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Fault sets that accurately describe physical failures are required for efficient pattern
generation and fault coverage evaluation. The fault model presented in this paper
uniquely describes all structural changes in the transistor net list that can be caused by
spot defects, including bridging faults that connect more than two nets, break faults that
break a net into more than two parts, and compound faults. The developed analysis
method extracts the comprehensive set of realistic faults from the layout of CMOS ICs
and for each fault computes the probability of occurrence. The results obtained by the
tool REFLEX show that bridging faults connecting more than two nets account for a
significant portion of all faults and cannot be neglected.

Keywords: Bridging faults, break faults, fault modeling, fault extraction, multiple faults, spot

defects

1. INTRODUCTION

Today’s semiconductor manufacturing technolo-
gies cannot guarantee that all produced chips
completely satisfy the specification. Therefore the
chips have to be tested before they are delivered to
the customer. Usually the number of possible
physical failures is very large, and it is impractical
to consider all of them explicitly. Fault models
describe the failures at a more abstract level and
thus provide the base for efficient test pattern
generation and fault coverage evaluation. But two
problems are associated with fault models. On the
one hand, a fault model should cover all the
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physical failures that actually occur. If a physical
failure is not represented by a fault, no test is
generated for it, and faulty devices may be
classified fault-free which leads to a loss of product
quality. On the other hand, an abstract fault model
may include some “artificial” faults that do not
correspond to any physical failures in the im-
plemented circuit. Tests for “artificial” faults
increase the test application time without improv-
ing product quality.

The most commonly used fault model is the
stuck-at fault model [1]. The growing density of
integration in CMOS technology, however, in-
creases the importance of bridging and break
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faults [2], [3], and many of these are not covered by
the stuck-at fault model. If we look only at the
transistor net list or at the gate level description of
a circuit, a large variety of bridging and break
faults seems possible. In order to determine which
of these faults can really occur, the circuit must be
analyzed at layout level.

Inductive Fault Analysis [4] is a systematic
approachto generateanaccuratefaultset. Thecircuit
layout is analyzed to obtain all possible deviations
from the intended structure. Hence, the extracted
faultset merely consists of faults which actually occur
due to fabrication defects. Combining geometrical
information and statistical data on defects, the
probability of occurrence is determined for each
fault. These fault probabilities can be used for yield
estimation (e.g., [5], [6], [7]), physical design for
testability [8], and test optimization [9].

Several methods of inductive fault analysis have
been developed in the past few years. The FXT
tool [10] is based on statistical simulation which is,
however, very time consuming and less accurate
compared to analytical methods. FANTESTIC
[11] is an analytical approach which takes up the
critical area concept. The critical area is the layout
area in which a defect must fall to cause a fault
[12]. Since critical area calculation is not a trivial
task, FANTESTIC is limited to simple layout
structures and uses coarse approximations in favor
of efficient geometric operations [13] also describes
procedures to compute critical areas and to derive
test patterns. The CARAFE system [14] is able to
extract possible bridging and break faults from
arbitrary Manhattan layouts. However, the ana-
lysis is restricted to bridges between two nodes and
breaks which cut a node in exactly two subnodes.
LIFT [8] an ACRIT [15] use similar simplifications
in critical area calculation and fault modeling.
More recently, a net-oriented approach was
proposed [16] where for each net separately the
possible bridging faults to neighboring nets are
extracted. But as each bridging fault involves at
least two nets, faults are extracted multiple times
and must be collapsed afterwards when the fault
lists are merged. This approach was also applied to

break faults [17]. To handle more complex circuits,
a ranking of defects was proposed [18]. Defects
that cause faults more likely are analyzed first.

In summary, the fault models used by previous
fault extraction methods have three major limita-
tions:

e Bridging faults have been restricted to the
connection of only two nets.

o A net which is affected by a break fault has been
assumed to be cut into exactly two subnets. Some
approacheshavenotdifferentiated between differ-
ent positions of a break faultin the net.

o Correlations between faults have not been
considered. (Two faults are correlated if there
exists a single defect which can cause both faults
simultaneously).

Examples show that several multiple-net brid-
ging faults are not detected by tests for 2-net
bridging faults (see Section 5). So the multiple-net
bridging faults which occur with nonnegligible
probability should be considered explicitly during
test pattern generation and fault coverage evalua-
tion. The location and the multiplicity of break
faults also has an impact on the faulty behavior.
Even break faults that affect the same net may
require different pairs of test patterns.

