the seven channels that corresponds to a truth assignment that satisfies the
corresponding clause—otherwise the water would not reach t. Therefore, A satisfies
each clause, and thus, the complete 3-CNF formula. �

Lemma 6.2.2 If there is a truth assignment to the variables that satisfies the given
3-CNF formula, then there is a realization of the imprecise terrain in which water
flows from s to t.

Proof : We set all control vertices in rows corresponding to true variables to their
highest positions and all control vertices in rows corresponding to false variables to
their lowest positions. One may now verify that, by construction, in each clause
column water from the column’s entry point will flow into one of the seven channels
that lead to the column’s exit point, and thus, water from s reaches t. �

Thus, 3-SAT can be reduced, in polynomial time, to deciding whether there is
a realization of T such that water can flow from s to t. We conclude that deciding
whether there exists a realization of T such that water can flow from s to t is NP-hard.

Theorem 6.2.3 Let T be an imprecise triangulated terrain, and let s and t be two
points on the terrain. Deciding whether there exists a realization R ∈ RT such that
p→R q is NP-hard.

6.3 Watersheds in the network model

In the network model we assume that water flows only along the edges of a realization.
More specifically, water that arrives in a node p continues to flow along the steepest-
descent edges incident to p, unless p is a local minimum.

6.3.1 Flow model

Consider a realization R of an imprecise terrain as defined in Section 6.1.1. If water is
only allowed to flow along the edges of the realization, then the realization represents

132 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

a network. Therefore we refer to this model of water flow as the network model .
Below, we state more precisely how water flows in this model and give a proper
definition of the watershed. This model or variations of it have been used before, for
example in [49, 122, 143].

The steepness of descent (slope) of an edge (p, q) ∈ E in realization R is defined as
σR(p, q) = (elevR(p)− elevR(q))/|pq|, where |pq| is the Euclidean distance between p
and q in the xy-plane. The node q is a steepest-descent neighbor of p in R, if and
only if σR(p, q) is non-negative and maximal over all neighbors q of p. In the realization
R, water that arrives in p will continue to flow to each of its steepest-descent neighbors,
unless p constitutes a local minimum. If there exists a local minimum P ∋ p, then the
water that arrives in p will flow to the neighbors of p in P and eventually reach all the
nodes of P , but it will not flow further to any node outside the set P . If water from
p reaches a node q ∈ V then we write p→R q (“p flows to q in R”), and for technical
reasons we define p→R p for all p and R.

The discrete watershed of a node q in a realization R is defined as the union
of nodes that flow to q in R, that is WR(q) := {p : p→R q}. Similarly, we define the
discrete watershed of a set of nodes Q in this realization as WR(Q) :=

⋃
q∈Q WR(q).

To simplify the terminology we will refer to it as watershed, since this is unambigious
in the context of the remaining sections.

Consider the graph G of the imprecise terrain. A path π in G is a flow path for
a realization R if it does not self-intersect (any node appears on the path at most
once) and each node on the path (except the first) is a steepest-descent neighbor of its
predecessor on the path. For any pair of nodes p, q in π, we write p π→ q if π contains
p and q in this order. For any set of realizations S ⊆ RT , we denote with Π(S) the set
union of all flow paths induced by a realization in S. We define a maximal flow path

as a flow path that ends in a local minimum and cannot continue without intersecting
itself.

6.3.2 Flow paths are stable

This subsection is a note on flow paths in the network model. We define when a
flow path is stable and argue that any flow path induced by a realization in RT is
stable with respect to some ε-neighborhood of RT . Intuitively, the analysis in this
section shows that the flow paths considered in our model are never the result of an
isolated degenerate situation, but could also exist if the estimated elevation intervals
of the vertices would be slightly different. This may serve as a justification or proof
of soundness of the network model. It is not necessary to read this section in order
to understand the results in the remaining part of the chapter.

For two realizations R,R′ ∈ RT , we call R
′ an ε-perturbation of R if for all nodes

v ∈ V it holds that |elevR(v)−elevR′(v)| ≤ ε. For a set of realizations S, let Sε denote
the union of S with the ε-perturbations of elements of S. We say that a flow path π is
stable with respect to S if for some ε > 0 the flow path exists in any ε-perturbation
of some R ∈ S. In this context, we call R a perturbation center of π.

Lemma 6.3.1 Given a set of realizations S and any value δ > 0, it holds that any
flow path π induced by a realization in S is stable with respect to Sδ.

6.3. WATERSHEDS IN THE NETWORK MODEL 133

Proof : We call a realization which does not contain horizontal edges and in which
any node has at most one steepest-descent neighbor non-ambiguous, similarly, a
realization for which any of these properties does not hold is called ambiguous. Any
flow path π induced by a non-ambiguous realization R ∈ S is stable with perturbation
center R, since we can pick ε small enough such that the order of the slopes of the
edges does not change. Now, let π = p1, p2, . . . , pk be a flow path from p1 to pk
which is induced by an ambiguous realization R ∈ S. We lower each node pi by
δ/2 + (iδ)/(4k) and perturb the remaining vertices by some value smaller than ε/4.
Since π is non-intersecting, we create a non-ambiguous realization R′ ∈ Sδ in this way
which also induces π. This proves the claim. �

6.3.3 Potential watersheds

The potential watershed of a set of nodes Q in a terrain T is defined as

W∪ (Q) :=
⋃

R∈RT

⋃

q∈Q

WR(q),

which is the union of the watersheds of Q over all realizations of T . This is the set of
nodes from which there exists a flow path to a node of Q in some realization. With
slight abuse of notation, we may also write W∪ (q) to denote the potential watershed
of a single node q.

6.3.3.1 Canonical realizations

We prove that for any given set of nodes Q in an imprecise terrain, there exists a
realization R such that WR(Q) = W∪ (Q). For this we introduce the notion of the
overlay of a set of watersheds in different realizations of the terrain. Informally, the
overlay is a realization that sets every node that is contained in one of these watersheds
to the lowest elevation it has in any of these watersheds.

Definition 6.3.2 Given a sequence of realizations R1, ..., Rk and a sequence of nodes
q1, ..., qk, the watershed-overlay of WR1(q1), ...,WRk

(qk) is the realization R such
that for every node v, we have that elevR(v) = high(v) if v /∈ ⋃WRi

(qi) and otherwise

elevR(v) = min
i:v∈WRi

(qi)
elevRi

(v).

Note that we allow ourselves a slight abuse of wording and notation here: the input
to the watershed-overlay operation is not a set of watersheds, but a sequence of
realizations and a sequence of nodes.

Lemma 6.3.3 Let R be the watershed-overlay of WR1
(q1), . . . ,WRk

(qk), and let Q =⋃
1≤i≤k qi, then WR(Q) contains WRi

(qi), for any 1 ≤ i ≤ k.

Proof : Let u be a node of the terrain. We prove the lemma by induction on increasing
symbolic elevation to show that if u is contained in one of the given watersheds, then
it is also contained in WR(Q). To this end, we define level(Ri, u) as the smallest
number of edges on any path along which water flows from u to qi in Ri; if there

134 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

is no such path, then level(Ri, u) = ∞. Now we define the symbolic elevation of
u, denoted elev∗(u), as follows: if u is contained in any watershed WRi

(qi), then
elev∗(u) is the lexicographically smallest tuple (elevRi

(u), level(Ri, u)) over all i such
that u ∈WRi(qi); otherwise elev∗(u) = (high(u),∞).

Now consider a node u that is contained in one of the given watersheds. The base
case is that u is contained in Q, and in this case the claim holds trivially. Otherwise,
let Ri be a realization such that u ∈ WRi(qi) and such that (elevRi(u), level(Ri, u))
is lexicographically smallest over all 1 ≤ i ≤ k. By construction, we have that
elevRi

(u) = elevR(u). Consider a neighbor v of u such that (u, v) is a steepest-descent
edge incident on u in Ri, and level(Ri, v) is minimal among all such neighbors v of u.
Since elevR(v) ≤ elevRi

(v) ≤ elevRi
(u) = elevR(u) and level(Ri, v) = level(Ri, u)−1,

it holds that v has smaller symbolic elevation than u. Therefore, by induction, v ∈
WR(Q). If v is still a steepest-descent neighbor of u inR, then this implies u ∈WR(Q).
Otherwise, there is a node v̂ such that σR(u, v̂) > σR(u, v) ≥ 0. There must be an
Rj such that v̂ ∈WRj (qj), since otherwise, by construction of the watershed-overlay,
we have elevR(v̂) = high(v̂) ≥ elevRi

(v̂) and thus, σRi
(u, v̂) ≥ σR(u, v̂) > σR(u, v) ≥

σRi
(u, v) and v would not be a steepest-descent neighbor of u in Ri. Moreover,

we have σR(u, v̂) > 0 and, therefore, elevR(v̂) < elevR(u), so v̂ has smaller symbolic
elevation than u. Therefore, by induction, also v̂ ∈WR(Q) and thus, u ∈WR(Q). �

The above lemma implies that for any set of nodes Q, the watershed-overlay R
of the watersheds of the elements of Q in all possible realizations RT , would realize
the potential watershed of Q. That is, we have that W∪ (Q) ⊆ WR(Q) and since
W∪ (Q) is the union of all watersheds of Q in all realizations, we also have that
WR(Q) ⊆ W∪ (Q), which implies the equality of the two sets. Therefore, we call R
the canonical realization of the potential watershed W∪ (Q) and we denote it with
R∪(Q).

Note, however, that it is not immediately clear that the canonical realization
always exists: the set of possible realizations is a non-discrete set, and thus the
elevations in the canonical realization are defined as minima over a non-discrete set.
Therefore, one may wonder if these minima always exist. Below, we will describe an
algorithm that can actually compute the canonical realization of any set of nodes Q;
from this we may conclude that it always exists.

6.3.3.2 Outline of the potential watershed algorithm

Next, we describe how to compute W∪ (Q) and its canonical realization R∪(Q) for a
given set of nodes Q. Note that for all nodes p /∈W∪ (Q), we have, by definition of the
canonical realization, elevR∪(Q)(p) = high(p). The challenge is therefore to compute
W∪ (Q) and the elevations of the nodes of W∪ (Q). Below we describe an algorithm
that does this. The idea of the algorithm is to compute the nodes of W∪ (Q) and
their elevations in the canonical realization in increasing order of elevation, similar
to the way in which Dijkstra’s shortest path algorithm computes distances from the
source. We denote the resulting algorithm with PotentialWS(Q) (Algorithm 6.3.5).
The correctness and running time of the algorithm are proved in Theorem 6.3.9. A
key ingredient of the algorithm is a subroutine, Expand(q′, z′), which is defined as
follows.

6.3. WATERSHEDS IN THE NETWORK MODEL 135

Algorithm 6.3.4 Let Expand(q′, z′) denote a function that returns for a node q′

and an elevation z′ ∈ [low(q′), high(q′)] a set of pairs of nodes and elevations, which
includes the pair (p, z) if and only if p ∈ N(q′), there is a realization R with elevR(q

′) ∈
[z′, high(q′)] such that p→R q′, and z is the minimum elevation of p over all such
realizations R.

Algorithm 6.3.5 PotentialWS(Q)

Input: set of nodes Q

1: for all q ∈ Q do enqueue (q, z) with key z = low(q)
2: while the queue is not empty do
3: Extract a pair (q′, z′) with minimum key z′ from the queue
4: if q′ is not already in the output set then
5: Output q′ with elevation z′

6: Enqueue each (p, z) ∈ Expand(q′, z′)

6.3.3.3 Expansion of a node using the slope diagram

Before presenting the algorithm for the expansion of a node, we discuss a data struc-
ture that allows us to do this efficiently.

Definition 6.3.6 For given elevations of the neighbors of a node p, we define the
slope diagram of p as the set of points q̂i = (δi, zi) such that qi is a neighbor of p,
zi is its elevation and δi is its distance to p.

The intuition behind the slope diagram is the following. For a given elevation z
of p, let p̂ = (0, z) be a point on the vertical axis of the slope diagram. Note that for
any neighbor qi, the slope of the line through p and qi is the same as the slope of the
line through p̂ and q̂i in the slope diagram. If qi is a steepest descent neighbor of p
under the given assignment of elevations, then all other neighbors q̂j lie above or on
the line through p̂ and q̂i in the slope diagram.

Now, let q1, q2, ... be a subset of the neighbors of p indexed such that q̂1, q̂2, ...
appear in counter-clockwise order along the boundary of the convex hull of the slope
diagram, starting from the leftmost point and continuing to the lowest point. We
ignore neighbors that do not lie on this lower left chain. Let Hi be the halfplane
in the slope diagram that lies above the line through q̂i and q̂i+1. Let U(p) be the
intersection of these halfplanesH1, H2, ... with the halfplane to the right of the vertical
line through the leftmost point, and the halfplane above the horizontal line through
the bottommost point of the convex chain; see the shaded area in Figure 6.7.

The tangent of U(p) through p̂ in the slope diagram passes through exactly the
neighbors of p which are steepest descent neighbors of p. If U(p) does not have a
tangent through p, then p is a local minimum.

For a neighbor p of q′, we can now compute the elevation of p as it should be
returned by Expand(q′, z′) as follows. We use the slope diagram of p with the
neighbors of p set to their highest position (that is, for a neighbor qi we use high(qi))

and compute the tangents to U(p) which pass through the point q̂′ = (δ′, z′), where

136 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

q̂j

high(qi)

δi

q̂i

q̂′

low ′

U(p)high ′

Figure 6.7: Querying the slope diagram.

δ′ is the distance from q′ to p. Assume for now that U(p) has two tangents through

q̂′ and let [low ′, high ′] be the interval where the two tangents intersect the vertical
axis of the slope diagram. Lemma 6.3.7 below implies that the lowest elevation that
p can have in order to send flow via q′ to the watershed is the lower endpoint of the
interval I = [low(p), high(p)] ∩ [low ′, high ′]. This is the elevation which we return for
p in the output of Expand(q′, z′), unless the interval is empty. In the latter case we
omit p from the output.

Lemma 6.3.7 If q′ is at elevation z′, then the interval I = [low(p), high(p)] ∩
[low ′, high ′] defines the elevations of p for which q′ can be the steepest descent neigh-
bor of p.

Proof : Fix p at some arbitrary elevation z and let p̂ = (0, z) be its corresponding
point in the slope diagram. If z ∈ I, then all neighbors of p lie above or on the line
through p̂ and q̂′ in the slope diagram. Thus, q′ is steepest descent neighbor for this
configuration of elevations. On the other hand, if there exists a configuration of the
elevations of the other neighbors of p, such that they lie above or on the line through
p̂ and q̂′, then they also lie above or on this line if we set them to their highest possible
position. Thus, z would be included in I in this case. We conclude that if and only
if z ∈ [low ′, high ′] we can find a configuration of the elevations of the neighbors of p,
in which q′ is at elevation z′ and at the same time q′ is the steepest descent neighbor
of p. �

We can compute the slope diagrams of all nodes with the neighbors set to their
highest positions in a preprocessing phase. During the main algorithm the tangents
can be computed via a binary search on the boundary of the convex hull in the slope
diagram. In the proof of the following lemma we describe the technical details of this
procedure more specifically. We also discuss the special cases where U(p) does not

have two tangents through q̂′.

Lemma 6.3.8 Given the slope diagrams of the neighbors of q′, we can compute the
function Expand(q′, z′) in time O(d log d′), where d is the node degree of q′, and d′

is the maximum node degree of a neighbor of q′.

6.3. WATERSHEDS IN THE NETWORK MODEL 137

Proof : For each neighbor p of q′ we proceed as follows. We are given the (precom-
puted) slope diagram of p with all neighbors of p set to their highest possible position.

First, determine by binary search on the boundary of U(p), if the vertical line

through q̂′ intersects the boundary of U(p), and if it does, whether the intersection

point lies below q̂′. If it does, q̂′ lies in the interior of U(p). Then q′ can never
be a steepest-descent neighbor of p, and therefore p is not included in the result of
Expand(q′, z′).

Otherwise q̂′ lies outside the interior of U(p) and we continue as follows. If q̂′

lies on the vertical line that contains the left edge of U(p), we define high ′ = ∞.
Otherwise we find, by binary search on the boundary of U(p), the corner q̂i that lies

to left of the vertical line through q̂′, such that the line through q̂′ and q̂i is tangent
on U(p); let high ′ be the vertical coordinate of the intersection of this tangent with

the vertical axis. If q̂′ lies on or below the horizontal line that contains the bottom
edge of U(p), then we define low ′ = z′. Otherwise we find, by binary search on the

boundary of U(p), the corner q̂j that lies below the horizontal line through q̂′, such

that the line through q̂′ and q̂j is tangent on U(p); let low ′ be the vertical coordinate
of the intersection of this tangent with the vertical axis.

If low ′ > high(p) or high ′ < low(p), then the set of elevations that p could have
while having q′ as a steepest-descent neighbor is empty, and we do not include p in the
result of Expand(q′, z′). Otherwise we include p with elevation max(low(p), low ′).

All computations for a single neighbor p of q′ can be done in time logarithmic
in the degree of p, and thus, the function Expand(q′, z′) can be computed in time
O(d log d′) in total. �

6.3.3.4 Correctness and running time of the complete algorithm

Theorem 6.3.9 Algorithm PotentialWS(Q) computes the potential watershed W∪ (Q)
of a set of nodes Q and its canonical realization R∪(Q) in O(n log n) time, where n
is the number of edges in the terrain.

Proof : The algorithm searches the graph starting from the nodes of Q. At each
point in time we have three types of nodes. Nodes that have been extracted from
the priority queue have a finalized elevation, a node that is currently in the priority
queue but was never extracted (yet) has a tentative elevation, other nodes have not
been reached.

We will show that when (p, z) is first extracted from the priority queue in Algo-
rithm 6.3.5, p is indeed contained in the potential watershed of Q, and the elevation z
is the lowest possible elevation of p such that water flows from p to any node in Q in
any realization. To this end we use an induction on the points extracted, in the order
in which they are extracted for the first time. The induction hypothesis consists of
two parts:
(i) There exists a realization R and q ∈ Q such that elevR(p) = z and R induces a

flow path π from p to q which only visits nodes that have been extracted from
the priority queue.

(ii) There exists no realization R and q ∈ Q such that elevR(p) < z and p→R q.
If a node p ∈ Q is extracted with z = low(p), then the claims hold trivially. Note

that the first extraction from the priority queue must be of this type.

138 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

If p is extracted from the priority queue for the first time and p /∈ Q, then there
must be at least one node p′ that was extracted earlier, such that Expand(p′, z′), for
some elevation z′, resulted in p having the tentative elevation z. By induction, there
exists a realization R′ and q ∈ Q, such that elevR′(p′) = z′, there is a flow path π
from p′ to q in R′, and π does not include p.

To see that part (i) of the induction hypothesis holds for p, we construct a realiza-
tion R by modifying R′ as follows: we set elevR(p) = z, and we set elevR(r) = high(r)
for each neighbor r of p that does not lie on π. In comparison to R′, only p and its
neighbors may have a different elevation in R. Since elevR(p) = z ≥ z′ is still at least
as high as the elevation of any node on π, water will still flow along the path π from
p′ to q. By the definition of Expand, none of the neighbors of p that are set at their
highest elevation can out-compete p′ as a steepest-descent neighbor of p. Therefore,
in R, the node p must have p′ or another node of π as a steepest-descent neighbor.
Thus, water from p will flow onto π, and thus, to q.

Next we show (ii). Suppose, for the sake of contradiction, there is a realization R
such that elevR(p) < z and there is a flow path from p to a node q ∈ Q. Consider
two consecutive nodes r and s on this path, such that r has not been extracted before
but s has been previously extracted (it may be that r = p and/or s ∈ Q). Note that
flow paths have to be monotone in the elevation. We argue that this path cannot stay
below z in any realization. Since r is a neighbor of s, it has been added to the priority
queue during the expansion of s. Let the tentative elevation of r that resulted from
this expansion be zr. By induction, since the elevation of s is finalized, zr is a lower
bound on the elevation of r for any flow path that follows the edge (r, s) and then
continues to a node in Q in any realization. However, zr ≥ z, since r was not extracted
from the priority queue before p. Therefore, a path from p to q that contains r with
elevR(p) < z cannot exist. This proves (ii). It follows that the algorithm outputs all
nodes of W∪ (Q) together with their elevations in R∪(Q).

As for the running time, computing and storing U(p) for a node p of degree d
takes O(d log d) time and O(d) space. Since the sum of all node degrees is 2n, com-
puting and storing U(p) for all nodes p thus takes O(n log dmax) time and O(n) space
in total, where dmax is the maximum node degree in the terrain. While running al-
gorithm PotentialWS(Q), each node is expanded at most once. By Lemma 6.3.8,
Expand(q′, z′) on a node q′ of degree d takes time O(d log dmax). Thus, again us-
ing that all nodes together have total degree 2n, the total time spent on expanding
is O(n log dmax) = O(n log n). Each extraction from the priority queue takes time
O(log n) and there are at most O(n) nodes to extract. Therefore PotentialWS
takes time O(n log n) overall. �

6.3.4 Computing potential watersheds in linear time

For grid terrains, the maximal node degree is constant. Thus, the slope diagram
computations take only O(1) time per expansion. In fact, since all nodes which are
added to the priority queue will eventually become part of the computed watershed,
we could actually compute W∪ (Q) in O(k log k) time, where k = |W∪ (Q) |. Alter-
natively, we can use the techniques from Henzinger et al. [92] for shortest paths to
overcome the priority queue bottleneck, as explained in the proof below.

6.3. WATERSHEDS IN THE NETWORK MODEL 139

Theorem 6.3.10 The canonical realization of the potential watershed of a set of cells
Q in an imprecise grid terrain of n cells can be computed in O(n) time.

Proof : The computation of potential watersheds in Section 6.3.3 has much in common
with computing single-source shortest paths. In both cases, the goal is to compute a
label δ(v) for each node v: in the case of potential watersheds it is the lowest elevation
such that a flow path to a given destination q exists; in the case of shortest paths it is
the distance from the given source q. During the computation, we maintain tentative
labels d[v] for each node v which are upper bounds on the labels to be computed.
(The tentative label of a node that has not been discovered yet would be ∞.) The
computations consist of a sequence of edge relaxations: when relaxing a directed edge
(u, v), we try to improve (that is, lower) d[v] based on the current value of d[u], which
is an upper bound on δ(u). Both problems share some crucial properties: for every
node v that can be reached, there is a “shortest” path π(v) = u0, u1, ..., uk where
u0 = q and uk = v, the correct labels δ(u0), δ(u1), ..., δ(uk) form a non-decreasing
sequence, and when the edges on this path are relaxed in order from (u0, u1) to
(uk−1, uk), the relaxation of (ui−1, ui) will correctly set d[ui] equal to δ(ui). All that
is necessary to compute all labels is that the sequence ρ of relaxations performed by
the algorithm contains π(v) as a subsequence, for each v. Note that the edges of π(v)
do not need to be consecutive in ρ: the labels along π(v) are computed correctly even
if the relaxations of π(v) are interleaved with relaxations of other edges, or even with
out-of-order relaxations of edges of π(v).

There are several algorithms to find a sequence of relaxations ρ in the above setting,
such that for every node v, the sequence ρ contains the relaxations of a shortest path
π(v) as a subsequence. These algorithms are usually known as algorithms to compute
(single-source) shortest paths, but they can also be applied directly to the more general
setting described above. Dijkstra’s algorithm finds a sequence of relaxations that is
optimal in the sense that it relaxes each edge only once. However, to achieve this, the
algorithm needs Θ(n) operations on a priority queue of size Θ(n) in the worst case,
where n is the number of nodes and edges in the graph [44].

An alternative is the algorithm of Henzinger et al. [92]. This algorithm uses
a hierarchy of priority queues. Most priority queue operations in this algorithm
are on small priority queues. The algorithm needs more relaxations than Dijkstra’s
algorithm, but still not more than O(n). Provided the relaxations take constant time
each, the whole algorithm runs in O(n) time. However, the algorithm by Henzinger
et al. only works if a recursive decomposition of the graph is provided that satisfies
certain properties. Fortunately such decompositions can be found in O(n) time for
planar graphs, and also for certain other types of graphs. In particular, it is easy
to construct such a decomposition for a graph that represents a grid terrain model,
even in the model where each cell can drain to one or more of its eight neighbors, for
which the adjacency graph is non-planar. Let r1 < r2 < ... be a sequence of powers
of four. Now we can easily make a decomposition of the graph into square regions of√
r1 ×

√
r1 nodes; we group these together into regions of

√
r2 ×

√
r2 regions, etc.,

generally grouping regions of
√
ri ×

√
ri nodes into regions of

√
ri+1 × √ri+1 nodes

(some regions at the boundary of the whole input grid may be slightly smaller). On
each level i, the regions have size Θ(ri) and each region has Θ(

√
ri) nodes on its

boundary, thus each level forms a so-called ri-division. We choose the region sizes
such that they satisfy Equation (19) from Henzinger et al.

140 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

di

low(q′)

U(q′)

high(q′)

p̂i

p̂j

W (q′)
z′

Figure 6.8: Computations in the slope diagram

With this decomposition, the structure of the single-source shortest paths algo-
rithm by Henzinger et al. can also be applied to the computation of potential water-
sheds on grid terrains. For grid terrains, dmax = O(1), and thus, the computation of
the slope diagrams and the O(n) relaxation steps from the “shortest-paths” algorithm
take only O(n) time. Together with O(n) time for priority queue operations, we get
a total running time of O(n). �

6.3.5 Potential downstream areas

Similar to the potential watershed of a set Q, we can define the set of points that
potentially receive water from a node in Q. Let the potential downstream area of
Q be defined as:

D∪(Q) =
⋃

R∈RT

⋃

q∈Q

{p : q→R p}.

