
Realistic Compilation by Program Transformation

- Detailed Summary -

Richard Kelsey
Paul Hudak

Yale University
Department of Computer Science

Abstract

Using concepts from denotational semantics, we have

produced a very simple compiler that can be used to

compile standard programming languages and produces
object code as efficient as that of production compil-

ers. The compiler is based entirely on source-to-source

transformations performed on programs that have been
translated into an intermediate language resembling the
lambda calculus. The output of the compiler, while still

in the intermediate language, can be trivially translated
into machine code for the target machine. The com-

pilation by transformation strategy is simple: the goal

is to remove any dependencies on the intermediate lan-
guage semantics that the target machine cannot imple-
ment directly. Front-ends have been written for Pascal,
BASIC, and Scheme and the compiler produces code for
the MC68020 microprocessor.

1 Introduction

Denotational semantics has been used as a tool to prove

compilers correct and to write compiler generating pro-

grams. However it has not generally been used to un-

derstand the nature of the compilation process itself.
For example, most semantics-directed compiler genera-

tors begin with a standard denotational semantics de-

scription of the source language in which stores, environ-
ments, etc. have been made explicit. They then attempt

Permission to copy without fee all or part of this material is
granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the
title of the publication and its date appear, and notice is given
that copying is by permission of the Association for Computing
Machinery. To copy otherwise, or to republish, requires a fee
and/or specific permission.

to map the result onto the target architecture, which is
the crux of the compilation process, and not such an

easy task. Thus denotational semantics only takes care

of the easy part: translating the program into an in-

termediate “meta-language” (the lambda calculus with

constants) which still requires significant compilation.

In contrast, our approach has been somewhat more
pragmatic, but still sound from the perspective of the

formal semantics. Our intermediate language is the call-
by-value lambda calculus with data and procedure con-
stants (as in [Plotkin 75]), but with the addition of an
implicit store. The target language is a generic register
transfer language whose is a subset of the intermedi-

ate language’s syntax but with a completely different
semantics. Thus compilation first consists of transform-
ing the source program into the intermediate language,
and then performing source-to-source transformations
on the intermediate program until it has the same mean-
ing when considered as either an intermediate language
program or a machine language program.

Although this process sounds simple enough, the rea-
sons behind it are more significant. Our motivation

stems from the observation that the compilation process
is in fact a transformation process, and thus the best

way to understand it is simply to look at the source
language and compare it feature for feature with the

target language. From this perspective it makes sense
that common features should be left unaltered. Then
by concentrating on the diflerenees, the very essence of

This research was supported in part by the National Science
Foundation under Grant CCR-8451415, and the Department of
Energy under Grant DEFG02-86ER25012. The authors’ cur-
rent address is:

Yale University
Department of Computer Science
Box 2158 Yale Station
New Haven, CT 06520
hudakQcs.yale.edu
kelseyOcs.yale.edu

0 1989 ACM 0-89791-294-2/89/0001/0281 $1.50

281

the compilation (i.e. transformation) process unfolds.

The compiler described hlere is still based on deno-
tational semantic descriptions of its intermediate and

target languages, and thus its correctness is no harder

(we feel easier) to prove than that of a “traditional”
semantics-directed compiler. Formally, the correctness
of the heart of the compiler is captured as follows:

G(P) = Si(C(P:)) = Sm(C(P))

where: Si = intermediate language semanticrr

snl = machine language semantics
P = output of a Canguage specific front-end

C = compilation transformations

Using this methodology we have developed a compiler

with the following features:

1. The intermediate language is general enough and
powerful enough that many common programming

languages can be compiled easily.

2. The output runs as fast as that produced by a pro-
duction compiler.

3. It is simple and easy to show correct.

We believe this is the first compiler to possess all of ,these

features.

2 The Intermediate Language

The intermediate language used in the compiler is the
basis of the entire compilation strategy. Its syntax is

given in figure 1. As mentioned above, it is essentially

the call-by-value lambda calculus with data and proce-

dure constants and an implicit store. As only the prim-

itive procedures have access to the store (in particular,

variables are not set, as will be explained later), it is
largely invisible in the sem.antics as well as in the lan-

guage itself. However, its presence does rely on the use

of continuations in the semantics to specify the order

in which applications of primitive procedures use and

modify the store.

The intermediate language is also simple in that it

has only a few types of expressions, each having a sim-

ple semantics. This makes the compiler much less com-

plex and easier to understand. Yet the intermediate
language is quite expressive in that it allows first-class

procedures, which can be made recursive through the
use of the store. Having first-class procedures, along

with the implicit store, make it easy to write front-ends

for many modern programming languages.

K E Con constants
I E Ide identifiers

P E Pri primitives (procedure constants)
L E Pro procedures

--+ (proc I (I*> E)

C E Sab simple abstractions

-+ (lambda (I*) E) 1 (cant (I*) E)

A E APP applications

- CC E*) 1 (P CC*) E*) 1 (return P E*>
E E Exp expressions

- K 1 I 1 L 1 C 1 A \(block E* E)

Figure 1: The syntax of the intermediate language

As can be seen from figure 1 the intermediate language
is the lambda calculus with some additions:

The block form is a sequencing construct that eval-
uates its expressions in order and returns the result of
the last.