A situation with two correlated bridging faults is
shown in Figure 1. A single “missing insulator”
defect causes two bridges between different nets.
Hence the occurrence of these faults is not

missing
insulator ™~

Ny

¢ conductor (metal 2)

M conductor (metal 1)

FIGURE 1 Correlation between faults.



REALISTIC FAULT MODELING 165

statistically independent, and the probability that
at least one of them occurs (making the circuit
faulty) cannot be calculated accurately without
knowing the correlation between these faults.

Similarly, correlated break faults exist if more
than one net is affected by a single defect. In
general, correlated faults make it difficult to
calculate fault probabilities at the electrical level.

In this paper, a realistic fault model is presented
which overcomes the above-mentioned problems.
The proposed fault model facilitates the unique
representation of all possible changes in the
structure of a circuit at the electrical level. The
faults are modelled such that each defect in the
layout can cause at most one fault, and the faults
are not correlated. We also present a unified
approach to extract the complete set of single and
multiple bridging and break faults from the layout
of a circuit. The probability of occurrence is
determined for each fault using a novel method
for fast critical area calculation. The presented
approach is applicable to arbitrary layouts with
Manhattan geometry.

The paper is organized as follows. After
introducing the representation of a circuit and its
faults on layout and on transistor level, the
improved realistic fault model is described and
the fault extraction method is presented. Then,
experimental results are shown, and a partitioning
approach for the efficient processing of large
circuit layouts is proposed.

2. CIRCUIT AND FAULT REPRESENTATION
AT DIFFERENT LEVELS OF
ABSTRACTION

As a bottom-up process, fault extraction starts at
the layout level. We partition the geometric layout
structures into rectangular regions according to
the Corner-Stitching structure [19]. Each layout
object is characterized by the coordinates of its
corners, a layer attribute (e.g., polysilicon, insu-
lator, metal, diffusion) and pointers to adjacent
objects in a horizontal (intra-layer) or vertical

(inter-layer) direction. Using a circuit extraction
procedure, a label is assigned to alt conducting and
semiconducting objects that indicates which net
they belong to.

The electrically conductive connections between
layout objects are modelled by a connectivity graph
G=(V, E). Its vertices V represent the layout
objects of conducting or semiconducting material.
The edge set E contains an edge {v;, v,} if and only
if the layout objects represented by v; and v, are
connected directly, i.e., not only via other objects.

On the electrical level, a circuit is described as a
set of electrical nodes C = {cy, ..., ¢}, a set of
transistors T ={t;, ..., t,}, and a set of nets
N={ny,..., n;}. A node ¢; is a transistor terminal,
a primary input or output, or a power supply
junction. The terminals of a transistor ¢ are
denoted by s(¢) for source, d(¢) for drain, and g(¢)
for gate. (Generally, source and drain of a
transistor are given by the current direction. For
the purpose of fault extraction, however, the
distinction of source and drain is not relevant).
At the electrical level, each net is defined by a
subset of the nodes of C, namely the electrically
connected nodes. The nets of a circuit are pairwise
disjoint, they form a partition of C. At the layout
level, each net corresponds to a connected
component (maximal connected subgraph) of the
connectivity graph G.

Due to deviations and irregularities in the
manufacturing process, local perturbations, called
defects, occur. In this paper, we consider spot
defects with a size which is comparable to the
minimum feature size of the layout. A multitude of
different defect mechanisms describes how defects
are produced. The most important types of defects
are “extra material” and “missing material” in a
single conducting or isolating layer (this also
includes defects which have an impact on the
connectivity of vias between different conducting
layers). These defects can be modelled as addi-
tional or missing layout objects. Defects are
statistically distributed over the whole chip. Their
frequency and the distribution of defect sizes
strongly depend on the type of the defect.
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Defects may cause local deviations in the
connectivity of conducting and semiconducting
layout objects. These deviations are called con-
nectivity faults. In section 4, connectivity faults
will be defined such that each defect causes at most
one connectivity fault. But generally, many differ-
ent defects can lead to the same connectivity fault.

Finally, a connectivity fault can cause a change
in the circuit structure at the electrical level and in
this way manifest itself as a faulty behavior.
Different connectivity faults can lead to the same
fault in the transistor net list. But of course, there
are also connectivity faults that do not influence
the net list, for example a fault that connects two
parts of the same net or a fault that interrupts
a ring shaped net at only one position. Figure 2
summarizes these relationships.

