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The authors develop a unique CT simulation tool based on the 4D extended cardiac-torso �XCAT�
phantom, a whole-body computer model of the human anatomy and physiology based on NURBS
surfaces. Unlike current phantoms in CT based on simple mathematical primitives, the 4D XCAT
provides an accurate representation of the complex human anatomy and has the advantage, due to
its design, that its organ shapes can be changed to realistically model anatomical variations and
patient motion. A disadvantage to the NURBS basis of the XCAT, however, is that the mathematical
complexity of the surfaces makes the calculation of line integrals through the phantom difficult.
They have to be calculated using iterative procedures; therefore, the calculation of CT projections
is much slower than for simpler mathematical phantoms. To overcome this limitation, the authors
used efficient ray tracing techniques from computer graphics, to develop a fast analytic projection
algorithm to accurately calculate CT projections directly from the surface definition of the XCAT
phantom given parameters defining the CT scanner and geometry. Using this tool, realistic high-
resolution 3D and 4D projection images can be simulated and reconstructed from the XCAT within
a reasonable amount of time. In comparison with other simulators with geometrically defined
organs, the XCAT-based algorithm was found to be only three times slower in generating a projec-
tion data set of the same anatomical structures using a single 3.2 GHz processor. To overcome this
decrease in speed would, therefore, only require running the projection algorithm in parallel over
three processors. With the ever decreasing cost of computers and the rise of faster processors and
multi-processor systems and clusters, this slowdown is basically inconsequential, especially given
the vast improvement the XCAT offers in terms of realism and the ability to generate 3D and 4D
data from anatomically diverse patients. As such, the authors conclude that the efficient XCAT-
based CT simulator developed in this work will have applications in a broad range of CT imaging
research. © 2008 American Association of Physicists in Medicine. �DOI: 10.1118/1.2955743�
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I. INTRODUCTION

With the rapid growth and expansion of x-ray computed to-
mography �CT� into new three-dimensional �3D� and four-
dimensional �4D� applications, a great deal of research is
being performed to develop methods and techniques to fur-
ther improve image quality and image interpretation while
minimizing the radiation dose to the patient. As CT technolo-
gies become progressively more advanced, they also become
exceedingly complex and any optimization becomes a daunt-
ing challenge. Due to radiation concerns, it is impractical to
optimize the large number of existing imaging parameters
available in modern CT systems in human patients in ways
that are specific to clinical demands. There is too much het-
erogeneity in patient size and pathology and too many tech-
nical variables in modern CT systems to perform such stud-
ies. It is equally impractical to perform optimization studies
in physical test objects that cannot realistically duplicate the
conditions seen in vivo. It would be prohibitively expensive
to fabricate physical phantoms to simulate a realistic range of
patient sizes and clinical needs, especially when physiologic

motion needs to be considered. The only practical approach
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to the optimization problem is, therefore, through realistic
computer simulation.

Computer simulation is, therefore, set to play a crucial
role in characterizing, evaluating, and optimizing CT imag-
ing systems and image processing and reconstruction meth-
ods. Computer simulation involves generating imaging data
from a computer model or phantom of a subject’s anatomy
and physiology using models for the physics of the imaging
process �Fig. 1�. The main advantage to using computer gen-
erated phantoms in simulation studies is that the exact
anatomy and physiological functions of the phantom are
known, thus providing a gold standard from which to quan-
titatively evaluate and improve medical imaging devices and
image processing and reconstruction techniques. A vital as-
pect of simulation is to have a realistic phantom or model of
the human anatomy. Without such, the results of the simula-
tion may not be indicative of what would occur in actual
patients and would, therefore, have limited practical value.

Existing computerized phantoms used in medical imaging
involve trade-offs between realism and flexibility. Current

phantoms can be divided into two general classes: voxelized
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and mathematical phantoms. Voxelized phantoms1–8 are
based on patient data, typically obtained from magnetic reso-
nance �MR� or x-ray CT scanners, and are thus very realistic.
The patient images are segmented assigning a unique identi-
fier or color to the voxels that compose each organ. Origi-
nally fixed to a particular image resolution and patient
anatomy, transforms can be applied to the voxels that com-
pose these phantoms to generate other resolutions and to
simulate anatomical variations and patient motion, but this
requires interpolation, which induces error. Another limita-
tion to voxelized phantoms is that since they provide a digi-
tized representation of objects at a particular resolution, ex-
act ray tracing calculations �such as those used for
transmission CT simulation� are not possible. They can only
be approximated from the voxelized representations.

