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Abstract

With fast 3D graphics becoming more and more available even on
low end platforms, the focus in hardware-accelerated rendering is
beginning to shift towards higher quality rendering and additional
functionality instead of simply higher performance implementa-
tions based on the traditional graphics pipeline.

In this paper we present techniques for realistic shading and
lighting using computer graphics hardware. In particular, we dis-
cuss multipass methods for high quality local illumination using
physically-based reflection models, as well as techniques for the in-
teractive visualization of non-diffuse global illumination solutions.
These results are then combined with normal mapping for increas-
ing the visual complexity of rendered images.

Although the techniques presented in this paper work at interac-
tive frame rates on contemporary graphics hardware, we also dis-
cuss some modifications of the rendering pipeline that help to fur-
ther improve both performance and quality of the proposed meth-
ods.
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1 Introduction

Until recently, the major concern in the development of new graph-
ics hardware has been to increase the performance of the tradi-
tional rendering pipeline. Today, graphics accelerators with a per-
formance of several million textured, lit triangles per second are
within reach even for the low end. As a consequence, we see that
the emphasis is beginning to shift away from higher performance
towards higher quality renderings and an increased feature set that
makes graphics hardware applicable to more demanding applica-
tions.

Despite this development, most current graphics hardware still
only uses a local Phong illumination model, which was shown to
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be inappropriate a long time ago [4]. Moreover, techniques for vi-
sualizing non-diffuse global illumination are not widely applied,
although several researchers have worked on such methods.

In this paper, we present a class of techniques to improve the
quality of shading and lighting in hardware-accelerated computer
graphics. We start with algorithms for high-quality local illumina-
tion using alternative lighting models such as the one by Torrance
and Sparrow [39]. This approach is based on an analytic factoriza-
tion of the respective model into bivariate terms that can be rep-
resented as texture maps. We then discuss methods for visualiz-
ing non-diffuse global illumination solutions based on environment
maps. We introduce both a Fresnel term for simulating reflections
in non-metallic objects, as well as a pre-filtering method for envi-
ronment maps. To this end, we also review an alternative parameter-
ization for environment maps that we recently introduced [20], and
that allows us to use one map for all viewing positions and direc-
tions. These techniques are finally combined with normal mapping
to increase the visual complexity of the scene.

Although the techniques presented here produce renderings at
interactive frame rates on contemporary graphics hardware, a more
direct support by future hardware could be achieved through some
modifications of the rendering pipeline. These will be outlined at
the end of this paper.

2 Previous Work

Most of today’s graphics hardware uses either the Phong [7], or
the Blinn-Phong [4] illumination model. Many other, physically
more plausible models have been proposed, but have so far only
been used in software rendering systems or by hardware that has
programmable shaders, such as [30]. The most important of these
models are the ones by Torrance and Sparrow [39] and Cook and
Torrance [11]. The Torrance-Sparrow model uses a Gaussian micro
facet distribution function and a geometric attenuation factor based
on the assumption of v-shaped grooves on the surface. Other dis-
tribution functions have been proposed, for example, by Beckmann
and Spizzichino [3], while Smith [36] presented a more accurate
geometry term under the assumption of a Gaussian facet distribu-
tion. He et al. [18] proposed the HTSG model based directly on the
Kirchhoff theory of electromagnetic fields. This model is capable
of simulating even more physical effects, although at significantly
increased computational cost.

In addition to the isotropic models listed above, anisotropic mod-
els have also been proposed. Banks [1] described a very simple
model based on results from the illumination of lines in 3-space,
while Cabral et al. [8] and Poulin and Fournier [32] use simula-
tions of different kinds of micro geometry. Ward [42] modified the
Torrance-Sparrow model by using an anisotropic micro facet distri-
bution function.