Naturally, a canonical realization for this set does not necessarily exist. Nevertheless,
the potential downstream area can be computed in a similar way as described in
Section 6.3.3. The difference is that we will now process nodes in decreasing order
of their maximal elevation such that they could still receive water from a node in Q.
The algorithm is the same as Algorithm 6.3.5, except that in the first line the nodes
are enqueued with their highest possible elevation, in line 3 we dequeue the current
node with the largest key and we use the following subroutine in line 6:

Definition 6.3.11 Let ExpandDown(q′, z′) denote a function that returns for a
node q′ and an elevation z′ ∈ [low(q′), high(q′)] a set of pairs of nodes and elevations,
which includes the pair (p, z) if and only if p ∈ N(q′), there is a realization R with
elevR(q

′) ∈ [low(q′), z′] such that q′→R p, and z is the maximum elevation of p over
all such realizations R.

Lemma 6.3.12 We can compute the function ExpandDown(q′, z′) in O(d log d)
time, where d is the node degree of q′.

6.3. WATERSHEDS IN THE NETWORK MODEL 141

Proof : Consider the slope diagram of q′ as defined in Section 6.3.3.3. Let z0 be
min high(p) over all neighbors p of q′; note that this is the vertical coordinate of the

lowermost point of U(q′). Let q̂′ = (0, z′) and consider its lower tangent to U(q′). Let
p̂i be the corner of U(q′) that intersects the tangent. Similarly, let p̂j be the corner
of U(q′) that intersects the tangent through (0,max(low(q′), z0)). Let W (q′) be the
intersection of the halfplanes above these two tangents and the halfplanes Hi, . . . , Hj

as defined in Section 6.3.3.3. Clearly, a neighbor of q′ can have a steepest-descent edge
from q′, for some elevation of q′ in [low(q′), z′], if and only if its representative in the
slope diagram lies below W (q′) or on the boundary of W (q′). To compute the neigh-
bors of q′ and their elevations as they should be returned by ExpandDown(q′, z′),
we test each neighbor p of q′ as follows. We find the point p̂′ = (|pq′|, z) that is the
projection from p̂ down onto the boundary of W (q′). If z ≥ low(p), we return (p, z),
otherwise we do not include p in the result.

The slope diagram with W (q′) can be computed O(d log d) time. The neighbors
p of q′ can be sorted by increasing distance from q′ in the xy-projection in O(d log d)
time; after that, the projections of all points p̂ can be computed in O(d) time in
total by handling them in order of increasing distance from q′ and walking along the
boundary of W (q′) simultaneously. �

Theorem 6.3.13 Given a set of nodes Q of an imprecise terrain, we can compute
the set D∪(Q) in time O(n log n), where n is the number of edges in the terrain.

Proof : The algorithm searches the graph starting from the nodes of Q. As in the
algorithm for potential watersheds, nodes that have been extracted from the priority
queue have a finalized elevation; nodes that are currently in the priority queue but
were never extracted (yet) have tentative elevations. However, this time these eleva-
tions are not to be understood as elevations of the nodes in a single realization, but
simply as the highest known elevations so that the nodes may be reached from Q.

The induction hypothesis is symmetric to the hypothesis used for potential wa-
tersheds: we show that when (p, z) is first extracted from the priority queue, p is
indeed contained in the potential downstream area of Q, and the elevation z is the
highest possible elevation of p such that water flows from any node in Q to p in any
realization. Again, the induction is on the points extracted, in the order in which
they are extracted for the first time. The induction hypothesis consists of two parts:
(i) There exists a realization R and q ∈ Q such that elevR(p) = z, there is a flow

path π from q to p in R, and π only visits nodes that have been extracted from
the priority queue.

(ii) There exists no realization R and q ∈ Q such that elevR(p) > z and q→R p.
If a node p ∈ Q is extracted with z = high(p), then the claims hold trivially. Note

that the first extraction from the priority queue must be of this type.
If p is extracted from the priority queue for the first time and p /∈ Q, then there

must be at least one node p′ that was extracted earlier, such thatExpandDown(p′, z′),
for some elevation z′, resulted in p having the tentative elevation z. By induction,
there exists a realization R′ and q ∈ Q, such that elevR′(p′) = z′, there is a flow path
π from q to p′ in R′, and π does not include p.

So far the proof is basically symmetric to that of Theorem 6.3.9. However, to see
(i), we need a different construction. Let z′′ ≤ z′ be an elevation such that water

142 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

flows from p′ to p in the realization R′′ with elevR′′(p′) = z′′, elevR′′(p) = z, and
elevR′′(p′′) = high(p′′) for all other nodes p′′. Note that z′′ exists by definition of
ExpandDown. We now construct a realization R by modifying R′ as follows: we
set elevR(p

′) = z′′, we set elevR(p) = z, and we set elevR(r) = high(r) for each
neighbor r of p′ such that r 6= p and r does not lie on π. In comparison to R′, only
two nodes in R may have lower elevation, namely p and p′. Therefore, water will still
flow along the path π from q until it either reaches p′, or a node that now has p or
p′ as a new steepest-descent neighbor. Thus, in any case, there is a flow path from q
to either p or p′. If the flow path reaches p′, then, by definition of ExpandDown,
none of the neighbors of p′ that are set at their highest elevation can out-compete
p as a steepest-descent neighbor of p′. Of course, the neighbors of p′ that lie on π
cannot out-compete p either, since these neighbors have elevation at least as high
as p′. Therefore, p must be a steepest-descent neighbor of p′ in R′, and water from p′

will flow to p. Thus, in any case, water from q will reach p in R′ along a path that is a
prefix of π, followed by an edge to p. This proves part (i) of the induction hypothesis.

The proof of part (ii) is completely analogous to the proof of Theorem 6.3.9.
It follows that the algorithm outputs all nodes of D∪(Q). The running time

analysis is analogous to Theorem 6.3.9. �

6.3.6 Persistent watersheds

In this section we will give a definition of minimal watersheds, and explain how to
compute them. Recall that the potential (maximal) watershed of a node set Q is
defined as the set of nodes that have some flow path to a node in Q. We can write
this as follows:

W∪ (Q) =
{
p : ∃ π ∈ Π(RT), π ∋ p ∃ q ∈ Q : p π→ q

}
.

An analogous definition that would be consistent with the intuitive idea of a minimal
watershed would be:

W∩(Q) :=
{
p : ∀ π ∈ Π+(RT), π ∋ p ∃ q ∈ Q : p π→ q

}
, (6.1)

where Π+(RT) is the set of all maximal flow paths. Intuitively, W∩(Q) is the set
of nodes p from which water flows to Q via any induced maximal flow path that
contains p. We call this the minimal watershed of Q.

However, this definition seems not very useful. Consider a measuring device with
a constant elevation error, which is used to sample points in a gently descending val-
ley. Increasing the density of measurement points has the effect that eventually all
imprecision intervals of neighboring nodes overlap in the vertical dimension. Thus,
each node could become a local minimum in some realization. Now, water flowing
down the valley could, theoretically, “get stuck” at any point, and thus, the mini-
mal watershed of any point q in this valley would contain nothing but q itself, see
Example 6.9. 1

1This phenomenon has also been observed in practice. Firstly, Hebeler et al. [91] observe that the
watershed is more sensitive to elevation error in “flatlands”. Secondly, simulations have shown that
also potential local minima or “small sub-basins” can severely affect the outcome of hydrological
computations [109].

6.3. WATERSHEDS IN THE NETWORK MODEL 143

Example 6.9 The persistent and potential watersheds of a node q.

p

“potential local minimum”

upper terrain

lower terrain

realization

q

persistent watershed of q

potential watershed of q

s1

s2
s3

s4

s5

s6
s7

t1

t5 t6

t3

t4

An example of a 1.5 dimensional imprecise terrain, where the minimal watershed
of q can be arbitrarily reduced by oversampling. In fact, the minimal watershed
of q only contains q. Flow from any other node can get stuck in a potential
local minimum. An example is the node p. Note that p cannot be in the minimal
watershed of any other node. The complement ofW∪ (q) is the set S = {s1, ..., s7}.
The q-avoiding potential watershed W

\q
∪ (S) contains t1 (because water from t1

may flow directly to s5) and t5 and t6 (because water from t5 and t6 may flow

to s6). The points q, t3, p, t4, t5 are not in W
\q
∪ (S), as water from there can only

reach S by first flowing to q before reaching s5. Thus, {q, t3, p, t4, t5} constitutes
the persistent watershed W ·∩(q).

Nevertheless, it seems clear that any water flowing in the valley must eventually
reach q (possibly after flooding some local minima in the valley), since the water has
nowhere else to go. This leads to an alternative definition of a minimal watershed, af-
ter we rewrite the definition of the minimal watershed from Eq. (6.1) slightly. Observe
that the following holds for the complement of the minimal watershed.

(W∩(Q))
c
=
{
p : ∃ π ∈ Π(RT), π ∋ p ¬∃ q ∈ Q : p π→ q

}
(6.2)

Thus, the minimal watershed of Q is the complement of the set of nodes p, for
which it is possible that water follows a flow path from p that does not lead to Q.
Assume there exists a suitable set of alternative destinations S, such that we can
rewrite Eq. (6.2) as follows:

(W∩(Q))
c
=
{
p : ∃ π ∈ Π(RT), π ∋ p ∃ s ∈ S : (p π→ s) ∧ (π ∩Q = ∅)

}
. (6.3)

Note that the right hand side of Eq. (6.3) is equivalent to the set:

W
\Q
∪ (S) :=

⋃

π∈Π(RT)

⋃

s∈S

{p : (p π→ s) ∧ (π ∩Q = ∅)} (6.4)

144 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

We call the set in Eq. (6.4) the Q-avoiding potential watershed of a set of nodes

S and we denote it with W
\Q
∪ (S). This is the set of nodes that have a potential flow

path to a node s ∈ S that does not pass through a node of Q before reaching s.
It remains to identify the set of alternative destinations S. Since each flow path

can be extended until it reaches a local minimum, the set of potential local minima

clearly serves as such a set of destinations. Let V
\Q
min be the union of all sets P ⊆ V

such that there exists a realization in which P is a local minimum and P ∩ Q = ∅.
However, it is also safe to include the nodes that do not form local minima but that
do not have any flow path to Q. This is the complement of the set W∪ (Q). It follows
for the minimal watershed:

W∩(Q) =
(
W

\Q
∪
(
V

\Q
min ∪ (W∪ (Q))

c
))c

Note that we can rewrite this as follows:

W∩(Q) =
(
W

\Q
∪ ((W∪ (Q))

c
)
)c
\ W

\Q
∪
(
V

\Q
min ∩W∪ (Q)

)

Based on the above considerations we suggest the following alternative definition
of a minimal watershed.

Definition 6.3.14 The persistent watershed of a set of nodes Q is defined as

W ·∩(Q) :=
(
W

\Q
∪ ((W∪ (Q))

c
)
)c
.

This is the complement of the set of nodes that have a potential flow path to a node
outside the potential watershed of Q without passing through Q. See Example 6.9:
the persistent watershed of q consists of the nodes that can never be high enough so
that water from those nodes could escape from the potential watershed of q on the
right; water from these nodes can only escape from the potential watershed of q by
first flowing down to q.

To compute the persistent watershed efficiently, all we need are efficient algo-
rithms to compute potential watersheds and Q-avoiding potential watersheds. We
have already seen how to compute W∪ (Q) efficiently in Section 6.3.3. Note that the
Q-avoiding potential watershed of S is different from the potential watershed of S in
the terrain T ′ that is obtained by removing the nodes Q and their incident edges from
T . The next lemma states that we can also compute Q-avoiding potential watersheds
efficiently nonetheless.

Lemma 6.3.15 There is an algorithm which outputs the Q-avoiding potential water-
shed of S and takes time O(n log n), where n is the number of edges of the terrain.

Proof : We modify the algorithm to compute the potential watershed of S (Algo-
rithm 6.3.5), such that, each time the algorithm extracts a node from the priority
queue, this node is discarded if it is contained in Q. Instead, the algorithm continues
with the next node from the priority queue. Clearly, this algorithm does not follow
any potential flow paths that flow through Q. However, the nodes of Q are still
being considered by the neighbors of its neighbors as a node they have to compete
against for being the steepest-descent neighbor. It is easy to verify that the proof of
Theorem 6.3.9 also holds for the computation of Q-avoiding potential watersheds. �

6.4. REGULAR TERRAINS 145

upper terrain

lower terrain

realization

proxy

bar

imprecise minimum

p

Figure 6.10: Example of an imprecise minimum with a proxy p in a non-regular
terrain.

By applying Theorem 6.3.9 and Lemma 6.3.15, we obtain:

Theorem 6.3.16 We can compute the persistent watershed W ·∩(Q) of Q in time
O(n log n), where n is the number of edges of the terrain.

6.4 Regular terrains

We can still extend the results on imprecise watersheds in the network model. How-
ever, our extensions only hold for a certain class of imprecise terrains, which we call
“regular”. We will first define this class and characterize it. To this end we will
introduce the notion of imprecise minima (see Definition 6.4.1), which are the “sta-
ble” minima of an imprecise terrain, regular or non-regular. In Section 6.4.2 we will
describe how to compute these minima and how to turn a non-regular terrain into
a regular terrain. In the remaining sections, we discuss nesting properties and fuzzy
boundaries of imprecise watersheds. Furthermore, we observe that regular terrains
have a well-behaved ridge structure, which delineates the main watersheds.

The main focus of this section is on the extension of the results in Section 6.3.
Some of the concepts introduced here could also be applied to the surface model,
however, we confine our discussion to the network model.

6.4.1 Characterization of regular terrains

We first give a definition of a proper minimum in an imprecise terrain.

Definition 6.4.1 A set of nodes S in an imprecise terrain T is an imprecise min-

imum if and only if in every realization of T , the set S contains a local minimum,
and no proper subset of S has this property.

Note that the local minima contained in S can vary from one realization to another.
Now a regular imprecise terrain is defined as follows:

146 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

Definition 6.4.2 An imprecise terrain T is a regular imprecise terrain if and
only if every local minimum of the lowermost realization R− of T is an imprecise
minimum of T .

Any imprecise minimum S on a regular terrain is a local minimum in R−. Indeed,
assume S would not be a minimum on R−. Then, by Definition 6.4.1, it would still
contain a proper subset S′ that is a minimum on R−. By Definition 6.4.2, S′ must be
an imprecise minimum of T , but this contradicts Definition 6.4.1. Now, we observe:

Lemma 6.4.3 Let S be an imprecise minimum on a regular terrain. Then each node
s ∈ S has the same elevation lower bound low(s). Furthermore, for each non-empty
subset S′ ⊂ S we have W∪ (S′) = W∪ (S) and WR−(S′) = WR−(S).

Proof : For the sake of contradiction, suppose not all nodes of S have the same el-
evation lower bound. Then there would be a proper subset S′ of S that is a local
minimum of R−, and thus, by definition of a regular terrain, S′ would be an impre-
cise minimum which is at the same time a proper subset of S. But this would, by
Definition 6.4.1, contradict that S is an imprecise minimum. Therefore, each node
s ∈ S has the same elevation lower bound.

Now, in R∪(S), all nodes s ∈ S are at their lowermost elevation and thus S is a
local minimum in R∪(S). Thus, all nodes p that have a flow path to any node s ∈ S,
have a flow path to each node s ∈ S, and thus each non-empty subset S′ ⊂ S has
W∪ (S′) = W∪ (S). By the same argument, we have WR−(S′) = WR−(S). �

We will now derive a characterization of imprecise minima in general. For this,
we introduce proxies.

Definition 6.4.4 A proxy of an imprecise minimum S is a node p ∈ S, such that
there are no realizations R and nodes q /∈ S such that p→R q.

Thus, water that arrives in a proxy of an imprecise minimum S, can never leave
S anymore. This implies that the proxy is not in the potential watershed of any set
of nodes that lies entirely outside S. The following lemma states that every imprecise
minimum contains a proxy.

Lemma 6.4.5 Let the bar of a set S be bar(S) = mins∈S high(s). A set S is an
imprecise minimum if and only if (i) bar(S) < mint∈N(S) low(t) and (ii) no proper
subset S′ of S has this property. Every imprecise minimum has a proxy.

Proof : We first argue that if S is an imprecise minimum, then this implies (i) and
(ii) for S.

To prove (i), consider the following realization R: For all nodes r ∈ S we set
elevR(r) = max(bar(S), low(r)), and for all nodes t ∈ N(S) we set elevR(t) = low(t).
Assume for the sake of contradiction that (i) would not hold. Then there exists a node
t ∈ N(S) which lies at elevation at most bar(S) in R. Now, if all nodes of S would
have the same elevation in R, then S would either be part of a local minimum that
includes t, or S would have t as a lower neighbor: in either case, in the realization R
the set S would neither be a local minimum by itself nor include a local minimum,

6.4. REGULAR TERRAINS 147

contradicting the assumption that S is an imprecise minimum. Therefore, since S is
an imprecise minimum, it must be that not all nodes of S have the same elevation,
and there exists a proper subset S′ ⊂ S which is a local minimum in R. Like all
nodes of S, the local minimum S′ must have elevation at least bar(S); each node
t ∈ N(S′) must be set at a higher elevation low(t). If we would remove the nodes of
N(S′) from S, the imprecise minimum S would be separated into several components,
including at least one component S′′ that contains a node s with high(s) = bar(S).
This component S′′ is a proper subset of S. Its neighborhood N(S′′) consists of
nodes from N(S) and N(S′), all of which have an elevation lower bound strictly
above bar(S) = mins∈S′′ high(s). Thus S′′ ⊂ S must contain a local minimum in any
realization, contradicting the assumption that S is an imprecise minimum. Therefore
the assumption that (i) would not hold must be wrong, and (i) must hold.

To prove (ii), assume, for the sake of contradiction, that S contains a proper
subset S′ such that bar(S′) < mint∈N(S′) low(t). Thus, S′ would contain a local
minimum in any realization, and S would not be an imprecise minimum; hence (ii)
must hold for S.

Now we argue that, if (i) and (ii) are met, then S is an imprecise minimum.
Observe that condition (i) implies that S contains a local minimum in any realization.
Now assume, for the sake of contradiction, that there exists a proper subset S′ that
always contains a local minimum. Let S′ be a smallest such subset of S. We have
that S′ is an imprecise minimum, and therefore, as we proved above, it holds that
bar(S′) < mint∈N(S′) low(t), which contradicts that condition (ii) holds for S. Hence,
there is no proper subset S′ of S that always contains a local minimum; therefore S
is an imprecise minimum.

As a proxy of an imprecise minimum S, we take any node s such that high(s) <
mint∈N(S) low(t). By condition (i) of the lemma, such a node s always exists. Since s
lies below any node of N(S) in any realization, there are no realizations R and nodes
q /∈ S such that s→R q; thus s is a proxy of S. �

6.4.2 Computing proxies and regular terrains

Any imprecise terrain can be turned into a regular imprecise terrain by raising the
lower bounds on the elevations such that local minima that violate the regularity
condition are removed from R−. Indeed, in hydrological applications it is common
practice to preprocess terrains by removing certain local minima before doing flow
computations [143]. To do so while still respecting the given upper bounds on the
elevations, we can make use of the algorithm by Gray et al. [81]. The original goal
of this algorithm is to compute a realization of a surface model that minimizes the
number of local minima in the realization, but the algorithm can also be applied
to a network model. It can easily be modified to output a proxy for each imprecise
minimum of a terrain. Moreover, the realizationM computed by the algorithm has the
following convenient property: if we change the imprecise terrain by setting low(v)
to elevM (v) for each node, we obtain a regular imprecise terrain. We denote the
algorithm with Regularize.

The algorithm. The algorithm proceeds as follows. We will sweep a horizontal plane
upwards. During the sweep, any node is in one of three states. Initially, each node is

148 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

undiscovered. Once the sweep plane reaches low(v), the state of the node changes to
pending. Pending nodes are considered to be at the level of the sweep plane, but they
may still be raised further. During the sweep, we will always maintain the connected
components of the graph induced by the nodes that are currently pending; we call
this graph GP . As soon as it becomes clear that a node cannot be raised further or
does not need to be raised further, its final elevation on or below the sweep plane is
decided and the node becomes final. The algorithm is driven by two types of events:
we may reach low(v) for some node v, or we may reach high(v) for some node v.
These events are handled in order of increasing elevation; low(v)-events are handled
before high(v)-events at the same elevation. The events are handled as follows:

• reaching low(v): we make v pending, and find the component S of GP that
contains v. If v has a neighbor that is final, we make all nodes of S final at
elevation low(v).

• reaching high(v): if v is final, nothing happens; otherwise we report v as a
proxy, we find the connected component S of GP that contains v, and we make
all nodes of S final at elevation2 maxs∈S low(s).

Gray et al. explain how to implement the algorithm to run in O(n log n) time [81].

Lemma 6.4.6 Given an imprecise terrain T , (i) all nodes reported by the algorithm
Regularize(T) described above are proxies of imprecise minima, and (ii) the algo-
rithm reports exactly one proxy of each imprecise minimum of T .

Proof : We first prove the second part, and then the first part of the lemma.
(ii) Let S be an imprecise minimum. Let v be the node in S which was the

first to have its high(v)-event processed. By Lemma 6.4.5, v is a proxy of S and we
have high(v) < mint∈N(S)low(t). Hence, when high(v) is processed, the component
of GP that contains v does not contain any nodes outside S, and the high(v)-event
is the first event to make any nodes in this component final. Thus, v is reported
as a proxy. Furthermore, no node s ∈ S can have low(s) > high(v), otherwise
bar(S \ {s}) = high(v) < mint∈{s,N(S)} low(t) ≤ mint∈N(S\{s}) low(t), and thus, by
Lemma 6.4.5, S would not be an imprecise minimum. Hence, when the high(v)-
event is about to be processed, all nodes of S have been discovered and are currently
pending. The high(v)-event makes all nodes of S final; thus, any high(s)-events for
other nodes s ∈ S will remain without effect and no more proxies of S will be reported.

(i) Let v be a node that is reported as a proxy in a high(v)-event. We claim
that the connected component S of GP that contains v at that time, is an impre-
cise minimum. Indeed, by definition of GP , all nodes of S are pending, and thus
high(v) = mins∈S high(s) = bar(S). Furthermore, because S is a connected compo-
nent of GP , all nodes t ∈ N(S) must be either undiscovered or final. In fact, the
algorithm maintains the invariant that no neighbor of a finalized node is pending;
since all nodes in S are pending, all nodes t ∈ N(S) must be undiscovered. There-
fore high(v) ≤ mint∈N(S) low(t). Because all low(t)-events at the same elevation as

2This is a small variation: the algorithm as described originally by Gray et al. would make the
elevations final at high(v) = mins∈S high(s). However, in the current context we prefer to make the
elevations final at maxs∈S low(s), to maintain as much of the imprecision in the original imprecise
terrain as possible.

6.4. REGULAR TERRAINS 149

high(v) are processed before the high(v)-event is processed, we actually have a strict
inequality: high(v) < mint∈N(S) low(t). It follows that S satisfies condition (i) of
Lemma 6.4.5. Furthermore, no proper subset S′ of S has this property, otherwise, by
the analysis given above, a proxy for S′ would have been reported already and the
nodes from S′ would have been removed from GP at that time. Hence, S also satisfies
condition (ii) of Lemma 6.4.5, and S is an imprecise minimum, with v as a proxy. �

Lemma 6.4.7 Let M be the realization of a terrain T as computed by the algorithm
Regularize(T). Let T ′ be the imprecise terrain that is obtained from T by setting
low(v) = elevM (v) for each node v. The terrain T ′ is a regular imprecise terrain.

Proof : Note that M is the lowermost realization of T ′. Consider any local minimum
S of M . Observe that the algorithm cannot have finalized the elevations of the last
pending nodes of S in a low(v)-event, because then we would have v ∈ S and v must
have a neighbor t /∈ S that was finalized before v; hence elevM (t) ≤ elevM (v) and
S would not be a local minimum. Therefore, the algorithm must have finalized the
last elevations of the nodes of S in a high(v)-event for a node v ∈ S. Furthermore,
each node t ∈ N(S) must have been undiscovered at that time; otherwise t would
have become part of the same component as the nodes of S before its elevations were
finalized, or t would have been finalized before v: in both cases S would not be a local
minimum. Hence we have low(t) > high(v) for each node t ∈ N(S), and thus, S is a
local minimum in every realization of T or T ′. Furthermore, no proper subset of S′

of S contains a local minimum in every realization of T ′, since in particular, in M the
set S is a local minimum and therefore no proper subset S′ of S is a local minimum.
Thus, by Definition 6.4.1 and Definition 6.4.2, T ′ is a regular terrain. �

6.4.3 Nesting properties of imprecise watersheds

To be able to design data structures that store imprecise watersheds and answer
queries about the flow of water between nodes efficiently, it would be convenient if
the watersheds satisfy the following nesting condition : if p is contained in the
watershed of q, then the watershed of p is contained in the watershed of q. Clearly,
potential watersheds do not satisfy this nesting condition, while minimal watersheds
do. However, in general, persistent watersheds are not nested in this way. We give
a counter-example that uses a non-regular terrain in the next lemma, before proving
the nesting condition for persistent watersheds in regular terrains later in this section.

Lemma 6.4.8 There exists an imprecise terrain with two nodes p and q such that
p ∈W ·∩(q) and W ·∩(p) * W ·∩(q).
Proof : We give an example of a non-regular terrain that has this property. Refer
to Figure 6.11. The persistent watershed of p as shown in red is not completely
contained in the persistent watershed of q as shown in blue. The left figure gives
a top-view. All edges have unit length, except for the edge between w and q. The
right figure shows the fixed elevations of s, t, t′, u, v and w, the elevation intervals of
p, q and r, and the correct horizontal distances on all edges except |pv| and |qv|.
The red outline delimits W∪ (p) = {p, q, r, s, t, v, w}. The red dashed outline delimits
W ·∩(p) = {p, s, v}. The blue outline delimits W∪ (q) = {p, q, s, v, w}. The blue dashed
outline delimits W ·∩(q) = {p, q, v}. �

150 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

rt

t′

t′

v

r

p

t

qs

v

q

p
w

u

wu

s

Figure 6.11: An example of a non-regular terrain where persistent watersheds are not
properly nested.