There are three types of abstraction expressions in
the intermediate language. The only difference between

them is syntactic in that one identifier in the proc ex-

pressions is distinguished; indeed lambda and cant have
identical semantics. Only lambda abstractions are used

in initial input to the compiler. During the compilation

process these are replaced with either proc or cant as

a method of annotating how the abstraction is used in

the program: proc expressions are passed an explicit

continuation argument and cant expressions are not.

Calls to primitive procedures represent machine op-

erations. Associated with each primitive procedure is

all of the information needed to generate a particular

sequence of machine instructions. This information in-

cludes the type(s) of values the primitive returns, how

the primitive uses the store, and which registers may

be used to hold its arguments and return values. Calls

to primitives have zero or more continuation arguments
- a call with no arguments returns a value, otherwise

one of the continuation arguments is called instead of

returning.

Note that the syntax of the intermediate language

does not allow calls to arbitrary expressions; thus there
is no default calling convention. Instead, primitive op-

erations are used to specify call and return conventions
for procedures. This simplifies the compiler as all calls

may be treated identically. Returns are done using the
(return P E*) form in which the primitive P specifies

the way in which the values are to be returned from the

lexically innermost abstraction.

282

3 The Machine Language

The machine language is an abstract assembly language
written in a subset of the syntax of the intermediate lan-

guage, but with a completely different semantics. Only
identifiers, constants, lambda expressions, and calls to

primitive procedures are allowed, where

l The identifiers of the machine language represent
the registers of the machine. Thus there are not
very many of them and they are not lexically
scoped, but rather are locations whose values are

in the store.

l lambda expressions that are not continuations to

calls to primitive procedures represent code point-
ers, and their identifiers are ignored as arguments
are passed in the store. Calls must place the ar-
guments into the registers in which the procedure
expects to find them.

l The primitive procedures are the machine’s instruc-
tions, and the identifiers in a continuation to a call

to a primitive procedure represent the registers in
which the results of the instruction appear.

As an example, here is the interpretation of a call to
a primitive procedure for a two-address add instruction
both in the syntax of the intermediate and machine lan-

guages and in a conventional assembler syntax:

($add ((lambda (r2) . . .)> rl r2)

fl
add ri,r2

In the intermediate language this adds the values of xl

and r2 and calls the continuation argument on the re-

sult. In the machine language this adds the contents

of registers rl and r2 and places the result in r2. A
much larger example giving an intermediate code pro-

gram and the corresponding assembly language program

can be found in figure 11.

4 The Transformation Process

As mentioned earlier, we can gain some insight into the

nature of the transformation process by comparing the
source or intermediate language feature for feature with

the machine language, as shown in figure 2. The entire
problem of compilation lies in using properties of the

second to implement the first.

Note that the store and call-by-value semantics are
essentially the same in both languages - thus there is

nothing to be changed, and the transformation process
can ignore them. This both reduces the work that the
compiler must do and provides a useful tool, the store,
to be used in implementing the rest of the intermediate
language.

On the other hand, the first three items are differ-

ent. Based on this simple observation, we can summa-
rize what is required of the compiler as follows:

4.1 Implementing returns as calls

Call and return must be implemented in terms of goto.
This is done in two steps: 1) the program is first made

linear and every temporary value is explicitly bound to
an identifier; 2) the lambda expressions that bind the

temporary values are converted to explicit continuations
to the calls that produce the values. The explicit contin-
uations are identical to the continuations used in the de-
notational semantics of the intermediate language, and

will eventually be manifested as gotos in the machine
code. The resulting program contains only calls - there

are no returns - and thus procedure calls no longer need
to save a return point.

Intermediate Machine

Call and return.
Nested lexical scoping.

Large set of identifiers.
A store.

Call by value.

Goto.
Flat scoping.

Small set of identifiers.
A store.

Call by value.

Figure 2: Properties of the intermediate and machine

languages

4.2 Transform nested lexical scoping
into flat scoping

Just as continuations from the denotational semantics

were added to implement transfer of control, now explicit
environments from the denotational semantics are added

to implement lexical scoping. As in the denotational
semantics these environments act as an indirection to

the store; but whereas the store is normally explicit, in
our case it is implicit, corresponding to the realities of

the target machine.

Calls are added to the program to construct the en-

vironments and to write and read the values they con-
tain. Procedures have their lexical environments passed

to them as arguments, and procedure calls become gotos
that pass arguments.

283

4.3 Restrict the use of identifiers

Finally, the program must ble transformed so that it only

uses the small set of identifiers of the machine language,
which correspond to the finite resources of the machine.

Registers must be allocated to hold the values of the
identifiers in the program, and any necessary calls a.dded

to move values between registers or to temporarily save
values in the store. At this point procedure calls have

been reduced to nothing but simple gotos, since the ar-
guments are passed in the store. Again, this agrees with
the reality of the machine.

