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Using a ‘Particle-In-Cell’ approach taken from plasma physics we have developed a new three-

dimensional (3D) parallel computer code that today yields the highest possible accuracy of ion

trajectory calculations in electromagnetic fields. This approach incorporates coulombic ion–ion and

ion–image charge interactions into the calculation. The accuracy is achieved through the imple-

mentation of an improved algorithm (the so-called Boris algorithm) that mathematically eliminates

cyclotron motion in a magnetic field from digital equations for ion motion dynamics. It facilitates the

calculation of the cyclotron motion without numerical errors. At every time-step in the simulation the

electric potential inside the cell is calculated by direct solution of Poisson’s equation. Calculations are

performed on a computational grid with up to 128T 128T 128 nodes using a fast Fourier transform

algorithm. The ion populations in these simulations ranged from 1000 up to 1 000 000 ions. A

maximum of 3 000 000 time-steps were employed in the ion trajectory calculations. This corresponds

to an experimental detection time-scale of seconds. In addition to the ion trajectories integral

time-domain signals and mass spectra were calculated. The phenomena observed include phase

locking of particular m/z ions (high-resolution regime) inside larger ion clouds. A focus was placed

on behavior of a cloud of ions of a single m/z value to understand the nature of Fourier transform ion

cyclotron resonance (FTICR) resolution and mass accuracy in selected ion mode detection. The

behavior of two and three ion clouds of different but close m/z was investigated as well. Peak

coalescence effects were observed in both cases. Very complicated ion cloud dynamics in the case of

three ion clouds was demonstrated. It was found that magnetic field does not influence phase locking

for a cloud of ions of a single m/z. The ion cloud evolution time-scale is inversely proportional to

magnetic field. The number of ions needed for peak coalescence depends quadratically on the

magnetic field. Copyright # 2007 John Wiley & Sons, Ltd.
The leading role Fourier transform ion cyclotron resonance

mass spectrometry (FTICR-MS) plays in biological mass

spectrometry is directly related to its unsurpassed resolution

and mass accuracy combined with the possibility of utilizing

all known ionization and fragmentation methods. Further

improvement of mass accuracy will be greatly facilitated by a

more detailed understanding of the motion of ions during

ion introduction into the FTICR cell, excitation of their

cyclotron motion, fragmentation and detection of induced

signal. Starting from the early days of FTICR-MS the theory

of ion motion in the ICR cell was an important research topic

in this field. The dynamics of single particles inside the

FTICR trap was analyzed by many groups in both the FTICR

and physics communities.1–8 The FTICR community has
ndence to: E. N. Nikolaev, The Institute for Energy
of Chemical Physics, Russian Academy of Sciences,
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been interested mainly in obtaining a calibration formula,

which connects measured frequency with ion mass.9

The early studies investigated the effects of various

external fields and ion–neutral collisions on single particle

trajectories.10–16 The availability of the SIMION program17

simplified the task of understanding different aspects of

single ion motion in cells of arbitrary geometry. This

PC-based ion trajectory program is able to show single ion

trajectories in different kinds of ICR cells with relatively high

accuracy. The simulated time-scales are comparable with the

time-scales of typical FTICR experiments. Because of the lack

of appropriate ion–ion interaction routines SIMION fails in

the study of the influence of coulombic interaction and image

charge on ion motion. FTICR-MS generally deals with ion

clouds containing at least hundreds of ions rather than single
Copyright # 2007 John Wiley & Sons, Ltd.
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particles. As a result the trajectory obtained from single ion

simulations does not provide a realistic insight into the ion

trajectories in the presence of other ions. In accurate mass

measurements using ion traps single ions of differentm/z are

introduced into the cell consecutively. Even these precau-

tions are not enough to avoid fully the ion–ion interaction

problem since ion–image charge interaction still exists and

causes the diocotrona motion18 thus disturbing cyclotron

motion frequency. This effect introduces mass errors of the

order of 10�8 to 10�9 crucial to absolute mass measure-

ments.19 The relative measurement errors of the order of 10�7

limit more practical FTICR experiments. At this level of

accuracy ion–ion and ion–image charge interactions play a

crucial role with just hundreds of ions trapped in the cell. No

analytical solutions exist to date to evaluate these mass

measurement errors. Several groups have analyzed the ion

motion using different approximations to calculate the

electric field in the cell and treat ion–ion interaction and a

number of models have been proposed3,10,20–23 to evaluate

cyclotron frequency shifts induced by space charge. They are

based on determining an average radial force arising from

static charge distribution of the ion cloud during detection.

