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Object	 tracking	 with	 subpixel	 accuracy	 is	 of	 fundamental	 importance	 in	 many	 fields	 since	 it	 provides	 optimal	

performance	at	relatively	low-cost.	Although	there	are	many	theoretical	proposals	that	lead	to	resolution	increments	

of	several	orders	of	magnitude,	in	practice,	this	resolution	is	limited	by	the	imaging	systems.	In	this	paper	we	propose	

and	demonstrate	through	simple	numerical	models	a	realistic	limit	for	subpixel	accuracy.	The	final	result	is	that	

maximum	achievable	resolution	enhancement	is	connected	with	the	dynamic	range	of	the	image,	i.e.	the	detection	

limit	 is	 1/2^(nr.bits).	 The	 results	 here	 presented	may	help	 to	 proper	 design	 of	 superresolution	 experiments	 in	

microscopy,	surveillance,	defense	and	other	fields.	©	2016	Optical	Society	of	America	

OCIS	codes:	(100.6640)	Superresolution;	(100.4999)	Pattern	recognition,	target	tracking	(040.7290)	Video,	(170.0110)	Imaging	systems.	
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1.	Introduction	

Object	detection	and	tracking	is	a	common	operation	in	many	tasks	

like	surveillance,	security,	acoustics	or	civil	engineering.	Although	other	

systems	 can	be	used,	 the	most	 common	approach	 is	 through	vision	

systems	 and	 image	 analysis.	 Unfortunately,	 and	 despite	 their	

continuous	 improvement	 in	 temporal	 and	 spatial	 resolutions,	 these	

devices	are	still	considered	as	low-resolution	systems	mainly	in	those	

applications	 concerning	 video	 acquisition	 for	 assessing	 dynamic	

processes	[1].	

In	 the	 last	 years,	 hardware	 improvements	 in	 both	 sensors	 and	

storage	 capabilities	 have	 increased	 the	 temporal	 resolution	 of	 video	

systems.	Nevertheless,	at	constant	data	 flux,	 increasing	 the	 temporal	

resolution	 implies	 reducing	 the	 spatial	 resolution.	 Therefore	 many	

systems	 provide	 high	 video	 rates	 with	 limited	 image	 quality,	 thus	

impeding	 the	 use	 of	 those	 cameras	 for	 applications	 where	 both	

amplitude	and	temporal	accuracy	are	needed.	Notice	that	even	the	most	

advanced	high-speed	cameras	rarely	use	sensors	larger	than	10	Mpx	

and	this	at	a	huge	cost,	while,	for	static	cameras,	sensors	larger	than	25	

Mpx	are	easy	to	find.		

This	 limited	spatial	resolution	encourages	the	search	of	processes	

that	 may	 overcome	 these	 limits	 and	 provide	 enhanced	 capabilities.	

Subpixel	techniques	allow	increasing	the	image	resolution	of	the	digital	

detectors	and	thus,	improving	the	performance	of	existing	devices	at	a	

reasonable	computational	and	economical	cost.	Therefore,	defining	the	

actual	experimental	limitations	of	subpixel	resolution	is	of	the	outmost	

importance	 to	explore	 the	potential	 applications	of	 image	and	video	

systems.		

Object	tracking	with	subpixel	resolution	depends	on	whether	we	are	

referring	to	a	target	that	describes	a	known	trajectory	or	to	absolute	

detection	of	movement,	with	no	a	priori	knowledge	about	the	system.	In	

the	first	case	tracking	resolution	can	be	very	much	enhanced	from	fitting	

to	a	trajectory	and	interpolation.	In	the	second	case	there	are	no	external	

information	that	could	guide	the	detection	and	decrease	the	positioning	

errors.	Therefore,	the	expected	accuracy	of	absolute	detection	is	much	

lower.	In	this	paper	we	will	focus	in	the	second	case.		

Theoretical	models	propose	target	designs	that	allow	absolute	object	

tracking	with	virtually	infinite	resolution.	In	[2],	the	authors	propose	

different	target	shapes	with	binary	images.	In	[3],	the	authors	revisited	

the	 idea	 and	 show	 that,	 by	 using	 convenient	 targets,	 the	 theoretical	

maximum	accuracy	is	of	the	order	of	1/N	px,	being	N	the	total	number	

of	 pixels	 in	 the	 scene.	 Although	 these	 targets	 are	 of	 difficult	

implementation,	they	may	be	useful	to	analyze	the	efficiency	of	different	

implementations	and	even	to	design	new	methods	[4].		

