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Abstract—The losses of realistic litz wires are characterized
while explicitly accounting for their construction, using a proce-
dure that computes the current-driven and magnetic-field–driven
copper losses using fast numerical simulations. We present a
case study that examines loss variation in one- and two-level litz
wires as a function of twisting pitch, over a wide range of values
and in small increments. Experimental confirmation is presented
for predictions made by numerical simulations. Results confirm
the capability and efficiency of numerical methods to provide
valuable insights into the realistic construction of litz wire.

I. INTRODUCTION

The efficiency of high-frequency power magnetic compo-

nents can often be improved by the use of litz wire, which

is constructed from small insulated strands, woven or twisted

to distribute the current density over the entire cross-sectional

area of the wire, as shown in Fig. 1.

The decision to use litz wire over equivalent solid wire

comes down to the tradeoff between the loss reductions offered

and the associated increase in costs [1]. A significant portion

of the cost of litz wire come from its construction, but even

simply twisted strands may provide satisfactory efficiency

benefits. In fact, it was shown that even twisted strands of

uninsulated copper can provide significant loss reductions over

solid wire [2].

The primary challenge in optimizing litz wire construction,

however, stems from the difficulty in quantifying the achiev-

able loss reductions. Experimental characterization procedures,

like those described in [3], require intricate test equipment,

as well as many litz wire samples to be manufactured and

prepared over a meaningful range of construction parameters.

On the other hand, general-purpose three-dimensional numer-

ical simulations can often be very computationally expensive,

requiring the use of “high-throughput computing [with] dis-

tributed computer resources” [4]. For these reasons, existing

litz wire optimizations have largely focused on balancing the

number of strands, assuming ideal litz wire construction that

successfully equalizes the current through each strand [1], [5],

[6].

In this paper, we describe a computational procedure to

characterize the losses in realistic litz wire constructions, with

the aid of a fast numerical simulation tool recently presented

Figure 1: The circular litz wire construction recursively twists

strands of wire into bundles, and bundles of wire into larger

bundles, resulting in a pattern that allows each strand to

traverse all radial and azimuthal positions in the wire cross-

section.

in [7]. Existing theory, which lies at the heart of prior litz

wire optimizations, computes copper losses as the sum of two

loss components, one driven by the net current flow, and the

other driven by the external magnetic field [8]. We extend this

approach by simulating both loss mechanisms numerically,

for realistic models of litz wire that include the underlying

construction details. Exploiting the high speed of the proce-

dure, we swept the pitches of the wires over a large range of

values, revealing a number of insights in the construction of

the wire. The predictions of the characterization are confirmed

with experimental measurements.

II. BACKGROUND

A. Copper loss theory

Within the field of power electronics, it is common to

refer to high-frequency conductor losses as consisting of two

approximately orthogonal components, respectively due to the



skin effect and the proximity effect [8], as in,

Ptot(f) = Pskin(f) + Pprox(f). (1)

The former term is generally reserved for the eddy losses

that are self-induced. The latter term generally refers to the

eddy losses induced by external magnetic fields, for example

the stray magnetic fields from nearby turns, or from the

magnetic core. Both terms include eddy currents that circulate

within strands and eddy currents that circulate among different

strands. By this description, we can write the components as

ultimately driven respectively by the net current magnitude I ,

and the external magnetic field magnitude |H|, as in,

Pskin(f) = F (f)I2Rdc, Pprox(f) = G(f)|H|2, (2)

where F and G are important wire parameters that fully de-

scribe the frequency dependence of the wire material, defined

over a unit length and for either rms or peak values of I and

H . This simple equation is the basic building block for copper

loss equations in all kinds of devices constructed from wound

conductors. The interested reader is referred to [8]–[10] for

details on its derivation and application.