The following lemmas will prove that on regular imprecise terrains persistent wa-
tersheds do satisfy the nesting condition.

Lemma 6.4.9 Let Q be a set of nodes of a regular imprecise terrain, then W ·∩(Q) ⊆
WR−(Q).

Proof : Assume for the sake of contradiction that there exists a maximal flow path π
induced by R− which starts at a node p ∈W ·∩(Q) and has the following properties:
(i) π does not flow to any node in Q, and
(ii) π flows to a local minimum S of R−, where S ∩Q = ∅.
Because the terrain is regular, S must be an imprecise minimum (by Defini-

tion 6.4.2), and therefore S must have a proxy s by Lemma 6.4.5. Without loss
of generality, assume that π flows to this proxy. As observed above, s is not in the
potential watershed of any set of nodes outside S; in particular, s is not in W∪ (Q), see
Figure 6.12 (left). This implies that π leaves W∪ (Q) without going through any node
of Q. This contradicts the fact that p ∈W ·∩(Q), since by the definition of persistent
watersheds, π cannot leave W∪ (Q) without going through Q. Thus, π cannot exist.
In particular, this implies that any flow path induced by R−, which starts at a node
p ∈ W ·∩(Q) and ends in a local minimum of R−, has to flow to a node of Q. Since
we can extend any flow path until it reaches a local minimum, this implies that p is
contained in WR−(Q) and thus W ·∩(Q) ⊆WR−(Q). �

Lemma 6.4.10 Let Q be a set of nodes of an imprecise terrain, and let P ⊆WR−(Q).
Then W∪ (P) ⊆W∪ (Q).

Proof : Recall that R∪(P) is the canonical realization of W∪ (P) as defined in Sec-
tion 6.3.3.1. Let R be the watershed-overlay of WR∪(P)(P) and WR−(Q). Consider
a node r ∈ W∪ (P) and a flow path π from r to a node p ∈ P in R∪(P), see Fig-
ure 6.12 (center). Let π′ be the maximal prefix of π such that the nodes of π′ have
the same elevation in R∪(P) and R, and let π′′ be the maximal prefix of π′ such that
π′′ is still a flow path in R. We distinguish three cases:

6.4. REGULAR TERRAINS 151

Q S

p

s Q

P

rπ

Q

P

s

r

Figure 6.12: Schematic illustrations to the proofs of Lemmas 6.4.9 (left), 6.4.10 (cen-
ter) and 6.4.11 (right). Potential watersheds are outlined with solid curves, persistent
watersheds are outlined with dashed curves.

• If both π′ and π′′ are empty, then r has higher elevation in R∪(P) than in R,
so r must be in WR−(Q).

• If π′ = π′′ = π, then flow from r reaches a node p ∈ P ⊆WR−(Q) in R.

• Otherwise, let (u, v) be the edge of π such that u is the last node of π′′. Now
v is not on π′′, so in R, flow from u either still follows (u, v) but elevR(v) <
elevR∪(P)(v), or flow from u is diverted over an edge (u, v̂) to another node v̂
with elevR(v̂) < elevR∪(P)(v̂). In either case, from u we follow an edge to a

node of which the elevation in R is lower than in R∪(P); therefore this must be
a node of WR−(Q).

In any case, there is a flow path from r to a node of WR−(Q). From here, there must
be a path to a node q ∈ Q, since every flow path within WR−(Q) in R− is also a flow
path in R. Thus there is a flow path from r to q in R, and thus, r ∈ W∪ (Q). This
proves the lemma. �

Lemma 6.4.11 (Persistent watersheds are nested) Let Q be a set of nodes of a regular
imprecise terrain, and let P ⊆W ·∩(Q). Then W ·∩(P) ⊆W ·∩(Q).

Proof : Assume for the sake of contradiction that there exists a node s ∈W ·∩(P), such
that s /∈ W ·∩(Q). By definition, s ∈ W∪ (P). By Lemma 6.4.9, s ∈ WR−(P) and by
Lemma 6.4.10 WR−(P) ⊆W∪ (Q). Thus, it also holds that s ∈W∪ (Q).

Furthermore, by assumption s /∈ W ·∩(Q) and therefore s must have a flow path
π to a point r /∈ W∪ (Q), which does not pass through a node of Q, refer to Fig-
ure 6.12 (right). Since s ∈ W ·∩(P), π must include a node p ∈ P . The existence of
such a flow path from p to r which does not include a node of Q contradicts the fact
that p ∈W ·∩(Q). �

6.4.4 Fuzzy watershed boundaries

Lemma 6.4.9 and Lemma 6.4.10 also allow us to compute the set difference between
the potential and the persistent watershed of a set of nodes Q efficiently, given only
the boundary of the watershed of Q on the lowermost realization of the terrain. We
first define these concepts more precisely.

152 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

Definition 6.4.12 Given a realization R, and a set of nodes Q, let XR(Q) be the set
of directed edges (u, v) such that u ∈ WR(Q) and v /∈ WR(Q). We call XR(Q) the
watershed boundary of Q in R. Likewise, we define the fuzzy watershed bound-

ary of Q as the directed set of edges (u, v) such that u ∈W∪ (Q) and v /∈W ·∩(Q) and
we denote it with X∪(Q). We call the set W∪ (Q) \W ·∩(Q) the uncertainty area of
this boundary.

We will now discuss how we can compute the uncertainty area of any fuzzy wa-
tershed boundary efficiently.

Algorithm 6.4.13 Let WSBoundary(Q) denote an algorithm which computes the
uncertainty area of the fuzzy watershed watershed boundary of Q as follows. Assume
we are given XR−(Q). We will compute the set W∪ (Q) \W ·∩(Q) with the following
modified version of the algorithm PotentialWS (Section 6.3.3.2). Instead of initial-
izing the priority queue with the nodes of Q, we initialize in the following way. For
each edge (u, v) ∈ XR−(Q), we use the slope diagram of u to determine the minimum
elevation zu of u, such that there is a realization in which water flows on the edge
from u to v. If there exists such an elevation zu, we enqueue u with elevation (and
key) zu. Similarly, we use the slope diagram of v to determine the minimum elevation
zv of v, such that water may flow on the edge from v to u. If zv exists, we enqueue v
with elevation (and key) zv. After initializing the priority queue in this way, we run
PotentialWS as written.

Lemma 6.4.14 If the terrain is regular, the algorithm WSBoundary(Q) (Algo-
rithm 6.4.13) computes W∪ (Q) \W ·∩(Q), which is the uncertainty area of the fuzzy
watershed boundary of Q.

Proof : Observe, following the proof of Theorem 6.3.9, that for any node p output by
WSBoundary(Q) there are a realization Rs and a node s which was in the initial
queue with elevation zs, such that elevRs(s) = zs and Rs induces a flow path π from
p to s. Let (u, v) be the edge of XR−(Q) which led to the insertion of s ∈ {u, v} into
Q with elevation zs. Let t be the other node of (u, v), that is, t ∈ {u, v} \ {s}. Let Rt

be the realization obtained from Rs by setting elevRt
(t) = low(t). Observe that, by

our choice of zs, the realization Rt now induces a flow path from p to t. We will now
argue that (i) p ∈W∪ (Q), and (ii) p /∈W ·∩(Q).

(i) The existence of Ru implies that p ∈W∪ (u); since u ∈WR−(Q) (by definition
of XR−(Q)) this implies p ∈W∪ (Q) (by Lemma 6.4.10).

(ii) Let π be a flow path induced by R− which starts at v and ends in a local
minimum S of R−. By definition of XR−(Q), there is no flow path from v to Q on
R−, thus π does not contain any nodes of Q. Furthermore this holds for any flow path
π flowing from v to a node in S. Therefore, S and Q are disjoint. By Definition 6.4.2,
S is an imprecise minimum and by Lemma 6.4.5 S contains a proxy s, which is, by
Definition 6.4.4, not contained in W∪ (Q). Hence, by Definition 6.3.14, p /∈W ·∩(Q).

Next, we will argue that if p ∈ W∪ (Q) and p /∈ W ·∩(Q), the algorithm will
output p. We distinguish two cases.

If p ∈ WR−(Q), then, because p /∈ W ·∩(Q), there must be a flow path on R−

from p to a minimum S that does not contain any node of Q. By Definition 6.4.2,

6.4. REGULAR TERRAINS 153

Lemma 6.4.5 and Definition 6.4.4, there will then be a flow path from p to a proxy
s ∈ S that lies outside W∪ (Q), and thus, outside WR−(Q).

If p /∈ WR−(Q), then, because p ∈ W∪ (Q), there must be a realization in which
there is a flow path from p to Q, and thus, from p to WR−(Q).

In both cases, there is a realization in which there is a flow path from p that
traverses an edge (u, v) ∈ XR−(Q), either from u to v or from v to u. The algorithm
reports at least all such points p.

This completes the proof of the lemma. �

Note that if k is the total size of the input (XR−(Q)) and the output (W∪ (Q) \
W ·∩(Q)) and d′ is the maximum node degree, thenWSBoundary(Q) runs inO(k log k+
k log d′) time. When a data structure is given that stores the boundaries of water-
sheds on R− so that they can be retrieved efficiently, and the imprecision is not too
high, this would enable us to compute the boundaries and sizes of potential and per-
sistent watersheds much faster than by computing them (or their complements) node
by node with the algorithm PotentialWS described in Section 6.3.3.2.

We can use the same idea as above to compute an uncertain area of the watershed
boundaries between a set of nodes Q. More precisely, given a collection of nodes Q
such that no node q ∈ Q is contained in the potential watershed of another node
q′ ∈ Q, we can compute the nodes that are in the potential watersheds of multiple
nodes from Q.

Algorithm 6.4.15 Let Q be {q1, ..., qk} and let G′ be the graph induced by the
potential watershed of Q. We denote with PotentialRidge(q1, . . . , qk) the following
algorithm which computes the uncertainty area between the watersheds of the input
nodes. The algorithm is essentially the same as the algorithm that computes the
uncertainty area of a single watershed’s boundary—the main difference is that now
we have to start it with a suitable set of edges X on the fuzzy boundaries between
the watersheds of the nodes of Q. More precisely, X should be an edge separator set
of G′, which separates the nodes of G′ into k components G′

1, ..., G
′
k such that nodes

of each component G′
i are completely contained in W∪ (qi).

We obtain X with the following modification of PotentialWS. For each node p
we will maintain, in addition to a tentative elevation z, a tentative tag that identifies
a node q ∈ Q such that there is a realization R with elevR(p) = z and p→R q. We
initialize the priority queue of PotentialWS with all nodes q ∈ Q, each with tentative
elevation low(q) and each tagged with itself. The first time any particular node q′ is
extracted from the priority queue, we obtain not only its final elevation but also its
final tag q from the queue, and each pair (p, z) ∈ Expand(q′, z′) is enqueued with
that same tag q. At the end of PotentialWS, we obtain the set of nodes in W∪ (Q)
together with their elevations in the canonical realization R∪(Q) and with tags, such
that any set of nodes tagged with the same tag q ∈ Q forms a connected subset of
W∪ (q). We now extract the separator set X by identifying the edges between nodes
of different tags.

Having obtained X , we compute the union of the pairwise intersections of the
potential watersheds of q1, ..., qk as follows. Again, we use PotentialWS. This time
the priority queue is initialized as follows. For each edge (u, v) ∈ X , we use the
slope diagram of u to determine the minimum elevation zu of u, such that there is a
realization R with elevR(v) = elevR∪(Q)(v) in which water flows on the edge from u

154 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

to v. If there exists such an elevation zu, we enqueue u with elevation (and key) zu.
Similarly, we use the slope diagram of v to determine the minimum elevation zv of
v, such that water may flow on the edge from v to u at elevation elevR∪(Q)(u). If zv
exists, we enqueue v with elevation (and key) zv. After initializing the priority queue
in this way, we run PotentialWS as written, and output the result.

Lemma 6.4.16 Given a set of nodes q1, . . . , qk of an imprecise terrain, such that qi /∈
W∪ (qj) for any i 6= j and 1 ≤ i, j ≤ k, we can use Algorithm 6.4.15 to compute the set⋃

i

⋃
j 6=i(W∪ (qi)∩W∪ (qj)) in O(n log n) time, where n is the number of edges of the

imprecise terrain. The resulting algorithm is denoted with PotentialRidge(q1, . . . , qk).

Proof : The algorithm is described above. The separator set X is obtained inO(n log n)
time by running the modified version of PotentialWS and one scan over the graph to
identify edges between nodes with different tags. Computing the union of the pairwise
intersections of the potential watersheds of q1, ..., qk takes O(n log n) time again.

By the same arguments as in the proof of Lemma 6.4.14, we can observe the
following: for any node p output by the above algorithm, there are an edge (u, v) ∈ X ,
a realization Ru with elevRu(u) = elevR∪(Q)(u) and p→Ru

u, and a realization Rv with
elevRv (v) = elevR∪(Q)(v) and p→Rv

v. Let qu, qv ∈ Q be the nodes of Q with which
u and v were tagged, respectively. It follows that there is a flow path from p to qu
in the watershed overlay of WRu

(u) and WR∪(Q)(qu), so p ∈ W∪ (qu). Analogously,
p ∈W∪ (qv). Since (u, v) ∈ X , we have qu 6= qv, so any point p that is output by the
algorithm lies in the intersection of the potential watersheds of two different nodes
from Q.

Next, we will argue that if p lies in the intersection of the potential watersheds
of two different nodes from Q, then the algorithm will output p. Let q ∈ Q be the
node with which p is tagged (hence, p ∈ W∪ (q)), and let q′ ∈ Q, q′ 6= q be another
node from Q such that p ∈ W∪ (q′). Consider a flow path π from p to q′ in R∪(q′),
and let (r, r′) be the edge on π such that r is tagged with a node other than q′ while
: r′ and all nodes following the last occurrence of (r, r′) in π are tagged with q′.
Note that (r, r′) must exist because all nodes of π lie in W∪ (Q) and have received
a tag, p is tagged with another node than q′, and, since none of the nodes of Q lie
in each other’s potential watersheds, q′ is tagged with itself. Therefore (r, r′) exists,
and (r, r′) ∈ X . Moreover, we have elevR∪(Q)(r

′) = elevR∪(q′)(r
′). Therefore r was

put in the priority queue with the minimum elevation such that there is a realization
R with elevR(r

′) = elevR∪(q′)(r
′) in which water flows on the edge from r to r′. By

induction on the nodes of π from r back to p, it follows that p must eventually be
extracted from the priority queue and output.

This completes the proof of the lemma. �

6.4.5 The fuzzy watershed decomposition

In this section we further characterize the structure of imprecise terrains by consider-
ing the ridge lines that delineate the “main” watersheds. In fact, the fuzzy watershed
boundaries (Definition 6.4.12) of the imprecise minima (Definition 6.4.1) possess a
well-behaved ridge structure if the terrain is regular. Consider the following defini-
tion of an “imprecise” ridge.

6.4. REGULAR TERRAINS 155

Definition 6.4.17 Let S1, . . . , Sk be the imprecise minima of an imprecise terrain.
We call the union of the pairwise intersection of the potential watersheds of imprecise
minima the potential ridge of the terrain.

Let S be an imprecise minimum of a regular imprecise terrain. The next lemma
testifies that the persistent watershed of any proxy q of S is equal to the intersection
of the persistent watersheds of all possible non-empty subsets of S. Therefore, we
think of W ·∩(q) as the actual minimal watershed of S, or the minimum associated
with S. By Lemma 6.4.3, the potential watersheds of all non-empty subsets of S are
equal. Consequently, we think of the fuzzy watershed boundary of q as the fuzzy
watershed boundary of S.

Lemma 6.4.18 Let S be an imprecise minimum on a regular terrain, and let x be
any proxy of S. Then

⋂
∅⊂S′⊆S W ·∩(S′) = W ·∩(x).

Proof : Let C denote
⋂

∅⊂S′⊆S W ·∩(S′), the intersection of the persistent watersheds
of all non-empty subsets of S. Consider the complement of this set:

(C)
c
:=

 ⋂

∅⊂S′⊆S

W ·∩(S′)

c

=
⋃

∅⊂S′⊆S

(W ·∩(S′))
c
=

⋃

∅⊂S′⊆S

W
\S′

∪
(
(W∪ (S′))

c)
.

By Lemma 6.4.3 we have W∪ (S′) = W∪ (x) = W∪ (S) for any non-empty set S′ ⊆ S,
so we have:

(C)
c
=

⋃

∅⊂S′⊆S

W
\S′

∪ ((W∪ (S))
c
) .

Now, by Definition 6.4.4, it is impossible for water that reaches x to continue to flow
to a node outside of W∪ (S). Therefore, any flow path to a node outside W∪ (S) that
avoids a non-empty set S′ ⊆ S, also avoids x, and we have:

W
\S′

∪ ((W∪ (S))
c
) ⊆W

\x
∪ ((W∪ (S))

c
) = W

\x
∪ ((W∪ (x))

c
) .

Thus we get:

(C)
c
=

⋃

∅⊂S′⊆S

W
\S′

∪ ((W∪ (S))
c
) = W

\x
∪ ((W∪ (x))

c
) .

By the definition of persistent watersheds, we now have C = W ·∩(x), which completes
the proof.

�

We can now further characterize the potential ridge for regular terrains. The
following lemma implies that on a regular terrain, the potential ridge is equal to the
union of the uncertainty areas of the fuzzy watershed boundaries of any representative
set of proxies of the imprecise minima, see Corollary 6.4.20.

Lemma 6.4.19 Let S1, . . . , Sk be the imprecise minima of a regular imprecise terrain
and let q1, . . . , qk be associated proxies. For any 1 ≤ i ≤ k, we have that W ·∩(qi) =(⋃

j 6=i W∪ (qj)
)c

.

156 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

Potential Watersheds

Potential ridge

Persistent

Watershed Proxy

Figure 6.13: Illustration of the potential ridge on a regular terrain.

Proof : Since qi is a proxy, we have that,

(W ·∩(qi))c = W
\qi
∪ ((W∪ (qi))

c
) = W∪ ((W∪ (qi))

c
) =

⋃

p∈(W∪(qi))
c

W∪ (p) .

Now, for a node p ∈ (W∪ (qi))
c
, consider a minimum S that is reached by a flow

path from p in R−. By Definition 6.4.2, we have that S is an imprecise minimum, and
since p ∈ (W∪ (qi))

c
= (W∪ (Si))

c
, we have S 6= Si. As such, S must be equal to some

Sj for j 6= i. Furthermore, by Lemma 6.4.3 we have WR−(Sj) = WR−(qj), therefore
p ∈ WR−(qj). Now, Lemma 6.4.10 implies that W∪ (p) ⊆ W∪ (qj). It follows that
(W ·∩(qi))c ⊆

⋃
i 6=j W∪ (qj) .

Since we also have that qj ∈ (W∪ (qi))
c
for any j 6= i, we also get (W ·∩(qi))c ⊇⋃

i 6=j W∪ (qj) , which implies the equality. �

Corollary 6.4.20 Lemma 6.4.19 implies that, given q1, . . . , qk, a representative set
of proxies for the imprecise minima of a regular imprecise terrain, it holds that

⋃

i

(W∪ (qi) \W ·∩(qi)) =
⋃

i

W∪ (qi) \

⋃

j 6=i

W∪ (qj)

c

=
⋃

i

W∪ (qi) ∩

⋃

j 6=i

W∪ (qj)

=
⋃

i

⋃

j 6=i

(W∪ (qi) ∩W∪ (qj)) .

By Lemma 6.4.3, this is equal to the potential ridge of this terrain as defined in
Definition 6.4.17. (This relationship is illustrated in Figure 6.13.)

Combining this with Lemma 6.4.6 and Lemma 6.4.16 we obtain:

6.5. CONCLUDING REMARKS 157

Theorem 6.4.21 We can compute the potential ridge of a regular imprecise terrain
in O(n log n) time, where n is the number of edges of the imprecise terrain.

Note that Definition 6.4.17 can also be applied to non-regular terrains, since it is
solely based on the potential watersheds of the imprecise minima. We can use the
algorithm of Section 6.4.2 to compute proxies for these minima, and then use the
algorithm of Lemma 6.4.16 to compute a potential ridge between the watersheds of
these proxies efficiently for non-regular terrains. However, note that the result may
not be exactly the same as the potential ridge according to Definition 6.4.17, because
on a non-regular terrain, the potential watersheds of the proxies may be smaller than
the potential watersheds of the imprecise minima.

6.4.6 Disconnected persistent watersheds

Lemma 6.4.22 There exists a regular terrain that contains a persistent watershed
that consists of more than one connected component.

Proof : Refer to Figure 6.14. The figure shows five nodes with their elevation intervals.
The edges (a, b), (b, d) and (c, d) have length 1. The edge (d, e) has length 1.6. From
a and e, very steep edges lead downwards to nodes not shown in the figure. The
potential watershed W∪ (e) of e is {c, d, e}. The node d is not in the persistent
watershed of e: if d has elevation more than 6 1

3 , the flow path from d will lead to b,
outside W∪ (e). In that case c is a local minimum inside W∪ (e). Whenever c is not a
local minimum, the elevation of d must be less than 4, and the flow path from c will
lead to d and on to e. Thus c is in the persistent watershed W ·∩(e) of e, but d is not,
so we have W ·∩(e) = {c, e}. �

[0,0] [3,3]

[4,4]

[1,7]

[1,2]

a b

c

d

e

Figure 6.14: Example of disconnected persistent watershed on a regular terrain.

6.5 Concluding remarks

In this chapter we studied flow computations on imprecise terrains under two general
models of water flow. For the surface model, where flow paths are traced across
the surface of an imprecise polyhedral terrain, we showed NP-hardness for deciding
whether water can flow between two points. For the network model, where flow

158 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

paths are traced along the edges of an imprecise graph, we gave efficient algorithms
to compute potential (maximal) and persistent (minimal) watersheds and potential
downstream areas. Our algorithms also work for sets of nodes and can therefore be
applied to reason about watersheds of areas, such as lakes and river beds.

In order to enable several extensions of these results in the network model, we
introduced a certain class of imprecise terrains, which we call regular. We first defined
when a set of nodes in an imprecise terrain can be considered a ‘stable’ imprecise
minimum. We then described how to turn a non-regular terrain into a regular terrain
using an algorithm by Gray et al. [81] and showed that this regularization algorithm
preserves these imprecise minima. Interestingly, this algorithm also minimizes the
number of minima of the terrain, while respecting the elevation bounds, as shown in
[81].

We showed that persistent watersheds are nested on regular terrains and that
these terrains have a fuzzy ridge structure which delineates the persistent watersheds
of these stable minima. We gave an algorithm to compute this structure in O(n log n)
time, where n is the number of edges of the terrain. Note that imprecise minima are
defined also for non-regular terrains and they directly correspond to the imprecise
minima in the regularized terrain. This suggests that the fuzzy watershed decom-
position on the regular terrain also allows us to reason about the structure of the
watersheds on the original non-regular terrain. We hope that, even though our work
is motivated by geographical applications, the results will be useful in other applica-
tion areas where watersheds are being computed, for instance in image segmentation
[125].

Surprisingly, a persistent watershed according to our current definition may consist
of multiple connected components: the persistent watershed of a node q may contain
a node p such that one cannot walk from p to q without leaving the watershed (see
Section 6.4.6). It can be debated whether this is an acceptable and possibly rare
consequence of a sensible definition, or if this indicates that our definition needs to
be refined or corrected.

There are many open problems for further research of which we want to discuss a
few in more detail.

Open Problem 6.1 Geographic terrain data is usually collected at a large scale.
For governmental agencies, such as meteorological institutes, it is desirable to work
with high-resolution elevation data on a nation-wide scale. Since such large amounts
of data usually do not fit into main memory, it would be useful to develop an IO-
efficient algorithm for the basic potential watershed computation. The presented
algorithm uses a Dijkstra-like approach and it is known that Dijkstra’s algorithm
is not IO-efficient. However, in our case, unlike in shortest-path computations, the
nodes of the terrain are processed in the order of their computed height. Thus, nodes
that have approximately the same key in the priority queue lie on approximately the
same contour line in the computed realization of the terrain. A recent result by Arge
et al. provides a data structure for IO-efficient contour-line queries [5]. Adapting
these results to imprecise terrains could be a first step towards making the algorithms
presented in this chapter IO-efficient.

Open Problem 6.2 Multidirectional flow models have been proposed in the gis

literature, e.g. D-∞, in which the incoming water at a node is distributed among the

6.5. CONCLUDING REMARKS 159

outgoing descent edges according to a gradient. These models can be seen as modified
network models which approximate the steepest-descent direction more truthfully. It
would be interesting to extend our definitions also to these models. In order to apply
the techniques we developed for watershed computation, we first need to formalize to
which extent a node is part of a watershed in these models.

Open Problem 6.3 A natural extension of the elevation range for a node of an
imprecise terrain is a probability distribution over the possible elevations that this
node may have. In this case, one may ask the question for the probability of a node to
be in the watershed of another node. It would be interesting to compute a watershed
that has high probability under this model. We are still far away from computing
such probabilistic watersheds efficiently. Our work may be a first step towards this
ultimate goal.