The program now has the same meaning whether it is
interpreted as an intermediate language program or as

a machine language program and can be viewed as an

assembly language program (with a somewhat unusual
syntax) for the target mach.ine.

5 The Compilation Process in

Detail

To summarize, the compilation process is performed in
six steps:

1. Translating the source into intermediate code.

2. Making the program linear.

3. Adding explicit continuations.

4. Simplifying the program.

5. Adding explicit environments.

6. Identifier renaming / register allocation.

Each step restricts the form of the code, and sub-

sequent steps must preserve previous restrictions. The
code expands as the compiler moves more and more of

the work of the intermediate language’s semantics into
the program. At the same time code improvement trans-

formations work to reduce the size of the code, ils each

expansion of the code typically provides more opportu-
nities to improve it.

Much of the design of the compiler is oriented to-

wards reducing the cost of saving and accessing lexical

environments. As the intermediate language is lexically
scoped environments may need to be preserved for later

use. The compiler uses both a heap and a stack for allo-
cating environments. Stack environments are accessed

either through the current stack pointer or through an

explicit environment pointer; heap environments always

use an explicit environment pointer. As heap environ-

ments and explicit environment pointers are less effi-
cient than stack environments and implicit environment

pointers the goal of the compiler is to use as few heap
environments and explicit environment pointers as POS-

sible.

In the remainder of this section we describe each of

these steps detail. For even more detail, see [Kelsey 891.

5.1 Translating Source Code into Inter-
mediate Language

Initially, a front-end specific to the source language
translates the program into the compiler’s intermedi-
ate language. Different front-ends are needed for differ-
ent programming languages. Each consists of a trans-
lator from the source language into the intermediate

language, a set of primitive procedures describing all
of the machine operations that the source language re-
quires, and a mapping from source language constants

to machine data. The translator is normally a simple
syntax-directed translator very much like the denota-
tional semantics for the source language. Every type
of expression in the syntax of the source language has

a template that gives an equivalent expression in the
intermediate language in terms of the translations of

the expression’s subexpressions. The primitive proce-
dures and the description of constants are not normally

specified in denotational semantics but are necessary to

compile programs efficiently.

Standard techniques from denotational semantics are

used in translating programs into the intermediate lan-
guage. The values of variables are kept in locations in
the store, allowing the variables to be set to new values.

Conditional expressions are implemented using primi-

tive procedures that take more than one continuation

argument, only one of which is actually called. Control

constructs such as loops require the use of recursive pro-

cedures. In denotational semantics recursion is normally
done using a fixed-point operator. The intermediate lan-

guage contains no such operator. Instead, the procedure

is stored in a location that is lexically visible within the

procedure itself. The procedure can then dereference

the location to obtain itself as a value.

Currently there are complete front-ends for Pascal,
BASIC, and Scheme (although the latter does not yet
have all of the Scheme primitives and run-time system

defined). The P ascal and Scheme front-ends were de-

veloped along with the compiler. To give some idea of
source language portability, writing the BASIC front-
end and its primitive operations took less than two days.

284

5.2 Making the program linear

This transformation gives an explicit order to the ap-

plications in the program, introduces identifiers for all

temporary values, and removes the block expressions.
In the resulting code the arguments are never applica-
tions (except for arguments to applications of lambda

expressions with only one argument) and thus the code
is linear in that the calls are explicitly ordered.

As an example of the transformation to linear code,
in the expression

(lambda (x y)

(return $return ($+ 0 x ($* 0 y 2)) > >

the result of the call to $* is an anonymous temporary
value (primitive procedures begin with a $ and $return
is a primitive used to return a single value; remem-
ber that procedure call and return conventions must be

specified with primitive operations). The transforma-
tion converts this expression into

(lambda (x y)

((lambda (vi)
((lambda (~2) (return $return ~2))

($+ 0 x vi)>)
($* 0 y 2)))

where vi is the identifier introduced for the result of the

call to $* and similarly for v2 and the call to $+.

5.3 Adding Explicit Continuations

Here the compiler moves the lambda expressions intro-
duced by the previous transformation into the applica-

tions themselves as continuations. The transformation
is given in [Plotkin 751, but made slightly more complex

here due to a more complicated syntax and a desire to
limit the size of the resulting program. l

All lambda expressions are replaced with either cant

or proc expressions. Those that are in call position or

are continuations to primitive calls become cant expres-

sions. The remaining lambdas become proc expressions

with an additional identifier for the continuation to be
called when the procedure has finished. The return

calls in the procedure are replaced with calls to the con-

tinuation identifier.

As mentioned above, all three types of abstraction ex-

pressions have the same semantics; the only difference

‘[Steele 78,Kranz 861 also combine this with the previous
transformation. It seems somewhat simpler as two seperate
transformations.

is a syntactic one in that proc expressions have a dis-

tinguished identifier that is bound to the procedure’s
continuation. An important distinction between cant

and proc expressions is that the environments for cant
expressions can always be allocated on the stack and are

always at a known offset from the current stack pointer.