The two geometry factors, F and G, are important pa-

rameters that characterize a particular wire material and con-

struction. The F factor is a unit-less quantity also known as

Rac/Rdc, the a.c. / d.c. resistance ratio. It measures the fre-

quency dependence of the resistance in a single isolated wire—

in a very large loop, or in the theoretical limit, stretching from

infinity to infinity. The G factor is a magnetic diffusion loss

term, with units of watts per A/m squared per unit length,

and measures the losses induced in the wire material when it

is exposed to a unit, uniform magnetic field excitation in a

transverse direction.

Exact solutions for F in single-stranded round wire are

well-known, and also for G if it is assumed that the external

magnetic field is transverse, homogenous and uniform over

the wire [8], [11]. These solutions lead to approximate closed-

form expressions for F and G in bundled, multi-stranded wire

like litz wire, by assuming that each strand carries the same

current distribution within the bundle. If the wires are wound

into a winding, perhaps within the window of a magnetic core,

then the entire winding cross-section can be considered as

a region of uniform current density, and similar closed-form

expressions can be derived [5], [9].

The closed-form solutions have provided power electronics

designers with valuable insight into the underlying physics

of copper loss, and have also been extensively used in op-

timization for picking the right wire for each application.

However, very little is revealed on how the wire should

be twisted to achieve the constant current density that had

simply been assumed during the derivation of these equations.

Moreover, where a litz wire specimen deviates from ideal

construction—by mistake or by design—these equations lose

a lot of their predictive power, and the designer must fall back

on experimental techniques.

(a) (b)

Figure 2: The filament discretization in the Partial Element

Equivalent Circuit method. Discretization parameter of (a) 3;

and (b) 10.

B. Fast numerical simulations

Numerical simulations can overcome many of the deficien-

cies in analytical equations, and be used to analyze the impact

of non-ideal construction. However, this comes at a cost of

significantly increased computation, and care must be taken

to chose the most computationally efficient numerical method

for the problem at hand.

The simulations in this paper were performed using the

tool presented in [7], based upon an integral formulation

of Maxwell’s equations often known as the Partial Element

Equivalent Circuit (PEEC) method [12], [13]. In essence,

the PEEC method maps the electromagnetic problem into an

equivalent circuit problem, by subdividing the conductive vol-

ume of an electromagnetic problem along its length and cross-

section into current-carrying filaments, as shown in Fig. 2, and

allowing the filaments to interact through self- and mutual-

inductances [12], [14]. The method has found extensive use

in the analysis of microelectronics and interconnects [13], [15].

Our PEEC implementation is similar to FastHenry [13], but

with a number of optimizations in speed and accuracy specific

to wire-based problems and magnetic field excitations [7].

The PEEC method derives its computation efficiency by

restricting volumetric meshing only to the current-carrying

conductive material, while implicitly accounting for the pres-

ence of the surrounding free-space. This typically results in 10-

100 times reduction in the number of unknowns to be solved

(e.g., see a comparison in [16]). The method is particularly

efficient for power applications, because conductors, such as

the individual strands in a bundle of litz wire, are usually

carefully sized to be on the same order of magnitude as the

skin depth. Restricting analysis frequencies to only those with

reasonable copper loss allows us to use a relatively coarse

mesh in the conductor without sacrificing accuracy.

We illustrate the accuracy and speed of the method for

litz wire by benchmarking the simulation accuracy and timing

against the fineness of the conductor meshing. The benchmark

problem is to predict the F factor of a single-strand of AWG

38 wire, which has a well-known exact solution [11]. The
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Figure 3: (a) F factor absolute error and (b) normalized

simulation times for various levels of discretization. Note that

since F ≈ 1, its absolute error is in the same order of

magnitude as the relative error. The simulation is for a single-

strand of AWG 38 wire. The strand radius matches its skin

depth at 1.75 MHz.

wire has a diameter of 0.101 mm and the skin depth matches

the wire radius at 1.75 MHz. Lengthwise, the wire is divided

into at least 20 segments for straight sections, and at least

12 segments per pitch length for curved sections. The cross-

sectional meshes are illustrated in Fig. 2, where the grid

is generated using a quadratic rule, and the “discretization

parameter” is defined to be the number of elements along

the radius of the circular cross-section, including the center

element. Rectangular, brick-shaped elements were used in

order to maximize computation speed [7]. Three computer

platforms were tested, a dual-core 2.1 GHz laptop, a quad-core

2.5 GHz desktop workstation, and a dual-processor, 32-core 3

GHz computation server.