Nikolaev’s group24,25 developed a two-dimensional (2D)

model for an infinitely long cylindrical cell. Thismodel yields

an analytical expression for frequency shifts caused by

ion–ion and ion–image charge interactions in a single ion

approximation. This simple model predicts correctly the

magnitude of the experimentally observed frequency shifts

when the ion number density is low and cyclotron frequen-

cies of different species differ significantly. It also provides a

simple approach to the treatment of ICR signal harmonics.26

Few simulations have been published on large populations

of coulombically interacting particles in ICR mass spec-

trometers. The role of ion–ion interaction and image charge

was first described by Talroze and Nikolaev19 in connection

with mass difference measurements of the 3He/T doublet.27

Later on, Peurrrung et al.28 developed a charge plasma

approach to tackle the problem and analyzed cases of high

charge density ion clouds. Simple 2D simulation programs

have been used by different groups to investigate various

phenomena related to coulombic interactions in

FTICR.3,4,29–31 The first attempt to implement coulombic

interaction in realistic three-dimensional (3D) calculations of

simulations involving a relatively small number of interact-

ing particles was undertaken by the groups of Inoue and

Nikolaev. They developed a 3D parallel code to integrate the

equations of motion of up to 1024 interacting particles for

50 000 time-steps.32,33 They used a parallel processing

approach implemented on a supercomputer with up to

1024 processors to calculate the time and space evolution of a

single m/z ion cloud. These simulations took into account

ion–ion interaction but neglected image charge effects. They

determined the form of an ICR peak and mass error as a

function of initial conditions such as ion cloud shape and the

number of ions in the cloud. A different approach to this

problem was used by Dale Mitchell, who applied a 3D many

particles simulator using a particle-in-cell algorithm devel-
aThe motion in the magnetic field caused by image charge
attraction force.

Copyright # 2007 John Wiley & Sons, Ltd.
oped in plasma physics. He applied this approach to the

problem of cyclotron frequency locking (peak coalescence) of

two closely spaced masses under high space charge

conditions.1,2,4,34–37 His calculations were initially performed

in 2D Cartesian and cylindrical confinement geometries

utilizing the Monte Carlo algorithm to treat ion–neutral

collisions.5,38–40 As was shown by Mitchell, at low magnetic

field, high number density, or closely spaced cyclotron

frequency separation, the ion motion dynamics becomes

considerably more complicated than just a frequency shift.

Later on6 he carried out a more realistic 3D many particles

simulation of trapped ion clouds incorporating space charge

effects (coulombic and image charge interactions) for a

sufficiently large ion population. All major aspects of the

experiment including trap boundary, applied potentials,

magnetic field, and neutral bath gas were included in this

model. He calculated the evolution of the shape of two

coulombically interacting ion clouds during the detection

period as a function of the number of ions in the cloud. This

approach permits the incorporation of coulombic ion–ion

and ion–image charge interactions for an experimentally

realistic number of ions in the cell. The goal of the present

paper is to extend this particle-in-cell approach to allow for

the simulation of many particles dynamics inside the FTICR

cell on the basis of improved computational algorithms and

using the most powerful computers available at this time.

The present work describes a new implementation of a 3D

particle-in-cell code. The code can model a complete FTICR

experiment with up to 106 coulombically interacting ions in

the ICR cell for 3 000 000 time-steps. This new code allows for

the simulation of almost any practical FTICR sequence and

experimental conditions. In addition it can easily be

extended to model other types of devices relevant to modern

high-performance mass spectrometric studies.
METHOD

In Fourier transform ion cyclotron resonance mass spec-

trometry (FTICR-MS) a strong magnetic field parallel to the

symmetry axis of an ICR trap (Penning trap) confines the ions

radially.41–45 Trapping potentials applied to trapping

electrodes of the cell46–49 simultaneously confine the ions

in a direction parallel to the magnetic field.

A typical sequence of an FTICR-MS measurement consists

of successive steps of ion accumulation in the ICR trap,

damping ion axial motion, excitation of the cyclotronmotion,

and signal detection by measuring the oscillating image

charge induced on the detection plates. A radio-frequency

(RF) voltage applied to a set of excitation plates (positioned

parallel to the magnetic field and creating an RF electric field

perpendicular to the magnetic field) excites the cyclotron

mode during the excitation period. The image charge

induced on an additional set of trap electrodes is detected

as a decaying time-dependent signal during the detection

period. A Fourier transform of this time-domain signal yields

the cyclotron frequency spectrum containing the cyclotron

frequency of the ions.