Several different methods for interactively visualizing non-
diffuse global illumination have been suggested in the literature.
Environment maps as a means of computing a mirror term were
proposed by Blinn [6], while the spherical parameterization used by
most graphics hardware today was presented by Haeberli and Se-
gal [16]. Diefenbach [13] demonstrated a multipass method for ren-
dering mirror and glossy reflections on planar surfaces. Ofek and
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Rappoport [29] interactively compute mirror reflections off curved
reflectors by warping the reflected geometry. Miller et al. [28] pro-
pose an approach where the glossy reflection on a surface is stored
in a compressed light field, and Walter et al. [41] place virtual lights
in the scene to simulate glossy reflections. St¨urzlinger and Bas-
tos [38] employ multipass rendering to visualize the result of a pho-
ton tracing algorithm. Finally, in some work developed in parallel
to ours, Bastos et al. [2] use textures and filtering techniques to ren-
der reflections in planar objects based on physically correct reflec-
tion models, and Cabral et al. [9] propose an environment mapping
technique for glossy reflections not unlike ours.

Bump maps, originally introduced by Blinn [5], have recently
found their way into hardware-accelerated rendering. Some re-
searchers [14, 26, 31] built or proposed dedicated graphics hard-
ware to implement bump maps, while others [25] use multipass
techniques to realize bump maps with traditional graphics hard-
ware. In contrast to bump maps, which define the variation of the
surface normal in terms of a bump height, normal maps directly
specify the direction of the surface normal. On the one hand, nor-
mal maps are less expensive to compute than bump maps, and can
also be generated more easily, for example by measurements [33],
or surface simplification [10]. On the other hand, normal maps are
attached to the underlying geometry, while bump maps can be ap-
plied to any surface.

3 Alternative Lighting Models for
Local Illumination

In this section we describe techniques for applying physically ac-
curate reflection models to the computation of local illumination
in hardware-based rendering. Rather than replacing the standard
Phong model by another single, fixed model, we seek a method that
allows us to utilize a wide variety of different models so that the
most appropriate model can be chosen for each application.

To achieve this flexibility without introducing procedural shad-
ing, a sample-based representation of the BRDF seems most
promising. However, a faithful sampling of 3D isotropic or 4D
anisotropic BRDFs requires too much storage to be useful on con-
temporary graphics hardware. Wavelets or spherical harmonics
could be used to store this data more compactly, but these represen-
tations do not easily lend themselves to hardware implementations.

3.1 Isotropic Models

We propose a different approach. It turns out that most lighting
models in computer graphics can be factored into independent com-
ponents that only depend on one or two angles. Consider, for ex-
ample the model by Torrance and Sparrow [39]:

fr(~l! ~v) =
F �G �D

� � cos� � cos � ; (1)

wherefr is the BRDF,� is the angle between the surface normal
~n and the vector~l pointing towards the light source, while� is
the angle between~n and the viewing direction~v. The geometry is
depicted in Figure 1.

For a fixed index of refraction, the Fresnel termF in Equation 1
only depends on the angle� between the light direction~l and the
micro facet normal~h, which is the halfway vector between~l and
~v. Thus, the Fresnel term can be seen as a univariate function
F (cos �).

The micro facet distribution functionD, which defines the per-
centage of facets oriented in direction~h, depends on the angleÆ be-
tween~h and the surface normal~n, as well as a roughness parameter.
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Figure 1: The local geometry of reflection at a rough surface.

This is true for all widely used choices of distribution functions, in-
cluding a Gaussian distribution ofÆ or of the surface height, as well
as the distribution by Beckmann [3]. Since the roughness is gen-
erally assumed to be constant for a given surface, this is again a
univariate functionD(cos Æ).

Finally, when using the geometry termG proposed by
Smith [36], which describes the shadowing and masking of light
for surfaces with a Gaussian micro facet distribution, this term is a
bivariate functionG(cos�; cos �).

The contribution of a single point- or directional light source
with intensity Ii to the intensity of the surface is given asIo =

fr(~l! ~v) cos� � Ii. The termfr(x;~l! ~v) cos� can be split into
two bivariate partsF (cos �) � D(cos Æ) andG(cos�; cos �)=(� �
cos �), which are then stored in two independent 2-dimensional
lookup tables.