Open Problem 6.4 It is an obvious question if realistic input assumptions help in
the complexity analysis of drainage networks on polyhedral terrains. A result by de
Berg et al. [52] shows that if all triangles of the terrain are α-fat, the river network can
have complexity at most O(n2/α2). At the same time they show that if the terrain
surface is defined by a Delaunay triangulation, which is often used in practice, the
same structure can have a complexity in Θ(n3). It is conceivable that fatness helps in
the analysis of flow on imprecise terrains, however there might be other assumptions
that are more suitable. One can also imagine a combination of fatness with other
assumption, for example assuming a low highway dimension on the river network, see
Open Problem 3.2.

160 CHAPTER 6. FLOW COMPUTATIONS ON IMPRECISE TERRAINS

CHAPTER 7

The expected complexity of Voronoi diagrams on terrains

In this chapter we study the expected complexity of geodesic Voronoi diagrams on
terrains, given that the sites are sampled uniformly at random from the domain of
the terrain. In Section 7.1 we motivate the problem and discuss related literature.
Section 7.3 contains a proof of an upper bound on the complexity of the Voronoi
diagram. The constants in the asymptotic analysis depend on how well-behaved the
terrain is, which is formalized using the realistic input models described in Section 7.2.
In Section 7.4 we analyze the expected complexity if these assumptions on the shape
of the terrain are dropped and give some lower bounds. We conclude with a discussion
of some open problems in Section 7.5.

7.1 Introduction

Voronoi diagrams on terrains are a basic geometric structure that have applications
in many areas: geographic information science (gis) [8, 62, 126, 42], robot motion
planning [142], mesh generation [104] and image analysis [141, 153] to name a few.
The geodesic Voronoi diagram of point sites on a polyhedral terrain is a subdivision
of the surface into cells, corresponding to the set of sites, such that every cell contains
exactly the surface points which are closest to the site that is associated with the cell.
Here, the distance is measured by the length of the shortest path on the terrain. It is
tempting to believe that in practice – that is, given that the terrain is well-behaved
– the complexity of such a geodesic Voronoi diagram should be linear, because of its
similarity to the Euclidean Voronoi diagram of point sites in the plane.

However, in the worst case, this complexity can be much higher, even if one makes
certain realistic assumptions on the shape of the terrain. Indeed, Aronov et al. [17]
show that the worst-case complexity is Θ(n+m

√
n) for a certain class of well-behaved

terrains, where n is the number triangles that define the terrain andm is the number of
Voronoi sites. This shows that assuming realistic input indeed brings the complexity

161

162 CHAPTER 7. COMPLEXITY OF VORONOI DIAGRAMS ON TERRAINS

down, since in general the complexity can be quadratic, however it is still far from
being linear. They conjecture that, in order to prove a linear bound, one needs to
make further assumptions on how the sites are distributed. Our purpose in this paper
is to study the complexity of a geodesic Voronoi diagram if we assume that the sites
are being chosen randomly from the terrain.

Previous work. Analyzing the expected complexity of geometric structures for ran-
dom inputs has a long history in computational geometry. See for instance the work
of Rényi and Sulanke [128] and Raynaud [127] on the complexity of convex hulls of
random points. Weil and Wieacker give an overview of related results in [155]. The
counterparts of Voronoi diagrams are the Delaunay triangulations [21]. Naturally
they have been analyzed probabilistically as they are a fundamental data structure,
used in fields such as mesh generation [129], surface reconstruction [61], molecular
biology, and many others. It is well-known that the complexity of the Voronoi dia-
gram of point sites in IR3 is quadratic in the worst-case, however it is near-linear in
most practical situations. To address this dichotomy, people have investigated the
complexity when the point sites are: (i) generated by a random processes, (ii) well
spaced, (iii) have bounded spread, or (iv) were sampled from surfaces according to
curvature. See [60] and references therein for more information on such work.

In particular, there is a vast amount of work on Poisson Voronoi Diagrams (PVD).
Here, the domain has a density associated with it (say, the area). The probability
of n points to appear in an area of measure µ has, as the name suggests, a Poisson
distribution parameterized by the area. Similarly, the distribution of points selected
into disjoint areas is independent. Poisson Voronoi diagrams are used in many areas,
such as physics, biology, animal ecology, and others. See [123, 95] and references
therein. However, this work does not seem to have considered geodesics at all.

In this chapter, we are interested in the complexity of geodesic Voronoi diagrams
on polyhedral terrains. Moet et al. [119] were the first to study this complexity using
a set of parameterized assumptions that describe realistic terrains. In this approach,
one assumes that a certain property, for example, the maximum slope of the terrain,
can be bounded by a constant independent of the input size. This allows one to
avoid certain worst-case configurations which are highly unlikely to occur in practice.
Instead, the analysis is confined to classes of well-behaved inputs and consequently
this method is described as using realistic input models, see Section 1.2.4. Moet also
did an experimental validation of the used parameters [118] and confirmed that the
parameters indeed behave like constants on realistic terrains.

The realistic input models introduced in this work have also been adopted by
subsequent papers. As such, Aronov et al. [17] improved the bounds given by Moet
et al. and showed that (i) the bisector between two sites has worst-case complexity
Θ(n), (where n denotes the number of triangles of the terrain) if the triangulation is
low-density and the lifted triangles have bounded slope; and (ii) that the worst-case
combinatorial complexity of the Voronoi diagram is Θ(n+m

√
n), (where m denotes

the number of sites) if in addition the triangles are of similar size and the aspect
ratio of the domain is bounded. The realistic assumptions made in these papers are
described in more detail in the next section.

Finally, note that Schreiber and Sharir [131] showed how to compute an implicit
representation of the geodesic Voronoi diagram on the surface of a convex polyhedron,

7.2. PRELIMINARIES 163

in time O((n+m) log (n+m)), so that the site closest to a query point can be reported
in time O(log (n+m)). Schreiber [130] also extended their method for single-source
shortest paths to the case of non-convex polyhedra using several realistic input models.
Naturally, these analyses do not inform about the complexity of the explicit Voronoi
diagram.

7.2 Preliminaries

7.2.1 Voronoi diagrams on terrains

A polyhedral terrain T is defined by a triangulation ∆ of a set V of n vertices in IR2, a
convex domain D ⊆ IR2 which is equal to the convex hull of V, and a height function
on these vertices. The surface of the terrain is defined by the triangles of ∆ lifted
according to this height function. We refer to T simply as a terrain and we denote
the set of edges of the triangulation with E. For simplicity of exposition we restrict
our discussion to the case where D is the unit square, however, our results can be
easily extended to the more general case of convex regions with bounded aspect ratio.
For two points q, r ∈ D, we denote their Euclidean distance in the (x, y)-plane with
‖q− r‖. When q and r are lifted to the surface of T, we define their geodesic distance
to be the length of the shortest path connecting them that is constrained to lie in the
surface of T, and we denote this value by dT(q, r).

The (geodesic) Voronoi diagram of a set of m points on T (which are called
sites) is a subdivision of the surface of T, where every cell of the subdivision is
associated with exactly one site, and such that for any point in the cell the associated
site is the closest site, where the distances are measured using the geodesic distance.
We denote the Voronoi diagram with Vor(P), where P denotes the set of sites, and
we call a cell of the subdivision a Voronoi cell . The bisector between two sites q

and r on the surface of T is defined as the set of points p, such that p has the same
distance to q and r. The Voronoi diagram can be represented as the structured set
of curves and straight lines which delineate the Voronoi cells and which are subsets
of the bisectors between these points. We call a point which is incident to at least
three cells a Voronoi vertex and we call each maximally connected subset of the
bisector incident to two Voronoi cells a Voronoi edge (note that two cells can have
multiple edges between them). Usually one assumes general position of the sites so
that no two sites are equidistant from a terrain vertex, which ensures that bisectors
are one-dimensional and that the Voronoi cells subdivide the terrain surface without
overlap, see also [17]. In our case the sites are randomly sampled and such degenerate
configurations are negligible.

Since a terrain T is defined by a height function over a domain D, there is a natural
bijection between points of T and points of D. Hence, the various objects defined in
the previous paragraph can be viewed either in T or in D. Generally in the paper we
shall refer to these objects by their projection in D, unless otherwise stated.

7.2.2 The input model

The main idea of realistic input models is to parametrize certain properties of the
input, which are suspected to capture contrived configurations leading to high com-

164 CHAPTER 7. COMPLEXITY OF VORONOI DIAGRAMS ON TERRAINS

plexities or running times. In cases where there exists a high discrepancy between
the theoretical bounds and the complexities observed in practice, it is often useful
to analyze the complexities not only as a function of the input size, but also with
respect to these parameters. This sometimes leads to more informative asymptotic
bounds. As such, the realistic input assumptions do not only distinguish between
“good” and “bad” input, instead they enable a more differentiated view on which
inputs are ’better’ or ’worse’.

In this chapter, we use the following realistic input model. A set of line segments
is λ-low-density if and only if the number of edges that intersect an arbitrary ball,
which are longer than the radius of the ball, is smaller than λ. Low density has been
used in the analysis of many different geometric problems, see also the discussion in
Section 1.2.4.

To model a realistic terrain we adopt the realistic assumptions made in [17].
According to these assumptions, there exist constants λ and ξ independent of n, such
that

(i) the set of edges of the triangulation is a λ-low-density set, and
(ii) any line segment embedded in the lifted triangulation has slope at most ξ.

We now state some useful facts that follow from these assumptions. For notational
ease in the rest of the paper we define the constant β =

√
1 + ξ2.

First, the number of pairs of objects from two low-density sets that intersect each
other is linear in the total number of objects in these sets. This can also be easily
verified independently, the idea is to charge each intersecting pair to the smaller of
the two objects.

Fact 7.2.1 (Aronov et al. [17]) Let A be a set of n objects with λ-low-density and
let B be a set of m objects with φ-low-density, then the number of pairs of objects
(u, v) ∈ A×B, such that u intersects v is O(λm+ φn).

Second, since the slope is bounded by a constant, the geodesic distance is the same
as the Euclidean distance up to a constant factor, and similarly, geodesic disks have
an area that is approximately the same as that of planar disks in this case.

Fact 7.2.2 (Aronov et al. [17]) For any two points q, r ∈ D, we have that ‖q− r‖ ≤
dT(q, r) ≤ β ‖q− r‖.

Lemma 7.2.3 Let D be a geodesic disk of radius r on the surface of a terrain with
bounded slope ξ and let A denote its area. We have that π(r/β)2 ≤ A ≤ πβr2.

Proof : Let c be the center of D and let cp be its projection. Let Dr/β and Dr be
the planar disks with center cp and radius r/β and r, respectively. Let Tr/β and Tr
denote the portion of the terrain that lies directly above Dr/β and Dr, respectively.

Clearly the projection of D is contained in Dr. Thus, if we can bound the area of
Tr then this will bound the area of D. Observe that Dr consists of a set of triangles
from ∆, which have been clipped at the boundary of Dr. If we lift any such (clipped)
triangle up to the terrain then its area can increase by at most a factor of β. Therefore
the total area of Tr is at most πβr2.

Now consider the disk Dr/β . First observe that Tr/β must have area at least as
large as that of Dr/β . Second, note that D must contain Tr/β (since by Fact 7.2.2 the

7.2. PRELIMINARIES 165

distance between any point Tr/β and c is at most β(r/β) = r). Therefore the area of
D is at least π(r/β)2. �

7.2.3 The complexity of the Voronoi diagram

The complexity of the Voronoi diagram is measured by the complexity of the set of
curves and line segments that delineate the Voronoi cells. This set consists of pieces
of bisectors and it can be characterized as follows. Again, we adopt the definitions
used in [17].

For most of the points on a bisector, the shortest path to either site will be
unique. If the shortest path is not unique, we call p a breakpoint . The breakpoints
partition the bisector into a set of curved pieces which we call bisector pieces. The
combinatorial complexity of the Voronoi diagram is now defined as the sum of
(i) the number of Voronoi vertices, (ii) the number of breakpoints of Voronoi edges,
and (iii) the number of intersections of the bisector pieces of Voronoi edges with the
triangulation of the terrain.

We continue with some useful facts and lemmas used in the analysis of the com-
plexity. First, it was observed by Moet et al. that the number of breakpoints of the
Voronoi diagram is bounded by n, since each of them can be attributed to a terrain
vertex. To see why this is true, imagine walking along a bisector while sweeping the
shortest paths to either site from the current position. Intuitively, a breakpoint on
the bisector corresponds to the event that the path “jumps” across a small mountain
or valley and this event can be charged to a terrain vertex that is “skipped” by the
otherwise continuous sweep.

Fact 7.2.4 (Moet et al. [119]) Given a terrain T which is defined by a triangula-
tion with n vertices, the number of breakpoints of any Voronoi diagram on T is smaller
than or equal to n.

Furthermore, we will use the following result by Aronov et al. [17].

Fact 7.2.5 (Aronov et al. [17]) Given two points q and r, the set of bisector pieces
that form the bisector of q and r on T (projected to the (x, y)-plane) is O(ξ)-low-
density.

We remark that Aronov et al. use this result to show that the bisector has linear
complexity. However, note that this result does not imply that the overall set of
bisector pieces of the Voronoi diagram is low-density, which would imply a linear
complexity for the whole diagram. Consider for example the situation, where all the
sites lie close to each other on a straight line, and all the triangles of the terrain surface
are coplanar. In this example, the bisectors are pairwise parallel lines, which extend
from one side of the domain to the other and could therefore lead to a quadratic
complexity Voronoi diagram by intersecting many triangles of the terrain.

Finally, we observe that the number of Voronoi vertices and edges is linear in
the number of sites, as the following lemma and corollary testify. This fact was
also observed by Aronov et al., we include an independent proof which also shows
Corollary 7.2.7 below.

166 CHAPTER 7. COMPLEXITY OF VORONOI DIAGRAMS ON TERRAINS

Lemma 7.2.6 Let T be a terrain and let P be a set of m points. Then the number
of Voronoi edges and Voronoi vertices of Vor(P) is O(m).

Proof: For m ≤ 2 the claim is clearly true, since we have at most one bisector, which
contributes exactly one Voronoi edge. For m > 2, we argue as follows.

First, observe that the cells in this Voronoi diagram are connected. Indeed, con-
sider a point p that belongs to the interior of the cell of s ∈ P. Consider the shortest
path π from p to s, and consider any point q ∈ π. If q is closer to some other site t

than to s, then we have that

dT(p, s) = dT(p, q) + dT(q, s) ≥ dT(p, q) + dT(q, t) ≥ dT(p, t) ,

but this is a contradiction to p being in the interior of the cell of s.
Now, consider the dual graph G of the graph formed by the Voronoi vertices and

Voronoi edges. In this graph, every vertex corresponds to a Voronoi cell and every
face corresponds to a Voronoi vertex. Note that we can derive a geometric embedding
of this graph by using the sites as vertices and picking an arbitrary point on each
Voronoi edge and connecting it by its shortest path to either site to form an edge
between two vertices.

It is well-known that a cell in the Voronoi diagram might not be simply connected.
Indeed, consider a mountain surrounded by plains. If we place a site s on the top of
the mountain, and a site t at the bottom of the mountain (and the mountain slope is
large enough) then the Voronoi cell of s would be completely surrounded by the cell
of t and thus would create a ’hole’ in this cell. In G, the two vertices that correspond
to the cells of s and t would be connected by an edge, which is incident to only one
face in G. s

t

r

Furthermore, it is known that the dual graph
can have multiple edges between two sites. To
see this, again, place s on the top of the mountain
and place two sites t and r at the bottom, such
that the bisector between t and r intersects the
mountain. The boundary between the cells of t
and r would contain two Voronoi edges from the
same bisector.

However, the dual graph G is planar and con-
nected and as such its Euler characteristic is 2. Hence v− e+ f = 2, where e denotes
the number of edges, f the number of faces and v the number of vertices of G.

Now, by definition, every Voronoi vertex is incident to at least three Voronoi cells.
Therefore, every face of G is incident to at least three edges of G. Since G is planar,
every edge of G is incident to at most two faces of G. Hence, we have that 3f ≤ 2e,
which implies that 3f ≤ 2(v+f −2), and therefore it holds that f ≤ 2v−2 = 2m−2.
It follows that the number of Voronoi vertices is in O(m). Applying Euler’s formula
again, we obtain that also the number of Voronoi edges is in O(m). �

Corollary 7.2.7 Let T be a terrain and let P be a set of m points. Let D be a
connected subset of the unit square which intersects k Voronoi cells in their projec-
tion. The number of Voronoi edges of Vor(P) which intersect D in their projection is
in O(k).

7.3. UPPER BOUND 167

7.3 Upper bound

We prove the following lemma first in the planar case and then extend it to terrains
with bounded slope. The bounded expected complexity then follows by examining
the number of intersections of the bisector pieces with the terrain triangulation in an√
m×√m grid.

Lemma 7.3.1 Let P be a set of m points, sampled uniformly at random from a unit
square, and let D be a square of side length 1/

√
m contained in the unit square. Then

the expected number of points in P that contribute to Vor(P) ∩D is in O(1).

Proof: We place a sequence of exponentially growing disks centered at the center
point of D. Let ri =

1√
2m

2i, for i = 0, . . . , k =
⌈
lg
√
2m
⌉
(i.e. r0 is the radius of the

circumscribed circle of D). Let di be the disk of radius ri, which is clipped to the
unit square and let Ri = di \ di−1, for i = 1, . . . , k.

pj

pu

Ri

D

Let the points in P be labeled p1, . . . , pm. Observe that
the expected number of points from P that fall into d2 is
(πr22)m = 16πm

2m = 8π = O(1). Hence we do not need to
worry about their contribution to Vor(P) ∩D. Otherwise,
we claim that a point pj which falls into Ri for i > 2, can
only contribute to Vor(P)∩D if di−2 contains no points of
P. Assume for the sake of contradiction that the Voronoi
cell of pj intersects D, and there exists some point pu in P

that lies in di−2. By construction, we know pj has distance greater than (ri−1−r0) to
any point in d0 and pu has distance at most (ri−2 + r0) to any point in d0. Hence we
have that d(pj , d0) > ri−1 − r0 = 2ri−2 − r0 ≥ ri−2 + r0 ≥ d(pu, d1) for i > 2 and as
such every point in d0 is strictly closer to pu than pj , where d(p, X) = minq∈X ‖p− q‖.

Hence it is sufficient to bound the expected number of points pj which fall into an

annulus Ri such that di−2 is empty. For pj we define the indicator variable Xj
i which

is equal to 1 if and only if pj ∈ Ri, and the indicator variable Y j
i which is equal to 1

if and only if no other point falls into di−2. Hence a given point pj can contribute to

Vor(P) ∩D if and only if Xj
i Y

j
i = 1 for some value of i. Now, we know that

Pr
[
Xj

i = 1
]
≤ πr2i − πr2i−1 =

π

2m
(22i − 22(i−1)) =

3π

2m
4i−1,

and

Pr
[
Y j
i = 1

]
≤
(
1− 1

4
πr2i−2

)m−1

≤ exp
(
−π
4
r2i−2(m− 1)

)
= exp

(
−π4

i−3(m− 1)

2m

)
≤ exp(−4i−3),

where a factor of 1/4 was added in the bound for Y j
i due to boundary effects that

might arise from the position of D in the unit square. Hence the number of points
that can affect Vor(P) ∩D is bounded by

∑
j

∑
i>2X

j
i Y

j
i , for which in expectation

168 CHAPTER 7. COMPLEXITY OF VORONOI DIAGRAMS ON TERRAINS

we have,

E

∑

j

∑

i>2

Xj
i Y

j
i

 =

∑

j

∑

i>2

E
[
Xj

i

]
E
[
Y j
i

]

≤
∑

j

∑

i>2

3π

2m
4i−1e−4i−3

=
3π

2

∑

i>2

4i−1e−4i−3

= O(1),

by linearity of expectation and the independence of Xj
i and Y j

i for all i and j. �

Lemma 7.3.2 Let T be a terrain with bounded slope ξ. Let P be a random sample
of m points, either sampled uniformly from T, or uniformly from the unit square and
then lifted vertically up to T. Let D be a square of side length 1/

√
m contained in the

unit square. Then the expected number of points in P that contribute to the portion
of the Voronoi diagram of P on T that lies above D is O

(
β5
)
.

Proof : Follows by a careful adaptation of the proof of Lemma 7.3.1. To accommodate
for the larger distances on the surface, we increase the radii of the disks slightly.

So, let ri =
1√
2m

(2β + 1)i, for i = 1, . . . , k. Let di be the disk (in the plane) of

radius ri centered at the center of D. And let Ri = di \ di−1, for i = 1, . . . , k, as
defined above. For points p, q ∈ di−2 and r ∈ Ri = di \ di−1, we have that

dT(p, q) ≤ β ‖p− q‖ ≤ β2ri−2 ≤ ri−1 − ri−2 < ‖q− r‖ ≤ dT(q, r) .

As such, as before, for a point in P ∩Ri to affect the Voronoi diagram on D requires
that di−2 is empty of any points of P.

Now, consider the case that the points are sampled from the terrain. Define Xj
i

and Y j
i as in Lemma 7.3.1. Note that the area of the terrain can only increase from

one by lifting the individual triangles. By Lemma 7.2.3, we have that

Pr
[
Xj

i = 1
]
≤ area of Ri on terrain

area of terrain

≤ β
(
πr2i − πr2i−1

)
≤ πβ

2m

(
(2β + 1)2i − (2β + 1)2i−2

)
≤ πβ

2m
(2β + 1)2i.

Similarly, since di−2 intersects the terrain with at least a quarter disk, the size of
this area is bounded from below by πr2i−2/(4β). Plugging this into the analysis of
Lemma 7.3.1, we have

Pr
[
Y j
i = 1

]
≤
(
1− πr2i−2

4β2

)m−1

≤ exp

(
−πr

2
i−2

4β2
(m− 1)

)
≤ exp

(
−(2β + 1)2i−5

)
.

As before, we thus have

E

∑

j

∑

i>2

Xj
i Y

j
i

 ≤

m∑

j=1

∑

i>2

πβ

2m
(2β + 1)2i · exp

(
−(2β + 1)2i−5

)
= O(1).

7.3. UPPER BOUND 169

The only missing component is bounding the expected number of points of P∩ d2, as
they can affect the Voronoi diagram in D. Arguing as above, this quantity is bounded
by mβ · (area of d2) ≤ mβπr22 ≤ β

2 (2β + 1)4 = O
(
β5
)
.

Note that if we drop the factors of β in the bounds for Xj
i , Y

j
i , and the area of d2,

then the above becomes a proof for the case when we sample from the unit square �

Theorem 7.3.3 Let T be a terrain. Let P be a random sample of m points, either
sampled uniformly from the surface of T, or uniformly from the domain and then lifted
vertically up to the surface. The expected combinatorial complexity of Vor(P) is in
O
(
ξβ5λ(n+m)

)
.

Proof : As described in Section 7.2.3, the combinatorial complexity of the Voronoi
diagram is the sum of the number of breakpoints of Voronoi edges, the number of
Voronoi vertices and the number of intersections of triangulation edges with bisector
pieces of Voronoi edges. By Fact 7.2.4 the number of breakpoints is bounded by O(n),
and by Lemma 7.2.6 the number of Voronoi vertices is bounded by O(m).

It remains to bound the number of intersections of the set of bisector pieces with
the triangulation. To this end, we place a grid on the domain of the terrain, such that
the side length of each grid cell is l = 1/

√
m and we obtainM = O(m) grid cells which

together cover the domain of the terrain. Now, let C1, . . . ,CM denote these grid cells.
Consider the grid cell Ci and the set of bisector pieces of the Voronoi diagram which
intersect this grid cell, let this set be Bi. Similarly, let Ei denote the subset of edges
of the triangulation, which intersect Ci. Since we assumed that the triangulation is
λ-low-density, also Ei is a λ-low density set. By Fact 7.2.5 we have that the set of
bisector pieces, which originate from the same Voronoi edge (and therefore from the
same bisector) form an O(ξ)-low-density set. Let ki denote the number of Voronoi
edges that contribute bisector pieces to Bi. We have that Bi is a O(ξki)-low density
set. By Fact 7.2.1, the number of intersections between objects of Ei and objects of
Bi is in O(ξki|Ei|+ λ|Bi|).

Now, in order to bound the overall number of intersections, let B>l
i denote the

subset of bisector pieces which are longer than l, similarly, let B≤l
i denote the bisector

pieces in Bi which have length smaller or equal to l and let E
≤l
i and E>l

i be defined
analogously. By the above analysis, we have that there exists some constant c1, such
that it holds for the overall number of intersections χ,

χ ≤ c1
M∑

i≥1

(ξki|Ei|+ λ|Bi|) = c1

M∑

i≥1

(
ξki

(
|E>l

i |+ |E≤l
i |
)
+ λ

(
|B>l

i |+ |B≤l
i |
))

.

By the definition of low-density sets, we have that |E>l
i | = O(λ) and |B>l

i | = O(ξki),
since they intersect the bounding ball of the grid cell Ci, which has radius O(l).
Therefore, it must be that there exists a constant c2 such that,

χ ≤ c1
M∑

i≥1

(
ξki|E≤l

i |+ λ|B≤l
i |+ c2λξki

)
≤ c1

M∑

i≥1

(
ξki|E≤l

i |+ c2λξki

)
+ c1λ4|B|,

where the last inequality follows from the fact that any bisector piece in B
≤l
i can

intersect at most four grid cells, since the grid cells have side length equal to l (similarly

any edge in E
≤l
i can intersect at most three grid cells).