When an ensemble of particles is stored in the ICR cell,

every particle experiences the Lorentz force caused by the

magnetic field and trapping electric fields as well as
Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546
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Figure 1. Weighting algorithm principle. The ion density

distribution is determined at every node of the computational

mesh by interpolating the charge at a particle position to the

charge density at grid points. The same scheme is used to

interpolate electric field at grid points to particle positions.
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coulombic forces resulting from the presence of the other

ions in the cell and from the image charges induced in the cell

electrodes by the ions present inside the cell. In principle it is

possible to calculate exactly the total coulombic force acting

on every individual particle using the Green functionb

approach. This method for direct force calculation is called

the particle-particle method. Analytical expressions for the

Green functions are known for simple cubic or cylindrical

trap geometries. Unfortunately, the time needed to calculate

the total force acting on every particle in the ensemble is too

long for a reasonable number of particles in the cloud even

for the most powerful computers. This is a direct result of the

fact that even for these simple geometries these functions are

represented by a series with an infinite number of terms.

Hence, this approach is not practical at the current level of

computer development. A truncated particle-particle algor-

ithm, in which the influence of image charge is neglected,

could be used without any computational problems to

calculate ion dynamics in clouds positioned far from the cell

electrodes. The other approach which could be used in the

particle-particle method is the principle of reciprocity,50,51

applied to ICR by Dunbar52 and Grosshans.53 It avoids the

Green function by computing the potential at a point in the

cell produced by the surrounding electrodes, and then

obtains the charge induced in detector electrodes by

reciprocity—that does not include ion–ion interactions,

but converges in a few hundred terms.

The particle-in-cell (or particle-in-mesh) algorithms devel-

oped in plasma physics seem to be the most adequate

solution to the problem. Classical electrodynamics dictates

that to find the force, FðriÞ ¼ �qigrad’ðriÞ, acting on indivi-

dual ion i at position ri from the other ions and trap electrodes

we should solve the Poisson equation, D’ ¼ �r="0. Here, the

charge density r is determined by the distribution of ions

inside the cell for the field potential w with Dirichlet boun-

dary conditions (fixed potentials on the trap electrodes). By

solving the Poisson equation we are accounting for image

charge as well. To establish the charge density r at any arbi-

trary point inside the trap we should specify the physically

small volume v, calculate the number of ions n inside this

volume, and divide n by v: r¼ n/v. In the particle-in-cell

method the whole space where the Poisson equation should

be solved is subdivided into small cubic volumes v on a

regular mesh with equidistant nodes and r is determined at

every node of the mesh by a spatial interpolation algorithm.

Particle-in-cell algorithm
The particle-in-cell (PIC) algorithm38–40 consists of numerous

consecutive time-steps. At each time-step the field is

calculated in the whole volume of interest and ion cloud

motion in this field is simulated. In the PIC algorithm the

whole space where the ion dynamics is investigated is

subdivided into a number of equal volume cubic cells

forming a regular 3D mesh. The charge of every individual

particle is interpolated from the particle’s position inside the

cell onto the discrete grid points on the computational mesh
bThe Green function G(r,R) is a potential induced at some point r
of the space inside the trap by a singly charged ion positioned
inside the trap at point R.

Copyright # 2007 John Wiley & Sons, Ltd.
by using a 3D weighting algorithm. This weighting

algorithm used volume weighting in most of the calculations

reported in this paper (see Fig. 1 and Appendix 1). In the

simplest mode of this algorithm the ion density distribution

is determined at every node of the mesh by dividing the total

charge extrapolated to this particular node by the volume of

the elementary cube of the mesh. Using a direct fast Fourier

transform (FFT) Poisson solver with the trap boundary

conditions, corresponding to the direct current (DC) and RF

potentials on the trap electrodes, this charge density on the

grid points was converted into potentials at these points and

electric fields from the spatial derivatives of the potentials.

The electric field at an individual ion’s position is calculated

by interpolation of the electric fields from the nearest grid

points using the same weighting algorithms as used for

charge projection to the grid points. The mathematical

description of the whole procedure of solving the Poisson

equation by the FFT method is described in Appendix 2.

The particle positions and velocities of the next time-step

are calculated using the Boris integrator38,54 (see Appendix 3).

The integrator algorithm permits the separation of the ion

motion into motion in pure electric and pure magnetic fields,

and so calculates the motion in the magnetic field during

each time-step thus analytically avoiding any computational

errors in these calculations. Ion–neutral collisions are

implemented by the Monte Carlo method using an elastic

hard sphere and Langevin approximation (see Appendix 4).