Mathematical phantoms,9–13 on the other hand, are based
on simple geometric primitives. Since they are mathemati-
cally defined, they can be easily manipulated to model ana-
tomical variations and patient motion, and they may be gen-
erated at any resolution without errors due to interpolation.
Also, it is possible to more accurately calculate the intersec-
tion of projection rays with the objects in the phantom using
the mathematical equations.10 The major limitation of math-
ematical phantoms is that the simplicity of the mathematical
equations upon which they are based limits exact modeling
of the organ shapes. Therefore, CT data generated from
mathematical phantoms are not as realistic as those from
voxelized phantoms.

Recent work in phantom development has focused on cre-
ating more hybrid models, phantoms based on patient imag-
ing data, but using more complex mathematical primitives to
define the organs and structures.14 Among these is the 4D
extended cardiac-torso �XCAT� phantom15–19 �Fig. 2� devel-
oped in our laboratory. It was developed to provide a com-
puter model of the human anatomy and physiology that is
both realistic and flexible, taking advantage of both types of
computational phantoms. The XCAT is an enhanced version
of the original 4D NURBS-based cardiac-torso �NCAT�
phantom, a thoracic model designed for low-resolution im-
aging research, specifically SPECT or PET. The XCAT phan-
tom consists of a whole-body model that contains a much
higher level of anatomical detail, suitable for application to
high-resolution modalities such as CT or MRI.19 Non-

20,21

FIG. 1. Computer-based medical imaging simulation. Original NCAT phan-
tom is shown simulating a chest x-ray.
uniform rational b-splines, or NURBS surfaces, were
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used to construct the organ shapes of the male and female
versions of the phantom based on the 3D Visible Human
Male and Female anatomical data sets from the National Li-
brary of Medicine �NLM�,22 respectively. The NURBS math-
ematical basis allows the organ shapes to be altered easily to
realistically model different anatomical variations and patient
motions.16,17,20,21 Male and female anatomical variations can
be created by applying a set of transformations to the base
anatomies of the phantom.23,24 The XCAT was extended to
four dimensions to model common patient motions such as
the cardiac and respiratory motions using 4D cardiac-gated
tagged MRI and multi-slice CT data and 4D respiratory-
gated CT data, respectively �Fig. 3�. With its basis upon hu-
man data and the inherent flexibility of the NURBS math-
ematical primitives, the 4D XCAT is capable of creating a
realistic population of patients of varying anatomy and mo-
tion from which to perform research.

A disadvantage to the NURBS basis of the 4D XCAT,
however, is that the ray-surface intersections, which deter-
mine the line integrals in a CT projection image, are much
more difficult due to the mathematical complexity of the
surfaces.25 The intersections have to be calculated using it-
erative procedures; therefore, the calculation of projections is
much slower than for simpler mathematical phantoms. Many
techniques have been developed in computer graphics for
more efficient ray tracing of spline surfaces.26–33 Most of the
algorithms focus on solving the ray-surface intersection
problem for Bezier surfaces since other types of polynomial
surfaces, including NURBS surfaces, can be simply con-
verted into a Bezier representation.21,34,35 Bezier surfaces are
well suited for use in the ray-surface intersection problem
since subdivision of them is much easier and efficient than
that of other surface representations.25,36 One method widely
used in computer graphics to solve the ray-surface intersec-
tion problem is Bezier clipping.37 Bezier clipping is an easy
and efficient method for calculating the intersections of a ray
with a Bezier surface.

Using the Bezier clipping method in combination with
other efficient ray tracing techniques, we develop a fast ana-
lytic CT projection algorithm to accurately calculate projec-
tions directly from the surface definition of the XCAT phan-

FIG. 2. Anterior views of the male �left� and female �right� anatomies of the
4D XCAT phantom.
tom given parameters defining the CT scanner and geometry.
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The algorithm can produce realistic, patient-quality 3D and
4D CT images. We compare the efficiency of our projection
algorithm with others using geometrically based phantoms.
We then demonstrate the capability of the XCAT-based simu-
lator to generate realistic 3D and 4D CT data.