Nevertheless,	and	despite	the	theoretically	achievable	improvement,	

to	 the	best	of	our	knowledge,	 experimental	methods	 rarely	 reached	

absolute	 shifts	 detections	 smaller	 than	 0.01	 px.	 which	 is	 far	 of	 the	

theoretical	limits.	Noise	and	inaccuracies	in	the	sensor	can	degrade	the	

signal	 and	 thus	 reduce	 the	optimal	 accuracy	 in	one	or	 two	order	of	

magnitude	but	even	so,	experimental	and	theoretical	predictions	are	

still	too	much	different.		

In	 this	 paper,	 we	 propose	 a	 simple	 method	 to	 determine	 the	

maximum	accuracy	that	can	reasonably	be	expected	in	target	tracking	

tasks.	Our	goal	is	to	provide	a	rule	of	thumb	that	may	help	to	optimize	

the	 experimental	 implementations	 of	 object	 tracking	 methods	 and	

show	a	realistic	limit	to	the	accuracy	enhance.	The	imaging	system	will	

be	 considered	here	 as	 a	 black	 box	 that	 connects	 the	 object	with	 an	

output	image	in	gray	levels.	In	this	approximation,	errors	coming	from	

the	optics,	camera	or	preprocessing	algorithms	will	be	considered	as	a	

whole	and	experimentally	estimated.	

Our	main	hypothesis	is	that	the	necessary	condition	for	movement	

detection	is	that	a	single	pixel	changes	its	status.	Therefore,	we	reduce	
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the	problem	 to	analyze	 the	main	 factors	 that	 can	provoke	 this	pixel	

change.		

As	first	approximation	we	will	consider	that	only	a	movement	can	

change	a	pixel	status.	Then	we	will	consider	the	pixel	as	a	simple	light	

container	and	we	will	propose	simple	models	on	how	the	content	of	the	

container	may	vary	with	 the	object	movement.	With	 this,	 a	 relation	

between	 the	 tracking	 accuracy	 and	 the	 image	 dynamic	 range	 is	

obtained.	Finally,	we	will	consider	the	main	distorting	factors	that	may	

alter	the	image	response	and	are	not	connected	to	object	movement	and	

a	 brief	 discussion	 about	 their	 effect	 on	 the	 final	 accuracy	 will	 be	

presented.		

Our	 proposal	 is	 completed	 with	 numerical	 simulations	 and	 an	

experimental	implementation	that	illustrate	some	of	the	concepts	here	

described.	Finally,	the	main	conclusions	are	summarized.	

2.	Proposal	

As	we	stated	above,	according	to	what	is	established	in	[4],	special	

objects	 can	 be	 tracked	 with	 accuracy	 of	 the	 order	 of	 1/N.	 This	

affirmation	 was	 proved	 through	 numerical	 simulations	 and	 with	

different	 error	 criteria.	 Unfortunately,	 the	 physical	 limitations	 of	 the	

sensors	and	the	particular	conditions	 imposed	on	the	targets	clearly	

limits	the	accuracy	and	real	implementations	will	not	be	so	sensitive.	In	

what	 follows,	 we	 will	 try	 to	 determine	 which	 is	 the	 ultimate	

experimental	limiting	factor	in	the	design	of	subpixel	tracking	methods.		

First	of	all,	we	will	assume	some	convenient	boundary	conditions,	

although	they	are	not	really	limiting	for	majority	of	applications..	With	

respect	to	the	lenses	we	suppose	that	they	are	free	of	aberrations,	back	

reflections	or	scattering	and	paraxial	optics	 is	applicable	 in	the	main	

region	of	the	sensor.	This	means	that	the	movement	in	the	object	and	

image	planes	is	proportional,	so	we	can	reduce	our	description	to	shifts	

the	image-sensor	plane.	Regarding	the	sensor,	we	consider	that	its	fill	

factor	 is	 100%,	 so	 the	 active	 area	 between	 two	 adjacent	 pixels	 is	

continuous.	This	is	not	a	very	strong	limitation,	since	last	generations	of	

CCD	and	CMOS	implement	efficient	lens	arrays	that	avoid	the	inter-pixel	

spacing	[5].	

Additionally,	let	us	suppose	by	the	moment	that	the	system	is	free	of	

noise	and	the	detector	is	not	saturated.	We	also	assume	that	our	sensor	

is	monochromatic	 and	 linear	 so	 the	 response	 only	 depends	 on	 the	

luminance.	Again,	this	is	not	a	severe	assumption	since	most	detector	

behave	in	this	way	under	standard	lab	conditions.		

Common	 gray-scale	 image	 formats	 linearly	 rescale	 the	 response	

between	0	(black)	and	1	(white)	in	quantized	levels.	For	a	sensor	of	B	

bits	per	pixel,	the	number	of	allowable	levels	is	2B.	The	most	known	

cameras	implement	sensors	of	8	bits/pixel	allowing	the	registration	of	

256	grey	levels	per	pixel.		

