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Abstract. This paper investigates the bus route behavior using a more realistic cellular automaton model
in which the bus capacity is considered. It is shown that with the introduction of bus capacity, four new
states appear compared with the previous works. The results enable us to conclude that the efficiency of
the bus route system cannot be enhanced simply through increasing the number of buses. Moreover, it
is pointed out that a proper value of the bus capacity can lead to the optimal configuration of the bus
system.

PACS. 05.70.Fh Phase transitions: general studies – 64.60.-i General studies of phase transitions –
89.40.+k Transportation

1 Introduction

In the last few decades, traffic problems have attracted
the interest of a community of physicists [1–4]. Among the
phenomena under consideration, the bus route system is
a typical many-body system of interacting buses and pas-
sengers. To understand the behavior of bus route system,
various models have been proposed and studied, includ-
ing cellular automaton (CA) models [5,6], time headway
models [7,8], and car-following models [9,10].

In these models, if a bus is delayed by some fluctua-
tion, the gap between it and its predecessor becomes larger
because this bus has to pick up more passengers. During
the period of delay, more passengers will be waiting for
the bus. As a result, the bus will get further delayed. The
slowly moving delayed bus will slow down the buses be-
hind it. This causes the bus bunching. It has been found
that the transition between an bus bunching state and
a homogeneous state occurs with increasing the bus den-
sity. Thus, the bus behaviour exhibits the dynamical phase
transition similar to the traffic flow [4].

However, in these models, the bus capacity is assumed
to be infinite so that it can pick up all passengers waiting
at the bus stops at a time. This obviously is not realis-
tic. Thus, in this paper, we present a realistic bus route
model considering the capacity of the bus. The model is
presented in Section 2 and the simulation results are re-
ported in Section 3. Section 4 gives the conclusions.

2 Model

In this section, we present a new CA model reflecting more
realities of bus route system. This model is defined on
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Fig. 1. The sketch of the bus route system.

a one-dimensional lattice with periodic boundary condi-
tions. Each site represents a bus stop or a segment of road.
We suppose there are Ns bus stops and every neighbouring
bus stops are spaced uniformly by L road sites (see Fig. 1).
Thus the total length of system is Lm = (L + 1)Ns. Let i
denote the number of bus, j the number of bus stop, M
the bus capacity. From t → t+1, the parallel update rules
consist of 2 steps:

1. Passengers arrival:
Nps(j, t+1) = Nps(j, t)+1 for each bus stop site with
probability λ. Here Nps(j, t) represents the number of
passengers waiting at the bus stop j at time t, and λ
is the passenger arrival rate.

2. Bus motion:
(i) If the bus i is not at the bus stop site, then vi(t +
1) = min(1, gapi(t)) and xi(t + 1) = xi(t) + vi(t + 1).
Here vi(t) and xi(t) are the velocity and position of
bus i at time t, gapi(t) is the gap to the preceding bus
i − 1.
We denote the number of passengers on bus i at time t
as Npb(i, t). If site xi(t + 1) is still not a bus stop site,
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then obviously Npb(i, t + 1) = Npb(i, t). However, if
xi(t + 1) is a bus stop site, then this means that the
bus i pulls in the bus stop j at time t + 1 under the
assumption that position of bus stop j is xi(t+1). For
the case, we suppose the number of passengers getting
off the bus,

O = µ · Npb(i, t);

accordingly the number of passengers getting on the
bus:

I = min(Nps(j, t + 1), M − (Npb(i, t) − O)).

Thus, the number of passengers on the bus:

Npb(i, t + 1) = Npb(i, t) − O + I,

and the number of passengers waiting at the bus stop j:

Nps(j, t + 1) = Nps(j, t + 1) − I.

The total time that the bus i must stay at the bus
stop1:

Tin(i) = int[max(γI, δO)] + 1. (1)

Here µ, γ, δ are proportional coefficients. We take γ >
δ, reflecting the fact that it will take more time getting
on the bus than getting off it. Note that in (1), we
suppose that each bus must stop at every bus stop
even if passengers neither get off nor get on it.
(ii) If the bus i is at one bus stop site, then we check
Tin(i).
– If Tin(i) > 0, then the bus keeps up staying at the

bus stop but Tin(i) = Tin(i)−1. The number of the
passengers on the bus does not change Npb(i, t +
1) = Npb(i, t), the position of the bus also does not
change xi(t + 1) = xi(t).