Regular 2D texture mapping can be used to implement the
lookup process. If all vectors are normalized, the texture coordi-
nates are simple dot products between the surface normal, the view-
ing and light directions, and the micro facet normal. These vectors
and their dot products can be computed in software and assigned as
texture coordinates to each vertex of the object.

The interpolation of these texture coordinates across a polygon
corresponds to a linear interpolation of the vectors without renor-
malization. Since the reflection model itself is highly nonlinear,
this is much better than simple Gouraud shading, but not as good as
evaluating the illumination in every pixel (Phong shading). The in-
terpolation of normals without renormalization is commonly known
asfast Phong shading.

This method for looking up the illumination in two separate 2-
dimensional textures requires either a single rendering pass with
two simultaneous textures, or two separate rendering passes with
one texture each in order to render specular reflections on an ob-
ject. If two passes are used, their results are multiplied using alpha
blending. A third rendering pass with hardware lighting (or a third
simultaneous texture) is applied for adding a diffuse term.

If the light and viewing directions are assumed to be constant,
that is, if a directional light and an orthographic camera are as-
sumed, the computation of the texture coordinates can even be done
in hardware. To this end, light and viewing direction as well as the
halfway vector between them are used as row vectors in the texture
matrix for the two textures:
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Figure 2 shows a torus rendered with two different roughness set-
tings using this technique. The assumption of an orthographic cam-
era for lighting purposes is quite common in hardware-accelerated
rendering, since it saves the normalization of the viewing vector for
each vertex. APIs like OpenGL have a separate mode for appli-
cations where this simplification cannot be used, and the viewing
direction has to be computed for every vertex. This case is called a
local viewer.
                        

Figure 2: A torus rendered with the Torrance-Sparrow reflection
model and two different settings for the surface roughness.

We would like to note that the use of textures for representing the
lighting model introduces an approximation error: while the term
F �D is bounded by the interval[0; 1], the second termG=(��cos �)
exhibits a singularity for grazing viewing directions (cos � ! 0).
Since graphics hardware typically uses a fixed-point representation
of textures, the texture values are clamped to the range[0; 1]. When
these clamped values are used for the illumination process, areas
around the grazing angles can be rendered too dark, especially if the
surface is very shiny. This artifact can be reduced by dividing the
values stored in the texture by a constant which is later multiplied
back onto the final result. In practice, however, these artifacts are
hardly noticeable.

The same methods can be applied to all kinds of variations of
the Torrance-Sparrow model, using different distribution functions
and geometry terms, or the approximations proposed in [34]. With
varying numbers of terms and rendering passes, it is also possible
to come up with similar factorizations for all kinds of other models.
For example the Phong, Blinn-Phong and Cosine Lobe models can
all be rendered in a single pass with a single texture, which can even
already account for an ambient and a diffuse term in addition to the
specular one.

3.2 Anisotropy

Although the treatment of anisotropic materials is somewhat
harder, similar factorization techniques can be applied here. For
anisotropic models, the micro facet distribution function and the
geometrical attenuation factor also depend on the angle� between
the facet normal and a reference direction in the tangent plane. This
reference direction is given in the form of a tangent vector~t.

For example, the elliptical Gaussian model [42] introduces an
anisotropic facet distribution function specified as the product of
two independent Gaussian functions, one in the direction of~t, and
one in the direction of the binormal~n � ~t. This makesD a bi-
variate function in the anglesÆ and�. Consequently, the texture

coordinates can be computed in software in much the same way
as described above for isotropic materials. This also holds for the
other anisotropic models in computer graphics literature.

Since anisotropic models depend on both a normal and a tangent
per vertex, the texture coordinates cannot be generated with the help
of a texture matrix, even if light and viewing directions are assumed
to be constant. This is due to the fact that the anisotropic term can
usually not be factored into a term that only depends on the surface
normal, and one that only depends on the tangent.