In the following, a square defect shape is
assumed rather than a circular or octagonal one
because the geometric algorithms are far easier (see
also [15]). This approximation results in fault
probabilities that are slightly too large, but the
completeness of the extracted fault set is not
affected.

3. FAULT MODEL
The fault extraction approach presented in this

paper aims at faults at the electrical level. The fault
model used here consists of three fault types:

. net list faults

. connectivity faults

- defects

defect
mechanisms

deviations and imegularities
in manufacturing process

FIGURE 2 Defects, connectivity faults, and net list faults.

Bridging faults, break faults, and compound
faults. Transistor stuck-on and stuck-open faults
are also modelled as bridging and break faults,
respectively. All these faults have an influence on
the partition of the set of electrical nodes into
separated nets. Bridging faults merge some nets,
break faults split some nets, and compound faults
do both.

DerFINITION 1 Let N be the set of nets of a
circuit, and let BF = {Ny,...,N,} be a set of pairwise
disjoint subsets of nets, N;C N, j=1,2,...,v, witha
least two nets in each subset N,. BF is a bridging
Sfault if a single spot defect can cause all nets of each
subset N; € BF to be electrically connected.

Example The CMOS AND gate in Figure 3 has
the nets ny = {i;, g(t), g(ta)}, nm = {ir, g(t2),
g(ts)}, n3 = {d(te), d(ts), GND}, nq = {s(t1), s(t2),
s(t3), Vop}, ns = {d(t1), d(t2), s(t2), g(t3), &(t6)},
ne = {d(ts), s(ts)} and ny = {d(t3), s(t), out}.

In a single defect causes the connection of nets
n1, 1y, and n3 and the connection of n4 and ns, the
resulting bridging fault is BF = {{n;, ny, ns},
{n4, ns}}.

DEeFiniTION 2 Let UF = {I[,(m),..., 1], (nw)}
be a set of partitions for the nets n,€ N with
ITL ()l > 2for i=1,2,...,w. UF is a break
Sfault if a single spot defect can cause each net
n;€{ny,...,n,} to be divided into two or more
disconnected subnets according to [[,(m;). All
other nets are preserved.

e

FIGURE 3 Bridging fault in a CMOS AND gate.
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Example Figure 4 shows the CMOS AND gate
again. Now a single defect causes a break which
cuts nets #, and ns into two and three subnets, res-
pectively. The resulting break faultis UF= {]] (n,),
[L(ns)} with [T,(n2) = {{i2.g(t)},{g(12)}} and
[To(ns) = {{d(21), s(ta)}.{(22), {8(t3), 8(t6)} }.

A “missing polysilicon™ defect in the region of a
transistor channel can cause a short between
source and drain as well as a break of a signal
line. As a consequence, a bridging and a break
fault may occur simultaneously due to a single
defect. To avoid correlation between these faults,
this case has to be modelled separately.

DEeFINITION3 A combination of a bridging fault
and a break fault, CF = {BF, UF}, is a compound
fault if a single spot defect can cause the bridging
fault BF and the break fault UF together.

Example Figure 5 shows a CMOS inverter and its
layout. A “missing polysilicon” defect in the region
of the n-transistor channel leads to a stuck-on n-
transistor and a floating gate of the p-transistor.

The fault model of definitions 1 to 3 provides a
unique way to describe all structural deviations
that may occur in the circuit structure at the
electrical level. Moreover, all the faults are
uncorrelated, they occur statistically independent
if the underlying defects occur statistically inde-
pendent.

FIGURE 4 Break fault in a CMOS AND gate.

Voo
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polysilicon
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7 NN metal 2
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FIGURE 5 Compound fault in a CMOS inverter.

4. EXTRACTION OF REALISTIC FAULTS

In the context of testing, defects that do not lead to
a connectivity fault and also connectivity faults
that do not lead to a net list fault are not relevant
since they do not affect the behavior of the circuit
(possibly apart from reliability). So we can focus
on the faults in the net list and in particular on
those faults that occur with nonzero probabilities
(realistic faults). The advantage of this more
abstract view of faults is that the number of faults
that must be considered is by far smaller than the
number of the connectivity faults and the number
of defects.