With	independence	of	the	algorithm	used	to	movement	detection,	

the	necessary	condition	for	movement	detection	is	that	one	single	pixel	

changes	 its	 status.	 Therefore,	 and	 without	 losing	 generality,	 let	 us	

reduce	our	problem	to	analyze	this	single	pixel,	wherever	it	is	located.		

Let	us	assume	that	the	object,	in	the	scene	is	shifted	an	arbitrary	small	

distance	in	the	x-direction.	The	image,	in	the	sensor	plane	will	also	move	

an	equivalent	distance	dx.	Due	to	the	quantization	of	the	energy	levels	a	

change	in	the	test-dot	will	only	be	detected	when	the	energy	increase	–

reaches	one	of	the	upper/lower	quantization	steps,	i.e.	the	positive	or	

negative	energy	variation	is	an	integer	multiple	of	1/2B.	

Detection	of	displacement	dx	is	linked	to	the	capability	of	detecting	
the	energy	transfer	from	a	pixel	detector	to	the	adjacent	one,	and	this	

depends	on	the	energy	profile	so	a	general	rule	is	difficult	to	establish.	

Therefore,	 we	 will	 propose	 two	 basic	 models.	 The	 simplest	 one	

considers	that	the	PSF	(Point	Spread	Function)	has	a	rectangular	profile,	

with	a	flat	top	level	and	an	abrupt	decay.	The	second	model	consists	of	

taking	a	more	realistic	Gaussian	PSF	profile.		

Let	us	start	with	the	squared	flat	energy	profile	and	how	this	model	

predicts	the	energy	transfer	from	one	pixel	to	the	adjacent	one:	being	E	

the	 energy	 of	 the	 squared	profile	 and	p	 the	 side	 length	 of	 the	 pixel	

sensor,	the	normalized	response	is		

	 𝑬×𝒑×𝒑 = 𝟏    (1) 

If	the	object	moves	laterally,	part	of	this	squared	profile	will	enter	the	

adjacent	sensor	and	the	detection	will	be	possible	when	the	following	

condition	is	fulfilled:	

𝑬×𝒑×𝜹𝒙 ≥
𝟏

𝟐𝑩
    (2) 

Or,	according	to	equation	(1):	

𝜹𝒙 ≥
𝒑

𝟐𝑩
				→ 				

𝜹𝒙

𝒑
≡ 𝜹𝒑 ≥

𝟏

𝟐𝑩
	  (3) 

where,	in	the	expression	at	the	right,	detection	accuracy	is	expressed	in	

pixel	units.	According	to	this,	for	the	most	typical	case	of	8-bits	cameras,	

the	minimum	movement	that	is	detected	is	𝛿𝑝 = 1/256 ≅ 0.004px.	

For	cameras	of	10,	12	bits,	the	detection	limit	is	of	the	order	of	1e-3	and	

2e-4	respectively.	Notice	that	this	rule	cannot	be	extended	to	24	bit	color	

cameras	since	they	use	three	different	channels	of	8	bits	each	one.	Each	

of	these	channels	is	captured	by	different	pixels	and	the	final	image	is	

composed	by	software	[6].	

This	result	can	be	refined	by	using	a	more	realistic	energy	profile	

model.	 Assuming	 a	 monochromatic	 coherent	 illumination	 and	 a	

diffraction-limited	system	with	a	circular	aperture,	the	intensity	profile	

of	a	single	dot	image	(PSF)	takes	the	form	of	an	Airy	disk,	which	may	be	

approached	by	a	Gaussian	function	[7]:	

 𝑰 𝝆 = 𝑰𝟎
𝟐𝑱𝟏 𝒌𝑵𝑨𝝆

𝒌𝑵𝑨𝝆

𝟐

≈ 𝑰<𝟎exp
=𝝆𝟐

𝟐𝝈𝟐
 (4) 

being	I0	the	maximum	intensity	of	the	pattern	at	the	Airy	disk	center,	J1	

the	 first-order	 Bessel	 function	 of	 the	 first	 kind,	 k=2p/l	 is	 the	

wavenumber,	r  the	radial	distance	from	the	center	of	the	spot	to	any	

point	in	the	image	plane	and	NA	is	the	numerical	aperture	of	the	optical	

system.		