170 CHAPTER 7. COMPLEXITY OF VORONOI DIAGRAMS ON TERRAINS

Finally, note that the number of Voronoi cells that are expected to intersect a grid
cell in their projection is bounded by O(β5) by Lemma 7.3.2. Thus by Corollary 7.2.7
we have that E[ki] = O(β5). Therefore in expectation,

E[χ] ≤ c1 E

M∑

i≥1

(
ξki|E≤l

i |+ c2λξki

)

+ c1λ4|B|

= c1

M∑

i≥1

(
ξE[ki] |E≤l

i |+ c2λξE[ki]
)
+ c1λ4|B|

≤ c3ξβ5λ

M∑

i≥1

(
|E≤l

i |+ 1
)
+ 4|B|

≤ c3ξβ5λ(3|E|+M + 4|B|)

for some constant c3 (note that we used the fact that |E≤l
i | is independent of the

random sampling). Furthermore, observe that by Lemma 7.2.6 the overall number of
Voronoi edges is O(m). Recall that every Voronoi edge is broken up by breakpoints
into bisector pieces. Every breakpoint increases the number of bisector pieces by
one. Using Fact 7.2.4, it follows that the overall number of bisector pieces |B| is in
O(n +m). Since the number of edges of the triangulation |E| is O(n), we conclude
that E[χ] = O(ξβ5λ(n+m)). �

7.4 Lower bound

In this section we show that if we drop the assumptions on the terrain, then the
expected worst-case complexity of the resulting geodesic Voronoi diagram can be
Ω
(
nm2/3

)
if the sites are sampled uniformly at random from the unit square.

In the following we will refer to the walls of the unit square defined by x = 0,
x = 1, y = 0, and y = 1 as the west, east, south, and north walls, respectively.

7.4.1 A simple example

We start with a simple example of a Voronoi diagram of points in the plane overlayed
with a planar map, such that the overlay has a high complexity. The later construc-
tions use this as their starting point. There, the triangulation of the terrain surface
will take the place of the planar map.

First place m points in a column near and parallel to
the west wall of the unit square such that the spacing
between each adjacent pair of points is Θ(1/m). The pla-
nar map consists of n vertical lines near the east wall of
the unit square that extend from the north wall to the
south wall. Now, the boundaries of the Voronoi cells of
these points extend from the west to the east wall and
are parallel to the north and south walls, and hence the
complexity of the overlay of the Voronoi diagram with the planar map is Θ(nm), since
it is an n×m grid.

7.4. LOWER BOUND 171

7.4.2 Farming – an Ω(n
√
m) example

7.4.2.1 Construction

The height function used in the following construction of a terrain has (essentially)
only two values, zero and h. The areas between a part of the terrain that is of height
zero and of height h consist of very narrow and steep boundary regions. In our
construction this intermediate boundary has a very small measure in the projection,
and the reader can think of it as having measure zero. Moreover, h is chosen to be
sufficiently large so that no point at height zero can affect the Voronoi diagram at
height h.

One can therefore view the following terrain construction as a flat unit square,
where we have cut out or “forbidden” areas (that have height 0). Therefore, for the
sake of simplicity of exposition, an area being constructed is flat, at height h, and the
adjacent forbidden area is at height zero.

Our main building blocks will be farms. We define a farm to be a square of side
length 1/(c

√
m). Intuitively, farms are part of the terrain which with constant proba-

bility (the constant will depend on c) will receive at least one point from the random
sample (i.e. a farm takes the place of a point from the example in Section 7.4.1).

We define the diameter of a farm to be the quantity δ =
√
2/(c
√
m) (that is, the

distance of the furthest two points in a farm).
We now define a sequence of ridges to take the place

of the planar map from Section 7.4.1 (i.e. in expectation
we would like the Voronoi diagram to look like a grid over
the ridges).

Formally, let a sequence of ridges of length n be a sequence of 2n rectangles,
r1, . . . , r2m such that the right edge of ri is the same as the west edge of ri+1 for
i = 1, . . . , 2n − 1, ri has a slope of 45◦ for odd i and −45◦ for even i, all rectangles
extend from the north-to-south walls of the unit square, and the geodesic distance
from the left edge of r1 to the right edge of r2n is 1/(c2n) (which is O(1/2m) since
we assumed m = O(n)). Refer to the figure above to the right for a side view of the
ridges.

The construction of the Ω(n
√
m) example is as follows. The layout is illustrated

in Box 7.1. Place Θ(
√
m) farms from north-to-south along the west wall of the unit

square, with 2/(c
√
m) spacing in between each adjacent pair. Next build a sequence

of Θ(n) ridges near (and parallel to) the east wall of the unit square. Then connect
each farm directly to the leftmost ridge by creating a line parallel to the north and
south walls connecting the south-east corner of the farm to the first ridge. See figure
on the right. We refer to such a line as road . The roads stay at height h and to the
left and right of a road, the height drops to zero as described earlier.

7.4.2.2 Analysis

Definition 7.4.1 The point at which a farm connects to its road is its entrance

(i.e. the south-east corner of the farm), and the point at which the road connects to
the leftmost ridge is its exit . We say that the point (from the random sample of m
points) that is closest to the entrance for a farm, is the farm’s dominating point.

172 CHAPTER 7. COMPLEXITY OF VORONOI DIAGRAMS ON TERRAINS

Box 7.1 Basic farming layout

Ridges

entrance exit

δ

Farms
Roads

h

√

m
n

Layout of the terrain construction described in Section 7.4.2.1. A topview is
shown on the left, while a perspective view is shown on the right. On the right, a
random sample of point sites and two cells of the Voronoi diagram are indicated.
The height parameter h is chosen such that the point sites at the bottom do not
influence the Voronoi diagram at the top level.

Lemma 7.4.2 For the construction of the terrain described above, if one picks uni-
form at random m points in the unit square, their induced geodesic Voronoi diagram
on this terrain has complexity Ω(n

√
m).

Proof : The area of each farm is Θ(1/m) and hence a sample of m points picked
uniformly at random from the unit square, will have at least one point with constant
probability in each farm. Moreover, since we constructed Θ(

√
m) farms, this implies

that in expectation Θ(
√
m) farms will receive at least one point. Furthermore, the

width of the sequence of ridges and roads was chosen such that the probability that
either receives a point is exponentially small (and hence in the following we assume
they do not receive any point).

Now consider a farm which received at least one point, and let p be its dominating
point. Observe that the Voronoi cell of p contains the entire road connecting this farm
to the ridges, and its Voronoi cell extends all the way to the rightmost edge of the
sequence of ridges, and hence will be of complexity Ω(n). Indeed, by our construction,
only a point from another farm can prevent the Voronoi cell of p from reaching the
rightmost ridge. However, the spacing of the farms was chosen to prevent this. In
the worst case p is in the north-west corner of its farm, and an adjacent farm has a
point q at the south-east corner. Let l be the length of a road. Let zp (resp. zq) be
the exit of the farm containing p (resp q). Now consider the geodesic shortest path
connecting zp to the rightmost ridge. Every point on this segment is in distance at
most δ + l + 1/(c2n) from p. However, the closest point on this segment from q is
at a distance of at least l + 2/(c

√
m) ≥ δ + l + 1/(c2n), and so q cannot prevent the

Voronoi cell of p from reaching all the way to the rightmost ridge.
Therefore, in expectation, we have that Θ(

√
m) farms have a point whose Voronoi

cell extends all the way across the sequence of ridge, which gives a Voronoi diagram
that in expectation has complexity Ω(n

√
m). �

7.4. LOWER BOUND 173

7.4.3 Industrial farming – an Ω
(
nm

2/3
)
example

The challenge in improving the example above is that the distance of a dominating
point to the exit of a farm has too much variance (i.e.,

√
1/m). Since there does not

seem to be a way to decrease the variance directly, we instead connect all the farms
to the ridges, and carefully argue about the expected complexity of the generated
Voronoi diagram.

7.4.3.1 Construction

We set the side length of each square farm to be 1/
√
m and construct a sequence of

Θ(n) ridges near the east wall of the unit square. We will place an M ×M grid of
farms inside the unit square, where M = ⌊√m/5⌋. Specifically, the spacing between
columns (which extend from north-to-south) will be 1/

√
m and the spacing between

rows (which extend from west to east) will be 2/
√
m. The grid starts in the north-west

corner of the unit square.

We now describe the connecting roads from the farms to the ridges. The con-
struction will ensure that the length of each road is the same and that the distance
between adjacent exits along the ridges is at least 1/m. These two properties will be
sufficient for the analysis in the next section to go through.

f0 f1 . . . fM−1Consider a given row of farms. Number the
farms in this row f0, . . . , fM−1 in increasing or-
der of their distance to the west wall. Every
farm has dimensions 1/

√
m × 1/

√
m, and the

spacing between two consecutive farms in a row
is 1/

√
m. As such, the x coordinate of the en-

trance of the ith farm is xi = (2i + 1)/
√
m (as

before, the entrance to each road will be at the
south-east corner of the farm). The directions
the ith farm’s road goes from entrance to exit is
described as follows:

(a) south for a distance of αi,a = i/m,
(b) west for a distance of αi,b = (xi + αi,a)/2,
(c) south for a distance of αi,c = 1/

√
m− 2αi,a, and

(d) east for a distance of αi,d = w − (xi − αi,b) all the way to the first ridge,
where w is the distance from the west wall to the first ridge.

This layout is sketched in the figure above to the right. Note that the spacing in
this figure only approximately matches the description.

Sanity checks. The road of the ith farm starts at x coordinate xi, goes west for a
distance of αi,b and east for a distance of αi,d. Observe that the x coordinate of the
exit of this road is xi − αi,b + αi,d = xi − αi,b + w − (xi − αi,b) = w.

Observe that the ith farm will connect to the ridges in north-to-south distance
αi,a + αi,c = 1/

√
m− i/m from the southern boundary of the row of farms. That is,

adjacent farms in the row have exits in distance 1/m apart along the first ridge (exits
are Θ(1/

√
m) apart between rows). Furthermore, each road is of the same length.

174 CHAPTER 7. COMPLEXITY OF VORONOI DIAGRAMS ON TERRAINS

Indeed, let ri be the length of the road for the ith farm to its exit. We have that

ri = αi,a +
xi + αi,a

2︸ ︷︷ ︸
αi,b

+
1√
m
− 2αi,a

︸ ︷︷ ︸
αi,c

+w −
(
xi −

xi + αi,a

2

)

︸ ︷︷ ︸
αi,d

=
1√
m

+ w.

That is, all the roads have exactly the same length.
Each farm contributes at most 16 vertices to the complexity of the terrain (for

building itself and the connecting road). The construction uses M2 = m/25 farms,
thus leaving a contingent of at least n− 16

25m vertices for building the ridges. Ifm ≤ n,
then this is in Θ(n) as desired.

7.4.3.2 Competing farms

We now prove that in expectation Θ
(
m2/3

)
dominating points will have their Voronoi

cells reach all the way to the east wall across the sequence of ridges.

Definition 7.4.3 Let p and z be the dominating point and exit, respectively, of
some farm. We say that another point q from the random sample that is contained
in another farm and such that dT(q, z) < dT(p, z), eliminates (the Voronoi cell of)
p, where dT(p, z) denotes the shortest path on the terrain from p to z. If there are no
points which eliminate a given dominating point, then the dominating point is alive.

Observation 7.4.4 Let p and zp be the dominating point and exit, respectively, of
some farm f . Let q be a point which is in some other farm f ′ with exit zq. If
f ′ is i farms away (in the north to south order of the exits of the farms along the
first ridge) then ‖zp − zq‖ ≥ i/m and hence if q eliminates p then it must be that
dT(q, zp) = dT(q, zq) + i/m < dT(p, zp).

Next, we prove that each dominating point is alive with probability Ω
(
1/m1/3

)
,

using the following lemmas.

Lemma 7.4.5 Let f be a farm, and let r be the random variable that is the distance
of the closest site (that falls into this farm) from the farm entrance (if there is no site

in this farm, we set r =
√
2/m). Then, for any distance s, we have Pr

[
r ≤ s

]
≤

ms2π/4, where equality holds for 0 ≤ s ≤ 1/
√
m.

Proof: Recall that the entrance of a farm is at the south-east corner. Hence a point in
the farm which is in distance at most s from the entrance must fall into the intersection
of the farm with a circle of radius s whose center is at the entrance of the farm, see
the figure to the right.

s

1
√

m

1
√

mTherefore, if the radius of the circle is less than the side length
of the square, i.e. s ≤ 1/

√
m, then the intersection is a quarter

disk and so the area is exactly πs2/4. Otherwise, the top and left
portions of the quarter disk needs to be clipped to the farm and so
the area is at most πs2/4. Now, the probability of the ith site to
fall into this disk is at most πs2/4, and since we sample m sites (independently), by
the union bound the claim follows. �

7.4. LOWER BOUND 175

Observation 7.4.6 The above raises the following natural question: Given that a
point p is picked at random falls into a farm f , what is the probability that it is in
distance at most r from the entrance e of f . For r ≤ 1/

√
m, the above argument

implies that

Pr
[
dT(p, e) ≤ r

∣∣∣ p ∈ f
]
=

r2π/4

area(f)
=
mr2π

4
, (7.1)

as dT(p, e) = ‖p− e‖ since the surface is horizontal on top of a farm.

Lemma 7.4.7 Let p and z be the dominating point and exit, respectively, of a farm
f . Let r = dT(p, z). Let fi be a farm which is i farms away from f (either in north
or in south direction), and let Xi be the number of points which fell into fi. Let αXi

denote the probability that no point from fi eliminates p (see Definition 7.4.3). Then
αXi ≥ exp

(
−m(r − i/m)2πXi/2

)
.

Proof : Let q1, . . . , qXi be the Xi points that fall into farm fi. Let zi be the exit of
fi, and let dj = dT(qj , zi), for j = 1, . . . , Xi. Arguing as in Lemma 7.4.5, we have
that Pr[dj ≤ s] ≤ s2π/4 for all j. By Observation 7.4.4, a point qj eliminates p if and
only if dj < r − i/m. For j 6= l, whether or not qj or ql eliminate p are independent
events and hence

αXi =

Xi∏

j=1

Pr
[
dj ≥ r − i/m

]
≥
(
1− (r − i/m)2

π

4

)Xi

≥ exp

(
−m(r − i/m)2

πXi

2

)
.

�

Lemma 7.4.8 Let p and τ be the dominating point and exit, respectively, of some
farm f . Let r = dT(p, z). Let Xi (resp. Yi), for i = 1, . . . , ⌊rm⌋, denote the number
of points which fall into the farm which is i farms to the north (resp. south), from f
in the order of the exits along the first ridge. Let X =

〈
X1, . . . , X⌊rm⌋, Y1, . . . , Y⌊rm⌋

〉
.

Then the probability that p is not eliminated given X is

Pr
[
p is alive

∣∣∣X
]
≥ e−T , where T = πm

⌊rm⌋∑

i=−⌊rm⌋
(r − i/m)2(Xi + Yi)/2.

Proof : First note that for i′ > ⌊rm⌋, we have that i′/m ≥ (⌊rm⌋+1)/m > r. Namely
no point from a farm i′ farms away can eliminate p, and hence we can ignore such
farms.

Given the value Xi and Yi for all i, whether a farm contains a point which elim-
inates p is independent from whether any other farm contains a point which elimi-

176 CHAPTER 7. COMPLEXITY OF VORONOI DIAGRAMS ON TERRAINS

nates p. Therefore, by Lemma 7.4.7,

Pr
[
p is alive

∣∣∣X
]
=

⌊rm⌋∏

i=1

αXi

⌊rm⌋∏

i=1

αYi

≥

⌊rm⌋∏

i=1

exp
(
−m(r − i/m)2πXi/2

)

⌊rm⌋∏

i=1

exp
(
−m(r − i/m)2πYi/2

)

= exp

−m

⌊rm⌋∑

i=1

(r − i/m)2π(Xi + Yi)/2

�

Lemma 7.4.9 Let X be a positive random variable with expected value µ. We then
have that E

[
e−X

]
≥ e−2µ/2

Proof : Markov’s inequality implies that Pr[X < 2µ] = 1−Pr[X ≥ 2µ] ≥ 1−µ/2µ =
1/2. Therefore, by the definition of expectation, we get E

[
e−X

]
≥ Pr[X ≥ 2µ] · 0 +

Pr[X < 2µ] · e−2µ ≥ e−2µ/2. �

Lemma 7.4.10 Let p and z be the dominating point and exit, respectively, of some
farm f , and let r = dT(p, z). Then the probability that p is alive is at least 1

2 exp
(
−2r3m2

)
.

Proof : Let Xi and Yi, for i = 1, . . . , ⌊rm⌋, be random variables equal to the number
of points which fall into the farm which is i farms to the north or south, respectively,
from f in the order of the exits along the first ridge (note that if there is no farm i
farms to the north or south, then Xi = 0 or Yi = 0, respectively).

For the quantity T from Lemma 7.4.8 we have

E[T] = E

πm

⌊rm⌋∑

i=1

(r − i/m)2
Xi + Yi

2

= πm

⌊rm⌋∑

i=1

(r − i/m)2
E[Xi] +E[Yi]

2

≥ πm
⌊rm⌋∑

i=1

(r − i/m)2

≥ πm · rm · r2

= πr3m2,

by linearity of expectation and since E[Xi] ≤ 1 and E[Yi] ≤ 1 for i = 1, . . . , ⌊rm⌋.
For the probability that p is alive, we have

Pr
[
p is alive

]
=
∑

X

Pr
[
(p is alive) ∩(X = X)

]

=
∑

X

Pr
[
p is alive

∣∣∣X = X
]
Pr[X = X]

= E
[
Pr
[
p is alive

∣∣∣X
]]
,

7.4. LOWER BOUND 177

where X =
〈
X1, . . . , X⌊rm⌋, Y1, . . . , Y⌊rm⌋

〉
, as before.

By Lemma 7.4.8 and Lemma 7.4.9, we have

E
[
Pr
[
p is alive

∣∣∣X
]]
≥ E

[
e−T

]
≥ 1

2
exp
(
−2E[T]

)

Putting everything together, we conclude that Pr
[
p is alive

]
≥ 1

2 exp
(
−2πr3m2

)
. �

Observation 7.4.11 Lemma 7.4.10 implies that if r ≤ 1/m2/3 then

Pr[p is alive] ≥ 1

2
exp
(
−2πr3m2

)
≥ 1

2e2π
.

Lemma 7.4.12 The probability that a farm f gives rise to a Voronoi cell that is not
eliminated is at least π/(8e2πm1/3).

Proof : Let p be the dominating point of f , and let r be the distance of p from
the entrance e of f . Also, let q be a random point selected uniformly from f . By
Observation 7.4.11 and Lemma 7.4.5, we have

Pr
[
p is alive

]
≥ Pr

[
(p is alive) ∩

(
r ≤ m−2/3

)]

= Pr
[
p is alive

∣∣∣r ≤ m−2/3
]
Pr
[
r ≤ m−2/3

]

≥ 1

2e2π
Pr
[
r ≤ m−2/3

]

≥ 1

2e2π
Pr
[
‖q− e‖ ≤ m−2/3

]

=
1

2e2π
m
(
m−2/3

)2
π

4

=
π

8e2πm1/3
,

by Eq. (7.1). �

Theorem 7.4.13 For any n,m with m ≤ n there exists a terrain of complexity n
such that in expectation the Voronoi diagram of m point sites sampled uniformly in
the domain will be of complexity Ω

(
nm2/3

)
.

Proof : Every farm which receives a point from the random sample has a dominating
point. Since Θ(m) farms were built, and each farm receives one point in expectation,
the expected number of dominating points is Θ(m). Therefore, by Lemma 7.4.12, the
expected number of alive dominating points is Ω

(
m · (π/(8e2πm1/3))

)
= Ω

(
m2/3

)
.

Given that a dominating point is alive, the probability that its Voronoi cell does
not reach the rightmost ridge is negligible. Therefore, in expectation, if there are
Ω
(
m2/3

)
alive dominating points and Θ(n) ridges then the complexity of the Voronoi

diagram will be Ω
(
nm2/3

)
. �

178 CHAPTER 7. COMPLEXITY OF VORONOI DIAGRAMS ON TERRAINS

7.5 Concluding remarks

We investigated the expected combinatorial complexity of geodesic Voronoi diagrams
on polyhedral terrains in two settings where the sites are being picked randomly.
Usually, such random settings are the great simplifier – for example, the expected
complexity of the convex hull of n points picked uniformly in the unit square is
O(log n) – but in our case the situation is considerably more subtle.

We proved that the expected complexity is linear if one assumes low density and
bounded slope and if the domain of the terrain is a unit square. On the other hand,
we described a worst-case construction of a terrain which implies a super-linear lower
bound on the expected complexity if these assumptions are dropped. This implies
that our probabilistic analysis alone does not yield a linear complexity.

There are still many interesting open questions for further research. We conclude
by discussing some of them in more detail.

Open Problem 7.1 If the realistic input assumptions are partially relaxed, is the
expected complexity still linear or can one show other lower bounds? One could, for
instance allow the terrain to have a constant number of triangles, where the slope is
unbounded, or drop the steepness assumption completely.

Consider the farming layout depicted to the right. The
layout tries to emulate the lower bound examples we saw
earlier on a low-density terrain. We still assume that the
slope can be unbounded, but the so-called sequence of
ridges has been replaced by a recursive low-density con-
struction. One problem with this construction is that the
low-density assumption requires the ridge construction in
the center to have a non-negligible area, which in turn
could catch points from the random sample and therefore
break the analysis.

Open Problem 7.2 Can the analysis of the upper bound be extended to polyhedral
surfaces which are not necessarily terrains? For this, one needs to make a different
set of assumptions on the surface. A natural assumption would be to bound the
doubling dimension1. One could require the surface to be formed by fat triangles
only and bound the vertex degree of the triangulation. To extend the result on the
upper bound, one needs to analyze the bisector complexity on this surface and hence
reprove Fact 7.2.5 in this setting. Since the previous argument was carried out solely
in the projection, a different notion of low-density would be necessary now, i.e., one
that uses geodesic discs.

1The doubling dimension of a metric space X is the smallest positive integer k such that every
ball of X can be covered by 2k balls of half the radius.

CHAPTER 8

Conclusions

8.1 Summary

In this thesis we saw realistic analysis being applied to a variety of research problems.
We saw that it can help to solve long-standing open problems, such as approximating
the Fréchet distance in subquadratic time (Chapter 3). We used it to devise a simple
approximation algorithm for a sophisticated variant of the Fréchet distance, the short-
cut Fréchet distance (Chapter 5). Even though computing this variant of the Fréchet
distance is NP-hard in the general case, the presented approximation algorithm runs
in near-linear time if the input curves are c-packed and the shortcuts are sufficiently
restricted. Along the way, we developed data structures to support Fréchet-distance
queries, which are among the first of their kind (Chapter 4).

We went on to investigate hydrological computations on digital terrain models
(Chapter 6). We observed that the steepest descent paths which carry the water are
extremely sensitive to elevation error, which is inevitable in real data. To cater for
this, we allowed the elevations to be imprecise. It turns out that in this case even
deciding if water can flow between two points on a polyhedral terrain is NP-hard.
However, we were able to give algorithms to compute watersheds in near-linear time
under a discrete model of the terrain surface.

Finally, we showed that realistic analysis can be used to close the gap between
complexities observed in practice and theoretical worst-case bounds. We proved that
geodesic Voronoi diagrams can be expected to have linear complexity on well-behaved
terrains (Chapter 7), even though their complexity is quadratic in the worst case.

These results demonstrate that realistic analysis, and in particular the realistic in-
put models packedness and low-density, are a powerful tool in the study of algorithmic
problems for real data.

179

180 CHAPTER 8. CONCLUSIONS

8.2 Outlook

A number of open problems have been discussed already in the concluding remarks of
the individual chapters of this thesis, including ideas on how to approach them. In this
final section, we want to put the contributions of this thesis into a wider context by
discussing two particular research areas where our results may become relevant. We
first discuss a fundamental problem in structural biology where the shape matching
techniques of Chapters 3 and 5 open a new perspective. Secondly, we revisit the
problem studied in Chapter 6 in a critical literature review across several scientific
disciplines.

8.2.1 Shape-matching protein structures

Aligning two protein structures with respect to similarity is a key problem in structural
biology. The three-dimensional shapes of the protein structures are known to pre-
serve information about distant evolutionary relations, unlike their one-dimensional
counterparts, the amino-acid sequences. Much of this information is encoded in sub-
structures called domains, which are not easy to identify. Refer to Figure 8.1 for a
schematic drawing of a three-dimensional protein structure.

A commonly used representation of a protein structure consists of a polygonal
curve that spans an ordered succession of residue centers (C-α atoms). Their lin-
ear order along this curve is considered a key aspect in shape comparison [94]. The
standard method to align two such curves is to minimize their root-mean-square de-
viation (RMSD) under rigid motions using the algorithm by Kabsch or equivalent
algorithms [45]. This method has two major drawbacks:
(A) a one-to-one correspondence of the C-α atoms has to be established in advance,
(B) the portions of the curves which are dissimilar dominate the global distance value.
Thus, curves which have similar domains, but are not entirely similar, cannot be
properly aligned. A standard distance measure to compare the string representations
of amino-acid sequences is the well-known edit distance, which does not have the
issues described above. However, the edit distance cannot be used to compare three-
dimensional shapes.

Recently there has been some interest in using the Fréchet distance in place of the
RMSD [161, 96, 159]. One can argue that the Fréchet distance captures geometric
shape similarity while being to a large extent independent of the sampling of the
curve. Thus, it should be superior to the RMSD with respect to issue (A) described
above. However, it has the same disadvantages as described under (B) above. A
variant of the Fréchet distance which would also be superior with respect to (B), is
the shortcut Fréchet distance, which is discussed in Chapter 5. It can be interpreted
as an edit distance for polygonal curves. Here, introducing a shortcut corresponds to
performing one edit to the curve. It is most likely suitable for alignment with respect
to similar domains that are unknown in advance. One could imagine modifying the
price of a tunnel in the free-space diagram to introduce a penality for performing a
shortcut. If the chosen penalty preserves the monotonicity of the tunnel prices, then
this does not affect the analysis of the presented algorithms.