One exception to this rule is the model by Banks [1], which is
mentioned here despite the fact that it is anad-hocmodel which is
not based on physical considerations. Banks defines the reflection
off an anisotropic surface as

Io = cos� � (kd < ~n0;~l > +ks < ~n0;~h >1=r) � Ii; (4)

where ~n0 is the projection of the light vector~l into the plane
perpendicular to the tangent vector~t. This vector is then used as a
shading normal for a Blinn-Phong lighting model with diffuse and
specular coefficientskd andks, and surface roughnessr. In [37], it
has been pointed out that this Phong term is really only a function
of the two angles between the tangent and the light direction, as
well as the tangent and the viewing direction. This fact was used
for the illumination of lines in [37].

Applied to anisotropic reflection models, this means that this
Phong term can be looked up from a 2-dimensional texture, if the
tangent~t is specified as a texture coordinate, and the texture matrix
is set up as in Equation 3. The additional termcos� in Equation 4 is
computed by hardware lighting with a directional light source and
a purely diffuse material, so that the Banks model can be rendered
with one texture and one pass per light source. Figure 3 shows two
images rendered with this reflection model.                        

Figure 3: Sphere and disk rendered with Banks’ anisotropic reflec-
tion model.

4 Visualizing Global Illumination with
Environment Maps

The presented techniques for applying alternative reflection mod-
els to local illumination computations can significantly increase the
realism of synthetic images. However, true photorealism is only
possible if global effects are also considered. Since texture map-
ping techniques for diffuse illumination are widely known and ap-
plied, we concentrate on non-diffuse global illumination, in partic-
ular mirror- and glossy reflection.

Our approach is based on environment maps, because they offer
a good compromise between rendering quality and storage require-
ments. With environment maps, 2-dimensional textures instead of
the full 4-dimensional radiance field [28] can be used to store the
illumination.



4.1 View-independent Environment Maps

The first step for using environment maps is the choice of an appro-
priate parameterization. The spherical parameterization [16] used
in most of today’s graphics hardware is based on the simple anal-
ogy of a infinitely small, perfectly mirroring ball centered around
the object. The environment map is the image that an orthographic
camera sees when looking at this ball along the negativez-axis.
The sampling rate of this map is maximal for directions opposing
the viewing direction (that is, objects behind the viewer), and goes
towards zero for directions close to the viewing direction. More-
over, there is a singularity in the viewing direction, since all points
where the viewing vector is tangential to the sphere show the same
point of the environment.

With these properties, it is clear that this parameterization is not
suitable for viewing directions other than the original one. Maps us-
ing this parameterization have to be regenerated for each change of
the view point, even if the environment is otherwise static. The ma-
jor reason why spherical maps are used anyway, is that the lookup
can be computed efficiently with simple operations in hardware: the
texture coordinates for a given reflection direction are simply thex
andy components of the normalized halfway vector between the
reflection vector and thez-axis, which acts as a reference viewing
direction (see Figure 4). For orthographic cameras, this halfway
vector simplifies to the surface normal.
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Figure 4: Spherical environment maps are indexed by thex andy
components of the halfway vector~h between the viewing direction
~v and thez-axis.

A parameterization which avoids the problems of spherical maps
is cubical environment mapping, which consist of 6 independent
perspective images from the center of a cube through each of its
faces. The sampling of these maps is fairly good, as the sampling
rates for the directions differ by a factor of3

p
3 � 5:2. However,

although hardware implementations of this parameterization have
been proposed [40], these are not available at the moment. The rea-
son for this is probably that the handling of six independent textures
poses problems, and that anti-aliasing across the image borders is
difficult.

We use a different parameterization that is both view indepen-
dent and easy to implement on current and future hardware, and that
we first described in [20]. A detailed description of its properties
can be found in [19]. The parameterization is based on an analogy
similar to the one used to describe spherical maps. Assume that the
reflecting object lies in the origin, and that the viewing direction
is along the negativez axis. The image seen by an orthographic
camera when looking at the paraboloid

f(x; y) =
1

2
� 1

2
(x2 + y2); x2 + y2 � 1 (5)

contains the information about the hemisphere facing towards the
viewer (see Figure 5). The complete environment is stored in two
separate textures, each containing the information of one hemi-
sphere.

z
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Figure 5: The reflections off a paraboloid can be used to parameter-
ize the incoming light from a hemisphere of directions.