II. METHODS

II.A. Development of the analytical x-ray CT
projection algorithm

The XCAT-based projection algorithm was set up so as to
generate a single projection given user defined parameters
for the CT geometry and scanner. The program was set up in
this manner so that the algorithm could be run in parallel,
spreading the angles that compose the total projection data
set over multiple processors or computers. For the given pro-
jection angle, the algorithm first determines the rays needed
to form the projection image based on the parameters input
for the projection field. The projection field is determined by
six user-defined parameters: the projection geometry �paral-
lel, fan, or cone-beam�, distance from the center of the pa-
tient �COP� to the source, distance from the COP to the de-
tector array, field of view �FOV�, and array size �256�256,
512�512, etc.� After determining the projection field, the
NURBS organ models of the phantom are converted into
cubic Bezier patches. A Bezier patch consists of a cubic
Bezier surface composed of 16 control points �Fig. 4�. The
16 control points form a convex-hull approximating the
shape of the surface. Since NURBS surfaces are generaliza-

FIG. 3. Cardiac and respiratory motions of the 4D XCAT. Plots of the
tions of Bezier surfaces, a NURBS surface can be easily
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converted into Bezier form. A NURBS surface is decom-
posed into Bezier surfaces by inserting multiple knots using
accepted methods21,34,35 until all knots have a multiplicity of
four.36 A NURBS surface composed of an n�m set of con-
trol points will be converted into n�m Bezier surfaces or
patches.

The algorithm then casts the projection rays through the
phantom and uses the iterative Bezier clipping method to
calculate the ray-surface intersections. For each projection
ray, defined by an origin O �ox ,oy ,oz� and a direction D
�dx ,dy ,dz�, the bounding box for each organ is first tested to
see if it intersects the ray. The bounding box for each organ
is precomputed by selecting the minimum and maximum
values of x, y, and z from the matrix of control points defin-
ing the NURBS surface for the organ. To test for intersection

me change in the cardiac chambers and lungs are shown to the right.

FIG. 4. Cubic Bezier surface. Cubic Bezier surfaces are defined by 16 con-

trol points which form a convex hull over the surface.
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with a given bounding box, the equations for the six planes
that compose the box are computed. Given three corner
points that define a side of the box �as determined by the
minimum and maximum x, y, and z values�, the equation for
the plane passing through them is computed as follows. A
plane is defined by Eq. �1�,

Ax + By + Cz + D = 0, �1�

where A, B, C, and D are the coefficients of the plane. The
vectors V1 and V2 are defined as

V1 = P2 − P1,

�2�
V2 = P3 − P1,

where P1= �x1 ,y1 ,z1�, P2= �x2 ,y2 ,z2�, and P3= �x3 ,y3 ,z3� are
the three corner points used to define the plane. The coeffi-
cients A, B, and C of the plane equation are calculated as the
cross product of the vectors V1 and V2 as shown in Eq. �3�.
The coefficient D is calculated by substituting the results
found for A, B, and C along with the coordinates of P1 into
the plane equation as shown in Eq. �4�:

�A,B,C� = V1 � V2, �3�

D = − A * x1 − B * y1 − C * z1. �4�

Given an equation defining a plane of the bounding box, the
intersection of the plane with the projection ray can be cal-
culated. The line L�t� representing the projection ray can be
defined parametrically as

L�t� = O + tD , �5�

where the x, y, and z components of the line are x�t�=ox

+ tdx, y�t�=oy + tdy, and z�t�=oz+ tdz, respectively. Substitut-
ing x, y, and z of the line into Eq. �1� and solving for t yields
the following:

t =
− �Aox + Boy + Coz + D�

Adx + Bdy + Cdz
. �6�

For each of the six planes defining the bounding box, the
value t is calculated and is then used to find the intersection
point of the projection ray with the plane. If the intersection
point falls within the minimum and maximum x, y, and z
values for the plane, the ray is determined to hit the bound-
ing box. If the ray misses a plane, the remaining planes are
tested. If the projection ray does not intersect the bounding
box of the organ, the process moves on to next model. If the
projection ray does intersect the organ’s bounding box, the
Bezier surfaces defined for the organ are input into the
Bezier Clipping algorithm to iteratively calculate the inter-
section points with the ray.