The results presented in this thesis are an important step towards conducting
the research outlined above. The next step would be to develop an approximation

8.2. OUTLOOK 181

Figure 8.1: Schematic drawing of a 3D-protein structure by Jane Richardson.

algorithm for the Fréchet distance under transformations (Open Problem 3.3). Sub-
sequently, these results could be extended to the shortcut Fréchet distance. Here,
one of the main open problems is to analyze the tunnel events which may happen if
tunnels can start and end inside free-space cells (Open Problem 5.2). To circumvent
the NP-hardness of the problem, one could aim to design a fixed-parameter tractable
algorithm with respect to the number of shortcuts used. Furthermore, realistic input
models for protein structures as suggested by Aronov et al. [20] could be used in the
analysis.

8.2.2 Towards robust hydrological computations

Simulating the flow of water on a terrain has a long history in hydrology. Applications
range from regular weather forecasting over inundation modelling (for heavy rainfall
and flash floods) to climate change predictions. Beven distinguishes the simulation
problem from the forecasting problem [26]. In the former, hydrologists aim to under-
stand the complex dynamics of catchment areas by developing holistic hydrological
models, while in the forecasting problem a particular response of the catchment should
be predicted within a fixed lead time. The former is for research purposes while the
latter is purely practical. However, the former models are also used for the latter
purposes. Over the years different models have been proposed, among the most pop-
ular are Topmodel (Beven and Kirkby [27]) and SWAT [16]. A recent adaptation of
topmpodel is the Isba-Topmodel used by Girard et al. [79], for example. Both models
use the size of the upstream area (also called contributing area or watershed) of a
point on the terrain as a local parameter to determine the response of the catchment
to rainfall. In the hydrology literature this is called a hydrologic index.

In order to automatically determine hydrologic indices from a digital elevation
model, one needs to define flow directions on the terrain surface. Since water flow is
predominantly affected by gravity, these directions are modelled after the gradient or
steepest descent. The literature has focussed mostly on grid terrains, and a model
which is commonly used is the Deterministic-8 (D-8) model, where water can flow to
one of the eight neighbors of a grid cell. According to Wechsler [154] the hydrological

182 CHAPTER 8. CONCLUSIONS

community has not reached a consensus on appropriate algorithms for computing flow
direction and this is also reflected by the frequency of algorithms being published (see
for example [132, 124, 144, 146]).

Elevation data usually contains what hydrologists call sinks and flats, which pose
a particular challenge to the automated derivation of fully connected drainage net-
works [108]. A sink is a local minimum and a flat is an area where the slope is zero.
Both could be either naturally present in the real terrain (a sink could be due to a
bridge, a flat could be the surface of a glacial lake or a flood plain) or introduced
due to measurement errors. The challenge lies in distinguishing spurious from real
features. To handle them, one can either modify the elevation data, or define al-
tered flow directions based on additional topographic indices. For both approaches
a plethora of methods exists, for an overview see Kenny et al. [99]. Furthermore, it
is common practice to alter the data either manually or automatically by “carving”
streams into the surface in order to force the “correct” outcome of flow computations.
Consequently, these surface modification procedures are also referred to as hydrolog-
ical correction. Wechsler notes [154] that the impact of these procedures on derived
hydrologic indices has not been addressed in the literature.

Recently, the influence of elevation error on hydrological computations was brought
up by Lindsay and Evans [109]. A study of three basins in the UK showed that sev-
eral hydrologic indices can have multimodal frequency distributions under moderate
elevation error (averaged 1.8m), i.e. two or more estimated values were highly likely.
This is not surprising since there might be more than one adjacent basin that water
could spill into by a minor modification of the elevations near the spill-points. In
fact, this is a property which we exploited in the NP-hardness reduction described in
Section 6.2.

Independently, similar results were found by Hebeler and Purves [91]. They stud-
ied three mountainous regions (Alps, Pyrenees and Turkey) and showed that global
statistics for a range of topographic indices can be made robust to the introduction
of uncertainty. However, the derivation of hydrologic indices was shown to vary sig-
nificantly as a result of the introduced uncertainty. Figure 8.2 is a reproduction of a
figure from their paper which illustrates this variation by focussing on two particular
watersheds.

Wechsler raises similar issues regarding uncertainty in a survey [154], where he
also discusses how stochastic methods can help in estimating the uncertainty in a
hydrological model. In fact there is an ongoing discussion about uncertainty in the
hydrological literature [136, 120, 158] which was initiated by Beven [25]. Note that
Beven raised the fundamental issues involved in deriving parameters from elevation
data, which are discussed above, already in the late nineties [24]. Buytaert et al.
[40] observe that low prediction rates1 are considered acceptable among hydrologists.
According to Wagener and Gupta it is being broadly recognized that proper consider-
ation of uncertainty in hydrologic predictions is essential for purposes of both research
and operational modeling [151].

One way to improve the accuracy of the model is to incorporate historical data
about the response of the catchment to rainfall; that is, time series data which con-
tain information about observed rainfall and runoff of the specific catchment. To
estimate the runoff, typically water levels are measured at several points in the river

1Measured using the standard Nash-Sutcliffe model efficiency coefficient.

8.2. OUTLOOK 183

Figure 8.2: Reproduction of a figure by Hebeler and Purves [91]. It shows the fre-
quency of cells belonging to two selected watersheds W1 (left) and W2 (right) across
all sampled realizations of the terrain. Most variation in watershed size is detectable
in the lower regions of the catchment area, but some variation is also evident in the
high mountain regions of both watersheds. Hypsometric curve (bottom) across all
samples for the two selected watersheds, showing a considerable amount of variation
in form. A hypsometric curve is an empirical cumulative distribution function of el-
evations in a catchment. It provides hydrologist and geomorphologist with a way to
assess the similarity of watersheds.

184 CHAPTER 8. CONCLUSIONS

which receives the water. Gupta et al. [150, 110] propose so-called data assimilation
techniques for this purpose, which have previously been used in the atmospheric and
oceanic sciences.

In the hydrological literature, the optimization of the output of a forecasting model
with respect to historical data is calledmodel calibration. Basic machine learning tech-
niques for calibration such as regression analysis and Kalman filters have always been
in the standard toolkit of hydrologists [97]. In his book [26], Beven gives an overview
of state-of-the-art hydrological models for calibration and discusses how to estimate
their uncertainty. Theoretically, these algorithms do not need any explicit elevation
information as long as they have enough historical data. Beven also argues that,
contrary to common belief, decision makers can deal with explicit uncertainty in the
output of a GIS. He also raises philosophical questions and questions of accountability
in this context.

Previous research in computational geometry has focussed mostly on the efficiency
of drainage network computations assuming elevation data is exact. We can identify
two main directions of research here. Firstly, an intriguing aspect of this work is
that it enables the computation of drainage networks according to the true steepest
descent along a polyhedral surface. In this context it should be mentioned that
the D-8 model has been criticized in the GIS-literature for allowing only a constant
number of stream directions, and as a result creating many artifactual streams which
run in parallel. On the other hand, when tracing rivers along the true gradients of
a polyhedral surface, the river network can have very high complexity. Even if the
surface is defined by a Delaunay triangulation, which is considered well-behaved in
practice, it can have a complexity which is cubic in the complexity of the terrain
[52]. In a recent result, de Berg et al. trace flow paths implicitly along the surface
resulting in a quadratic-time algorithm for computing the area of a watershed [54].
Algorithms for watershed computations on polyhedral terrains have been implemented
in an experimental setting by de Berg and Tsirogiannis, see [58]. Note that there is
also work on hydrological correction for polyhedral terrains [59, 149, 135, 81].

Another line of research in this context is the study of I/O-efficiency on discrete
terrains. The resulting algorithms are efficient even on normal desktop computers
for high-resolution terrain data, as accurate as one elevation point per square meter,
For comparison, at the time of the publication of Beven’s critique [24] in 1997, the
common resolution of digital terrain data was ranging from 10 m to 1 km or more. The
algorithms have been implemented and are commercially available [49]. Arge et al.
[15] also note that the contributing area is not a static index. Basins may fill up during
rainfall and start flowing into adjacent basins thereby forming bigger catchments.
Therefore, they model and compute the flow of water over time. Additional references
can be found in a recent survey by Haverkort and Toma [89].

To summarize, while the problem of uncertainty in flow prediction is acknowl-
edged as a major problem by hydrologists and elevation error is one of the main
sources of this uncertainty, none2 of the research in computational geometry, neither
on polyhedral surfaces nor on grid terrains, take elevation error into account so far.

In Chapter 6 we studied water-flow under a non-probabilistic model of imprecision.
In this model, the exact elevation of each surface point is replaced by an imprecision
interval. The outcome of the most optimistic and pessimistic scenarios are then

2Apart from [82] and [81], which is for hydrological correction only.

8.2. OUTLOOK 185

computed exactly. This enables efficient algorithms to compute conservative upper
and lower bounds on hydrologic indices. It would be interesting to improve the I/O-
efficiency (Open Problem 6.1). However, the next step would be to start a discussion
with domain experts to evaluate the practical relevance of the presented flow model
(see also Problems 6.2 and 6.3). There seems to be little communication between
the disciplines of computational geometry and hydrology about these basic concepts,
at least as far as it is documented in the literature. One may conjecture that great
potential in interdisciplinary research lies here.

186 CHAPTER 8. CONCLUSIONS

References

[1] M. Abam, M. de Berg, P. Hachenberger, and A. Zarei. Streaming algorithms
for line simplification. Discrete & Computational Geometry, 43:497–515, 2010.

[2] I. Abraham, A. Fiat, A. V. Goldberg, and R. F. Werneck. Highway dimension,
shortest paths, and provably efficient algorithms. In Proceedings of the 21st
ACM-SIAM Symposium on Discrete Algorithms, pages 782–793, 2010.

[3] P. K. Agarwal, R. B. Avraham, H. Kaplan, and M. Sharir. Computing the
discrete Fréchet distance in subquadratic time. In Proceedings of the 24th ACM-
SIAM Symposium on Discrete Algorithms, pages 156–167, 2013.

[4] P. K. Agarwal, S. Har-Peled, N. Mustafa, and Y. Wang. Near-linear time
approximation algorithms for curve simplification in two and three dimensions.
Algorithmica, 42:203–219, 2005.

[5] P. K. Agarwal, T. Mølhave, and B. Sadri. I/O-efficient contour queries on
terrains. In Proceedings of the 22nd ACM-SIAM Symposium on Discrete Algo-
rithms, pages 268–284, 2011.

[6] C. Aggarwal and S. Yu. An effective and efficient algorithm for high-dimensional
outlier detection. International Journal on Very Large Data Bases, 14:211–221,
April 2005.

[7] H.-K. Ahn, C. Knauer, M. Scherfenberg, L. Schlipf, and A. Vigneron. Comput-
ing the discrete Freéchet distance with imprecise input. International Journal
of Computational Geometry & Applications, 22(1):27–44, 2012.

[8] H. Alani, C. B. Jones, and D. Tudhope. Voronoi-based region approximation
for geographical information retrieval with gazetteers. International Journal of
Geographical Information Science, 15(4):287–306, 2001.

[9] H. Alt. The computational geometry of comparing shapes. In Efficient Al-
gorithms: Essays Dedicated to Kurt Mehlhorn on the Occasion of His 60th
Birthday, pages 235–248. Springer-Verlag, 2009.

187

188 REFERENCES

[10] H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. Journal of
Algorithms, 49:262–283, 2003.

[11] H. Alt, R. Fleischer, M. Kaufmann, K. Mehlhorn, S. Nher, S. Schirra, and
C. Uhrig. Approximate motion planning and the complexity of the boundary
of the union of simple geometric figures. Algorithmica, 8:391–406, 1992.

[12] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal
curves. International Journal of Computational Geometry & Applications, 5:75–
91, 1995.

[13] H. Alt, C. Knauer, and C. Wenk. Matching polygonal curves with respect to the
Fréchet distance. In Proceedings of the 18th Symposium on Theoretical Aspects
of Computer Science, volume 2010 of Lecture Notes in Computer Science, pages
63–74. 2001.

[14] H. Alt, C. Knauer, and C. Wenk. Comparison of distance measures for planar
curves. Algorithmica, 38(1):45–58, 2004.

[15] L. Arge, M. Revsbæk, and N. Zeh. I/O-efficient computation of water flow
across a terrain. In Proceedings of the 26th ACM Symposium on Computational
Geometry, pages 403–412, 2010.

[16] J. G. Arnold, P. M. Allen, and G. Bernhardt. A comprehensive surface-
groundwater flow model. Journal of Hydrology, 142(1):47–69, 1993.

[17] B. Aronov, M. de Berg, and S. Thite. The complexity of bisectors and Voronoi
diagrams on realistic terrains. In Proceedings of the 16th Annual European
Symposium on Algorithms, pages 100–111, 2008.

[18] B. Aronov, A. Driemel, M. van Kreveld, M. Löffler, and F. Staals. Segmentation
of trajectories on non-monotone criteria. In Proceedings of the 24th ACM-SIAM
Symposium on Discrete Algorithms, pages 1897–1911, 2013.

[19] B. Aronov and S. Har-Peled. On approximating the depth and related problems.
SIAM Journal of Computing, 38(3):899–921, 2008.

[20] B. Aronov, S. Har-Peled, C. Knauer, Y. Wang, and C. Wenk. Fréchet distance
for curves, Revisited. In Proceedings of the 14th Annual European Symposium
on Algorithms, pages 52–63, 2006.

[21] F. Aurenhammer, R. Klein, and D.-T. Lee. Voronoi Diagrams and Delaunay
Triangulations. World Scientific, 2013.

[22] R. Beecham, J. Wood, and A. Bowerman. A visual analytics approach to un-
derstanding cycling behaviour. In Proceedings of the 2012 IEEE Conference on
Visual Analytics Science and Technology, pages 207–208.

[23] S. Bereg, M. Jiang, W. Wang, B. Yang, and B. Zhu. Simplifying 3D polygonal
chains under the discrete Fréchet distance. In Proceedings of the 8th Latin
American Conference on Theoretical Informatics, pages 630–641, 2008.

REFERENCES 189

[24] K. Beven. Topmodel: a critique. Hydrological Processes, 11(9):1069–1085, 1997.

[25] K. Beven. On undermining the science? Hydrological Processes, 20(14):3141–
3146, 2006.

[26] K. Beven. Environmental modelling: An uncertain future? Routledge, 2009.

[27] K. Beven and M. Kirkby. A physically based, variable contributing area model
of basin hydrology/un modèle à base physique de zone d’appel variable de
l’hydrologie du bassin versant. Hydrological Sciences Journal, 24(1):43–69, 1979.

[28] M. Borga, E. Gaume, J. Creutin, and L. Marchi. Surveying flash floods: gauging
the ungauged extremes. Hydrological Processes, 22:3883–3885, 2008.

[29] P. Bose, O. Cheong, and V. Dujmović. A note on the perimeter of fat objects.
Computational Geometry: Theory and Applications, 44(1):1–8, 2011.

[30] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle
tracking data. In Proceedings of the 31st International Conference on Very
Large Data Bases, pages 853–864, 2005.

[31] K. Buchin, M. Buchin, and J. Gudmundsson. Detecting single file movement.
In Proceedings of the 16th ACM SIGSPATIAL International Conference on
Advances in Geographic Information Systems, pages 288–297, 2008.

[32] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting
commuting patterns by clustering subtrajectories. In Proceedings of the 19th
International Symposium on Algorithms and Computation, pages 644–655, 2008.

[33] K. Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk. How difficult is it to
walk the dog? In Abstracts of the 23rd European Workshop on Computational
Geometry, pages 170–173, 2007.

[34] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four Soviets walk the
dog—with an application to Alt’s conjecture. Computing Research Repository
(arXiv), abs/1209.4403, 2012.

[35] K. Buchin, M. Buchin, and Y. Wang. Exact algorithms for partial curve match-
ing via the Fréchet distance. In Proceedings of the 20th ACM-SIAM Symposium
on Discrete Algorithms, pages 645–654, 2009.

[36] K. Buchin, M. Buchin, and C. Wenk. Computing the Fréchet distance between
simple polygons. Computational Geometry: Theory and Applications, 41(1-
2):2–20, 2008.

[37] M. Buchin, A. Driemel, and B. Speckmann. Computing the Fréchet distance
with shortcuts is NP-hard. In Abstracts of the 29th European Workshop on
Computational Geometry, pages 43–46, 2013. Full version available at http:

//arXiv.org/abs/1307.2097.

[38] M. Buchin, A. Driemel, M. van Kreveld, and V. Sacristan. Segmenting trajec-
tories: A framework and algorithms using spatiotemporal criteria. Journal of
Spatial Information Science, 3(1):33–63, 2011.

http://arXiv.org/abs/1307.2097
http://arXiv.org/abs/1307.2097

190 REFERENCES

[39] D. Butler. Virtual globes: The web-wide world. Nature, 439(7078):776–778,
2006.

[40] W. Buytaert, D. Reusser, S. Krause, and J. Renaud. Why can’t we do better
than Topmodel? Hydrological Processes, 22:4175–4179, 2008.

[41] P. B. Callahan and S. R. Kosaraju. A decomposition of multidimensional point
sets with applications to k-nearest-neighbors and n-body potential fields. Jour-
nal of the Association for Computing Machinery, 42:67–90, 1995.

[42] R. Cavalli and S. Grigolato. Influence of characteristics and extension of a forest
road network on the supply cost of forest woodchips. Journal of Forest Research,
15:202–209, 2010.

[43] D. Chen, A. Driemel, L. Guibas, A. Nguyen, and C. Wenk. Approximate map
matching with respect to the Fréchet distance. In Proceedings of the 13th Work-
shop on Algorithm Engineering & Experiments, pages 75–83, 2011.

[44] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to
Algorithms. The MIT Press and McGraw-Hill Book Company, third edition,
2009.

[45] E. A. Coutsias, C. Seok, and K. A. Dill. Using quaternions to calculate RMSD.
Journal of Computational Chemistry, 25(15):1849–57, 2004.

[46] W. Craddock, E. Kirby, N. Harkins, H. Zhang, X. Shi, and J. Liu. Rapid fluvial
incision along the Yellow River during headward basin integration. Nature
Geoscience, 3:209–213, 2010.

[47] I. F. Cruz, D. Agrawal, C. S. Jensen, E. Ofek, and E. Tanin, editors. Proceed-
ings of the 19th ACM SIGSPATIAL International Symposium on Advances in
Geographic Information Systems, 2011.

[48] I. F. Cruz, C. Knoblock, P. Kröger, E. Tanin, and P. Widmayer, editors. Pro-
ceedings of the 20th ACM SIGSPATIAL International Conference on Advances
in Geographic Information Systems, 2012.

[49] A. Danner, T. Mølhave, K. Yi, P. K. Agarwal, L. Arge, and H. Mitásová.
TerraStream: from elevation data to watershed hierarchies. In Proceedings of the
15th ACM SIGSPATIAL International Conference on Advances in Geographic
Information Systems, pages 212–219, 2007.

[50] M. de Berg. Improved bounds on the union complexity of fat objects. Discrete
& Computational Geometry, 40(1):127–140, 2008.

[51] M. de Berg, P. Bose, K. Dobrint, M. J. van Kreveld, M. H. Overmars,
M. de Groot, T. Roos, J. Snoeyink, and S. Yu. The complexity of rivers in
triangulated terrains. In Proceedings of the 8th Canadian Conference on Com-
putational Geometry, pages 325–330, 1996.

[52] M. de Berg, O. Cheong, H. Haverkort, J.-G. Lim, and L. Toma. The com-
plexity of flow on fat terrains and its I/O-efficient computation. Computational
Geometry: Theory and Applications, 43(4):331–356, 2010.

REFERENCES 191

[53] M. de Berg, A. F. Cook IV, and J. Gudmundsson. Fast Fréchet queries. Com-
putational Geometry: Theory and Applications, 46(6):747 – 755, 2013.

[54] M. de Berg, H. Haverkort, and C. Tsirogiannis. Implicit flow routing on terrains
with applications to surface networks and drainage structures. In Proceedings of
the 22nd ACM-SIAM Symposium on Discrete Algorithms, pages 285–296, 2011.

[55] M. de Berg, H. Haverkort, and C. P. Tsirogiannis. Visibility maps of realistic
terrains have linear smoothed complexity. Journal of Computational Geometry,
1(1):57–71, 2010.

[56] M. de Berg, M. J. Katz, A. F. van der Stappen, and J. Vleugels. Realistic input
models for geometric algorithms. Algorithmica, 34:81–97, 2002.

[57] M. de Berg and M. Streppel. Approximate range searching using binary space
partitions. Computational Geometry: Theory and Applications, 33(3):139 – 151,
2006.

[58] M. de Berg and C. P. Tsirogiannis. Exact and approximate computations of
watersheds on triangulated terrains. In Proceedings of the 19th ACM SIGSPA-
TIAL International Conference on Advances in Geographic Information Sys-
tems, pages 74–83, 2011.

[59] T. de Kok, M. van Kreveld, and M. Löffler. Generating realistic terrains with
higher-order Delaunay triangulations. Computational Geometry: Theory and
Applications, 36(1):52–65, 2007.

[60] O. Devillers, J. Erickson, and X. Goaoc. Empty-ellipse graphs. In Proceedings
of the 19th ACM-SIAM Symposium on Discrete Algorithms, pages 1249–1257,
2008.

[61] T. Dey. Curve and Surface Reconstruction: Algorithms with Mathematical Anal-
ysis. Cambridge Monographs on Applied and Computational Mathematics.
Cambridge University Press, 2011.

[62] M. T. Dickerson and M. T. Goodrich. Two-site Voronoi diagrams in geographic
networks. In Proceedings of the 16th ACM SIGSPATIAL International Confer-
ence on Advances in Geographic Information Systems, pages 59:1–59:4, 2008.

[63] E. W. Dijkstra. On a methodology of design (ewd-317). Circulated privately.
Available at http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD317.PDF.

[64] E. W. Dijkstra. On the cruelty of really teaching computing science (ewd-
1036). Circulated privately, 1988. Available at http://www.cs.utexas.edu/

users/EWD/ewd10xx/EWD1036.PDF.

[65] E. W. Dijkstra. Why American Computing Science seems incurable (ewd-1209).
Circulated privately, 1995. Available at http://www.cs.utexas.edu/users/

EWD/ewd12xx/EWD1209.PDF.

[66] E. W. Dijkstra. On the role of scientific thought. In Selected Writings on
Computing: A Personal Perspective, pages 60–66. Springer-Verlag, 1982.

http://www.cs.utexas.edu/users/EWD/ewd03xx/EWD317.PDF
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF
http://www.cs.utexas.edu/users/EWD/ewd10xx/EWD1036.PDF
http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1209.PDF
http://www.cs.utexas.edu/users/EWD/ewd12xx/EWD1209.PDF

192 REFERENCES

[67] A. Driemel and S. Har-Peled. Jaywalking your dog – computing the Fréchet
distance with shortcuts. In Proceedings of the 23rd ACM-SIAM Symposium on
Discrete Algorithms, pages 318–337, 2011.

[68] A. Driemel and S. Har-Peled. Jaywalking your dog – computing the Fréchet
distance with shortcuts. SIAM Journal of Computing, 2013. To appear.

[69] A. Driemel, S. Har-Peled, and B. Raichel. On the expected complexity of
Voronoi diagrams on terrains. In Proceedings of the 28th ACM Symposium
on Computational Geometry, pages 101–110, 2012.

[70] A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for
realistic curves in near-linear time. In Proceedings of the 26th ACM Symposium
on Computational Geometry, pages 365–374, 2010.

[71] A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance
for realistic curves in near-linear time. Discrete & Computational Geometry,
48(1):94–127, 2012.

[72] A. Driemel, H. Haverkort, M. Löffler, and R. Silveira. Flow computations on
imprecise terrains. In Proceedings of the 12th Algorithms and Data Structures
Symposium - WADS (formerly Workshop on Algorithms and Data Structures),
pages 350–361, 2011.

[73] A. Driemel, H. Haverkort, M. Löffler, and R. Silveira. Flow computations on
imprecise terrains. Journal of Computational Geometry, 4(1):38–78, 2012.

[74] A. Efrat. The complexity of the union of (α, β)-covered objects. SIAM Journal
of Computing, 34(4):775–787, 2005.

[75] A. Efrat, P. Indyk, and S. Venkatasubramanian. Pattern matching for sets
of segments. In Proceedings of the 12th ACM-SIAM Symposium on Discrete
Algorithms, pages 295–304, 2001.

[76] J. Erickson. On the relative complexities of some geometric problems. In Pro-
ceedings of the 7th Canadian Conference on Computational Geometry, pages
85–90, 1995.

[77] P. F. Fisher and N. J. Tate. Causes and consequences of error in digital elevation
models. Progress in Physical Geography, 30(4):467–489, 2006.

[78] G. N. Frederickson and D. B. Johnson. Generalized selection and ranking:
sorted matrices. SIAM Journal of Computing, 13:14–30, 1984.

[79] C. Girard, T. Godfroy, M. Erlich, E. David, C. Sorbet, V. Pourret, M. Veysseire,
and B. Vincendon. 2D hydraulic model integration to real-time flash flood
forecasting chain. In Comprehensive Flood Risk Management, pages 382–383.
CRC Press, 2013.

[80] M. F. Goodchild. Geographical information science. International Journal of
Geographical Information Science, 6(1):31–45, 1992.

REFERENCES 193

[81] C. Gray, F. Kammer, M. Löffler, and R. I. Silveira. Removing local extrema
from imprecise terrains. Computational Geometry: Theory and Applications,
45:334–349, 2012.