If	we	impose	that	I0=I’0	and	find	the	value	of	s   that	gives	the	optimal	
approximation	to	the	airy	pattern,	we	obtain:	

 𝝈 ≈ 𝟎. 𝟐𝟏
𝝀

𝑵𝑨
    (5) 

As	we	did	above,	let	us	reduce	our	problem	to	a	single	dot	focused	

onto	a	single	pixel.	In	this	case,	the	normalized	energy	response	will	be:	

𝑰𝟎 𝒆𝒙𝒑 −
𝒙𝟐

𝟐𝝈𝟐
𝒅𝒙 ≡ 𝑰𝟎

𝒑

𝟐

=
𝒑

𝟐

𝒆𝒙𝒑 −
𝑵𝑨𝟐

𝟎.𝟎𝟖𝟖𝟐𝝀𝟐
𝒙𝟐 = 𝟏

𝒑

𝟐

=
𝒑

𝟐

 (6) 

A	displacement	of	dx	in	the	spot	will	transfer	part	of	the	energy	from	
one	pixel	to	the	adjacent	one,	i.e.:	

𝑰𝟎 𝒆𝒙𝒑 −
𝑵𝑨𝟐

𝟎.𝟎𝟖𝟖𝟐𝝀𝟐
𝒙𝟐 𝒅𝒙 +

𝒑

𝟐

=
𝒑

𝟐
E𝜹𝒙

		 	 	

	 + 𝑰𝟎 𝒆𝒙𝒑 −
𝑵𝑨𝟐

𝟎.𝟎𝟖𝟖𝟐𝝀𝟐
𝒙𝟐 𝒅𝒙

𝒑

𝟐
E𝜹𝒙

𝒑

𝟐

= 𝟏 (7) 

As	we	said	before,	detection	will	only	happen	when	the	energy	in	the	

new	pixel	surpasses	a	minimum	threshold,	thus	giving	a	condition	for	

the	minimum	displacement	dx	needed	for	detection:		

𝑬𝒕𝒉 = 𝑰𝟎 𝒆𝒙𝒑 −
𝑵𝑨𝟐

𝟎.𝟎𝟖𝟖𝟐𝝀𝟐
𝒙𝟐 𝒅𝒙 ≥

𝟏

𝟐𝑩

𝒑

𝟐
E𝜹𝒙

𝒑

𝟐

  (8) 

Conditions	in	expressions	(6)	and	(8)	can	be	numerically	evaluated	

through	the	error	function	erf(x),	defined	as:	



	

 𝒆𝒓𝒇 𝒙 =
𝟐

𝝅
	𝒆𝒙𝒑 −𝒕𝟐 𝒅𝒕	

𝒙

𝟎
     (9) 

thus	giving	the	expression:	

𝑬𝒕𝒉 ≅
𝟏

𝟐

𝒆𝒓𝒇
𝑵𝑨

𝟎,𝟐𝟗𝟕𝝀

𝒑

𝟐
E𝜹𝒙

𝒆𝒓𝒇
𝑵𝑨

𝟎,𝟐𝟗𝟕𝝀
·
𝒑

𝟐

− 𝟏   (10) 

Evaluation	of	expression	in	(10)	requires	the	selection	of	a	proper	

wavelength	l,	pixel	size,	p	and	numerical	aperture,	NA.	Nevertheless,	
since	we	are	just	giving	an	order	of	magnitude	of	the	minimum	shift	

needed	 for	 subpixel	 detection,	 we	 can	 state	 additional	 boundary	

conditions.		

The	Rayleigh	criterion	establishes	the	minimum	distance	between	

two	Airy	disks	so	that	they	can	be	distinguished.	In	an	optimized	design,	

this	criterion	should	be	matched	by	the	resolution	limit	of	the	discrete	

sensor,	which	is	limited	by	the	Nyquist	limit.	According	to	this,	we	can	

affirm	that	the	minimum	distance	between	two	spots	must	be	at	least	

equal	to	two	pixels:	

 
𝟎.𝟔𝟏×𝝀

𝑵𝑨
= 𝟐×𝒑    (11) 

Therefore,	if	the	optical	system	is	perfectly	tuned	with	the	sensor	and	

is	capable	to	produce	images	at	the	Nyquist	limit,	we	can	use	equation	

(11)	to	obtain	a	relation	between	the	three	variables	implied	in	(10)	so	

the	expression	is	very	much	simplified:	

𝑬𝒕𝒉 ≅ 𝟎, 𝟗𝟑𝟗𝟒	 𝒆𝒓𝒇(𝟎, 𝟓𝟏𝟑𝟓 + 𝟏, 𝟎𝟐𝟕𝜹𝒑) − 	𝟎, 𝟓 
 (12) 

being	dp=dx/p.	Notice	that	this	expression	only	depends	on	the	ratio	
between	the	displacement	and	 the	pixel	size,	or	equivalently,	on	 the	

fraction	of	pixel	displaced.		

In	figure	1,	we	represent	the	values	fulfilling	equation	(12)	in	front	of	

the	values	of	the	threshold	obtained	for	the	simplified	case	in	equation	

(3).	 We	 see	 that	 the	 difference	 between	 them	 approximately	 is	 a	

multiplicative	 factor.	 Therefore,	 the	 realistic	 model	 shows	 less	

resolution	than	the	simplified	one,	but	can	be	considered	equivalent	in	

terms	of	order	of	magnitude.	