(In many of the calculations for which results are presented

in this paper, ion–neutral collisions were not used.) The

calculation procedure is repeated for the predetermined

number of time-steps. The image charge on the trap

electrodes is calculated by integration of the charge on the

internal surfaces of the detection electrodes, the density of

which is proportional to the normal component of the electric

field on the surface. The detected ICR signal is subsequently

determined as the first-order derivative of the total charge on

one of the detecting electrodes.
Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546
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Figure 2. The evolution of an ion cloud of single mass (m/z

100.0) ions started from a randomly filled elongated cylinder.

Helium was used as a collisional gas at a pressure of

1.5mTorr. One can see that the axial relaxation is an order

of magnitude faster than the radial spreading of the cloud.

3530 E. N. Nikolaev et al.
The model
In our current model we used a cell of cubic geometry with

dimensions 1� 1� 1 inch. This geometry simplifies and

accelerates significantly the field calculation by the Poisson

solver as it permits usage of an FFT algorithm to calculate the

field. DC voltages are continuously applied to the trapping

electrodes (þ1V to both) and the RF is applied to the

excitation electrodes during the excitation period only. The

detection electrodes stay grounded at all times.

The choice of the cell size
In the particle-in-cell (PIC) method the interaction between

two ions is in fact substituted by the interaction of one of the

ions with eight charges on the mesh nodes nearest to the

second ion. The accuracy of this representation is greater as

the distance between the two ions becomes larger. As a

result, the method becomes more accurate if the ion density

(the number of ions per cell) or themesh cell size is decreased

(see Appendix 5). Decreasing the cell size and increasing the

number of mesh nodes is computationally costly because the

number of operations is proportional to the number of nodes,

which increases cubically with reversed cell linear size. We

used two types ofmeshwith 64� 64� 64 and 128� 128� 128

nodes, respectively. For the latter case this corresponds to an

average of one ion per cell for 106 ions.
Figure 3. Snapshots in xy (left) and zy (right) view just after

the excitation period. Z-elongated m/z 100.0 ion cloud was

excited by applying pure sine RF voltage for 70ms

(Vpp¼ 10V). Inhomogeneity of the cubic trap excitation field

results in the rainbow-shaped ion cloud.
RESULTS

Single m/z ion cloud
It is known from experiments that the initial distribution of

the ion cloud prior to excitation plays a crucial role in the

formation of the ion cloud during excitation and its

subsequent behavior. In an experiment it depends strongly

on the ion accumulation method used and the relaxation

period prior to excitation and detection. In the simple case

where ion formation is realized inside the ICR trap by

electron impact or photoionization with beams centered in

the trap, ions are created on the axis with random

distribution along the trap (assuming that the ionization

time is much longer than the ion axial oscillation period). If

we introduce a time delay between the ionization and

excitation events, ions will lose their oscillatory kinetic

energy in collisions with neutrals. Their spatial distribution

along the z-axis narrows and the dimension of the cloud in

the radial direction increases.

For externally formed ions there are at least two trapping

modes in use. In one of these modes ions are accumulated in

an intermediate multipole trap and subsequently ejected into

the ICR cell, where they are trapped. In the other mode

semi-continuous gas-assisted trapping is used. In this paper

we have not analyzed processes in the ion cloud during ion

formation in the cell or ion introduction into the cell.We have

investigated the initial spatial distribution and changed it

from compact cylindrical to elongated cylindrical and

elliptical shapes with different aspect ratios (from a coin-like

form to a rod-like form). Owing to the relaxation period

between ion introduction and the excitation event in all

FTICR-MS experiments, we have chosen to employ a

constant ion density (at the beginning) and a spatial

distribution arising as a result of the collisional relaxation
Copyright # 2007 John Wiley & Sons, Ltd.
of the initial distributions of different aspect ratios. Initial

velocity distributions are always Maxwellian distributions.

In the cases where no collision gas is used for ion relaxation

we introduced a time lag between initial ion distribution

formation and the start of the RF-excitation for the ion cloud

to relax by ion–ion collisions. The evolution of the ion cloud

from a randomly filled elongated cylinder was simulated and

results are presented in Fig. 2. Helium was used as a

collisional gas at a pressure of 1.5mTorr. Unreasonably high

helium gas pressure was used to observe the effect of

ion–neutral collisions in the necessarily short time period

limited by the computational speed of the computer. We can

see from Fig. 2 that axial relaxation is approximately an order

of magnitude faster than the radial spreading of the cloud.