4.1. Overview

In order to extract the realistic net list faults of a
circuit, the following problem must be solved:

Given: e Description of the layout

e Set of defect mechanisms

e Defect statistics

e Complete set of realistic faults (accord-
ing to the fault model of section 3) and

Find:
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e probability of occurrence, P(F), of each
extracted fault F

Figure 6 gives an overview of the developed
method. It begins with extracting the net list of the
fault-free circuit from the layout data. The set of
rectangular layout objects is determined, and each
conducting object is marked with the number of
the net it belongs to.

The following two steps are repeated for all the
defect mechanisms that lead to extra material or
missing material in one of the layers and also for
different defect sizes. Using the knowledge about
possible defects, the layout is analyzed regarding
connectivity faults. First, only fault primitives are
considered. These are

o undesigned connections of two objects in the
same layer

o undesigned connections of two objects in differ-
ent layers (through missing insulator)

o disruptions of one object

e disconnections of two objects in the same layer

e disconnections of two objects in different layers

description of layers / masks

circuit extraction

net list

layout objects
defect mechanisms

analysis of potential
connectivity faults

primitive

connectivity faults, defect sensitive areas

J |

partitioning of
overlap areas

critical areas
defect statistics

composite
connectivity faults

v y
translation to computation of
net list faults fault probabilities

'

realistic faults

fault probabilities

FIGURE 6 Fault extraction.

and some special cases that depend on the applied
technology, e.g., disruption of a transistor gate.
For each of these fault primitives the defect
sensitive area is determined, that is the area in
which the center of a defect of a given size must
fall to cause the considered fault primitive
(possibly in combination with other fault primi-
tives).

If the center of a defect falls in a region where k
defect sensitive areas overlap, this defect causes all
the corresponding deviations in connectivity si-
multaneously. The result is a connectivity fault f
including k fault primitives, f={f,...,fx}. This
concept of a connectivity fault as a nonempty set
of fault primitives ensures that the effect of each
defect can be described by exactly one connectivity
fault. The critical area of a connectivity fault f,
ca( f, s), is the area in which a defect of size s must
fall to cause this and only this connectivity fault.
Figure 7 shows an example with two fault
primitives f; and f, and the connectivity faults
{fi}, {f2}, and {f1, f2}. The example considers
defects of a fixed size.

In principle, the critical area ca ( f, s) has to be
determined for all possible defect sizes s. To
compute the probability of occurrence, P(f), of
a connectivity fault f, its critical areas are weighted

defect sensitive area
of fault primitive #;

defect sensitive area
of fault primitive fo

-
]
]
[
[
'
'
1
1
1

-

critical area of {fy, fo}

FIGURE 7 Defect sensitive area of fault primitives and
critical area of connectivity faults.
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according to the distribution of the defect sizes,
Hy,(s), multiplied by the defect density Dyp, of the
considered defect mechanism dm, and the con-
tributions of all defect mechanisms are added,

PU) = S Din [ catm(fis) Haml5)s) (1)
dm

The integral can be approximated by evaluating
the critical area for some defect sizes exactly and
then applying Simpson’s Rule.

Finally, the connectivity faults are translated to
net list faults, and the probabilities of these net list
faults are computed. The translation can be done
efficiently by a circuit extraction process that is
restricted to the neighborhood of the fault site.

In the following, the most important steps of the
proposed method will be described in more detail.

4.2. Determination of Connectivity Faults

Procedures to compute the defect sensitive areas
have been described in literature, e.g., [13]. This
section deals with finding all possible connectivity
faults and computing their critical areas for a fixed
defect size. If the defect sensitive area of a fault
primitive f, does not overlap a defect sensitive area
of any other fault primitive, the critical area of the
connectivity fault {f,}, ca ({f,}), equals the defect
sensitive area of f,. If overlap exists, connectivity
faults occur that include more than one primitive.
Let f be a connectivity fault that includes the
primitives fi,...,fr. In order to determine its
critical area ca(f), we must determine the
intersection of the defect sensitive areas ay,...,ax
of fi,...,fx and subtract the critical areas of all
connectivity faults f° that include the same
primitives fi,...,f; and at least one other fault
primitive,

k
ca(f) = Q\U ca(f2) @)

\rAsf
1AES

As the layout is partitioned into rectangular
objects, the defect sensitive areas are always

defect sensitive areas:

al, a2, a3, a4

overlap 1: al & a2 & a3 (— max. connectivity fault}
al & a3 & a4 (— max. connectivity fault)
al & a2
al & a3
al & a4
a2 & a3
a3 & a4

Noeohwn

FIGURE 8 Partitioning the overlap areas.

rectangular. But critical areas need not be rectan-
gular (see Fig. 8), they even may be divided into
several disjoint parts.