	

Figure	1.	Comparison	between	detection	thresholds	Eth	obtained	from	

the	 simplified	model	 in	 equation	 (3)	 and	 a	more	 realistic	model,	 in	

equation	(12).	A	 linear	 fitting	has	been	added	 in	order	 to	clarify	 the	

trend.	

This	model	considers	a	single	pixel	of	an	extended	image.	Real	objects	

may	have	 complex	 shapes	 and	energy	profiles	 so	depending	on	 the	

particular	energy	profile	it	may	happen	that	the	round-off	error	makes	

that	shift-detection	from	some	initial	positions	is	more	accurate	than	

from	 others.	 In	 some	 cases,	mainly	 in	 complex	 objects,	 the	 original	

intensity	value	may	be	closer	to	the	detection	threshold	and	therefore	a	

small	change	may	raise	the	signal	into	the	new	pixel	so	detection	may	

happen	with	a	shift	smaller	than	that	obtained	above.	This	idea	has	been	

already	explained	in	[3],	and	some	applications	have	been	proposed	in	

[4,	9].		

Statistically,	the	above	described	situation	may	happen	for	half	the	

dots	of	the	image.	When	a	shift	is	produced,	the	pixels	whose	incoming	

energy	 is	 the	 upper	 half	 part	 of	 the	 quantization	 step	 will	 be	 first	

detected	with	only	half	the	needed	displacement.	Once	all	these	pixels	

have	 been	 detected	 their	 energy	 is	 at	 the	 lower	 part	 of	 a	 new	

quantization	step	while	the	remaining	ones	will	have	their	energy	in	the	

upper	part	so	the	situation	is	repeated.	As	a	consequence	of	this,	one	

could	further	increase,	by	a	factor	2	the	limit	previously	established,	i.e.	

 𝜹𝒙	 ≳
𝒑

𝟐𝑩V𝟏
				→ 				𝜹𝒑 ≳

𝟏

𝟐𝑩V𝟏
  (13) 

Deduction	 of	 expression	 (13)	 has	 been	 done	 by	 considering	 a	

“perfect”	system	that	is	free	of	aberrations	and	noise.	For	the	majority	of	

applications,	the	first	requirement	is	easy	to	meet	with	quality	optics	

and	 within	 certain	 restrictions	 such	 as	 correct	 alignment,	 paraxial	

region	and	precise	focusing.	Therefore,	we	will	not	further	develop	this	

issue.	

Unfortunately,	the	second	requirement	-absence	of	noise-	is	much	

difficult	to	fulfill.	Noise	in	the	image	may	come	from	a	wide	variety	of	

sources.	Some	are	inherent	to	the	sensor	and	electronics	and	include	

electronic	and	thermal	inaccuracies,	different	pixel	response	through	

the	CCD/CMOS	area	or	vibrations	transmitted	to	the	camera	due	to	an	

inadequate	mechanical	isolation.	There	may	also	be	other	error	sources	

coming	from	the	object.	These	include	changes	in	the	illumination,	or	in	

the	transmitting	medium.		

Analysis	of	 the	different	 errors	 affecting	 to	 the	 accuracy	of	 image	

acquisition	 is	 really	 complex	 and	 it	 is	 outside	 the	 scope	 of	 this	

manuscript.	As	we	said	above,	our	goal	is	to	provide	a	rule	of	thumb	to	

determine	 the	 expected	 accuracy	 that	 could	 be	 used	 for	 non-image	

experts.	An	accurate	analysis	about	subpixel	object	location	and	error	

sources	can	be	found	in	[10].	

Independently	of	the	error	source,	one	can	experimentally	estimate	

the	error	of	the	setup	by	capturing	a	sequence	of	the	static	target,	i.e.,	

before	the	movement	starts,	and	perform	a	tracking.	Since	the	object	is	

static,	all	movement	detected	may	come	 from	the	noise	or	 from	the	

calculation	method	itself.	In	our	experience,	the	standard	deviation	of	

the	calculated	positions	is	a	good	estimator	of	the	positioning	error	due	

to	noise.	When	the	target	starts	its	movement,	one	can	affirm	that	the	

target	has	been	shifted	only	when	its	detected	position	is	above	the	level	

of	noise.	According	to	this,	an	oscillation	of	1/256	or	equivalently	0.004	

px	will	increase	the	threshold	displacement	needed	to	distinguish	the	

movement,	 thus	 diminishing	 the	 expected	 tracking	 accuracy.	 This	

method	was	used	in	[11]	to	compare	the	subpixel	accuracy	between	a	

low-cost	camera	and	a	medium	level	camera.		