[82] C. Gray, M. Löffler, and R. I. Silveira. Smoothing imprecise 1.5D terrains.
International Journal of Computational Geometry & Applications, 20(4):381–
414, 2010.

[83] J. Gudmundsson and M. Smid. Fréchet queries in geometric trees. In Proceed-
ings of the 21st Annual European Symposium on Algorithms, 2013. To appear.

[84] L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and J. Snoeyink. Approximating
polygons and subdivisions with minimum link paths. In Proceedings of the 2nd
International Symposium on Algorithms, pages 151–162, 1991.

[85] E. Gurarie, R. D. Andrews, and K. L. Laidre. A novel method for identifying
behavioural changes in animal movement data. Ecology Letters, 12(5):395–408,
2009.

[86] S. Har-Peled. Geometric Approximation Algorithms. American Mathematical
Society, Boston, MA, USA, 2011.

[87] S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended. In
Proceedings of the 27th ACM Symposium on Computational Geometry, pages
448–457, 2011.

[88] S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended. ACM
Transactions on Algorithms, 2013. To appear.

[89] H. Haverkort and L. Toma. Terrain modeling for the geoscience. In T. Gonzales,
editor, Computing Handbook Set – Computer science, volume 1. CRC Press. To
appear.

[90] H. Haverkort and C. Tsirogiannis. Flow on noisy terrains: An experimental
evaluation. In Proceedings of the 19th ACM SIGSPATIAL International Con-
ference on Advances in Geographic Information Systems, pages 84–91, 2011.

[91] F. Hebeler and R. Purves. The influence of elevation uncertainty on derivation
of topographic indices. Geomorphology, 111(1-2):4–16, 2009.

[92] M. Henzinger, P. Klein, S. Rao, and S. Subramanian. Faster shortest-path algo-
rithms for planar graphs. Journal of Computer and System Sciences, 55(1):3–23,
1997.

[93] D. I. Heywood, S. Cornelius, and S. Carver. An Introduction to Geographical
Information Systems. Prentice Hall, third edition, 2006.

[94] L. Holm and C. Sander. Mapping the protein universe. Science, 273(5275):595–
603, 1996.

[95] F. Jarai-Szabo and Z. Neda. On the size-distribution of Poisson Voronoi cells.
Computing Research Repository (arXiv), cond-mat/0406116, June 2004.

194 REFERENCES

[96] M. Jiang, Y. Xu, and B. Zhu. Protein structure-structure alignment with dis-
crete Fréchet distance. Journal of Bioinformatics and Computational Biology,
06(01):51–64, 2008.

[97] M. Karlsson and S. Yakowitz. Rainfall-runoff forecasting methods, old and new.
Stochastic Hydrology and Hydraulics, 1(4):303–318, 1987.

[98] J. Kay, P. Lukowicz, H. Tokuda, P. Olivier, and A. Krüger, editors. Proceedings
of the 10th International Conference on Pervasive Computing, volume 7319 of
Lecture Notes in Computer Science, 2012.

[99] F. Kenny, B. Matthews, and K. Todd. Routing overland flow through sinks
and flats in interpolated raster terrain surfaces. Computers & Geosciences,
34(11):1417–1430, 2008.

[100] E. J. Keogh and M. J. Pazzani. Scaling up dynamic time warping to massive
dataset. In Proceedings of the 3rd European Conference on Principles of Data
Mining and Knowledge Discovery, pages 1–11, 1999.

[101] Y. Kholondyrev and W. Evans. Optimistic and pessimistic shortest paths on
uncertain terrains. In Proceedings of the 19th Canadian Conference on Compu-
tational Geometry, pages 197–200, 2007.

[102] M. Kim, S. Kim, and M. Shin. Optimization of subsequence matching under
time warping in time-series databases. In Proceedings of the 2005 ACM Sym-
posium on Applied Computing, pages 581–586.

[103] R. D. Koster, S. P. P. Mahanama, B. Livneh, D. P. Lettenmaier, and R. H.
Reichle. Skill in streamflow forecasts derived from large-scale estimates of soil
moisture and snow. Nature Geoscience, 3(9):613–616, 2010.

[104] R. Kunze, F.-E. Wolter, and T. Rausch. Geodesic Voronoi diagrams on para-
metric surfaces. In Proceedings of the 1997 IEEE Conference on Computer
Graphics International, pages 230–237.

[105] S. Kwong, Q. H. He, K. F. Man, K. S. Tang, and C. W. Chau. Parallel genetic-
based hybrid pattern matching algorithm for isolated word recognition. Interna-
tional Journal of Pattern Recognition and Artificial Intelligence, 12(5):573–594,
August 1998.

[106] J. K. Laurila, D. Gatica-Perez, I. Aad, J. Blom, O. Bornet, T.-M.-T. Do,
O. Dousse, J. Eberle, and M. Miettinen. The mobile data challenge: Big data
for mobile computing research. In Proceedings of the 2012 Workshop on the
Nokia Mobile Data Challenge, pages 1–8.

[107] X.-Y. Li, P.-J. Wan, and O. Frieder. Coverage in wireless ad-hoc sensor net-
works. IEEE Transactions on Computers, 52(6):753–763, 2003.

[108] C. Liang and D. S. Mackay. A general model of watershed extraction and
representation using globally optimal flow paths and up-slope contributing ar-
eas. International Journal of Geographical Information Science, 14(4):337–358,
2000.

REFERENCES 195

[109] J. Lindsay and M. Evans. The influence of elevation error on the morphometrics
of channel networks extracted from DEMs and the implications for hydrological
modelling. Hydrological Processes, 22(11):1588–1603, 2008.

[110] Y. Liu and H. V. Gupta. Uncertainty in hydrologic modeling: Toward an
integrated data assimilation framework. Water Resources Research, 43(7), 2007.

[111] Y. Liu and J. Snoeyink. Flooding triangulated terrain. In Proceedings of the
11th International Symposium on Spatial Data Handling, pages 137–148, 2005.

[112] M. Löffler. Data Imprecision in Computational Geometry. PhD thesis, Utrecht
University, 2009.

[113] R. Maronna, D. Martin, and V. Yohai. Robust Statistics: Theory and Methods.
Wiley, 2006.

[114] A. Mascret, T. Devogele, I. L. Berre, and A. Hénaff. Coastline matching process
based on the discrete Fréchet distance. In Proceedings of the 12th International
Symposium on Spatial Data Handling, pages 383–400, 2006.

[115] J. Matoušek, J. Pach, M. Sharir, S. Sifrony, and E. Welzl. Fat triangles deter-
mine linearly many holes. SIAM Journal of Computing, 23(1):154–169, 1994.

[116] M. McAllister and J. Snoeyink. Extracting consistent watersheds from digital
river and elevation data. In Proceedings of the ASPRS/ACSM Annual Confer-
ence, 1999.

[117] F. Mémoli and G. Sapiro. Distance functions and geodesics on submanifolds of
IRd and point clouds. SIAM Journal on Applied Mathematics, 65(4):1227–1260,
2005.

[118] E. Moet. Computation and Complexity of Visibility in Geometric Environments.
PhD thesis, Utrecht University, 2008.

[119] E. Moet, M. J. van Kreveld, and A. F. van der Stappen. On realistic terrains.
Computational Geometry: Theory and Applications, 41(1-2):48–67, 2008.

[120] A. Montanari. What do we mean by ’uncertainty’? The need for a consistent
wording about uncertainty assessment in hydrology. Hydrological Processes,
21:841–845, 2006.

[121] M. E. Munich and P. Perona. Continuous dynamic time warping for translation-
invariant curve alignment with applications to signature verification. In Proceed-
ings of the 7th International Conference on Computer Vision, pages 108–115,
1999.

[122] J. O’Callaghan and D. Mark. The extraction of drainage networks from digital
elevation data. Computer vision, graphics, and image processing, 28(3):323–344,
1984.

[123] A. Okabe, B. Boots, K. Sugihara, and S. N. Chiu. Spatial tessellations: Concepts
and applications of Voronoi diagrams. Wiley, 2nd edition, 2000.

196 REFERENCES

[124] S. Orlandini and G. Moretti. Determination of surface flow paths from gridded
elevation data. Water Resources Research, 45(3), 2009.

[125] D. L. Pham, C. Xu, and J. L. Prince. Current methods in medical image
segmentation. Biomedical Engineering, 2:315–337, 2000.

[126] J. Portela and M. Alencar. Cellular network as a multiplicatively weighted
Voronoi diagram. In Proceedings of the 3rd IEEE Consumer Communications
and Networking Conference, volume 2, pages 913—917, 2006.

[127] H. Raynaud. Sur l’enveloppe convex des nuages de points aleatoires dans IRn.
Journal of Applied Probability, 7:35–48, 1970.

[128] A. Rényi and R. Sulanke. Über die konvexe Hülle von n zufällig gewählten
Punkten I. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete,
2:75–84, 1963.

[129] J. Ruppert. A Delaunay refinement algorithm for quality 2-dimensional mesh
generation. Journal of Algorithms, 18(3):548–585, 1995.

[130] Y. Schreiber. An optimal-time algorithm for shortest paths on realistic polyhe-
dra. Discrete & Computational Geometry, 43:21–53, 2010.

[131] Y. Schreiber and M. Sharir. An optimal-time algorithm for shortest paths on
a convex polytope in three dimensions. Discrete & Computational Geometry,
39:500–579, 2008.

[132] J. Seibert and B. L. McGlynn. A new triangular multiple flow direction algo-
rithm for computing upslope areas from gridded digital elevation models. Water
Resources Research, 43(4):W04501, 2007.

[133] J. Serrà, E. Gómez, P. Herrera, and X. Serra. Chroma binary similarity and
local alignment applied to cover song identification. IEEE Transactions on
Audio, Speech & Language Processing, 16(6):1138–1151, 2008.

[134] T. Sikora. The MPEG-7 visual standard for content description-an overview.
IEEE Transactions on Circuits and Systems for Video Technology, 11(6):696–
702, 2001.

[135] R. I. Silveira and R. van Oostrum. Flooding countries and destroying dams.
International Journal of Computational Geometry & Applications, 20(3):361–
380, 2010.

[136] B. Sivakumar. The more things change, the more they stay the same: the state
of hydrologic modelling. Hydrological Processes, 22:4333–4337, 2008.

[137] D. Spielman and S.-H. Teng. Smoothed analysis of algorithms: why the sim-
plex algorithm usually takes polynomial time. In Proceedings of the 33rd ACM
Symposium on Theory of Computing, pages 296–305, 2001.

REFERENCES 197

[138] E. Sriraghavendra, K. Karthik, and C. Bhattacharyya. Fréchet distance based
approach for searching online handwritten documents. In Proceedings of the 9th
International Conference on Document Analysis and Recognition, pages 461–
465, 2007.

[139] I. Stojmenovic, A. P. Ruhil, and D. Lobiyal. Voronoi diagram and convex hull
based geocasting and routing in wireless networks. Wireless Communications
and Mobile Computing, 6(2):247–258, 2006.

[140] G. Stylianou and G. Farin. Crest lines for surface segmentation and flattening.
IEEE Transactions on Visualization and Computer Graphics, 10(5):536–544,
2004.

[141] G. Stylianou and G. Farin. Crest lines for surface segmentation and flattening.
IEEE Transactions on Visualization and Computer Graphics, 10(5):536–544,
2004.

[142] O. Takahashi and R. Schilling. Motion planning in a plane using generalized
Voronoi diagrams. IEEE Transactions on Robotics and Automation, 5(2):143–
150, 1989.

[143] D. Tarboton. A new method for the determination of flow directions and upslope
areas in grid digitial elevation models. Water Resources Research, 33(2):309–
319, 1997.

[144] D. Tarboton, K. Schreuders, D. Watson, and M. Baker. Generalized terrain-
based flow analysis of digital elevation models. In Proceedings of the 18th World
IMACS Congress and MODSIM09 International Congress on Modelling and
Simulation, pages 2000–2006, 2009.

[145] D. Tetzlaff, J. McDonnell, S. Uhlenbrook, K. McGuire, P. Bogaart, F. Naef,
A. Baird, S. Dunn, and C. Soulsby. Conceptualizing catchment processes: sim-
ply too complex? Hydrological Processes, 22:1727–1730, 2008.

[146] N. Thommeret, J. Bailly, C. Puech, et al. Extraction of thalweg networks
from DTMs: application to badlands. Hydrology and Earth System Sciences,
14(8):1527–1536, 2010.

[147] A. F. van der Stappen. Realistic environment models and their impact on the
exact solution of the motion planning problem. In Sensor Based Intelligent
Robots, volume 1724 of Lecture Notes in Computer Science, pages 180–199,
1998.

[148] A. F. van der Stappen, M. H. Overmars, M. de Berg, and J. Vleugels. Motion
planning in environments with low obstacle density. Discrete & Computational
Geometry, 20:561–587, 1998.

[149] M. J. van Kreveld and R. I. Silveira. Embedding rivers in polyhedral terrains.
In Proceedings of the 25th ACM Symposium on Computational Geometry, pages
169–178, 2009.

198 REFERENCES

[150] J. A. Vrugt, C. G. H. Diks, H. V. Gupta, W. Bouten, and J. M. Verstraten.
Improved treatment of uncertainty in hydrologic modeling: Combining the
strengths of global optimization and data assimilation. Water Resources Re-
search, 41, 2005.

[151] T. Wagener and H. V. Gupta. Model identification for hydrological forecasting
under uncertainty. Stochastic Environmental Research and Risk Assessment,
19(6):378–387, 2005.

[152] Z. Wang, H. Guo, B. Yu, and X. Yuan. Interactive visualization of 160 years
global hurricane trajectory data. In Proceedings of IEEE Pacific Visualization
Symposium, pages 37–38, 2011.

[153] O. Weber, Y. S. Devir, A. M. Bronstein, M. M. Bronstein, and R. Kimmel.
Parallel algorithms for approximation of distance maps on parametric surfaces.
ACM Transactions on Graphics, 27(4):104:1–104:16, 2008.

[154] S. P. Wechsler. Uncertainties associated with digital elevation models for hydro-
logic applications: a review. Hydrology and Earth System Sciences, 11(4):1481–
1500, 2007.

[155] W. Weil and J. A. Wieacker. Stochastic geometry. In P. M. Gruber and J. M.
Wills, editors, Handbook of Convex Geometry, volume B, chapter 5.2, pages
1393–1438. North-Holland, 1993.

[156] C. Wenk. Shape Matching in Higher Dimensions. PhD thesis, Free University
of Berlin, 2002.

[157] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching
speed: Localizing global curve-matching algorithms. In Proceedings of the 18th
International Conference on Scientific and Statistical Database Management,
pages 879–888, 2006.

[158] T. Willis, P. Sleigh, and N. Wright. Analysis of uncertainty associated with
numerical schemes of inundation models. In Comprehensive Flood Risk Man-
agement, pages 129–130. CRC Press, 2013.

[159] T. Wylie, J. Luo, and B. Zhu. A practical solution for aligning and simplifying
pairs of protein backbones under the discrete Fréchet distance. In Computa-
tional Science and Its Applications, volume 6784 of Lecture Notes in Computer
Science, pages 74–83. 2011.

[160] J. Yuan, Y. Zheng, X. Xie, and G. Sun. T-drive: Enhancing driving directions
with taxi drivers’ intelligence. IEEE Transactions on Knowledge and Data
Engineering, 25(1):220–232, 2013.

[161] B. Zhu. Protein local structure alignment under the discrete Fréchet distance.
Journal of Computational Biology, 14(10):1343–1351, 2007.

Publications

The main chapters of this thesis are based on the following publications.

Chapter 3

A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. Discrete & Computational Geometry, 48(1):94–
127, 2012. (Also appeared in: Proceedings of the 26th ACM Symposium on Com-
putational Geometry, pages 365–374, 2010.)

Chapters 4 and 5

A. Driemel and S. Har-Peled. Jaywalking your dog – computing the Fréchet distance
with shortcuts. SIAM Journal on Computing, 2013. To appear. (Also appeared
in Proceedings of the 23rd ACM-SIAM Symposium on Discrete Algorithms, pages
318–337, 2011.)

M. Buchin, A. Driemel, and B. Speckmann. Computing the Fréchet distance with
shortcuts is NP-hard. Computing Research Repository (arXiv), abs/1307.2097,
2013. (Also appeared in Abstracts of the 29th European Workshop on Computa-
tional Geometry, pages 43–46, 2013.)

Chapter 6

A. Driemel, H. Haverkort, M. Löffler, and R. Silveira. Flow computations on im-
precise terrains. Journal of Computational Geometry, 4(1):38–78, 2012. (Also ap-
peared in Proceedings of the 12th Algorithms and Data Structures Symposium -
WADS (formerly Workshop on Algorithms and Data Structures), pages 350–361,
2011.)

Chapter 7

A. Driemel, S. Har-Peled, and B. Raichel. On the expected complexity of Voronoi
diagrams on terrains. In Proceedings of the 28th ACM Symposium on Computational
Geometry, pages 101–110, 2012.

199

200 PUBLICATIONS

The following are additional publications of the author.

M. Buchin, A. Driemel, M. van Kreveld, and V. Sacristan. Segmenting trajecto-
ries: A framework and algorithms using spatiotemporal criteria. Journal of Spatial
Information Science, 3(1):33–63, 2011. (Also appeared in Proceedings of the 18th
ACM SIGSPATIAL International Symposium on Advances in Geographic Informa-
tion Systems, pages 202–211, 2010.)

B. Aronov, A. Driemel, M. van Kreveld, M. Löffler, and F. Staals. Segmentation
of trajectories on non-monotone criteria. In Proceedings of the 24th ACM-SIAM
Symposium on Discrete Algorithms, page 1897–1911, 2013.

A. F. Cook, A. Driemel, S. Har-Peled, J. Sherette, C. Wenk. Computing the Fréchet
distance between folded polygons. In Proceedings of the 12th Algorithms and Data
Structures Symposium - WADS (formerly Workshop on Algorithms and Data Struc-
tures), pages 267-278, 2011.

D. Chen, A. Driemel, L. Guibas, A. Nguyen, and C. Wenk. Approximate map
matching with respect to the Fréchet distance. In Proceedings of the 13th Workshop
on Algorithm Engineering & Experiments, pages 75-83, 2011.

Samenvatting

Dit proefschrift gaat over de werkelijkheidsgetrouwe analyse van verschillende algorit-
mische problemen die betrekking hebben op geografische gegevens. Hieronder worden
eerst de algemene methodiek en de aard van de gegevens beschreven. Daarna volgt
een samenvatting van de specifieke vraagstellingen en resultaten in dit proefschrift.

Geografische gegevens. Geografische gegevens worden op verschillende manieren met
computers verwerkt. Twee van de meest voorkomende soorten geografische gegevens
zijn enerzijds gegevens van verplaatsingen en anderzijds beschrijvingen van terreinen.
Een verplaatsing wordt beschreven door middel van een reeks plaatsaanduidingen
met tijdstempels waaruit blijkt welke weg een bewegend object aflegt. Voor een
terrein worden van een stuk van het aardoppervlak hoogtemetingen verzameld. Uit de
hoogtemetingen wordt in de computer een meetkundig oppervlak geconstrueerd, dat
het opgemeten stuk aardoppervlak voorstelt. Bij een getrianguleerd terrein worden
naburige meetpunten met elkaar verbonden zodat een driehoeksraster ontstaat. De
driehoekige facetten van het raster vormen dan een oppervlak. Dit noemt men een
digitaal terreinmodel.

Werkelijkheidsgetrouwe analyse. Voor het verwerken van de gegevens zijn algoritmen
nodig die bepalen hoe de verwerking verloopt. De theorie onderscheidt problemen die
moeilijk efficiënt kunnen worden opgelost, en problemen die met behulp van algorit-
men efficiënt oplosbaar zijn. Het onderscheid wordt normaliter gemaakt op grond
van het moeilijkste geval. Dat wil zeggen dat een probleem als efficiënt oplosbaar
geldt, als dit ook geldt voor de moeilijkst denkbare invoer van te verwerken gegevens.
Hierbij wordt de efficiëntie van een algoritme bepaald door de benodigde looptijd
en de benodigde hoeveelheid werkgeheugen. Interessant zijn daarbij niet de abso-
lute hoeveelheden tijd en geheugen die nodig zijn, maar hoe deze hoeveelheden zich
asymptotisch verhouden tot de hoeveelheid te verwerken gegevens, ofwel het aantal
meetpunten die het terrein (of de verplaatsingen) representeren.

Bij ruimtelijke gegevens is het geval dat in theorie het moeilijkst is, vaak een
gekunstelde configuratie die in de praktijk nooit zal voorkomen. Daardoor boet de
theoretische analyse hier aan zeggingskracht in. Om dat tegen te gaan, zijn er diverse
methoden ontwikkeld die een werkelijkheidsgetrouwe analyse mogelijk maken en toch
wiskundig onderbouwd zijn. Wijdverbreid is de analyse naar verwachting, die op

201

202 SAMENVATTING

toepassing van de waarschijnlijkheidsleer berust. Hier wordt een probleem efficiënt
oplosbaar bevonden als de verwachte benodigde looptijd kort is.

Verder kan de ruimtelijke verdeling en vorm van de invoer worden beschreven aan
de hand van invoermodellen, die in de looptijdanalyse mee worden genomen. Dit
maakt een specifieke analyse mogelijk, die de moeilijkheid van de specifieke invoer in
aanmerking neemt en tegelijk ook voor minder moeilijke gevallen zeggingskracht heeft.
In dit proefschrift wordt een nieuw invoermodel voor verplaatsingen voorgesteld, dat
vooral nuttig blijkt bij de berekening van de mate van gelijkenis tussen verplaatsingen.

Gelijkenis berekenen. Hoe men efficiënt kan berekenen hoe sterk verplaatsingen op
elkaar lijken, is een vraagstuk waarvan het belang tot ver buiten de geografische infor-
matiekunde strekt. Voor de berekening moet het begrip gelijkenis eerst exact worden
gedefinieerd. Zo’n definitie wordt geboden door de Fréchet-afstand. Stel, een man
loopt met zijn hond aan de lijn. De man volgt de weg die door één reeks verplaatsingen
wordt gegeven; de hond volgt de weg die door een tweede reeks verplaatsingen wordt
gegeven. Beiden kunnen hun snelheid zelf bepalen, maar nooit teruglopen langs de
reeds afgelegde weg. De lengte van de kortste lijn die het voltooien van zo’n wandeling
met hangen en wurgen mogelijk maakt, is de Fréchet-afstand tussen de beide reeksen
verplaatsingen. Deze lengte is omgekeerd evenredig met de mate van gelijkenis tussen
beide reeksen verplaatsingen.

Het eerste deel van dit proefschrift gaat over het efficiënt berekenen van de Fréchet-
afstand. Dit vraagstuk wordt al meer dan twintig jaar onderzocht. Tot nu toe hebben
de beste algoritmen een looptijd die ongeveer kwadratisch toeneemt met de grootte
van de invoer, en als zodanig zijn ze weinig efficiënt. Wij beschrijven een nieuw algo-
ritme dat op basis van een nieuw meetkundig invoermodel in weinig meer dan lineaire
looptijd een benadering van de Fréchet-afstand uitrekent. Het invoermodel beperkt de
lengte van de afgelegde weg in verhouding tot de doorsnede van het bezochte gebied.

Een nadeel van de Fréchet-afstand is zijn gevoeligheid voor foutieve gegevens.
Een enkele fout in de plaatsbepalingen kan de berekende afstand sterk vertekenen,
ook als de overige plaatsbepalingen juist zijn en de afgelegde wegen verder sterk op
elkaar lijken. Wij stellen daarom een nieuwe variant van de definitie van de Fréchet-
afstand voor. In deze variant mag de man of de hond tijdens de wandeling stukken
afsnijden, in de hoop dat de foutieve plaatsbepalingen zo vanzelf worden overgeslagen
en daardoor niet in de berekende afstand worden meegenomen.

Ons onderzoek bracht aan de ene kant aan het licht, dat het in het algemeen
moeilijk is om deze variant van de afstandsmaat efficiënt te berekenen. Aan de andere
kant beschrijven we een nieuw algoritme dat, onder bepaalde aannamen, de afstand in
weinig meer dan lineaire tijd bij benadering uitrekent. Daarvoor maken we opnieuw
gebruik van de nieuwe methoden die in het eerste deel van dit proefschrift werden
voorgesteld voor de Fréchet-afstand zoals oorspronkelijk gedefinieerd.

De moeilijkheid van het probleem wordt aangetoond met een zogenaamde reductie.
We laten zien hoe een verondersteld algoritme dat deze nieuwe variant van de Fréchet-
afstand exact uitrekent, zou kunnen worden gebruikt om een tweede probleem op te
lossen. Dat tweede probleem is te bepalen of een gegeven getal kan worden uitgedrukt
als de som van een aantal andere getallen die uit een gegeven verzameling moeten
worden gekozen. Daar dit probleem als moeilijk erkend wordt, volgt dat dit ook geldt
voor de berekening van de afstandsmaat.

203

Nabootsing van waterstromen. Digitale terreinmodellen worden gebruikt om na te
bootsen hoe regenwater over het aardoppervlak afstroomt en zich verzamelt. Dit
kan helpen om bij sterke regenval de stijging van het waterpeil te voorspellen en
eventueel de bevolking te waarschuwen. Het uitgangspunt van de simulatie is de
aanname dat water, onder invloed van de zwaartekracht, altijd naar beneden stroomt
in de richting van de steilste daling. De hoogtemetingen van het terreinoppervlak
zijn in het algemeen echter niet precies genoeg om de steilste richting nauwkeurig te
kunnen bepalen. Dat is een ernstig probleem, want de berekende hoeveelheid water
die naar een bepaald punt in het dal stroomt kan zeer sterk wisselen afhankelijk van
de stroomrichtingen die voor het water in de bergen worden berekend.