The critical area can be computed easily for the
special class of connectivity faults given by the
following definition.

DErFINITION 4 A connectivity fault f is a
maximal connectivity fault, if ca( f)#© and
ca( f£2)=@ holds for all fA; f.

In the example of Figure 8, the maximal
connectivity faults are {f, /5, f3} and { f1, f3, fa}-
For a maximal connectivity fault the second term
on the right hand side of (2) is empty, and the
critical area is computed simply by intersecting the
defect sensitive areas that correspond to the fault
primitives of f.

After that, the critical areas can be determined
for connectivity faults that include all the primi-
tives of a maximal connectivity fault except one, in
the next step all except two, and so on. Figure 9
shows an algorithm that implements the described
approach.
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Procedure DETERMINE_CONNECTIVITY_FAULTS
/* input: set of favlt primitives and their defect sensitive areas */
/*  output: list of connectivity faults and their critical areas *

determine the maximal connectivity faults;
L := list of all maximal connectivity faults ordered according
to d ing number of included fault primitives;
Lrz ;= @ /* list of connectivity faults with nonzero critical area */

for all fe L
ca(f) = () &; /* critical area of maximal connectivity faults */
fief

repeat
{ f := firstelement of L;
remove f from L and append f to Lnz;
if £ includes more than one fault primitive

for all fpe f:
( 18 = f\{fp);
if el % if fault A not yet considered */
{cafy:= Na\ U clf)y
ferd tord, Turd
fel"?
if ca(fd) =@

insert A into L according to the number of
included primitives;
}
else
{ ca(fd) := ca(f®)\ca(f); /*adjust critical area */
if ca(fA)=@ /* remove fault that cannot occur */
remove A from L;
}
}
} until L=@;

* Loz ins all ivity faults with critical area */

FIGURE 9 Determination of possible connectivity faults and
their critical areas.

To determine the maximal connectivity faults,
McCreigth’s algorithm [20] can be applied report-
ing all pairs of intersecting defect sensitive areas.
These correspond to the pairs of fault primitives
occuring together in some connectivity faults.
Then the maximal faults are determined using an
algorithm which originally has been developed for
the reduction of flow-tables [21]. For clarity, the
procedure DETERMINE_CONNECTIVITY_FAULTS
is described operating explicitly on 2-dimensional
areas. If the critical areas are needed only to
determine fault probabilities, it is sufficient to
compute just their size, and the calculations can be
simplified.

From the analysis of McCreigth’s algorithm, it
can be concluded that with » fault primitives at
most O(n?) different connectivity faults with

nonzero critical area are possible. Using this fact,
it can be shown that both the time complexity and
the space complexity of the algorithm are poly-
nomial in n. The degrees of the polynomials
depend on the details of the implementation.

4.3. Translation to Net List Faults

The connectivity faults are translated to net list
faults using the connectivity graph. A fault
primitive of type ‘“undesigned connection” be-
tween two layout objects adds an edge between the
corresponding vertices in the connectivity graph G.
A fault primitive of type “disconnection” between
two layout objects removes the edge that connects
the corresponding vertices of G. And a fault
primitive that disrupts one layout object replaces
the corresponding vertex by two new vertices that
are not connected by an edge (see Fig. 10).
Connectivity faults result in a combination of
such changes in the connectivity graph.

For the modified connectivity graph, the con-
nected components (i.e., the nets resulting after
fault injection) are extracted and compared to the
fault-free nets. The differences determine the net list
fault. Figure 11 outlines a procedure that translates
an arbitrary connectivity fault to the fault model of
Section 3. Generally, a connectivity fault affects
only a small number of layout objects. As the
layout objects have been marked with the net they
belong to, the affected nets can be determined and
only these nets have to be considered.