For	absolute	and	precise	detection	of	movement	one	can	fix	the	error	

threshold	in	three	times	the	standard	deviation	thus	almost	discarding	

the	possibility	of	a	false	movement	detection.	If	the	target	is	following	a	

trajectory	along	a	known	path,	this	requirement	can	be	relaxed,	since	

other	criterions	may	be	used	to	determine	the	accuracy	of	the	tracking.		

3	Numerical	implementation		

In	 order	 to	 demonstrate	 our	 proposal,	 we	 have	 numerically	

implemented	 some	 examples	 of	movement	 detection	 after	 subpixel	

displacement.	For	 the	 implementation,	we	have	 taken	different	one-

dimensional	profiles.		

Two	objects	have	been	analytically	generated	and	evaluated	on	a	

vector	 of	 N=512	 px,	 with	 the	 variable	 ranging	 in	 the	 interval		

xÎ[-N/2,N/2-1]	px.	A	shape	factor	modeling	the	object	width	LÎ[10,200]	
px	has	also	been	introduced	in	both	cases	so	that	we	can	account	the	

object	 profile	 influence.	 For	 each	 shape	 factor,	 the	 object	 has	 been	

displaced	a	total	length	of	one	pixel	in	steps	of	0.0001	px	which	is	one	

order	of	magnitude	above	 the	highest	 expected	 resolution.	Both	 the	

original	and	the	displaced	functions	have	been	quantized	to	a	different	



number	of	bits	and	the	difference	between	them	is	evaluated.	The	total	

number	of	steps	needed	for	producing	a	detectable	change	is	accounted	

and	 with	 this,	 the	 detection	 resolution	 is	 achieved.	 The	 average	

resolution	 along	 one	 full	 path	 is	 obtained	 for	 each	 shape	 and	

quantization	level.	Tests	programs	have	been	implemented	in	Matlab	

and	can	be	downloaded	and	checked	from	Ref.	[9]	

The	first	object	used	has	been	a	Gaussian	profile,	with	equation:	

	 𝒇𝑳 𝒙 = 𝒆𝒙𝒑 −
𝒙𝟐

(L/2)
𝟐 		 	 	 (14)	

In	 Figure	 2	 we	 represent	 the	 results	 obtained	 according	 to	 the	

procedure	explained	above.	We	have	used	the	logarithmic	scale	in	order	

to	 allow	 better	 visualization.	 We	 can	 see	 there	 that,	 for	 large	

quantization	steps	(2	bits),	the	shape	of	the	object	influences	the	error.	

The	 quantization	 effect	 explained	 before	 is	 very	 strong	 and	 the	

calculated	 threshold	may	 be	 lower	 than	 the	 one	 established	 by	 our	

models.	As	the	quantization	levels	become	narrower,	the	shape	factor	is	

less	and	less	relevant	and	the	detection	threshold	is	less	dependent	of	

the	object	 shape.	Notice	 also	 that	 all	 threshold	values	 calculated	are	

around	the	values	predicted	in	(13).		

	

Figure	 2:	 Calculated	 detection	 threshold	 or	 a	 Gaussian	 profile	 with	

different	 shape	 factors	 as	 defined	 in	 equation	 (14).	 Dashed	 lines	

represent	the	values	in	equation	(13).	

The	next	object	implemented	is	a	triangular	shape	with	base	L	and	

height	equal	to	one:	

𝒇 𝒙 =

𝟐

𝑳
𝒙 + 𝟏				  for 𝒙 ∈ [−L/2,0]

−
𝟐

𝑳
𝒙 + 𝟏	 for 𝒙 ∈ [𝟎,L/2]

𝟎												otherwise

  

 (15) 

	

Notice	that	this	function	includes	three	non-derivable	points	whose	

discretization	will	be	problematic.	The	threshold	needed	for	movement	

detection	is	depicted	in	figure	3.		

There	we	can	see	that,	for	the	majority	of	the	shapes	and	quantization	

levels,	the	detection	threshold	coincides	with	the	theoretical	value	in	

equation	 (13),	 in	 accordance	 with	 the	 explanation	 here	 given.	

Nevertheless,	we	can	notice	that	some	particular	values	show	important	

and	localized	peaks.	Since	we	are	representing	the	threshold	average	for	

a	 full	 pixel	 displacement,	 this	 means	 that	 subpixel	 resolution	 is	

drastically	 decreased	 for	 this	 particular	 shape.	 This	 situation	 occurs	

always	with	objects	with	straight	borders	and	sharp	corners	and	was	

already	addressed	in	[10].	In	brief,	this	effect	happens	when	the	lines	

directions	are	geometrically	linked	to	the	squared	detector	matrix	and	

the	quantization	steps	are	too	 large.	 In	this	case,	 the	round-up	effect	

introduces	large	errors	that	are	not	statistically	compensated	since	the	

pixel	distribution	on	the	image	plane	is	highly	anisotropic.	This	strange	

behavior	 tends	 to	disappear	as	 the	quantization	steps	are	more	and	

more	narrow.	