The Bezier clipping algorithm uses recursive subdivision
to divide the Bezier surfaces into smaller and smaller sub-
surfaces to determine the intersections with the projection
ray �Fig. 5�. Subdivision of Bezier surfaces is much easier
and efficient than that of other surface representations.25,36
This makes it beneficial to first convert a surface into a
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Bezier representation before using it in an adaptive subdivi-
sion algorithm. The bounding box for each Bezier surface is
tested, as described above, to see if it intersects the projec-
tion ray. As was the case for each NURBS surface, the
bounding box for each Bezier surface is formed by selecting
the minimum and maximum values of x, y, and z from the 16
control points defining the surface. Surfaces that do not in-
tersect the projection ray are discarded. Surfaces found to
intersect the ray are further tested for flatness. The flatness is
determined by computing the equation for the plane passing
through three of the four corner control points of the cubic
Bezier patch and then calculating the distance from each of
the other 13 control points to the plane. The equation of the
plane is computed using Eqs. �3� and �4�. Once the coeffi-
cients of the plane have been computed, the distance of each
of the 13 remaining control points to the plane is calculated.
The distance is calculated by substituting the x, y, and z
values of the control points into Eq. �1�. Once the maximum
distance is found to be within a specified tolerance value
�1�10−10 in our implementation�, the surface is determined
to be flat. If the surface is not flat, it is subdivided into four
subsurfaces using accepted methods for subdividing a Bezier
surface,25,36 and each of these subsurfaces is passed back into
the Bezier clipping algorithm. If the surface is determined to
be flat, it is approximated with a plane and the intersection of
the projection ray with the plane is analytically calculated.
The Bezier clipping algorithm continues until all intersection
points have been found.

The speed and efficiency of the Bezier clipping method
can be enhanced using the efficient ray tracing techniques
described by Martin et al.38 This involves defining each or-
gan or structure in the 4D XCAT phantom with a bounding
volume hierarchy �BVH�. A bounding volume hierarchy is a
tree of bounding volumes arranged so that the bounding vol-
ume at a given node encloses the bounding volume of its
children. The bounding volume of a leaf in the tree encloses
a primitive. Originally, a single all-encompassing bounding
volume �a box in our case� represented each organ model in
the projection algorithm and was used to initially determine
organs that intersect a projection ray. If the ray was found to
intersect this bounding box, the algorithm then proceeded to
test the list of Bezier surfaces defined for the organ. A bound-

FIG. 5. Bezier clipping. The two Bezier surfaces that do not intersect the
projection ray are discarded. The surface that intersects the ray is tested for
flatness. Since it is not flat, the surface is subdivided into four subsurfaces.
Each of these subsurfaces will then undergo the tests for intersection and
flatness starting the process over.
ing volume hierarchy better represents the shape of a surface,
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making the Bezier clipping algorithm much more efficient. If
a ray misses the bounding volume of a particular node in the
tree, then the ray will miss all of its children, and the chil-
dren can be skipped. Using this technique dramatically re-
duces the testing of surfaces that do not intersect the projec-
tion ray, but whose single all-encompassing bounding
volume would. Therefore, defining a BVH for each organ
greatly enhances the speed of the projection algorithm.

We further refined the Bezier clipping algorithm described
above by implementing this technique. In the initialization of
the projection algorithm, a BVH is defined for each organ in
the 4D XCAT phantom. In our implementation, we use
Bezier surfaces as the primitives and axis-aligned boxes39,40

as the bounding volumes to construct the tree. The BVH is
formed by taking the list of bounding boxes defined for each
organ’s Bezier surfaces and sorting them according to the
axis direction that has the greatest extent across the bounding
boxes. The list is then split in half, and a bounding box is
defined for each half. The process is repeated until each leaf
of the tree contains a single Bezier surface.