The environments for proc expressions may be in the

heap or the stack but must be accessed through an ex-
plicit environment pointer. This distinction is a natural
one in that as cant expressions do not get passed a con-
tinuation, the current continuation (and thus the cur-

rent stack value) must be known at compile time. For a
cant expression to be always called with the same cur-

rent continuation all calls to the value of the expression
must be in the body of the same proc expression as the

cant itself. If any calls were in the body of a second
proc expression that call would occur with the stack

environment created by the second proc expression on
the top of the stack, instead of that created by the proc

expression containing the cont.

After continuations have been added to the program

the only cant expressions are either continuation argu-

ments to primitives or were introduced during the trans-

formation to avoid the duplication of continuation argu-
ments to primitives. In either case the calls to the cant
expression meet the above criterion.

To continue the example used above, the transformed
program would be:

(Proc c (x y>
($* ((coat (vi)

($+ ((cant (v2>
($return 0 c v2) >I

Ll)

Y
2))

The resultant program is in continuation passing style

(CPS) and is now more structured than before:

1. Arguments to calls may no longer be calls.

2. The bodies of abstractions are now always calls.

3. There are no longer any returns.

The parts of the compiler that follow must preserve

the continuation passing nature of the transformed pro-

gram.

5.4 Simplifying the Program

Conversion to continuation passing style is followed by
a number of code improving transformations, many

285

of which are well known [Steele 78,Brooks 82,Kranz

86,Standish 761. These include both local transforma-
tions such as beta-reduction, and two global transfor-

mations, one of which is based on flow analysis. The

transformations are simpler when done after conversion
to continuation passing style as the code is more struc-

tured. For example, beta substitution may be done

without reference to side-effects as arguments to appli-

cations are never applications themselves.

The first global transformation substitutes known val-
ues for identifiers bound by abstractions that are used

in more than one application. For example, if the (proc

(c x) . ..I is called in two places and in both cases the
value of x is y and y is lexically visible in the proc expres-

sion, then y will be substituted for x. If the value being
substituted is a continuation, then the proc expression
becomes a cant as long as the scoping restrictions de-
tailed above are met. This allows many procedures, in-

cluding recursive procedures such as those introduced to
compile iterative loops, to become cant expressions and
calls to these procedures to become simple jumps. Thus
the requirement that all control constructs in the source
language be implemented using procedures and proce-

dure calls does not prevent the compiler from producing

simple and efficient code for those control constructs.

The second global transformation attempts to reduce

the use of the store and thus increase the effectiveness of
the other transformations by allowing them to m,anipu-
late values that would otherwise be hidden in the store.
The contents of particular locations in the store are

passed explicitly from cant expression to cant expres-
sion instead of implicitly in the store. This is equivalent
to classical definition-use flow analysis with the results of
the analysis expressed in the program itself, allowing the
other transformations, such as beta-substitution, to im-
plement copy propogation, constant folding, and other
flow analysis based optimizations. Each proc expres-

sion is transformed separately and thus only some uses
of some locations may be removed by this transforma-

tion.

5.5 Adding Explicit Environments

As stated in section 4.2 the environments of the in-
termediate language’s semantics are added to the pro-

gram. This results in a program where the only abstrac-

tions that may have free identifiers are continuations to
calls to primitive procedures. The register alloca.tor de-

scribed in the next section takes care of saving and re-

trieving the values of identifiers needed by continuation

arguments to primitive a,pplications, so these may be

ignored for the moment.

As an example, here is a procedure that takes an ar-

gument x and returns a procedure that returns x when

called (see section 6 for a expansion of let* into the
internal language):

(proc cl (x>

($return (> cl <PROC>))

<PROC> =

(proc c2 0
($return 0 c2 x1>

In the transformed code shown below, both proce-
dures are passed their environment as an additional ar-
gument and construct environments for their lexically

inferior procedures (only one will be shown as the inner
procedure’s environment is not used):

(Proc cl (el x>
(let* ((e3 ($make-environment)>>

($return (> cl <PROC>)))

<PROC> =
(Proc c2 (e2)

($return 0 c2 x1>

The value of x is added to the environment in the
outer procedure and obtained from it in the inner:

(Proc cl (el x>
(let* ((e3 ($make-environment))

(il ($eet-environment e3 ‘x x))>
($return () cl <PROC>)))

<PROC> =

(Proc c2 (e2>

(let ((xl (get-environment e2 ‘x1>>

($return 0 c2 xl)>>

The call to $eet-environment does not return a mean-
ingful value, but it does modify the store. The final

change is to add the code for the inner procedure, which
is now a constant as it contains no free variables, to the

environment so that the two may be returned as a single

value:

286

(Proc cl (el x)

(let* ((a3 ($make-environment))

(il ($set-environment e3 ‘x x)1>

(i2 ($eet-environment e3 ‘p ‘<PROC>))

(p ($make-procedure e2 ‘p)>>

@return 0 cl p>)>

<PROC> =

(Proc c2 (e2>
(let ((xl (get-environment e2 ‘x)))

@return 0 c2 xl)))))

The only analysis required for the addition of environ-

ments is a determination of which procedures require
heap environments and which may use stack environ-

ments. This is done either by fiat, as in Pascal where
the language design ensures that procedures are never
returned upwards, or program analysis, in the case of a
language such as Scheme. There are two cases in which

procedures require heap environments: the procedure
has a use that is not a call to that procedure, such as

being passed to another procedure; or the procedure has
a calling point within a procedure that both requires a
heap environment and is not lexically superior to the
called procedure.