As shown in Fig. 3, the prediction error decreases logarith-

mically with fineness of discretization, but the simulation time

also increases logarithmically. If an accurate prediction were

desired at 100 MHz, or even 10 MHz, then the computation

burden is quite considerable. However, a litz wire bundle

constructed from AWG 38 wire is recommended for only 50

kHz - 100 kHz [17], and even then, only for low-cost, high-loss

designs within this frequency range according to optimization

techniques such as [1], [5]. Restricting the frequency sweep to

1 MHz, even a discretization level of 2, with just five elements

per cross-section, is adequate to achieve a prediction error

below 0.1%. Reducing discretization from 7 to 2 results in a

50-100 times speedup in all three tested platforms in Fig. 3b.

To put this into perspective, solving the benchmark problem

discretized to level 2 on the dual-core laptop was 4-5 times

faster than solving the same problem discretized to level 7

on the 32-core computation server. To balance the trade-off

between speed and accuracy, all remaining computations in

this paper were performed with the discretization level set to

3.

III. NUMERICAL CHARACTERIZATION PROCEDURE

In this paper, we aim to complement—rather than to

replace—the copper loss theory in Section II-A, by computing

the F and G factors numerically for litz wire of realistic

constructions. The objective is to allow existing design rules

and optimization routines based on (2) for round, solid con-

ductors (and/or the idealized litz wire) to be extended to

include realistic litz wire without significant modifications.

Furthermore, if a range of F and G factors are computed

for many different constructions of litz wire, then the litz wire

construction may be included in the optimization and design

as an additional degree of freedom.

To limit the scope of this paper, we will focus our attention

on litz wire with circular cross-sections. We note that the

techniques presented are broadly applicable litz wire of all

constructions; for example, litz wire with square cross-sections

were analyzed and experimentally confirmed in [7].

A. Litz wire construction and modeling

Round litz wires are wound by recursively twisting bundles

of strands together in multiple levels. At the lowest, innermost

level are a small number of thin strands, which are twisted

such that the path of each strand traces a helix. The axial

distance traveled for one full rotation is known as the helical

pitch of the twist. The twisting is then repeated recursively on

the bundles to form a multilevel-level twisted wire structure,

as previously shown in Fig. 1.

It is easy to see that the multilevel helical structure fits

the definition of a litz wire, because each strand of wire at

the lowest level is allowed to occupy all radial and azimuthal

positions in the overall bundle. Consequently, every strand is

forced to carry the same amount of current, and the constant-

current density objective is achieved over the bundle. Note



(a) (b)

Figure 4: Five strands of AWG 38 wire twisted into: (a) 2

twists / cm; (b) 10 twists / cm. The strand insulation is hidden.

that the simply twisted wire with one level of twisting admits

azimuthal, but not radial transposition, so would not meet a

strict definition of true litz wire.

The mathematical model for the construction described

above begins with a set of n evenly-spaced helical paths,

whose center axis traces the path for the overall wire bundle.