In the projection algorithm, each projection ray is set to
traverse the BVH for each organ, in depth first order, to
determine the intersections of the ray. In traversing a BVH, a
projection ray is tested against numerous bounding boxes to
see if it intersects with them. The ray-box intersection rou-
tine can, therefore, be a computational bottleneck if an effi-
cient method is not used. We previously defined each side of
the bounding box with a plane and then calculated the inter-
section of the projection ray with each of the six sides. This
is computationally intense, requiring up to 90 multiplication/
division and 108 addition/subtraction operations. Many
methods have been developed in computer graphics for fast
calculation of the ray-box intersections. To further enhance
our algorithm, we utilized the routine developed by Kay and
Kajiya,41 a technique that is commonly used in ray tracing.
This method treats the bounding box as a combination of
slabs where a slab is defined as the space between two par-
allel planes. The distances to the nearest and farthest inter-
section points of the ray are computed for each slab. If the
largest near value is greater than the smallest far value, the
ray misses the bounding box; otherwise, they intersect. This
routine was further optimized using the methods of Williams
et al.42 to reduce the number of calculations by replacing
division with faster multiplication operations and by precom-
puting values that remain constant for each projection ray as
it travels from box to box. Overall, the improved ray-box
intersection routine requires only six multiplication and six
subtraction operations.

In traversing a BVH for a particular organ, if a projection
ray intersects the object, it will ultimately reach a leaf in the
tree. If the ray hits a leaf, the Bezier surface contained in the
leaf is input into the Bezier clipping algorithm and the inter-
section points are calculated. The intersection points are then
used to construct line segment paths through the various or-
gans of the XCAT for each projection ray in the projection

field. The paths through the phantom as well as the attenua-
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tion along each path are used to calculate the line-integral
l�a ,c� for each projection ray in the a�c projection image
according to the following:

l�a,c� = �
k=1

K

�k�lk, �7�

where K is the total number of objects encountered by the
projection ray, and �lk is the path length of the ray with
object k. The algorithm assumes a uniform attenuation value
�k for each object k. The attenuation coefficients of the tis-
sues, at any energy from 1 to 1000 keV, are calculated from
the elemental compositions of the tissues43 and the energy-
dependent attenuation coefficients for the elements.44 The
line integrals for all the rays in the projection field are used
to compose the projection image. Each value in the projec-
tion image P�a ,c� is calculated as follows:

P�a,c� = − ln
Nout

Nin
, �8�

where Nin is the number of photons that enter the object and
Nout is the number of photons exiting the object along the
path of the ray. In the case of a monochromatic source Nout is
defined as Nout=Nin exp�−l�a ,c��.

For polychromatic sources, the x-ray spectrum can be
modeled as U pairs of energy levels Ei �i=1,2 , . . . ,U� and
photon intensities Si. This is a similar method to that used for
the Take CT Simulator by Müller-Merbach et al.45 The line
integral for each projection ray at each energy is then calcu-
lated as shown in Eq. �9� where �k�Ei� is the attenuation
coefficient of object k at the energy i. The number of photons
that enter the object, Nin, and the number that exit, Nout, are
then defined as given in Eq. �10�:

l�a,c,Ei� = �
k=1

K

�k�Ei��lk, �9�

Nin =
1

2�
i=1

U

Si�Ei+1 − Ei−1� ,

Nout =
1

2�
i=1

U

Si exp�− l�a,c,Ei���Ei+1 − Ei−1� . �10�

In the case of a polychromatic spectrum, the path lengths �lk

for each projection ray are calculated once for the first en-
ergy in the spectrum and then stored in memory. For each
subsequent energy i in the spectrum, the attenuation coeffi-
cients for the different organs are calculated and then multi-
plied by the path lengths to obtain the line integrals.

The projection algorithm includes a model for quantum
noise in x-ray CT. Noise is modeled by adding statistical
uncertainty to the line integrals �rather than to the recon-
structed voxels�. To model the noise, projections are scaled
to reflect the appropriate mean intensity based on the user-
defined dose and x-ray beam intensity and taking into ac-
count the detector properties and the size of the detector

elements. Then, using the energy spectrum after transmission
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through the phantom �including the effects of beam harden-
ing�, Poisson noise is simulated in each of the spectral en-
ergy bins. Summing over energy in each projection bin pro-
vides projection data with realistic CT noise levels and
statistics.

The projection algorithm can be used to generate CT data
from the phantom at various angles in a circular or spiral
trajectory. As mentioned above, the angles composing the
total projection data set can be computed in parallel. The
projections are stored as RAW images with no header and
with each pixel defined as a 4 byte floating point number.
The projections can be reconstructed using typical or experi-
mental methods into realistic simulated CT images.