	

Figure	 3:	 Calculated	 detection	 threshold	 or	 a	 Gaussian	 profile	 with	

different	 shape	 factors	 as	 defined	 in	 equation	 (15).	 Dashed	 lines	

represent	the	values	in	equation	(13).	

Fortunately,	this	only	happens	in	very	specific	situations,	shapes	and	

quantization	 levels.	 Moreover,	 real	 objects	 are	 rarely	 composed	 by	

straight	lines	but	present	more	complex	shapes	so,	in	the	large	majority	

of	cases,	the	rule	for	realistic	subpixel	accuracy	here	established	remains	

valid.	

We	would	like	to	focus	the	reader’s	attention	on	the	fact	that,	in	both	

cases	represented	in	figures	2	and	3,	as	the	quantization	step	becomes	

shorter	(more	bits	used)	the	detection	threshold	is	a	bit	lower	than	the	

one	predicted	by	the	equation	(13).	Up	to	our	knowledge	this	happens	

because	the	dynamic	range	tends	to	be	continuous	and	the	round-up	

effect	is	less	and	less	important.	In	the	limit,	this	division	between	upper	

and	lower	half	of	the	step	does	not	have	sense	and	the	threshold	will	

converge	to	the	value	in	equation	(3).	

4	Experimental	test	

In	order	to	check	the	validity	of	our	estimations,	an	experimental	test	

has	been	carried	out.	A	simple	object	has	been	printed	and	attached	to	a	

continuous	linear	motorized	stage	(DDSM100/M	from	Thorlabs).	The	

platform	will	horizontally	displace	the	object	a	total	distance	of	3	mm	at	

a	speed	of	0.3	mm/s.	The	minimum	incremental	movement	is	500	nm	

and	the	repeatability	is	of	±1.5	µm.	The	scene	was	illuminated	by	two	

halogen	lamps	connected	to	a	stabilized	DC	generator,	in	order	to	avoid	

light	oscillation	from	the	general	AC	installation.		

The	movement	was	recorded	with	an	AOS	X-PRI	camera	situated	at	

5	m	from	the	object.	The	spatial	and	temporal	resolution	of	the	camera	

are	800x600	px	and	200	frames	per	second.	With	this	configuration,	the	

conversion	rate	is	2.4012	mm/px,	and	the	displacement	of	the	target	

image	 on	 the	 sensor	 plane	 between	 frames	 is	 0.0013	 px.	 Since	 the	

camera	works	at	8	bits,	the	movement	between	two	consecutive	frames	

is	below	the	best	expected	accuracy.	Operation	of	the	camera	and	the	

stage	was	done	remotely	in	order	to	avoid	vibrations.	

The	object	used	as	a	target	was	a	2D	Gaussian	function.	The	target	

width	on	 the	 image	plane	has	been	estimated	 in	around	50	px.	The	

Gaussian	figure	was	printed	in	negative	but	after	the	capture	was	again	

inverted	in	order	to	obtain	a	white	object	against	a	black	background.	In	

figure	4	we	show	the	scene	as	it	is	captured	by	the	camera	together	with	

a	zoom	of	the	object	with	its	luminance	levels	already	inverted.	

Object	tracking	may	be	strongly	influenced	by	the	algorithm	used.	In	

our	 case,	 the	position	of	 the	 target	was	 tracked	 though	 its	 centroid,	

which	was	calculated	using	the	Crocker	and	Grier’s	algorithms	[13].	We	

used	the	MATLAB	implementations	proposed	by	the	authors	in	[14],	

conveniently	adapted	to	our	inputs.	We	would	like	to	emphasize	that	the	

calculations	have	been	performed	without	 pre-processing	 for	 image	

enhancement	or	noise	reduction,	which	means	that	the	error	obtained	

by	this	experiment	could	be	lowered.	

	

As	we	said	in	Section	2,	a	sequence	of	the	static	object	was	captured	

in	 order	 to	 estimate	 the	 error	 of	 the	 method,	 which	 includes	 the	



experimental	setup	and	the	accuracy	of	calculations.	Prior	to	that	step	a	

detection	test	over	a	synthetic	scene	was	performed	in	order	to	check	

that	the	numerical	error	introduced	by	the	processing	algorithm	is,	at	

least	one	order	of	magnitude	below	the	best	resolution	experimentally	

achievable	according	to	expression	(13).	The	analysis	of	a	sequence	of	1	

second	(200	frames)	provide	as	standard	deviation	of	0.0038	px,	which	

is	in	the	order	of	1	luminance	level.	