Wij stellen een nieuw model voor dat de stroming van water op een stabiele manier
nabootst, ook wanneer de hoogtemetingen onnauwkeurig zijn. We laten zien dat het
moeilijk is om deze simulatie over getrianguleerde terreinen efficiënt te berekenen
als de waterstromen dwars over de driehoekige facetten mogen lopen. Als we de
stroomrichtingen echter beperken tot het volgen van de randen van de driehoeken,
dan kunnen we de minimale en maximale stijging van het waterpeil efficiënt berekenen.

De moeilijkheid van het probleem wordt ook hier aangetoond met een reductie.
Stel dat we een algoritme zouden hebben dat kan bepalen of water tussen twee gegeven
punten op een getrianguleerd terreinoppervlak zou kunnen stromen. Wij tonen aan
dat zo’n algoritme dan zou kunnen worden gebruikt om een tweede probleem op te
lossen. Het tweede probleem is deze keer te bepalen of een logische formule van
een bepaalde vorm oplosbaar is. Ook voor dit probleem geldt, dat de moeilijkheid
ervan erkend wordt, en daaruit volgt dat het ook moeilijk is om te bepalen welke
waterstromen mogelijk zijn.

Voronoi-diagrammen. De afstand tussen twee punten op het oppervlak van een ge-
trianguleerd terrein is goed gedefinieerd als de lengte van de kortste weg, die ze over
het oppervlak met elkaar verbindt. Het Voronoi-diagram is een opdeling van het op-
pervlak in gebieden die, met betrekking tot een vaste verzameling van standplaatsen,
voor elk punt op het oppervlak aangeven welke standplaats het dichtst bij is. Om
vragen naar de dichtstbijzijnde standplaats voor elk punt efficiënt te kunnen beantwo-
orden, wordt het Voronoi-diagram in een computer opgeslagen. De efficiëntie hangt
onder andere af van de hoeveelheid opslagruimte die het diagram inneemt. Volgens
de klassieke analyse neemt de opslagruimte kwadratisch toe met de grootte van het
terreinmodel. Het kwadratische geval komt in de praktijk echter nooit voor.

In het laatste deel van dit proefschrift analyseren we de grootte van het Voronoi-
diagram onder de aanname dat de standplaatsen gelijkmatig over het oppervlak
verdeeld zijn. Onder deze aanname bevestigt ons resultaat een vermoeden van Aronov
et al. uit 2008: de grootte van het diagram is additief lineair in de grootte van
het terrein en het aantal standplaatsen, als de vorm van het getrianguleerde terrein
werkelijkheidsgetrouw is, en bovendien aannamen worden gedaan over de ruimtelijke
spreiding van de standplaatsen.

204 SAMENVATTING

Zusammenfassung

In dieser Arbeit geht es um die wirklichkeitsgetreue Analyse von verschiedenen algo-
rithmischen Problemen, welche sich mit geografischen Daten befassen. Im folgenden
wird zunächst die allgemeine Methodik und die Art der Daten beschrieben. Danach
werden die spezifischen Fragestellungen und Ergebnisse der Arbeit zusammengefasst.

Geografische Daten. Geografische Daten werden auf verschiedene Arten im Compu-
ter verarbeitet. Zwei der häufigsten Formen, die sie dabei annehmen, sind einerseits
Trajektorien und andererseits Terrains. Eine Trajektorie ist eine Folge von Positions-
angaben mit Zeitstempel und protokolliert den Pfad eines sich bewegenden Objekts.
Bei einem Terrain wird eine Menge von Höhenmessungen auf einem Bereich der Erd-
oberfläche vorgenommen. Aus den Höhenangaben wird im Computer eine geometri-
sche Oberfläche erzeugt, welche die ausgemessene geografische Fläche repräsentiert.
Bei einem triangulierten Terrain werden benachbarte Messpunkte zu einem Dreiecks-
netz verbunden. Die Dreiecksflächen bilden dann zusammen die Oberfläche. Man
spricht von einem digitalen Terrainmodell.

Wirklichkeitsgetreue Analyse. Für die Verarbeitung der Daten werden Algorithmen
benötigt, die den Ablauf bestimmen. Die Theorie unterscheidet zwischen schwer effi-
zient lösbaren Problemen, und solchen die mithilfe eines Algorithmus effizient lösbar
sind. Die Bewertung orientiert sich standardmäßig am schwersten Fall. Das heißt, ein
Problem ist effizient lösbar, wenn dies auch für die schwerst-mögliche Eingabe gilt.
Hierbei wird die Effizienz eines Algorithmus anhand der Länge der Laufzeit und des
Speicherplatzverbrauchs bewertet. Interessant sind dabei nicht die absoluten Größen,
sondern wie sich diese asymptotisch mit Bezug auf die Größe der Eingabe, also die
Anzahl der Messpunkte welche die Trajektorie oder das Terrain definieren, verhalten.

Bei räumlichen Daten ist der theoretisch schwerste Fall oft eine konstruierte Kon-
figuration, die in der Praxis nie vorkommen wird. Dadurch büßt die theoretische
Analyse hier an Aussagekraft ein. Um dem entgegenzuwirken, sind eine Reihe von
Methoden entwickelt worden, die eine wirklichkeitsgetreue Analyse ermöglichen und
trotzdem mathematisch fundiert sind. Weit verbreitet ist die Analyse im erwarteten
Fall, welche sich der Wahrscheinlichkeitstheorie bedient. Hier wird ein Problem für
effizient lösbar befunden, wenn dies im Erwartungswert gilt. Weiter kann die geome-
trische Verteilung und Form der Eingabe mithilfe von Eingabemodellen beschrieben

205

206 ZUSAMMENFASSUNG

werden, die in die Laufzeitanalyse miteingehen. Dies erlaubt eine spezifische Analyse,
welche die Schwerheit der Eingabe-Instanz miteinbezieht und somit auch in weniger
schweren Fällen aussagekräftig ist.

In dieser Arbeit wird ein neues Eingabemodell für Trajektorien vorgestellt, welches
sich speziell für die Berechnung der Ähnlichkeit von Trajektorien als hilfreich erweist.

Ähnlichkeitsberechnung. Wie die Ähnlichkeit von Trajektorien effizient berechnet
werden kann ist eine wichtige Fragestellung, die weit über den geografischen Bereich
hinaus relevant ist. Für die Berechnung muss die Ähnlichkeit zunächst exakt definiert
werden. Eine solche Definition bietet der Fréchet-Abstand. Stellen wir uns vor, ein
Mann läuft mit seinem Hund an der Leine, beide jeweils auf einem der beiden Pfa-
de, die durch die Trajektorien gegeben sind. Der Mann und der Hund können ihre
Geschwindigkeit selbst bestimmen, aber nicht rückwärts auf dem Pfad laufen. Die
Länge einer Leine, welche die Ausführung eines solchen Spaziergangs mit Müh und
Not erlaubt, stellt den Fréchet-Abstand der beiden Trajektorien dar. Diese Länge ist
umgekehrt proportional zu der Ähnlichkeit der Trajektorien.

Im ersten Teil der Arbeit geht es um die effiziente Berechnung des Fréchet-Abstands.
Diese Fragestellung wird seit mehr als 20 Jahren untersucht. Bis heute haben die bes-
ten Algorithmen eine Laufzeit, die ungefähr quadratisch mit der Eingabe wächst, und
sind somit mäßig effizient.

Wir beschreiben einen neuen Algorithmus, welcher den Fréchet-Abstand unter ei-
nem neuen geometrischen Eingabemodell mit fast linearer Laufzeit approximiert. Das
Eingabemodell beschränkt die Länge eines Pfades, der von der Trajektorie beschritten
wird, relativ zu dem Durchmesser des besuchten Bereiches.

Ein Nachteil des Fréchet-Abstands ist seine Anfälligkeit gegenüber fehlerhaften
Daten. Ein einzelner Fehler in der Lokalisierung der Trajektorie kann das Maß
verfälschen, auch wenn die restlichen Positionsdaten korrekt, und die Trajektorien
sonst sehr ähnlich sind. Wir stellen eine neue Variante vor, in welcher der Mann oder
der Hund bei dem Spaziergang Abkürzungen nehmen dürfen, in der Hoffnung dass
die fehlerhaften Werte automatisch übersprungen werden und somit nicht in das Maß
miteingehen.

Unsere Untersuchung zeigt einerseits, dass diese Variante des Abstandsmaßes im
Allgemeinen schwer effizient zu berechnen ist. Andererseits beschreiben wir einen
neuen Algorithmus, um den Abstand unter bestimmten Annahmen in fast linearer
Laufzeit zu approximieren. Dabei greifen wir auf neue Methoden zurück, die im
ersten Teil der Arbeit für den originalen Fréchet-Abstand eingeführt wurden.

Die Schwerheit des Problems wird mittels einer sogenannten Reduktion gezeigt.
Wir zeigen, wie ein hypothetischer Algorithmus, der diese neue Variante des Fréchet-
Abstands exakt berechnet, für die Lösung eines zweiten Problems angewandt werden
kann. Das zweite Problem ist, zu entscheiden, ob für einen Eingabewert eine Zerlegung
in eine Summe von Werten existiert, welche aus einer Menge von Eingabewerten
gewählt werden müssen. Da dieses Problem als schwer anerkannt ist, folgt dies auch
für die Berechnung des Abstandswerts.

207

Flusssimulation. Digitale Terrainmodelle werden benutzt, um zu simulieren, wie Re-
genwasser auf der Oberfläche abfließt und sich sammelt. Dies kann dabei helfen, bei
starken Regenfällen den Anstieg des Wasserpegels vorherzusagen und gegebenenfalls
die Bevölkerung zu alarmieren. Die Grundlage dieser Simulationen ist die Annahme,
dass das Wasser durch den Einfluss der Erdanziehungskraft in die steilsten Richtung
fließt. Allerdings sind die gemessenen Höhenwerte der Terrainoberfläche im Allgemei-
nen nicht genau genug, um diese Richtung akkurat berechnen zu können. Dies ist
ein schwerwiegendes Problem, denn die berechnete Wassermenge, die sich an einem
bestimmten Punkt im Tal sammelt, kann sehr stark schwanken, je nachdem welche
Flussrichtungen weiter oben am Berg berechnet wurden.

Wir stellen ein neues Modell vor, welches den Wasserfluss robust simuliert, auch
wenn die Höhenangaben ungenau sind. Wir zeigen, dass die Simulation auf triangu-
lierten Oberflächen schwer effizient zu berechnen ist, wenn die Flussrichtungen das
Innere der Dreiecksflächen kreuzen dürfen. Wenn die Flussrichtungen allerdings auf
die Ränder der Dreiecke beschränkt sind, können wir den Anstieg des Wasserpegels
effizient abschätzen.

Hier wird die Schwerheit des Problems wieder durch eine Reduktion gezeigt. Ange-
nommen wir hätten einen Algorithmus, der bestimmt, ob es einen Flusspfad zwischen
zwei gegebenen Oberflächenpunkten geben kann. Wir zeigen dass wir mithilfe dieses
Algorithmus entscheiden könnten, ob eine logische Formel einer bestimmten Form
lösbar ist. Auch für dieses Problem gilt, dass die Schwerheit anerkannt ist, und daher
folgt die Schwerheit für die Bestimmung des Flusspfads.

Voronoi-Diagramme. Auf der Oberfläche eines triangulierten Terrains ist der Ab-
stand zwischen zwei Punkten durch die Länge des kürzesten Weges, der sie entlang
der Oberfläche verbindet, wohldefiniert. Das Voronoi-Diagramm ist eine Untertei-
lung der Oberfläche in Bereiche, die, in Bezug auf eine feste Menge von Standorten,
für jeden Punkt auf der Oberfläche angeben, welchem Standort er am nächsten ist.
Um Anfragen nach dem nächstgelegenen Standort effizient zu verarbeiten, wird das
Voronoi-Diagramm im Computer gespeichert. Die Effizienz hängt unter anderem
davon ab, wieviel Speicherplatz das Diagramm einnimmt. Der klassischen Analyse
zufolge wächst der Speicherplatz quadratisch in der Größe des Terrainmodells. Der
quadratische Fall kommt allerdings in der Praxis nie vor.

Im letzten Teil der Arbeit analysieren wir die Größe des Voronoi-Diagramms un-
ter der Annahme, dass die Standpunkte gleichverteilt auf der Oberfläche sind. Unser
Ergebnis bestätigt eine Vermutung von Aronov et al. von 2008: die Komplexität des
Diagramms ist additiv linear in der Größe des Terrains und der Anzahl der Standpunk-
te, wenn die Form des triangulierten Terrains wirklichkeitsgetreu ist und zusätzlich
Annahmen über die Verteilung der Standpunkte gemacht werden.

208 ZUSAMMENFASSUNG

Summary

This thesis is about the realistic analysis of different algorithmic problems that deal
with geographical data. In the following we first describe the general methodology
and the type of data. Then, the specific questions and results of this thesis are
summarized.

Geographical data. Geographical data is processed in different ways in the computer.
The two most common types of geographical data being processed are on the one hand
trajectories and on the other hand terrains. A trajectory is a series of time-stamped
positions which records the path of a moving object. For a terrain, a number of
height measurements are taken within an area of the surface of the earth. From
the height values, the computer generates a geometric surface which represents the
geographic region that was measured. For a triangulated terrain, neighboring points
are connected to a net of triangles. The faces of the triangles from the surface. The
result is referred to as a digital terrain model.

Realistic analysis. To process the data we need algorithms that determine the pro-
cedure. Computer science theory distinguishes between problems that are hard to
solve efficiently and problems that can be solved efficiently by using an algorithm.
By default, the efficiency is evaluated based on the worst case. That is, a problem
is called efficiently solvable if this is true for the worst possible input. Here, the
efficiency of an algorithm is measured by its running time and space requirements.
We are interested not in the absolute quantities, but their asymptotic behaviour with
respect to the size of the input, which is defined by the number of measurement points
that the trajectory (or the terrain) is represented by.

For spatial data, the theoretically worst case is often a contrived configuration
which would never occur in practice. Therefore, the theoretical analysis sometimes
fails to describe the actual behaviour of the algorithm. To remedy this, a collection of
techniques has been developed, which enable a realistic analysis with mathematically
provable bounds. In this sense, it is common to analyze the expected behaviour by
using probability theory. Here we call a problem efficiently solvable if this is true in
the expected case. Furthermore, we can constrain the distribution and shape of the
input by using input models which influence the running time analysis. This allows
for a specific analysis that takes the hardness of the input instance into account and

209

210 SUMMARY

is therefore also meaningful for cases that are less hard. In this thesis we introduce
a new input model for trajectories that has proven to be useful for the problem of
computing the similarity of trajectories.

Computing similarity. The question how to compute the similarity of trajectories is
relevant far beyond geographical applications. To begin with, this similarity has to
be defined exactly in order to be able to compute it. One such definition is provided
by the Fréchet distance. Imagine a man walking a dog on a leash. They are each
walking on one of the paths defined by the two trajectories. They can adjust their
speeds, but not walk backwards along the path. The length of a leash that only just
admits such a walk corresponds to the Fréchet distance of the two trajectories. This
length is inversely proportional to the similarity of the trajectories.

In the first part of the thesis we are concerned with the efficient computation of
the Fréchet distance. This question has been studied for more than 20 years. The
running time of the most efficient algorithms to date grows roughly quadratically with
the size of the input. Thus, the best known algorithms are not particularly efficient.

We describe a new algorithm that approximates the Fréchet distance in near-linear
time under a new geometric input model. The input model constrains the length of a
path that is traced out by the trajectory relative to the diameter of the visited region.

A drawback of the Fréchet distance is its sensitivity to noise. A single error
in the localization of the trajectory can distort the measure, even if the remaining
positioning data is correct and the trajectories are otherwise very similar. We propose
a new variant of the Fréchet distance in which the man or the dog can take shortcuts,
in the hope that erroneous points will be omitted automatically and will therefore
not influence the measure.

Our results show that this new variant of the distance measure is hard to compute
efficiently. On the other hand, we describe a new algorithm to approximate the
distance measure under certain assumptions in near-linear time. For this we use some
of the new methods which we introduced in the first part of the thesis for the original
Fréchet distance.

The hardness of the problem is shown with the help of a so-called reduction. We
show that a hypothetical algorithm that computes this new variant of the Fréchet
distance exactly, can be used to solve yet another problem. The second problem is
to decide for a given input value whether there exists a decomposition into a sum,
where the sum values have to be chosen from a given input set. Since this problem is
recognized to be hard, the hardness follows also for the computation of the distance
measure.

Flow simulation. Digital terrain models are used to simulate how water from pre-
cipitation runs off and collects on the surface. During heavy rainfall this can help
to predict the increase of water levels and to notify the population if necessary. The
basis of this simulation is the assumption that, under the influence of gravity, water
flows in the steepest direction. However, the elevation data is generally not exact
enough to predict this flow direction accurately. This is a serious problem since the
computed amount of water arriving at a certain point in the valley can vary a lot
depending on the flow directions higher up on the slope of the mountain.

211

We propose a new model that simulates water flow robustly even if the elevation
data is imprecise. We show that the simulation on triangulated surfaces is hard to
compute efficiently if flow directions may cross the inside of the triangles. However, if
flow directions are confined to the edges of the triangles, then we can compute upper
and lower bounds on the increase in water levels efficiently.

Here the hardness is shown again by using a reduction. Assume that we had an
algorithm that decides if there can be a flow path between two points on the surface.
We show how this algorithm could be used to solve a logical formula of certain form.
Also here, the second problem is recognized to be hard and therefore the hardness
follows for the computation of the flow path.

Voronoi diagrams. Distances between points on the surface of a triangulated terrain
are well-defined by the length of a shortest path connecting the points along the
surface. The Voronoi diagram is a subdivision of the surface into regions with respect
to a fixed set of sites on the surface. It tells us for any point on the surface which site
is closest to it. To answer queries for the closest site efficiently, the Voronoi diagram
is stored in the computer. The efficiency depends among other things on the amount
of space taken up by the diagram. According to the classical worst-case analysis the
space grows quadratically with the size of the terrain. However, the quadratic case
never occurs in practice.

In the last part of the thesis we analyze the size of the Voronoi diagram under the
assumption that the sites are distributed uniformly likely on the surface. Our results
confirm a conjecture by Aronov et al. from 2008: the complexity of the diagram is
additively linear in the size of the terrain and the number of sites, if the shape of the
terrain is realistic, and additional assumptions are made on the distribution of the
sites.

212 SUMMARY

Acknowledgements

I would like to take this opportunity to thank all my co-authors for teaching me how
to read and write academically. These are Boris Aronov, Maike Buchin, Daniel Chen,
Atlas F. Cook IV, Leonidas J. Guibas, Sariel Har-Peled, Herman Haverkort, Marc van
Kreveld, Maarten Löffler, Andy Nguyen, Benjamin Raichel, Vera Sacristán, Jessica
Sherette, Rodrigo Silveira, Bettina Speckmann, Frank Staals, and Carola Wenk.

I also want to thank all anonymous reviewers of our papers for reading them and
for giving useful comments.

I thank my PhD-advisors Mark de Berg and Marc van Kreveld for giving me
the opportunity to do research. In particular, I thank Marc for inviting me to his
workshop in the first month of my PhD studies, October 2009. It is safe to say that
this kick-started my career. I thank Sariel Har-Peled for inviting me to UIUC in the
summer of 2010, for visiting me in Eindhoven in the summer of 2011, and for sharing
countless ideas that became part of this thesis.

I also thank Jack Snoeyink and Carola Wenk for inviting me to short research stays
at UNC and Tulane University. I really enjoyed visiting these places and meeting other
graduate students in their natural habitat.

I thank Carola for many personal discussions and for being an authentic role-
model. I thank the organizers of the “Women in Theory”-Workshop for a great
workshop and in particular I thank Tal Rabin. Her advice on balancing work and life
stayed with me for the past three years and will continue to be helpful.

Most of all, I thank Marc and Mark for advising me on every aspect of work in
academia, for their kindness, their dedication and their flexibility.

Furthermore, I thank Sariel Har-Peled, Günter Rote, Bettina Speckmann, and
Remco Veltkamp for agreeing to be part of the reading committee and thereby en-
during these 200 pages.

I thank my sister, Imke Driemel, for proof-reading parts of this thesis and for her
expert advice on shoes. I thank Imke and Maarten for agreeing to support me during
the defence ceremony as paranymphs.

I thank my grandparents Alma and Eberhard Krüger, Anneliese and Rudi Driemel,
as well as my parents, Sibylle and Holger Driemel, for supporting me in whatever I
want to do.

Thank you, Herman, for meticulously translating my German summary into Dutch
and for supporting me and our family with the same passion while I was writing this
thesis. Your everlasting enthusiasm is a real blessing.

213

214 ACKNOWLEDGEMENTS

Curriculum Vitae

Anne Driemel was born on May 19, 1983, in Rüdersdorf bei Berlin, Germany. She did
not get her own computer, but was allowed to use the computer of the family. After
she realized that her male friends did not want to talk to her about computers, she
decided to study computer science (instead of mathematics) at the Free University of
Berlin. At the time she thought that computer science was about computers. The first
year lecture on algorithms exposed this common misconception and in fact captivated
her. During her studies she also spent time at the University of Pennsylvania in
Philadelphia, USA, and the University Denis Diderot in Paris, France. Her Master’s
studies on curve similarity were supervised by Helmut Alt at FU Berlin and Jean
Gallier at UPenn and resulted in a Master’s degree from FU Berlin in 2009. Since
October 2009 she has been working towards this thesis under the supervision of Marc
van Kreveld and Mark de Berg at Utrecht University and at the TU Eindhoven.
During this time she also gave birth to her first daughter, Emma. In October 2013
she will join the research group of Christian Sohler at the TU Dortmund, Germany.

215

216 CURRICULUM VITAE

Colophon

This thesis was typeset in LATEX. All figures were created by Anne Driemel and
authors of the respective publications listed on page 199 using the IPE extensible
drawing editor except for the following:

Figure 1.1 is by the Archipelagos Institute of Marine Conservation
Source: http://www.archipelago.gr/

Figure 8.1 is by Jane Richardson
License: Creative Commons Attribution 3.0 Unported
Source: Wikimedia Commons

Figure 8.2 is by Felix Hebeler and Ross Purves
Source: [91]

Original picture of maple leaf used for cover art is by User:Fcb981 (EnglishWikipedia)
License: Creative Commons Attribution-Share Alike 3.0 Unported
Source: Wikimedia Commons

Cover designed by Anne Driemel using IPE

217

http://www.archipelago.gr/

	Introduction
	Motivation
	Trajectory analysis
	Shape matching
	Terrain analysis

	Realistic analysis
	Imprecise input models
	Probabilistic analysis
	Approximation algorithms
	Realistic input models

	Contributions of this thesis
	Approximating the Fréchet distance
	Data structures for Fréchet-distance queries
	The Fréchet distance with shortcuts
	Flow computations on imprecise terrains
	The complexity of Voronoi diagrams on terrains

	Introduction to the Fréchet distance
	Basic definitions
	State of the art
	Basic concepts
	Alt and Godau's algorithm
	Notation

	Approximating the Fréchet distance
	On c-packed curves
	Definition and basic properties
	Curve simplification
	Bounding the free-space complexity

	The algorithm
	Computing the reachable free space
	The approximate decision procedure
	Searching for the Fréchet distance
	The resulting algorithm

	Analysis of the algorithm
	Correctness
	Running time
	The result

	Extension to low-density curves
	Low density curves can be long only if they pay for it
	Accounting for many reachable free-space cells

	Extension to bounded curves
	Extension to closed packed curves
	Fatness implies packedness
	Concluding remarks

	Data structures for Fréchet-distance queries
	Useful lemmas for curves and segments
	Data structure for queries with single segments
	Stage 1: Achieving a constant-factor approximation
	Stage 2: A segment query to the entire curve
	Stage 3: A segment query to a subcurve

	Data structure for queries with polygonal curves
	Universal vertex permutation
	Extending the data structure

	Concluding remarks

	The Fréchet distance with shortcuts
	Introduction
	Preliminaries
	The k-shortcut Fréchet distance
	Tunnels in the free space diagram

	The vertex-restricted shortcut Fréchet distance
	Canonical tunnels and gates
	A polynomial-time exact algorithm
	Tunnel events
	Analysis of the exact algorithm
	A near-linear time approximation algorithm
	Analysis of the approximation algorithm
	Extension to the k-shortcut Fréchet distance

	The continuous shortcut Fréchet distance
	NP-hardness reduction
	Correctness of the reduction
	Algorithmic results

	Concluding remarks

	Flow computations on imprecise terrains
	Introduction
	Basic definitions and notation

	NP-hardness in the surface model
	Flow model
	Overview of the construction
	Details of the construction
	Analysis of flow through a gadget
	Correctness of the NP-hardness reduction

	Watersheds in the network model
	Flow model
	Flow paths are stable
	Potential watersheds
	Computing potential watersheds in linear time
	Potential downstream areas
	Persistent watersheds

	Regular terrains
	Characterization of regular terrains
	Computing proxies and regular terrains
	Nesting properties of imprecise watersheds
	Fuzzy watershed boundaries
	The fuzzy watershed decomposition
	Disconnected persistent watersheds

	Concluding remarks

	Complexity of Voronoi diagrams on terrains
	Introduction
	Preliminaries
	Voronoi diagrams on terrains
	The input model
	The complexity of the Voronoi diagram

	Upper bound
	Lower bound
	A simple example
	Farming – an n m example
	Industrial farming – an n m2/3 example

	Concluding remarks

	Conclusions
	Summary
	Outlook
	Shape-matching protein structures
	Towards robust hydrological computations

	References
	Publications
	Samenvatting
	Zusammenfassung
	Summary
	Acknowledgements
	Curriculum Vitae
	Colophon