One useful property of this parameterization is a very uniform
sampling of the hemisphere of directions. The differential solid
angle covered by a pixel at location(x; y) is given as

d!(x; y) =
dA

j(x; y; f(x; y))T j2 � sr; (6)

wheredA is the differential area of the pixel. From this formula,
it is easy to derive the fact that the sampling rate only varies by a
factor of4, which is even better than for cubical maps [19].

Another big advantage of this parameterization is that it can be
used very efficiently in hardware implementations. Since the nor-
mal of the paraboloid in Equation 5 is the vector[x; y; 1; 0]T , the
texture coordinates for this parameterization are given ashx=hz
andhy=hz . Thus, if the reflection vector~rv in eye space is speci-
fied as the initial set of texture coordinates, the coordinates needed
for the environment lookup can be computed using a projective tex-
ture matrix:
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whereM is a linear transformation mapping the environment
map space into eye space. The environment map space is the space
in which the environment is defined, that is, the one, in which the
paraboloid is given by Equation 5. The inverse ofM thus maps
the ~rv back into this space. Then the matrixS adds the vector
[0; 0; 1; 0]T to compute the halfway vector~h, and finallyP copies
the z-component into the homogeneous componentw to perform
the perspective division.

In order to specify~rv as the initial set of texture coordinates,
this vector has to be computed per vertex. This can be achieved ei-
ther in software, or by a hardware extension allowing for the auto-
matic computation of these texture coordinates, which we proposed
in [20]. Kilgard [23] has implemented this extension for Mesa and
the new drivers for the Riva TNT graphics chip.

What remains to be done is to combine frontfacing and backfac-
ing regions of the environment into a single image. To this end, we
mark those pixels inside the circlex2 + y2 � 1 of one of the two
maps with an alpha value of1, the others with0. The second map
does not need to contain an alpha channel. Then, with either a sin-
gle rendering pass and two texture maps, or two separate rendering
passes, the object is rendered with the two different maps applied,
and the alpha channel of the first map is used to select which map
should be visible for each pixel.

Figure 6 shows the two images comprising an environment map
in this parameterization, as well as two images rendered with these



maps under different viewing directions. The environment maps
were generated using a ray-caster. The marked circular regions
contain the information for the two hemispheres of directions. The
regions outside the circles are, strictly speaking, not part of the en-
vironment map, but are useful for avoiding seams between the two
hemispheres of directions, as well as for generating mipmaps of
the environment. These parts have been generated by extending the
paraboloid from Equation 5 to the domain[�1; 1]2.                        

                        

Figure 6: Top: two parabolic images comprising one environment
map. Bottom: rendering of a torus using this environment map.

4.2 Mip-map Level Generation for Parabolic Maps

Anti-aliasing of parabolic environment maps can be performed
using any of the known prefiltering algorithms, such as mip-
mapping [43]. For correct prefiltering, the front- and backfac-
ing maps need to contain valid information for the whole domain
[�1; 1]2, as in Figure 6.

The next level in the mip-map hierarchy is then generated by
computing a weighted sum for each2 � 2 block of texels. The
weight for each texel is proportional to the solid angle it covers
(Equation 6). The sum of these solid angles is the solid angle cov-
ered by the texel in the new mip-map level, and is used as a weight
for the next iteration step.

Mip-mapping is, of course, an isotropic filtering technique, and
therefore produces excessive blurring for grazing viewing angles.
These problems, are, however in no way specific to environment
maps. By weighting each pixel with its solid angle, filtering is cor-
rect within the limits of the mip-mapping approach, since each texel
in the map is correctly anti-aliased, and each pixel on the object is
textured by exactly one hemispherical map.