In order to compute the probability that a
specific net list fault F occurs, the probabilities
P(f) of all the connectivity faults f that lead to
this net list fault F are simply added. This is the

advantage of uncorrelated faults in our approach.
\Vl vll
—> <

‘>’V< T

FIGURE 10 Disruption of the layout object represented by
vertex v,
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Procedure TRANSLATE_FAULT
/% input: e connectivity graph G = (V, B), vertices labeled %/

” with net number *
* * connectivity fault f *f
/* output: = net list fault (BF, UF, or CF) *

BF =@, UF:=@;, CF:=6
modifiy G according to the fault primitives of f;
determine the set CC of connected components of G;

for each me CC
{ Np = set of net labels that occur at the vertices of m;

if INpml22 /* if several nets have been merged */
BF := BFU {Np}; /* bridging fault */
for all ne Ny /* for all nets (partially) included */

/% in connected componentm  */
{ Vp := setof all vertices of V that are labeled with n;
{mj, my, ..., m¢} := node sets of those components of CC
that contain vertices labeled with n;
M Vpemum..um *
if r>1 /* if net n has been partitioned */
{ f[(n) = {my NV, mp N Vg, L, men Vil
translate 1=I(n) to I1(n) at electrical level;
1* correspondence between electrical nodes and  */
/* layout objects is known from circuit extraction */
UF := UFu {II(n)}; /* break fault */

}

if BF#@ and UF % @)
CF := (BF, UF);

/* compound fault */

FIGURE 11
fault.

Translation of a connectivity fault to a net list

The circuit described by the faulty net list can be
simulated in order to evaluate its behavior at the
electrical level. Some of the net list faults lead to
voltages different from the fault-free case, others
increase the quiescent power supply current, cause
longer delay times, or introduce sequential beha-
vior (e.g., stuck-open faults). Faults that lead to
the same malfunction and hence require the same
conditions to be satisfied for detection can be
collapsed. Automatic test pattern generators can
determine test patterns for voltage tests (logic
tests) and Ippq tests, and pattern sequences to test
sequential faults [22], [23], [24], [25].

5. EXPERIMENTAL RESULTS

The presented fault extraction method has been
implemented in the software tool REFLEX

(realistic fault extraction). As an example, the
OCTTOOLS standard cell library [26] was ana-
lyzed, which consists of 50 circuits with up to 33
transistors. The fabrication process is character-
ized by a 1 pm minimum feature size, two metal
layers and one polysilicon layer. 10 defect mechan-
isms (for missing or extra material in each relevant
layer) have to be considered. Realistic data for the
defect densities of different defect mechanisms
were obtained from a current fabrication line. The
cells were analyzed for defects with sizes ranging
from 1.0 to 10.0 pm in steps of 1.0 um. The defect
sizes were assumed to obey the 1/x> distribution
[27]. So defects larger than 10.0 um occur with very
low probability and can be neglected.

In order to obtain a measure for the expected
yield of a certain cell, the grade has been defined as
the reciprocal value of the probability that at least
one of the extracted faults occurs:

1
grade: =

(1 - P(F))

" extracted faults F

The grade of a cell can be used to compare
different realizations of the same circuit regarding
yield.

Table I shows the results for the standard cells
that required the largest CPU times on a SUN
SPARC 10. The remaining cells were analyzed in
less than 5.9 seconds. The number of transistors,
nets, and layout objects is denoted by #T, #N, and
#0, respectively. The number of extracted brid-
ging, break, and compound faults is marked by
#BF, #UF, and #CF, respectively.

Altogether, 4973 faults were extracted from the
cells of the library. Due to the precise description
of faults, the number of extracted net list faults is
much higher than the number of stuck-at faults.
However, this number can be reduced using fault
simulation. Net list faults that result in the same
faulty behavior can be combined, and their
probabilities can be added.

A classification of all the extracted faults from
the cell library was performed. In order to get a
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TABLE 1 Analysis of the OCTTOOLS standard cell library