After the environments have been added more code
improving transformations are applied. Examples of
these include removing unused environments and remov-
ing calls that write values that the program never reads.

5.6 Identifier Renaming / Register
Allocation

The final phase of compilation is the allocation of ma-

chine resources, such as registers and functional units,

to the different parts of the program. The allocation of
registers and functional units can be done in any manner
but the allocation is expressed through transforming the

program. For registers this involves changing the names

of identifiers to correspond to the register currently con-

taining the value of the identifier. F’unctional units are

specified by the primitive operations, in that every prim-
itive operation uses particular functional units. Allocat-

ing functional units involves replacing primitive opera-

tions with others that use the desired functional units.

The current implementation does one form of instruc-
tion selection in that it attempts to find sets of primitive

applications that can be coalesced into a single load or
store instruction using the MC68020’s indexed address-

ing mode. The current implementation uses a very sim-
ple register allocation algorithm that allocates registers

for each basic block separately. The register selection

PROGRAM Fact;

VAR x. r : integer;

PROCEDURE Fact(n : integer;

VAR ree : integer) ;

VAR i, r : integer;
BEGIN

r := 1;

FOR i := 1 TO n DO

r := 1: * i;
res :- r

END ;
BECIN

Readln (x) ;
Fact (x, r) ;

Writeln (r)
END.

Figure 3: Sample Pascal program

algorithm is purely local to basic blocks with the excep-
tion that it must look ahead to determine which values
need to be preserved for use in later blocks.

6 Factorial Example

By far the best way to understand the transformations
and their effects is to follow the compilation of a simple
program. As an example of the compiler in action, the
steps in compiling a very simple Pascal program will
be presented here. The sample program, shown in 3,
reads in an integer x and prints out the value of x! =
1*2*...*x.

While CPS code is easy for programs to analyze it is
very hard to read and some syntactic sugaring makes

the code much more comprehensible. The syntax that
will be used here is a variation on Scheme’s let* syntax.

(let* ((~1 ($p x y)) . ..I

0
($p ((cant (v) . ..>> x y>

The meaning of the binding clauses in the let* is as

follows:

((id1 id2 . . .) ($p argl arg2 . . . >> {rest}

0
($p (cant (id1 id2 . . .) {rest}) argl arg2 . . .>

In the let* notation each basic block of the program
becomes a single let* ending in a primitive call with
either more than one continuation argument or none at

all.

287

(proc p.39 0
(let* CC (t .14) ($read input))

(0 ($read-line input))
((p .18) ($puelh ’ 16))

((p . IQ> ($pus:h ’ 16))

(0 ($set,-contents p. 19 ‘1))

((p .24) ($pus:h ’ ptr) >

(0 ($set-contents p.24 <LOOP>))

(0 ($set-contents p. 18 ‘1))
((p.27) ($contents p.24))

(0 ($call p .27))
((t.23) ($contents p.19))

(0 ($write t .23 output))

(0 ($write-line output)>)
($simple-return (1 p. 39)) >

<LOOP> =

(Proc p.41 0
(let* (((t .28) ($contents p, 18)))

($equall6 (<TRUE> eFAIm>) t .28 t. 14)))

<TRUE> =

(con% 0
($return (I p.41))

<FALSE> =

(cant 0
(let* (((t.37) ($contente p.19))

(ct.381 ($contents p.18))
(ct.361 ($multiplyl6 t.37 t.38))

(0 ($set-contents p. 19 t .36))
((t .35) ($contente p. 18))

(ct.341 ($addl6 t.36 ‘1))

(0 ($eet-contents p. 18 t .34))
((t.33) ($contents p.24))

(0 ($eimple-call t.33)))

($return 0 p.41)))

Figure 4: Factorial in CPS

Figure 4 show the factorial program after the compiler
has converted the code into CPS and done some simpli-
fication, including substituting the body of the factorial
procedure at its one calling point. The first block is

the body of the program., which reads a value for x,

introduces locations for the variables i and r and the
recursive procedure needed for the loop, calls the loop-
ing procedure, and writes out the value of r. The loca-
tion introduced for x has been removed as its contents

was set only once and the value could be substituted at
all other uses of the location. A location is needed for

the recursive procedure implementing the loop as that
is the most efficient way of expressing recursion in the

intermediate language.