4.3 Mirror and Diffuse Terms with Environment
Maps

Once an environment map is given in the parabolic parameteriza-
tion, it can be used to add a mirror reflection term to an object. Due
to the view-independent nature of this parameterization, one map
suffices for all possible viewing positions and directions. Using
multi-pass rendering and either alpha blending or an accumulation

buffer [17], it is possible to add a diffuse global illumination term
through the use of a precomputed texture. Two methods exist for
the generation of such a texture. One way is, that a global illumi-
nation algorithm such as Radiosity is used to compute the diffuse
global illumination in every surface point.

The second approach is purely image-based, and was proposed
by Greene [15]. The environment map used for the mirror term
contains information about the incoming radianceLi(x;~l), where
x is the point for which the environment map is valid, and~l the
direction of the incoming light. This information can be used to
prefilter the environment map to represent the diffuse reflection of
an object for all possible surface normals. Like regular environment
maps, this texture is only valid for one point in space, but can be
used as an approximation for nearby points.

4.4 Fresnel Term

A regular environment map without prefiltering describes the in-
coming illumination in a point in space. If this information is di-
rectly used as the outgoing illumination, as with regular environ-
ment mapping, only metallic surfaces can be modeled. This is be-
cause for metallic surfaces (surfaces with a high index of refraction)
the Fresnel term is almost one, independent of the angle between
light direction and surface normal. Thus, for a perfectly smooth
(i.e. mirroring) surface, incoming light is reflected in the mirror
direction with a constant reflectance.

For non-metallic materials (materials with a small index of re-
fraction), however, the reflectance strongly depends on the angle of
the incoming light. Mirror reflections on these materials should be
weighted by the Fresnel term for the angle between the normal and
the viewing direction~v.

Similar to the techniques for local illumination presented in Sec-
tion 3, the Fresnel termF (cos �) for the mirror direction~rv can be
stored in a texture map. Since here only the Fresnel term is required,
a 1-dimensional texture map suffices for this purpose. This Fresnel
term is rendered to the framebuffer’s alpha channel in a separate
rendering pass. The mirror part is then multiplied with this term in
a second pass, and a third pass is used to add the diffuse part. This
yields an outgoing radiance ofLo = F �Lm+Ld, whereLm is the
contribution of the mirror term, whileLd is the contribution due to
diffuse reflections.

In addition to simply adding the diffuse part to the Fresnel-
weighted mirror reflection, we can also use the Fresnel term for
blending between diffuse and specular:Lo = F �Lm+(1�F )Ld.
This allows us to simulate diffuse surfaces with a transparent coat-
ing: the mirror term describes the reflection off the coating. Only
light not reflected by the coating hits the underlying surface and is
there reflected diffusely.

Figure 7 shows images generated using these two approaches.
In the top row, the diffuse term is simply added to the Fresnel-
weighted mirror term (the glossy reflection is zero). For a refractive
index of 1.5 (left), which approximately corresponds to glass, the
object is only specular for grazing viewing angles, while for a high
index of refraction (200, right image), which is typical for metals,
the whole object is highly specular.

The bottom row of Figure 7 shows two images generated with the
second approach. For a low index of refraction, the specular term
is again high only for grazing angles, but in contrast to the image
above, the diffuse part fades out for these angles. For a high index
of refraction, which, as pointed out above, corresponds to metal,
the diffuse part is practically zero everywhere, so that the object is
a perfect mirror for all directions.



                        

                        

Figure 7: Mirror and diffuse reflections weighted by a Fresnel term
for a varying index of refraction. Top: constant diffuse coefficient,
bottom: diffuse reflection fading out with the Fresnel term.

4.5 Precomputed Glossy Reflection and
Transmission

We would now like to extend the concept of environment maps to
glossy reflections. The idea is similar to the diffuse prefiltering pro-
posed by Greene [15] and the approach by Voorhies and Foran [40]
to use environment maps to generate Phong highlights from direc-
tional light sources. These two ideas can be combined to precom-
pute an environment map containing the glossy reflection of an ob-
ject with a Phong material. With this concept, effects similar to the
ones presented by Debevec [12] are possible in real time.