These paths can be converted into solid conductors by tracing

a circular cross-section along their lengths. Alternatively, each

helical path can be taken as the center axis for a smaller set

of m helical paths, resulting in a two-level, n×m helical con-

struction. At each individual level, all n paths share the same

helical radius R and pitch P , which are interdependent if we

assume that the wires are packed together with their insulation

touching. Using trigonometry and multivariate calculus, it can

be shown that the distance between neighboring helical paths

is

D =
√

2R2 − 2R2 cosψ + P 2(ψ − φ)2, (3)

where ψ is the minimized helical phase difference, given as

the solution to

R2 sinψ + P 2(ψ − φ) = 0, (4)

with φ = 2π/n. The distance, D, will be minimized until

the neighboring strands or bundles touch. This means that

for a one-level bundle, D is set to the diameter of the

constituent strands plus insulation, and for a specified pitch

P , the value for R is found by solving (3). Similarly, for

a multilevel bundle, D is set to the diameter of the bundle

one level below, and R is found accordingly. Implementing

this relationship between D and P allows the wire pitch to

be set arbitrarily while maintaining tight contact between all

neighboring strands.

B. Characterization

For brevity, we present a relatively high level discussion in

this section, while bearing in mind that the electromagnetic

problem has already been mapped to an equivalent circuit

problem using the Partial Element Equivalent Circuit method.

The reader is referred to [7], [12], [13] for implementation

details. The full program and source code may be found at

[18].

We begin with a straight segment model of the wire, with a

length given by its real-life application; examples are shown

in Fig. 4. In effect, this assumes that the current return path

is at infinity, as if the segment of wire were a part of a

larger loop of wire stretching from infinity to infinity. This

simulation is faster to perform than one where a finite return

path is explicitly modeled, and we have found it to give largely

identical results.

The F factor, or the a.c. / d.c. ratio, is computed using

standard impedance extraction techniques [13], [14]. First,

the frequency-dependent resistance is obtained by placing a

sinusoidal voltage across the segment within the equivalent

circuit, and the net current flow is computed. Dividing through

by the d.c. resistance yields the F factor.

The G factor, or the proximity effect factor, is obtained by

exposing the segment model to a time-varying magnetic field

over its volume, with its peak magnitude normalized to 1 A/m.

By Faraday’s law, this induces a voltage around each loop of

current,

Vloop =
µ0

l

ˆ

S

H · n̂dA, (5)

where l is the length of the loop, S is the area of the loop, and

n̂ is the normal vector. If mesh analysis is used to solve the

equivalent circuit, then we may iterate over each mesh loop

and compute its induced voltage. The current distribution is

computed by solving the equivalent circuit problem, and the

power loss is computed by summing i2R over each resistor.

The G factor is then given as the total loss, divided by the

length of the conductor.

IV. CASE STUDY

In this section, we provide a concrete case study, based

on the procedures described above, in order to illustrate

the capability of method, and to reveal some insights into

the construction of litz wire. As previously summarized, the

design degrees of freedom for the twisted, helical construction

of litz wire are:

1) Strand diameter and insulation thickness,

2) Number of strands or bundles at each level, and

3) Helical pitch at each level, which may be either clock-

wise or counter-clockwise.

Due to space constraints, we focus our analysis on the third

degree of freedom, which is the helical pitch. As there already

exists a large body of literature on the optimization for the

first degree of freedom, we fix our analysis below to AWG 38

gauge magnetic wire, with diameters of 101 µm and insulation

thicknesses of around 15 µm. The number of strands at each

level is set to 5, and the length of the wire segment to 2 cm.

A. One-Level Sweeps

We begin with one level of twisting. Figure 5 shows a

sweep of the total resistance and the F factor, with respect

to frequency and the number of twists in the wire segment. It

is immediately apparent that increasing the number of twists

increases the d.c. resistance, thereby offsetting the benefits
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Figure 5: Five-stranded twisted wire: (a) Resistance; (b) F
factor. Frequency from 10 kHz to 10 MHz. Number of twists

from 0.25 to 10, in steps of 0.25 and 0.5.

in the improvements of the F factor. As discussed in Sec-

tion II-A, a one-level construction does not benefit from radial

transposition, and so in isolation, its losses do not significantly

decrease with increasing number of twists.