II.B. Comparison to analytical methods using simpler
mathematical phantoms

To evaluate the efficiency of our XCAT-based CT projec-
tion algorithm, we compared it to two analytical algorithms,
one based on the FORBILD phantom46 composed of simple
geometric primitives, and one based on the phantom by Zhu
et al. composed of superquadric surfaces.10 The anatomy of
the FORBILD and superquadric phantoms included the body,
lungs, sternum, backbone, and ribcage. Using a single 3.2
GHz processor, each projection algorithm was then used to
generate a 256�256, 256 angle cone-beam projection scan
about a circular orbit approximately covering the same field
of view. The analysis of the FORBILD and superquadric
phantoms was performed by Dr. Zhu in her laboratory. The
XCAT was tested using a similar PC in our laboratory. The
computational time of the XCAT-based projection algorithm
�with and without the ray tracing refinements discussed
above� was compared to those of the two analytical phan-
toms.

III. RESULTS

III.A. Comparison to analytical methods

In their evaluation, Zhu et al. found that it took their
superquadrics-based CT simulator 1456 s to generate the
256�256�256 projection scan as compared to 1395 s for
the FORBILD CT simulator. The XCAT-based CT projection
algorithm, consisting of just Bezier clipping without using
any ray tracing enhancements �bounding volume hierarchy
or the fast ray-box intersection routine�, was found to pro-
duce a similar scan in 15,360 s. When implementing the
enhanced ray tracing techniques, the XCAT projection algo-
rithm was found to run significantly faster, generating the
projections in only 4096 s. However, the optimized XCAT
projection algorithm is still about three times slower than the
two analytical algorithms for the specified anatomy. But, the
projections generated using the XCAT can be seen to offer a
higher level of anatomical realism �Fig. 6�. The XCAT simu-
lator therefore offers a trade-off in terms of realism and com-
putational speed. The disadvantage in terms of speed can be
overcome, though, by running the simulator in parallel,

spreading the projection angles over multiple processors. For
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this particular simulation, one would only need to run the
XCAT simulator simultaneously on three processors to
match the speed.

III.B. Simulation of realistic 3D and 4D CT data from
the XCAT

To further demonstrate the capabilities of the XCAT-based
projector, we utilized it to generate 3D and 4D CT data sets
from different patient anatomies. For each simulation, the
XCAT was set up to include the entire available anatomy
including over 900 different structures. Iodine contrast was
modeled in the blood of the heart to better show the four
chambers. The x-ray projections were generated using a stan-
dard chest x-ray polychromatic energy spectrum with a tube
voltage of 120 keV obtained from the Catalogue of Spectral
Data for Diagnostic X-rays.47 Sampling the spectrum in
steps of 0.5 keV, 256 noise-free 256�256 x-ray projections
�FOV=400 mm� were generated in a circular arc around the
phantom. The projections were reconstructed using the stan-
dard filtered backprojection reconstruction method. Each of
the 256�256�256 polychromatic projection scans took �3
h to generate using a single 3.2 GHz processor.

Figure 7 shows chest x-ray projections generated from the
XCAT modeling the anatomy of the original Visible Male
adult as well as that of a 12 year old boy. Figure 8 shows

FIG. 6. Anterior projections of the FORBILD �b�, superquadric �c�, and
XCAT �d� phantoms as compared to an actual chest x-ray �a�. Each phantom
is modeling the same amount of structures for comparison. Images of the
FORBILD and superquadric phantom are from Ref. 10.

FIG. 7. Anterior chest x-ray projections simulated from the XCAT phantom
modeling the anatomy of an adult male �original Visible Human Male� and

a 12 year old boy.
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reconstructed CT images of the same cases. The anatomy of
the boy subject was created using a graphical application that
includes tools to transform the template anatomy of the
phantom to match it to sets of patient data.48 As described
above, the same imaging parameters were used to simulate
the CT data from each phantom. The figures show the high
degree of realism offered by the XCAT phantom. They also
illustrate the effect anatomy can have on image quality. An
increase in contrast in the images can be seen as the body
size decreases from that of the adult subject to that of the
child. Realistic simulation, such as that provided by the tools
developed in this work, can provide a vital tool to investigate
the effect of anatomy on CT images. Various scanning pa-
rameters can be altered and their effects can be witnessed on
anatomically variable subjects. Through such studies, one
can devise patient specific imaging protocols so as to reduce
radiation dose while maintaining a diagnostic image quality.