The body of the loop tests the value of r and either

(Proc p.39 0
(let* ((Ct. 14) ($read input))

(0 ($read-line input))

(Ip .18) @push ’ 16) 1

((p. 19) @push ‘1611

(0 ($set-contents p. 19 ‘1))

((p .24) ($push ‘ptr) >
(0 ($set-contents p.24 <LOOP>))

(0 ($set-contents p.18 ‘1))
((p.27) ($contente p.24)))

($jump p.27)))

<LOOP> =

(cant 0
(let* (((t.28) ($contente p.18)))

($equall6 (<TRUE> <FALSE>) t .28 t .14) > >

<TRUE> -

(cant 0
(let* (((t.23) ($contents p.19))

(0 ($write t.23 output))

(0 ($write-line output>)>
($simple-return () p .39)))

<FALSE> =

(cant 0
(let* ((ct.371 ($contente p.19))

((t .38) ($cont ents p .18))
((t .36) ($multiplyl6 t .37 t .38))

(0 ($set-contents p. 19 t .36))

(ct.361 ($contente p.18))

((t .34) ($addl6 t-35 ‘1))

(0 ($set-contents p.18 t.34))
((t .33) ($contente p.24)))

($jump t .X0))

Figure 5: The loop becomes a jump

returns or does the multiply, adds one to i, and then
calls itself recursively.

The names of the introduced identifiers reflect, the
runtime values they represent: p for pointers and t for
other values. $puah is a primitive for producing new

locations that can be allocated on the stack; its argu-
ment, is the size of the location in bits. $contente and
$set-contents read and write the contents of locations.

In figure 5 the program has been simplified by chang-
ing the loop procedure from a cant to a proc and its

continuation has been substituted into the body of the
procedure. The two calls to the loop now use $ jump as

there is no longer any continuation argument.

The second global simplifying transformations mod-
ifies the program to pass the contents of the locations

288

(proc p.39 0
(let* (((t .14) ($read input))

(0 ($read-line input))

((p .24) ($push ’ ptr) 1

(0 ($set-contents p.24 <LOOP>))

((p-27) ($contents p.24)))
($jump p.27 ‘1 ‘1)))

<LOOP> =

(cant (t .40 t .41)

($equall6 (<TRUE> <FALSE>) t .40 t .14))

<TRUE> -

(cant 0
(let* ((0 ($write t .41 output))

(0 ($write-line output)))
($eimple-return () p.39)))

<FALSE> =

(cant 0
(let* (((t .36) ($multiplyl6 t .41 t .40))

((t.34) ($addl6 t.40 ‘1))
((t .33) ($contente p-24)))

($jump t.33 t-34 t.36)))

Figure 6: Locations removed

p. 18 and p. 19 (which hold the values of i and r) ex-
plicitly as t .40 and t .41 as shown in figure 6. This is

the code at the end of the code improvement phase of
the compiler.

Figure 7 shows the program after the introduction of

environments. This example does not require much in
the way of simplifications other than removing unused

calls. Only p .45 (the global environment passed to the
program) and t .14 (the value of x) are kept in an envi-

ronment. Once the <LOOP> procedure (now a constant

as it has no free variables) has been substituted at its
two calling points, the cell for the recursive reference is

no longer used and is removed. The call to pop off the

stack environment will be added after register alloca-

tion.

Finally, in figure 8 all of the identifiers have been re-
named with the registers that will contain their values.

Two calls to $movel6 are used to move constants into
registers. Even this small program shows up the lack

of sophistication in the current register allocator. The

lack of a global register allocation scheme is shown in
that the value of x is loaded from the stack environment

every time around the loop instead of remaining in a

register. This load could also be avoided by using an

indirect operand to the cmp instruction that is emitted

for the $equall6 primitive.

(Proc p.39 (p.45)

(let* (((p .42) ($push-stack-environment p .39))

(0 ($set-environment p.42 ‘p.45 p.45))

((p.46) ($contente p.45 ‘input))

((t. 14) ($read p.46))

(0 ($set-environment p.42 ‘t.14 t.14))
((p.47) ($contents p.45 ‘(si)))

(0 ($read-line p.47)))

($jump <LOOP> ‘1 ‘11))

<LOOP> =
(cant (Ii .40 t .41)

(let* (((p.44) ($get-environment p.42 ‘t.14)))

($equal16 (<TRUE> <FALSE>) t .40 t .44) > >

<TRUE> =

(cant 0
(let* (((p.43) ($get-environment p.42 ‘p-45))

((p.48) ($contents p.43 ‘output))

(0 ($write t.48 p.11))
((p.49) (Scontente p.43 ‘output))

(0 ($write-line p.49)))
($simple-return () p .39)))

<FALSE> =

(cant 0
(let* (((t .36) ($multiplyl6 t .41 t .40))

((t.34) ($addl6 t.40 ‘I)))

($jump <LOOP> t.34 t.36)))

Figure 7: Environments added

7 Results

Our compiler is written in T [Rees 841, a dialect of
Scheme, and generates code for the Motorola MC68020
microprocessor. As mentioned above, two front-ends
have been written, one for Pascal and one for Basic,

along with a front-end for Scheme that, lacks all of the
necessary primitive operations and an appropriate run-

time system. The Pascal and Scheme front-ends were
developed along with the compiler. Writing the Basic
front-end and primitive operations took less than two

days.