As shown in [24], the Phong BRDF is given by

fr(~l! ~v) = ks � < ~rl; ~v >
1=r

cos�
= ks � < ~rv;~l >

1=r

cos�
; (8)

where~rl, and~rv are the reflected light- and viewing directions,
respectively.

Thus, the specular global illumination using the Phong model is

Lo(~rv) = ks �
Z

(~n)

< ~rv;~l >
1=r Li(~l) d!(~l); (9)

which is only a function of the reflection vector~rv and the environ-
ment map containing theincomingradianceLi(~l). Therefore, it is
possible to take a map containingLi(~l), and generate a filtered map
containing theoutgoingradiance for a glossy Phong material. Since
this filtering is relatively expensive, it cannot be redone for every
frame in an interactive application. Thus, it is important to use a
view-independent parameterization such as our parabolic maps.

Figure 8 shows such a map generated from the original environ-
ment in Figure 6, as well as a glossy sphere textured with this map.
The same technique can be applied to simulate glossy transmission
on thin surfaces. This is also depicted in Figure 8.

If the original environment map is given in a high-dynamic range
format, then this prefiltering technique allows for effects similar to
the ones described by Debevec [12]. Although reflections of an
object onto itself cannot be modeled by environment maps, the ren-
derings are quite convincing, considering that these images can be

                        

                        

Figure 8: Top: original parabolic map used in this figure and Fig-
ure 7, as well as prefiltered map with a roughness of 0.01. Bottom:
application of the filtered map to a reflective torus (left) and a trans-
missive rectangle (right).

rendered at frame rates of about 20Hz even on low end workstations
such as an SGI O2.

5 Normal Maps

Bump maps are becoming popular for hardware-accelerated ren-
dering, because they allow us to increase the visual complexity of a
scene without requiring excessive amounts of geometric detail.

Normal maps can be used for achieving the same goal, and have
the advantage that the expensive operations (computing the local
surface normal by transforming the bump into the local coordinate
frame) have already been performed in a preprocessing stage. All
that remains to be done is to use the precomputed normals for shad-
ing each pixel. Another advantage of normal maps is that recently
methods have shown up for measuring them directly [33], or for
generating them as a by-product of mesh simplification [10]. Al-
though we only handle normal maps here, some of these results
could also be useful for implementations of bump maps, as will be
discussed in Section 6.

In this section, we first describe how normal maps can be lit
according to the Blinn-Phong illumination model using a set of so-
called imaging operations. These have been formally defined in
OpenGL version 1.2 [35], and it can therefore be expected that they
will be available on a wide variety of future graphics hardware.

Afterwards, we discuss how the techniques for other local illu-
mination models from Section 3, as well as the environment map-
ping techniques from Section 4 can be used together with normal
maps. This part relies on thepixel textureextension that is currently
only available from Silicon Graphics [22]. It has been shown else-
where [21], that this extension is so powerful and versatile, that it
might be implemented by other vendors in future systems.

The methods described here assume an orthographic camera and
directional light sources. The artifacts introduced by these assump-
tions are usually barely noticeable for surfaces with bump maps,
because the additional detail hides much of them.



5.1 Normal Maps with local Blinn-Phong Illumina-
tion

Among many other features (see [35] for details), the imaging op-
erations make it possible to apply a4� 4 matrix to each pixel in an
image, as it is transferred to or from the frame buffer or to texture
RAM. Following this color matrix transformation, a lookup table
may be applied to each individual color component.

With these two mechanisms and a given normal map in the form
of a color coded image, the map can be lit in two rendering passes.
First, a color matrix is specified, which maps the normal from ob-
ject space into eye space and then computes the diffuse illumination
(which is essentially given by the dot product with the light direc-
tion). When the normal image is now loaded into texture RAM,
the lighting computations are performed. Afterwards the loaded, lit
texture is applied to the object using texture mapping.

A similar second rendering pass draws the specular part. This
time, however, the matrix computes the dot product between normal
and the halfway vector~h from Figure 1. The exponentiation by1=r,
wherer is the surface roughness, is performed by a color lookup
table.