Figure 9 shows 4D cardiac-gated and respiratory-gated
CT simulated images. The XCAT provides a realistic and
flexible model of these involuntary motions based on an
analysis of several sets of patient data. Both models are ca-
pable of simulating different normal and abnormal motions.
The heart motion can be altered through modification of vari-
ous parameters �ejection fraction, longitudinal and radial
contraction, cardiac twist, heart rate, etc.�. Global or regional
cardiac motion abnormalities can be simulated using a

FIG. 8. Reconstructed CT transaxial slices simulated from the XCAT phan-
tom modeling the anatomy of an adult male and a 12 year old boy.

FIG. 9. Cardiac-gated �top� and respiratory-gated �bottom� CT images gen-
erated using the 4D XCAT. A spherical lesion �arrow� was simulated in the

respiratory-gated images.
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graphical application.49 The respiratory model is similarly
parameterized and includes the ability to model lung
nodules.50,51 Nodules of any given size, shape, contrast, and
location can be modeled as 4D NURBS surfaces within the
phantom. The nodules will move inside the lungs with the
respiratory motion. With these abilities, the XCAT can be
used to generate populations of subjects with variable car-
diac and respiratory motions to investigate 4D CT imaging
techniques.

IV. DISCUSSION AND CONCLUSIONS

As demonstrated above, the 4D XCAT can realistically
model the complex shapes of real human organs and has the
flexibility to model anatomical variations and normal physi-
ologic motion. A prior limitation to the phantom, in terms of
its applicability to high-resolution x-ray CT research, was
that the mathematical complexity of the surfaces that define
the organs and structures makes the direct calculation of pro-
jection data more computationally intense. In this work, we
overcame this limitation by using efficient ray tracing tech-
niques from computer graphics to develop a fast analytic CT
projection algorithm for the 4D XCAT phantom. In a direct
comparison �same anatomical structures and geometry� with
two analytical CT projectors using geometrically defined or-
gans, the XCAT-based projector was found to produce more
realistic results at the cost of being three times slower �as
timed using a single 3.2 GHz processor�. The XCAT projec-
tor, therefore, involves a slight trade-off between realism and
computational time. In terms of the level of realism, the
XCAT offers a vast improvement as can be seen in the ex-
ample simulations presented in the paper. In terms of com-
putational speed, the projector is not dramatically different
from the two geometry-based projectors. Even using the en-
tire anatomy of the phantom, which includes over 900 struc-
tures, the XCAT-based projector can still generate CT data
within a matter of hours. This time can be decreased further
by running the projector in parallel, spreading the projection
angles over multiple processors. Simulations may be ob-
tained in a matter of minutes depending on the number of
processors used. The XCAT projector is, therefore, a viable
tool for use in CT imaging research. Given the ever decreas-
ing cost of computers and the rise of faster processors and
multi-processor systems and clusters, the distinction between
this method and those based on simple mathematical phan-
toms will continue to diminish.

When used in combination with the 4D XCAT phantom,
with its realistic model of the human anatomy and its ability
to model anatomical variations and patient motion, the CT
simulator can be used to produce a wealth of simulated im-
age data that are far more consistent with that of actual pa-
tients. Any number of different anatomies �male or female,
adult or pediatric�, cardiac or respiratory motions or patterns,
and spatial resolutions can be simulated to perform research.
As x-ray CT evolves toward 4D dynamic functional imaging,
the XCAT-based CT simulator will have application in a
broad range of imaging research in developing image acqui-

sition strategies, image processing and reconstruction meth-
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ods, and image visualization and interpretation techniques.
Also, the simulation tools provide the necessary foundation
to optimize clinical CT applications so as to obtain the high-
est possible image quality with the minimum possible radia-
tion dose to the patient, an area of research that is becoming
more significant with the proliferation of CT protocols. We
conclude that the 4D XCAT and the CT projector developed
in this work will provide vital research tools in high-
resolution CT imaging research.
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