Several Pascal benchmarks have been used to com-

pare the output of the implementation with that of a
more traditional production compiler.2 The timings are

shown here along with the times for the same programs
compiled using the Apollo Pascal compiler. The Apollo
Pascal compiler is a hand-coded compiler that does ap-

proximately the same optimizations as the compiler pre-

3Except for palindromr the benchmark programs were gath-
ered by John Hennessy and modified by Peter Nye.

289

(lambda Cap a0)

(let* (((sp) ($push-stack-environment sp))

(0 C$set-environment ep ‘p. 45 a0))
((a0) ($contents a0 ‘input))

((do) IC$read aNO))

(0 ($set-environment sp ‘v4 do))

((a0) ($get -environment ep ‘p .45))
((a0) ($contente a0 ‘<si>))

(0 ($read-line a0))

((do) ($movel6 ‘1))

(Cdl) ($movel6 ‘1)))
($jump <loop> d0 dl)))

<loop> =
(lambda (do di)

(let* (((d2) ($get-environment sp ‘~4)))
($equall6 (<true> <:f alse>) d0 d2)))

<true> =
(lambda ()

(let* (((a0) ($get- environment sp ‘p .45) 1

((a0) ($contents a0 ‘output))

(0 ($write dl aO>>
((a01 ($get-environment ep ‘p.45))
((a0) ($contente a0 ‘output))

(0 ($write-line a0))
(Cap) ($pop-stack-environment sp)))

($eimple-retnrn 0 BP)))

<false> =
(lambda (>

(let* ((Cdl) ($multiplyl6 d0 dl))
((do) ($addl6 d0 ‘1)))

($jump <loop> d0 dl)))

Figure 8: register allocation

sented here, and is used extensively by Apollo in produc-

tion software (for example, their entire operating system

is written predominantly in Pascal). The main differ-

ence between the two compilers is that the Apollo com-

piler uses a less efficient procedure call mechanism, but

does some non-local register allocation and loop invari-

ant code hoisting that we do not do.

Figure 9 lists several Pascal programs that have been
compiled and run using the compiler. Figure 10 gives

the running times for these programs. “Us” is the times

for the benchmarks as com,piled by the transformational

compiler, “Them” is the times when compiled using the

Apollo Pascal compiler. All times are in seconds. The
third column contains the ratio of the two times.

Note that the transformational compiler’s output runs

somewhat slower for four of the programs, and in the

integer fibonacci
bubble sort on 1000 integers

quicksort on 5000 integers

integer arithmetic operations

recursive array permutations
towers of hanoi

Figure 9: Benchmark Programs

us Them Us / Them

Fib 3.40 4.47 0.76

Bubble 0.72 0.64 1.09

Quick 0.38 0.26 1.46

Palindrome 5.06 4.79 1.06

Perm 0.91 0.81 1.12

Towers 3.50 3.92 0.89

Figure 10: Benchmark Results

other two, Fib and Towers, it runs somewhat faster
(both of which perform a large number of procedure
calls). We consider these results to be quite good, and
perhaps surprising, given the simple structure of our
compiler. We also do not consider our compiler to be
complete, in that many more standard optimizations
could be implemented without undue effort.

8 Related work

There have only been a few realistic compiler gener-

ators, such as those of Paulson [Paulson 821 and Lee
[Lee 871, written using denotational semantics or at-
tribute grammar descriptions of the source languages as
input. However, we do not feel they have been realistic

enough, nor could they be called simple. The crucial dis-

tinction between the “pure” semantics-directed compiler

generators and the compilation method described here

is that although both may translate the source program
into a form of the lambda calculus, here the identifier

bindings, continuations, and the store of the source pro-
gram are actually implemented using the bindings and

continuations of the lambda calculus along with an im-
plicit store. This restricts the ways in which the bind-

ings, continuations, and store can be used by the source
program, but allows the compiler to implement them ef-
fieiendy. By viewing the compilation process as a trans-

formational one, we are able to concentrate on the dif-
ferences between the intermediate “meta-language” and
machine language, yielding a more direct path between

290

lea -6 Cap> , sp
move.1 a0 , (6~)
move.1 (a01 , a0
jar read
m0ve.w d0,4(ep)
move.1 (sp),aO
move.1 (a01 , a0
jar read-line
moveq #l,dO
moveq #l,dl
bra loop

false:
mu1s.w
addq.1

loop:
m0ve.w
cmp.1
ble

true:
move.1
move.1
jar
move. 1
move.1
jar
lea
rte

di,dO
#l,dl

4(sp) ad2
dO,d2
false

(BP>, a0
4(aO),aO
write
(sp) , a0
4(aO),aO
write-line
G(sp),ep

(lambda (sp a0)

(let* (((sp) ($push-stack-environment sp))
(0 ($set-environment ap ‘p.46 aO>)
((a0) ($contents a0 'input))
((do) ($read a0))
(0 ($set-environment sp ‘v4 do))
((a0) ($get-environment sp 'p.45))
((a01 ($contents a0 ‘input) >

(0 ($read-line a0))
((do) ($movel6 'I))
((al) ($movel6 '1)))

($jump <loop> d0 dl)))

(lambda ()
(let* (((al) ($multiplyl6 d0 dl))