However, twisting mitigates proximity effect loss, as shown

in Fig. 6. At 10 kHz, this reduction is a dramatic 90% when

compared to the untwisted wire, but the benefits erode away

with increasing frequency. These results are explained by

noting that when a multi-stranded wire is placed in a magnetic

field, two modes of eddy current flow are induced:

• The inter-strand eddies that circulate from strand to

strand, which dominate loss at lower frequencies; and

• The intra-strand eddies that circulate within the body of

each strand, which dominate at higher frequencies.
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Figure 6: Five-stranded twisted wire proximity effect G factor:

(a) Surface plot; (b) Normalized to the minimum at each

frequency. Frequency from 10 kHz to 100 MHz. Number of

twists from 0.1 to 10, in steps of 0.1.

The azimuthal transposition afforded by a twisting construc-

tion allows the flux linkages associated with the inter-strand

eddies to interact, and to perfectly cancel when there is an

integer number of twists in the magnetic field. This leaves

only the much smaller, intra-strand eddy currents to incur

loss. However, the strategy becomes ineffective when the

intra-strand eddies begin to dominate, particularly at higher

frequencies. In these cases, losses are mitigated by minimizing

the amount of conductor exposed transverse to the magnetic

field.

B. Two-level twisted five-strands

We then consider the two-level, 5 × 5 structure with 25

strands. Here, the definition of the inner pitch demands par-

ticular attention, given it could be either:
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Figure 7: Two-level litz wire F factor sweep over inner level

and outer level pitch, in steps of 0.2 twists: (a) f = 100 kHz;

(b) f = 10 MHz.

1) The initial pitch before the twisting, defined using the

second level as reference frame; or

2) The final pitch after the second level is constructed,

defined relative to the global coordinates.

The figure labels take on the second definition, although both

definitions will play a role in the discussion below. Addi-

tionally, we denote counter-clockwise number twists with a

positive number, and clockwise twists with a negative number.

Figure 7 shows a sweep in the F factor at two frequencies,

100 kHz and 10 MHz. For each constituent inner level bundle,

the external magnetic field it experiences is due to neighboring

bundles. This external magnetic field flows normal to the

helical path of the outer level. Consequently, high losses occur
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Figure 8: Two-level litz wire G factor sweep over inner level

and outer level pitch, in steps of 0.2 twists: (a) f = 100
kHz; (b) f = 10 MHz. The z-axis is normalized against the

minimum value of G over all sweeps for that frequency.

where the inner level has zero twists relative to the outer

level, corresponding to definition 1 from above. This forms a

diagonal along definition 2, where inner pitch is equal to outer

pitch. Effectively, these wires behave like one-level, 25-strand

wires, rather than two-level, 5 × 5 wires. The main diagonal

is accompanied by troughs, spaced integer number of twists

away in either direction. These are cases where the inner level

has an integer number of twists relative to the outer level, such

that the internal proximity effects are minimized.

Figure 8 shows the same sweep for the G factor. With

the external magnetic fields now uniform along the global



coordinates, corresponding to definition. The high loss lines

of zero twist now occur along the axes, relative to the global

coordinates. Again, an integer number of twists gives the

lowest loss at 100 kHz, mitigating proximity losses by a factor

of up to 60. This trend is largely reversed at high frequencies

due to the same reasons as in the one-level case.

C. Summary

The twisting construction at each level mitigates that bun-

dle’s losses due to external magnetic fields, without signif-

icantly affecting losses from conduction within the bundle.

This result yields two simple design guidelines for the choice

of pitch length in a multi-level litz wire:

• An integer number of twists optimally minimizes prox-

imity effect loss. Avoid using less than 1 twist of wire.

• For multilevel constructions, the proximity-effect mag-

netic fields originate from both within the litz wire as well

as outside. Consequently, to minimize F in the two-level

construction, the inner level should have integer twists

relative to the outer level, and to minimize G, both levels

should have integer twists relative to the global axis.