Figure 9 shows two images where one polygon is rendered with
this technique. On the left side, a simple exponential wave function
is used as a normal map. The normal map for the image on the
right side has been measured from a piece of wallpaper with the
approach presented in [33].
                        

Figure 9: Two Phong-lit normal maps. The right one has been
measured from a piece of wallpaper using the approach presented
in [33].

5.2 Normal Maps with Other Reflection Models
and Environment Maps

The techniques from Sections 3 and 4 could also be applied to nor-
mal maps, if the texture lookup could be performed per pixel instead
of only per vertex. This can be achieved using the pixel texture ex-
tension from Silicon Graphics. It adds an additional stage to the
rendering pipeline directly after the color matrix and the color table
described above. This stage allows to interpret each of the color
components as a texture coordinate pointing into a 1-, 2-, 3-, or
4-dimensional texture (see [22] for details).

This leads to the following algorithm for applying alternative
lighting models:

� Render the object with the color coded normal map as a tex-
ture, thereby marking each visible pixel in the stencil buffer.

� Copy the frame buffer to main memory. This yields an image
which contains the normal vector for each pixel.

� For each pass described in Section 3, set up the color matrix
and blending as required by the respective illumination model,

and copy the normal image from main memory into the frame
buffer. Copy only those pixels marked in the stencil buffer.

For environment maps, the situation is somewhat more difficult,
because the parabolic parameterization requires the use of projec-
tive textures, which are currently not supported by the pixel texture
extension. As has been pointed out in [21], this limitation also pre-
vents the use of pixel textures in other interesting applications, such
as shadow maps. Hopefully this restriction will be removed in the
future. Until then, pixel textures can still be used for environment
mapping from a fixed viewing direction, which of course defeats
the point of introducing the parabolic parameterization.

The images in Figure 10 were generated using the pixel texture
extension and a single, view-dependent environment map.
                        

Figure 10: Combination of environment mapping and normal map-
ping. Left: environment map only. Right: Local Phong illumina-
tion plus environment map.

6 Discussion and Conclusions

The methods described in this paper provide means for generating
realistic shading and lighting effects with computer graphics hard-
ware. We have concentrated on concepts that can be implemented
on current graphics hardware. All the techniques presented here
run at frame rates of 15-20Hz on an SGI O2 (except for the ones
requiring pixel textures, which the O2 does not support), and> 20
Hz on an SGI Octane MXE.

To conclude, we would now like to mention some issues which
we deem important for the design of future graphics hardware:

The number of required rendering passes is reduced dramatically
if the hardware has support for multiple textures. This is a feature
which is beginning to appear on PC boards, and will probably be
universally available soon.

Pixel textures are a very valuable tool and should be available
on more platforms (see [21] for other applications than presented
here). They should also support projective textures.

The easiest way to directly support our techniques in future hard-
ware is to add more automatic texture generation modes. For local
illumination with isotropic lighting models, the cosines between
surface normal, facet normal, light direction and viewing direction
are required. Except for orthographic viewing and directional light
sources, these angles need to be computed in software, which re-
quires the transformation of all vectors into eye space. For hard-
ware lighting, these vectors are available in eye space anyway, so if
the hardware could generate these cosine values automatically, this
would both improve the performance and simplify the implemen-
tation. Automatic texture coordinate generation is also useful for
generating the reflection vector required for the parabolic environ-
ment map parameterization. As pointed out above, this extension is
already available in some implementations of OpenGL [23].



A more ambitious change to the rendering pipeline would be to
replace the traditional hardware Phong lighting with a customiz-
able sampling-based approach. In this case, the programmer would
specify the material as a set of two or three 2-dimensional tables
that can be downloaded to the hardware. The geometry processing
hardware can then compute the indices into these tables for multiple
light sources at the same time.

Although we have only discussed normal maps, the shading and
lighting techniques presented here could also be applied to bump
mapping hardware, by allowing an additional texture access after
the normal for a pixel has been computed. This would, in particu-
lar, be a transparent implementation of environment maps for bump
mapping hardware.
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