((do) ($addl6 d0 '1)))
($jump <loop* d0 al)))

(lambda (do dl)

(let* (((d2) ($get-environment sp '~4)))
($equall6 (<true> <false>) d0 d2)))

(lambda 0
(let* (((aO> ($get-environment sp 'p.45))

((a0) ($contents a0 ‘output))

(0 ($write dl a0))
((a0) ($get-environment sp 'p.45))
((aO> ($contents a0 'output))
(0 ($write-line a0))
((sp) ($pop-stack-environment sp)))

($simple-return 0 ep)))

Figure 11: The machine code produced for the factorial example

intermediate and machine code. As a result, much of the
utility and generality of using the lambda calculus to de-

scribe programming languages can be obtained without

paying the performance cost of compiling and running
general lambda calculus programs.

On the negative side, our methodology is somewhat
less general than the pure approaches in that our in-

termediate language is “biased” somewhat in the direc-
tion of sequential, register-based, uni-processors. On the

other hand, the compilation strategies of the pure ap-
proaches are also certainly biased in that direction. To

retarget our approach to a radically different architec-
ture would require changing our intermediate language

as well as some of the transformations, whereas retarget-

ing a pure approach would require considerable changes

to the compilation strategy itself.

Some parts of our compilation by transformation

methodology are related to other approaches to compiler
design. For example, passing continuations as explicit

arguments has been used in [Steele 78,Kranz 861. Pass-

ing environments as explicit arguments is one of our key

innovations, but is related to “lambda-lifting” as used in

functional language compilers [Johnsson 871 and to the
method described in [Feeley]. The use of an intermediate

language to allow compilation of more than one language

is fairly common, as is the use of program transforma-
tions. Indeed, there is at least one other compiler based

solely on program transformations [Boyle 84,Boyle 86).

Here, together with a few key innovations, these vari-
ous techniques have been put together into one common
framework. Transformations are used exclusively, and

only on programs in one intermediate language. The
semantics of the intermediate and target languages are

specified denotationally, and the compilation transfor-
mations are based directly on the differences and simi-

291

larities of the two languages. The result is a very simple
compiler that generates surprisingly good code.

References

[Boyle 841

James M. Boyle and Monagur N. Muralidharan.
Program reusability through program transforma-

tion.
in IEEE Transactions on Software Engineering SE
10(5):574-588, September 1984.

[Boyle 861
James M. Boyle, Kenneth W. Dritz, M .N. Muralid-
haran, and Robert J. Taylor.
Deriving sequential and parallel programs from pure
Lisp Specifications by program transformation.

in IFIP WG2.1 Working Conference on Programme

Specifications and Transformations.

[Brooks 821
Brooks, R.A., Gabriel, R.P. and Steele, G.J. Jr.

An optimizing compiler for lexically scoped LISP.

in Proceedings of the SIGPLAN Symposium on Com-
piler Construction, ACM, SIGPLAN Notices 17(6),

June 1982.

[Feeley]

M. Feeley and G. Lapalme.

Closure generation based on viewing LAMBDA as

EPSILON plus COMPILE.

Dkpartement d’informatique

et de recherche op6rationnelle (I.R.O.), UniversitC de
Mont&al, P.O.B. 6128, Station A, Montreal, Quebec,

H3C3J7 (Canada).

[Johnsson 871

Thomas Johnsson,
Lambda lifting: Transforming programs into recur-

sive equations.

In Compiling Lazy Functional Languages.

PhD thesis, Chalmers University of Technology, 1987

[Kelsey 891

Richard Kelsey.
Compilation by Program Transformation.

PhD thesis, Yale University, 1989.

[Kranz 861
Kranz D.A., Kelsey, R., Rees J.A., Hudak P., Philbin,
J. and Adams, N.I.
Orbit: An optimizing compiler for Scheme.

In Proceedings of the SIGPLAN ‘86 Symposium O~Z

Compiler Construction, ACM, SIGPLAN Notices

21(7), June 1986.

[““P” e 2 Lee.
The Automatic Generation of Realistic Compilers

from High-level Semantics Descriptions.
PhD thesis, University of Michigan, 1987.

[Paulson 821
Lawrence Paulson.
A semantics-directed compiler generator.

in Converence Record of the Ninth Annual ACM
Symposium on Principle3 of Programming Languages,
ACM, 1982.

[Plotkin 751
G. D. Plotkin.
Call-by-name, call-by-value and the X-calculus.
in Theoretical Computer Science 1:125-159, 1975.

[Rees 841

Jonathan A. Rees, Norman I. Adams, and James R.
Meehan.
The T manual, fourth edition.

Yale University Computer Science Department, Jan-
uary 1984.

[Standish 761

T. A. Standish, D. C. harriman, D. F. Kibler, and J.

M. Neighbors.
The Irvine program transformation catalogue

Department of Information and Computer Science,

University of California at Irvine, 1976.

[Steele 781

Guy L. Steele Jr.

Rabbit: a compiler for Scheme.
MIT Artificial Intelligence Laboratory Technical Re-

port 474, May 1978.

292