It becomes clear that the same underlying rule govern loss

minimization in all cases, albeit in different coordinate sys-

tems, against magnetic fields flowing in different directions.

The overall losses are much higher than tolerable for > 1
MHz. While these results are included to illustrate conformity

to theory, they are largely ignored for the purposes of litz wire

design.

V. EXPERIMENTAL VALIDATION

In order to confirm that the simulation predictions conform

to reality, we constructed a number of litz wires, of various

strand wire gauges, pitch, number of strands, and number of

levels. During this stage, it was discovered that the helical

model in Section III-A is structurally unsound for more

than three strands, and will tend to collapse into hexagonal

packing under tension. Consequently, in order to ensure that

the computational model matches the experimental specimen,

a three-stranded litz wire construction was chosen.

First, a 66 cm long, three-stranded twisted bundle with a

helical pitch of 1 ± 0.05 cm was constructed from AWG 32

wires, which have diameters of 202 µm, and insulation around

30 µm. This bundle was then twisted into a 19 cm long, 3×3

litz wire, with helical pitch set to 1± 0.04 cm in the opposite

direction. The latter construction is shown with its computation

model in Fig. 9. Terminal impedances were measured using

an Agilent 4192A low-frequency impedance analyzer, with

the wires laid in a zig-zag, serpentine fashion to minimize

inductance and proximity effect loss. A resonant peaking

characteristic was observed in both sets of measurements;

60 pF of parallel capacitance was estimated by least-squares

fitting over a large set of data and removed accordingly. The

analytical predictions were made using equation (5) from [10].

Both the numerical and the analytical methods produced

excellent fits to measurements for the three stranded bundle

(a)

(b)

Figure 9: To-scale comparison of the computational model and

the actual litz wire tested.

in Fig. 10a, particularly around the knee frequency of 100-

300 kHz, which is the range of most practical interest for the

designer. The numerical simulation accuracy degrades beyond

this range. This is an expected result with the use of a coarse

mesh in the conductor, following the discussion in Section

II-B.

Results for the 3 × 3 wire are shown in Fig. 10b. The

analytical solution significantly under-predicts the resistance

of the wire, because it assumes an ideal litz construction,

where the current density is perfectly identical within each

strand. The numerical solution fits better in comparison, by

avoiding this assumption and explicitly modeling the non-

ideal wire construction. None-the-less, the fit is poorer than

before. From Fig. 9, we see that the experimental specimen

contains defects in its fabrication. In particular, the inner level

was partially unwound, in an uncontrolled manner, by the

twisting of the outer level. The physical differences between

the computational model and the experimental wire sample

may explain the discrepancy between the predictions and the

measurements.

VI. CONCLUSIONS & FUTURE WORK

A characterization procedure is presented for the skin and

proximity effect losses of realistic litz wire, based on a fast
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Figure 10: Measured vs predicted resistances for (a) a single

strand of 3 × AWG 32 gauge wire, and (b) a two-level litz

wire constructed from 3×3× AWG 32 gauge wire. Measured

resistances obtained by removing contributions by 60 pF of

parallel capacitance from ℜ{Z}. Analytical solution taken

from [10].

numerical simulation tool. To the best of our knowledge, this

is the first systematic effort to characterize these loss mecha-

nisms in non-ideal litz wire using a computational method.

The procedure can be swept over a range of construction

parameters, allowing optimization of the wire construction

to be performed. The procedure is applied to a circular litz

wire construction, and the predictions made are experimentally

validated.

The experiences described in this paper confirm the ca-

pability of numerical methods to provide valuable insights

into the construction of litz wire, and evidence for their

computational efficiency. However, the efficacy and predictive

ability of the approach is also closely tied to the faithfulness of

the computational model itself. Therefore, a natural extension

to this work is to adapt numerical methods to increase the

modeling accuracy of litz wire.

The full program and source code may be found at [18].
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