	

	

Figure	4:	Complete	scene	as	it	was	captured	by	the	AOS	camera.	The	red	

square	shows	a	zoom	of	the	target.	Notice	that	target	gray	levels	have	

been	inverted	in	order	to	facilitate	processing	and	tracking	and	frame	by	

frame.		

The	representation	of	the	position	of	the	moving	target	versus	time	

provides	a	straight	line	whose	slope	coincides	with	the	target	speed.	The	

positioning	error	has	been	analyzed	by	comparing	the	obtained	position	

with	the	real	one	theoretically	calculated.	As	a	global	estimator,	we	use	

the	standard	deviation	of	the	error.	In	the	case	we	are	analyzing,	this	

value	is	of	0.0066,	almost	double	than	the	static	error.,	as	predicted	in	

Section	2.		

	

	

Figure	5:	Location	error	for	the	object	in	Figure	4	moving	horizontally.		

Dashed	blue	lines	represent	the	standard	error	of	the	4	bits	sequence,	

while	 dashed	 red	 lines	 represent	 the	 standard	 error	 of	 the	 8	 bits	

sequence.		

Images	from	the	camera	have	been	manipulated	so	that	a	realistic	

simulation	for	4	bits	could	be	obtained.	In	this	case,	the	obtained	error	

for	the	method	(static	target)	has	been	0.0126,	while	for	the	moving	

target,	the	standard	deviation	of	the	error	has	been	0.0203.	In	Figure	5	

the	error	obtained	for	both	8	and	4	bits	is	depicted.	

Notice	that	the	error	obtained	for	the	8	bits	case	is	of	the	order	of	

magnitude	predicted	by	equations	(3)	and	(13)	although	a	bit	higher	

because	 the	experimental	errors.	 In	 the	4	bits	example,	 the	order	of	

magnitude	 is	 the	same,	but	 the	value	 is	 lower	 than	expected,	 so	 the	

accuracy	is	higher.	Thus	result	must	be	taken	with	care	since	the	image	

is	not	directly	obtained	in	4	bits	but	manipulated.	Therefore,	the	noise	

has	 been	 probably	 lost	 in	 the	 rounding	 process,	 thus	 giving	 a	 false	

impression	of	accuracy.	

Finally	notice	 that	 the	 results	here	obtained	have	been	calculated	

without	noise	reduction	or	any	other	image	manipulations.	Wise	image	

processing	could	further	increase	the	accuracy	of	the	method.		

4	Conclusion	

Summarizing	all	our	discussion,	we	have	stated	here	that	under	ideal	

experimental	 conditions,	 absolute	 detection	 of	 object	 shift	 can	 be	

improved	up	to	a	factor	equal	to	the	inverse	of	the	number	of	gray	levels	

in	 the	 image.	 Object	 energy	 profile	 or	 image	 preprocessing	 may	

increment	 this	 accuracy	 but,	 real-life	 conditions,	 including	 realistic	

energy	 profiles,	 noise	 and	 aberrations,	 may	 decrease	 the	 accuracy.	

Therefore,	our	conclusion	is	that	equation	(3)	is	a	safe	estimation	of	an	

achievable	subpixel	accuracy.		

We	would	like	to	underline	that	this	does	not	mean	that	resolution	

can	be	arbitrarily	increased	with	the	number	of	bits.	In	[3]	the	authors	

show	 that,	 in	 absence	 of	 other	 limitations,	 the	 object	 geometry	 also	

imposes	 a	 severe	 limit,	 although	 much	 higher	 than	 the	 one	 here	

obtained.	Notice	that	the	limit	obtained	is	inherent	to	the	digitization	

process	 and	 does	 not	 depend	 on	 the	 detection	 algorithm	 so	 it	 is	

applicable	in	almost	all	tracking	algorithms.		

Our	affirmation	has	been	 tested	 through	numerical	examples.	We	

have	 implemented	 different	 objects	 with	 different	 shapes	 and	

quantization	levels	and	we	have	shown	that	our	proposal	stands	in	all	

cases,	 provided	 that	 the	 object	 shape	 is	 complex	 enough.	 An	

experimental	test	has	been	also	carried	in	order	to	check	the	accuracy	of	

our	predictions	and	gives	some	hints	about	the	error	estimation.	

Results	here	presented	may	be	very	useful	for	researchers	working	

in	video	processing	 for	 target	 tracking,	mainly	 in	microscopy	where	

resolution	increases	are	of	the	utmost	importance.	On	the	one	hand,	our	

proposal	 clearly	 states	 the	 limits	 of	 the	 maximum	 resolution	

enhancement	that	can	be	reached	with	a	given	system.	On	the	other	

hand,	it	provides	a	reference	value	to	push	non-optimal	systems	to	the	

maximum	 achievable	 resolution	 that	 can	 be	 obtained	 with	 a	 given	

experimental	 setup,	 with	 independence	 of	 image	 processing	

techniques.	
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