– If Tin(i) = 0 and gapi(t) = 0, then the bus cannot
move. So Tin(i) = 0, xi(t+1) = xi(t), Npb(i, t+1) =
Npb(i, t).

– If Tin(i) = 0 and gapi(t) > 0, then the bus can
move. So xi(t + 1) = xi(t) + 1, Npb(i, t + 1) =
Npb(i, t).

3 Simulation and result

We carry out computer simulation at different values of λ
under the periodic boundary conditions. In the simula-
tions, the parameters are set: M = 100, Ns = 40, L = 20,
µ = 0.2, γ = 0.5, δ = 0.3. From a realistic point of view,
the maximum number of the buses is set to be twice of

1 In reality, the number of the passengers on the bus is always
changing in the time interval (t + 1, t + 1 + Tin(i)). However,
for simplicity, we assume that the bus stays at the bus stop for
Tin(i) time steps, but the passengers can get on and off the bus
in one time step (i.e., the number of the passengers on the bus
does not change). Moreover, also for simplicity, we assume that
the passengers arriving in the time interval (t+1, t+1+Tin(i))
do not get on the bus i (even if there is still space left on the
bus) although the bus still stays at the bus stop.

Fig. 2. The phase diagram of the bus system for (a) M = 100,
(b) M = 80. Phase I corresponds to the insufficient trans-
portation capability; in Phase II, the buses are bunching; in
Phase IV, the phase separation occurs; Phase III is a coexis-
tence of bunching and phase separation; in Phase V, the system
is bistable. For N ≤ 80, phase V does not exist in the case of
M = 80.

the number of the bus stops. Initially the buses are homo-
geneously distributed with no passengers and there is no
passenger at the bus stops.

In Figure 2, the phase diagram in the (N, λ) space is
shown, where N is the number of the buses. The phase
diagram is classified into five regions.

Region I corresponds to the insufficient transportation
capability, i.e., the passengers cannot be picked up in time
and the number of the passengers waiting at the bus stops
will increase with time. This can be seen from Figure 3a.
For the case, all the buses are full, so the bus bunching
cannot develop. In Figure 4a, the space-time plot of the
buses is shown. It can be seen that the buses are separated
from each other without bunching.

In Figure 3b, λ = 0.2 and N = 50, the system is
in region II, one can see that the passengers waiting at
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Fig. 3. The evolution of Nps. Here Nps denotes the number of
passengers waiting at an arbitrarily chosen bus stop. (a) λ =
0.5, N = 10; (b) λ = 0.2, N = 50.

the bus stops will not increase with the time, but fluctu-
ates in certain range instead. This implies that the buses
are enough to pick up the passengers in time. For the
case, some buses carry more passengers and others carry
less passengers. The buses carrying more passengers have
to stay longer in the bus stops because both the num-
ber of passengers getting off and accordingly the number
of passengers getting on are larger. Thus, the buses that
carry less passengers will be slowed down by those carry-
ing more, and as a consequence, the bus bunching occurs,
see Figure 4b.

We study the average velocity vave of the buses. The
simulations show that in both region I and region II, vave

is a constant 0.656. This is explained as follows. In region I,
all the buses are full; in region II, the leading bus in the
bunching cluster is full. vave is determined by the velocities
of these full buses, which depend on the time that they
need to stop at the bus stops. The time can be calculated

Fig. 4. The space time plot of the bus system corresponding
to the parameters in Figure 3. The buses are moving from left
to right, and the vertical direction (up) is (increasing) time.
The vertical direction corresponds to 1000 time steps.

Fig. 5. The space time plot of the bus system for λ = 0.75
and N = 80. The vertical direction corresponds to 5000 time
steps and only one trajectory of every four buses is shown for
clarity reason.

to be int(γµM)+1 from section II for the full buses, which
is a constant. Therefore, vave remains a constant in both
regions I and II.

Next we focus on region IV. In Figure 5, we show the
space time plot of the system for N = 80, λ = 0.75. One
can see that the state is quite different from the bunch-
ing. For the case, the system is in phase separation: some
buses pile together with almost no gap between each other
(phase 1) and other buses are well separated (phase 2).
Due to the existence of phase 1, the average velocity of the
system decreases compared with that in regions I and II.

In the phase diagram, region II and region IV are
separated by region III. In this region, neither the
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(a) (b) (c)

Fig. 6. The space time plot of the bus system, where λ = 0.8. N = 65, 60, 70 from left to right. The vertical direction corresponds
to 20000 time steps and only one trajectory of every five buses is shown for clarity reason.