name function area #T #N #0 #BF #UF #CF CPU grade

in pm time in in 10°

seconds

norf311 3 Input OR/NOR 1000 8 9 105 25 55 12 5.9 1.065
nanf311 3 Input NAND/AND 1872 18 9 105 23 49 12 6.7 0.901
aof2201 2.2 AND/OR Mux 2856 10 11 117 42 48 13 6.7 0.824
norf401 4 Input NOR 1480 8 10 96 33 59 12 6.8 1.085
xnof201 Exclusive NOR 2064 12 11 120 65 49 22 78 0.861
orf401 4 Input OR 2856 10 11 122 37 45 15 8.7 0.815
buffi21 Tri-State Buffer 3776 10 8 142 25 41 16 9.4 0.873
xorf201 Exclusive OR 2160 12 11 124 53 50 20 10.1 0.781
nanf411 4 Input NAND/AND 2160 10 11 122 42 47 13 10.4 0.890
muxf201 Data Select 2064 12 12 127 56 48 20 11.2 0.722
delf011 Delay Cell 5040 ‘10 9 162 34 54 17 13.6 0.928
aof3201 3.2 AND/OR Mux 5680 14 15 160 52 58 20 13.8 0.579
aof2301 2.3 AND/OR Mux 3648 14 15 171 61 66 21 21.6 0.558
aofd201 4.2 AND/OR Mux 8544 18 19 194 91 72 28 24.8 0.449
larf310 Clocked Latch 6600 18 14 213 77 77 29 31.2 0.426
dfaf311 D-FF with Q and QB 7200 24 18 243 103 84 47 71.9 0.354
faf001 Full Adder 11288 28 19 304 163 94 38 94.3 0.279
dfrf301 D-FF with Async. R and Q 15048 29 22 324 170 120 52 105.6 0.283
dfef311 D-FF with Async. R.Q and QB 16632 31 23 358 174 133 53 1374 0.270
dfbf311 D-FF with S.R.Q and QB 13944 33 24 415 231 135 61 287.8 0.195

realistic view of the relevance of different fault
classes, the faults were weighted with their prob-
ability of occurrence. The resulting value is the
probability that a fault which is actually observed
in a real circuit belongs to a specific fault class. The
classification yields the following results:

e Bridging faults play a dominant role, because
“extra conductive material”” defects occur
20...50 times more frequently than “missing
conductive material” defects.

e Vpp or GND are involved in only half of the
bridging faults. Only these faults can be
described immediately as stuck-at faults.

e With probability 0.24, an actually observed
bridging fault connects more than two nets.
This clearly shows that multiple-net bridging
faults cannot be neglected.

e About half of the break faults lead to a floating
gate of one or more transistors. The other break
faults can mostly be classified as single or
multiple stuck-open faults.

e With probability 0.033, an actually observed
break fault affects more than one net.

e Compound faults account for 0.2 % of all
faults.

Table II shows the probability that an actually
observed fault is caused by a defect with size less
than 3, 4, 5, 6, or 10 um. These data confirm that
the upper bound of 10.0 pm used for the defect size
interval is appropriate. With probability greater
than 0.998, an actually observed fault is caused by
a defect with size smaller than 10.0 pm.

In order to demonstrate the importance of
considering multiple-net bridging faults, an AND/
OR gate y=uxp - X1 VXx, was implemented on
transistor level using the extracted netlists of
OCTTOOLS standard cells. This combination of
an AND- and an OR-gate was chosen because it is
not a complex configuration rarely found in real
circuits, but rather a simple combination that is
frequently used in many designs. The fault-

TABLE II Probability of an observed fault being caused by a
defect of a certain size

defect size interval bridging fault break and
compound fault

0-3 um 1.0% 0%

0-4 pm 154 % 73.3 %

0-5 pm 82.4 % 839 %

0-6 um 93.7 % 94.2 %

0-10 pm 99.8 % 99.9 %
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free case and the following four bridging faults
between the input lines were analyzed:

o bridging fault £ 01
xo and x;)

e bridging fault £02 = {{xo, x3}}

e bridging fault 12 = {{x1, x2}}

o multiple-net bridging fault £ 012 = {{xo, x1, X2} }

{{x0, x1}} (short between

In order to model shorts accurately, their
resistance values should be considered. According
to the data reported in [2], most shorts have
resistance values much lower than 500 €2. Thus, the
assumption of a small resistance, e.g., several
hundred ohms, is realistic. In case of the example,
any resistance R < 675 ohms leads to the same
simulation results.

To assure equal driving strength of all input
signal lines and to avoid any feedback of shorted
lines to the driving source, the lines are buffered
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before the bridging occurs. Furthermore, a short
may lead to a distorted output signal of a logic
gate, which may be interpreted as “0” or ““1” by a
following gate. In order to get this “interpreta-
tion”, the output line of the AND/OR gate is also
buffered.

The results of a SPICE simulation [28] with all
possible input patterns are depicted in Figure 12.
The 2-net bridging faults are similar to wired-OR
connections. The multiple-net bridging fault,
however, leads to a more complex behavior.

An input pattern (x», X, Xo) detects a bridging
fault if the output signals of the fault-free and the
faulty case are different:

e f01 is tested by (0,0,1) and (0,1,0)
e 02 is tested by (0,0,1).

e 112 is tested by (0,1,0).

e 012 is tested by (1,0,0).