Fig. 7. The evolution of the average speed of the bus system
corresponding to the parameters in Figure 6a.

bunching state nor the phase separation state can ex-
ists stably. In Figure 6a, we show the space time plot for
N = 65, λ = 0.8. One can see that the system transforms
between the bunching state and the phase separation state
almost periodically. This can also be seen from Figure 7,
when the phase separation is appearing, vave decreases
and when the phase separation is disappearing, vave in-
creases.

If N increases (decreases) with λ unchanged, one can
see that the time ratio that the system stays in the phase
separation state increases(decreases) (cf. Figs. 6b and c).

Fig. 8. The evolution of the average speed of the bus sys-
tem for λ = 0.6 and N = 70. The transformation between the
two states is erratic: even if starting from the same initial con-
ditions, the evolution process may be different if the random
seeds used are different.

When λ is small, the situation is somewhat different.
For the case, although neither the bunching state nor the
phase separation state can exist stably in large time scale,
the two states can exist stably in not so large time scale.
For example, see Figure 8, where λ = 0.6 and N = 70. One
can see that the phase separation state can exist for ap-
proximately 3,200,000 time steps, then it transforms into



Rui Jiang et al.: Realistic bus route model considering the capacity of the bus 371

Fig. 9. The evolution of the average speed of the bus system
for (a) λ = 0.6 and N = 75, (b) λ = 0.6 and N = 65.

the bunching state. The bunching state exists for approx-
imately 800,000 time steps, then the system breaks down
into phase separation state again. The process repeates
and the system transforms between the two states.

The simulations show that transformation between the
two states is erratic. The time that the system stays in ei-
ther state cannot be determined. Even if starting from
the same initial conditions, the evolution process may
be different if the random seeds used are different. If
one increases(decreases) N with λ unchanged, the system
will generally stay longer(shorter) in the phase separation
state (cf. Fig. 9).

Finally, in region 5, the system is bistable, either the
bunching state or the phase separation state may be sta-
ble. We note that the system is also erratic: even if start-
ing from the same initial conditions, the system may be
in either bunching state or phase separation state if the
random seeds used are different.

Fig. 10. The average speed of the bus system with no limit
of N , where λ = 0.2.

In our simulations, there is no homogeneous state. This
is because the maximum number of the buses is limited.
In Figure 10, the plot of vave against N is shown without
the limit of N . One can see that at N ≈ 290, a first order
transition occurs. vave suddenly increases and the system
transits into the homogeneous state. However, a realistic
bus service system will not have so many buses. So the
study on homogeneous state has no realistic meaning.

In the original model of O’Loan et al. [5], the homo-
geneous phase arises when there is significantly less than
one bus per stop. We argue this is due to that there is
no space among the bus stops (i.e., L = 0), which is not
realistic.

We investigate the dependence of the phase diagram
of the system on the bus capacity M . The simulations
show that the phase structure is robust with respect to
variation of M . With the decrease of M , phase I expands,
phases II, III, IV, and V shrink. When M decreases to 80,
phase V disappears (Fig. 2b) 2. The simulations also show
that in phases I and II, vave increases as M decreases. For
M = 80, vave = 0.700 in phases I and II.

4 Conclusion and discussion

In conclusion, we have investigated the behavior of bus
route system with a more realistic CA model, in which
the bus capacity is considered. The simulations show that
the phase diagram is classified into five regions: insufficient
transportation capability; bus bunching; phase separation;
coexistence of bunching and phase separation; bistable.
Except bus bunching, the other four states are new find-
ings due to the introduction of bus capacity.

From the simulations, one can conclude that the bus
system is preferred to run in the region slightly right of the
boundary between regions I and II, because under such

2 It is likely that the phase V exists if the maximum number
of the buses increases. But in this paper, the maximum number
of the buses is restricted to 80.
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situation the passengers can be picked up in time and
simultaneously only a few buses are bunched.

We should note that the efficiency of the bus route
system cannot be enhanced simply through increasing the
number of buses. If λ is small, the increase of N will not
increase the average speed of the system but resulting in
much more bunched buses. If λ is large, the increase of
N will lead the system into regions III or IV, which will
decrease the average speed of the system.

Nevertheless, we notice that with the decrease of M ,
vave increases in phase II. This means that by decreas-
ing M , the average speed of the system can be enhanced
although more buses are needed. Thus, one needs to
choose a proper value of M in order to reach an optimal
configuration of the bus system.

We acknowledge the support from the National Natural Science
Foundation in China (NNSFC) with Grant No.10272101.
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