MULTIPLE BRIDGING FAULT IN AND/OR-GATE
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Even if all the test patterns for the 2-net faults
are applied, the multiple-net fault is not detected.
This clearly shows that for high quality tests it is
not sufficient to consider only 2-net faults. As a
consequence the probabilities of occurrence must
also be determined for multiple-net faults, and our
approach is justified.

6. PROCESSING LARGE LAYOUTS

The presented fault extraction method becomes
even more efficient if specific characteristics of
certain design styles are exploited. Gate-array
designs, for example, have a regular structure
concerning the placement and geometrical dimen-
sions of their transistors. The layout counsists of a
large number of identical elements (so-called sites),
which are connected by lines on one or more metal
layers. Each gate-array cell has to be analyzed only
once regarding both the interior of the cell and the
border area to other cells, and these data are
stored in the cell library.

Standard cell layouts can be partitioned into
cells and routing channels. At first, these parts are
analyzed separately. The information about the
cells is collected from the cell library (containing
the fault extraction data that is computed just
once). The faults within the routing channels have
to be determined specifically for the considered
design. Routing channels often require a remark-
able amount of layout area, and the signal lines
inside a routing channel are typically much longer
and more likely to be affected by a bridging or
break fault than nodes internal to a logic gate. The
fault extraction procedure has been adapted to the
simple layout structures of routing channels [29].
The analysis is very efficient because no transistors
have to be considered.

Similar as in gate-arrays, there may be defects
which cross the border of two adjacent standard
cells or the border of a standard cell and a routing
channel. Those defects may cause faults which are

not included in the fault list if standard cells or
routing channels are analyzed separately. In order
to handle these faults, we define a specific border
area the size of which depends on the largest
considered defect size (see Fig. 13). Then the fault
extraction procedure is applied to the layout
objects that partly or completely lie in the border
area. In this step, only those faults have to be
determined which involve layout objects of at least
two different cells or one cell and a routing
channel.

The proposed cell-based partitioning approach
combines very well with hierachical test pattern
generation tools that for each cell use local test
vectors stored in the library and then apply
propagation and justification procedures to deter-
mine global tests [23], [24], [25], [30]. Since the
number of primary inputs of a standard cell
usually is small, local test vectors can easily be
obtained even for complex multiple-net faults
inside the cell. The faults are injected one by one,
and the faulty cell is simulated using all possible
input patterns. When the response of the faulty cell
differs from the fault-free response a test pattern
has been found. Including the bridging faults that
connect more than two nets and the break faults
that affect more than one net, as proposed in this
paper, increases the number of different faults only
by a factor of about 2. This is a consequence of the
1/x* distribution of defect sizes. Thus, the con-
sideration of multiple-net faults causes only a
moderate increase in CPU times required for fault
simulation and test pattern generation.

standard
cells
routing
channel
border area
FIGURE 13 Border area in standard cell layouts.
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7. CONCLUSIONS

Test pattern generation and fault coverage
evaluation require a fault set that accurately
describes the physical failures. In contrast to
previous methods of inductive fault analysis,
which considered only bridging faults between
two nets and break faults splitting one net into
two parts, this paper also considers multiple-net
bridging faults, multiple break faults, and com-
pound faults. The faults are modelled such that
each defect can cause at most one fault. Hence,
faults occur statistically independently if it is
assumed that defects are statistically indepen-
dent.

The presented fault extraction method analyzes
the circuit at the layout level and in a bottom-up
fashion determines all possible changes in the
circuit structure at the electrical level. So all
bridging, break, and compound faults that can
actually occur are determined in a uniform way.
As the faults are not correlated, their probability
of occurrence can be computed very efficiently.
The results obtained by the tool REFLEX show
that bridging faults connecting more than two nets
account for a significant portion of all faults.

In order to handle large circuit layouts, a
partitioning approach is advantageous. Small
standardized parts of the layout, e.g., cells, can
be analyzed independently of each other. In a
subsequent step, the border areas between these
parts are considered.

The extraction of realistic faults and their
probabilities provide a variety of useful applica-
tions in the area of design and test optimization.
Fault probabilities can help to evaluate standard
cells with respect to their defect sensitivity and
detect particularly susceptible layout areas. It is
possible to develop a set of design rules that
consider defect sensitivity and support defect
robust layout design. Furthermore, test sets can
be ordered such that the tests detecting the most
likely faults are applied first and test application
time is reduced [9].
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