Excitation
The choice of excitation time and waveform is important

because it influences strongly the excitation radius, the

coherence of the ion package and their distribution. It is well

known that in a cell with cubic geometry the excitation field

is very inhomogeneous. It has a maximum value in the cell

center and decreases to zero near the trapping electrodes. As

a result, ions with different axial oscillation amplitudes are

experiencing different excitation field strengths during a

single period of axial motion. In Figure 3 the shape of the ion
Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546
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cloud after excitation is presented when a random initial

axial distribution is used. In this figure and in all figures

showing ion clouds, the boundaries of the frames coincide

with the positions of the excitation and detection electrodes.

Experimentally, it is practically nearly impossible to form ion

clouds in the cell with similar axial localizations. Even when

the ion cloud formation time is shorter than the axial

oscillation period Taxial (e.g. for very short electron ionization

or photoionization and gated trapping), the ions will axially

oscillate with different amplitudes. The excitation radius will

thus depend on the phase shift between excitation pulse and

phase of ion oscillation. As a consequence, it is impossible to

excite ions to the same radius even if texcite is much larger

than Taxial. If the relaxation time is large enough for ions to

decrease their axial oscillation amplitudes it becomes

possible to make the cyclotron motion radius more

consistent. Under standard experimental conditions using
Figure 4. Dynamics of the initially z-stressed ion cloud (50 00

phase. Snapshots of ion xy (1st and 3rd columns) and zy (2n

boundary is indicated. The phase-locked ions are concentrat

Copyright # 2007 John Wiley & Sons, Ltd.
resonant excitation, texcite usually has a value of the order of

100ms (10V excitation amplitude). In our modeling studies

we used excitation times close to this value.

Algorithm of picking up the signal
during detection
Signal registration in our code is based on the same physical

principles as used in a real FTICR mass spectrometer, i.e. on

measuring charge induced on the detection electrodes due to

the coherent ICR motion of the trapped and excited ions. For

details, see Appendix 6.

The role of initial conditions
(ion cloud initial form)
In Figure 4 a series of pictures of the ion cloud at consecutive

time-steps (0–8.8ms) starting from the beginning of the

excitation period are presented using two projections (one
0 ions) during the detection period after 70ms excitation
d and 4th columns) positions are shown; the cubic trap

ed outside the cylinder formed by unsynchronized ions.

Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546
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Figure 5. Fourier spectra obtained from different parts of the time-domain signal for the

ion cloud evolution presented in Fig. 4.

Figure 6. Z-elongated ion cloud evolution (50 000 ions) during the detection period after 70ms excitation time

(snapshots layout is the same as in Fig. 4). The phase-locked ions are encapsulated inside the cylinder formed by

unsynchronized ions.

Copyright # 2007 John Wiley & Sons, Ltd. Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546
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Figure 7. The distribution of the potential along the magnetic

field for the cubic cell at different distances from the cell axis in

the x¼ 0 plane. Profiles for y¼ 0.5 and y¼ 0.88 correspond to

excitation times of 45ms and 70ms. The bottom of the poten-

tial gets flatter as ions approach the side electrodes during

excitation of their cyclotron motion.
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perpendicular to the magnetic field and one in the plane

parallel to the magnetic field). The calculations were

performed for 50 000 ions using an excitation time of

70ms, an RF-excitation amplitude of 10V and a magnetic

field of 1 T.c For this particular digital experiment we used

the cylindrically shaped initial ion cloud with a cylinder

randomly filled by ions with a Maxwellian velocity distri-

bution. The initial geometry of the ion cloud is presented in

the first frame. We can call this geometry z-stressed because

of its compact distribution in the z-direction. A comet

formation is clearly observed starting 1ms after the

beginning of the excitation event. The head of the comet

has an elliptical structure and comprises phase-locked ions

moving synchronously as a rigid body. After approximately

4ms the head is separated from the tail of the comet. The tail

loses synchronization and after around 8ms forms a

cylinder. The comet head is rotating around this cylinder

during a relatively long time (of the order of magnitude of

100ms) and sometimes disappears completely. Fourier

spectra obtained from different parts of the time-domain

signal are presented in Fig. 5. The results of this in silico

experiment clearly show three significant features:

(i) Comet-shaped ion cloud formation as predicted by earlier

research;55 (ii) Phase locking of a part of the ion cloud;

(iii) Formation of a long-lived structure, in which the

ellipsoid of phase-locked ions revolves around the cylinder

formed by non-phase-locked ions.

In Fig. 6 the results of the same experiment with different

initial ion distributions are presented. In this case we started

with an elongated cylinder form of the ion cloud. The

behavior of the cloud is very different than described for

z-stressed geometry in the previous paragraph. We also see

comet formation but the phase locking occurs in the tail. The

phase-locked ions are encapsulated inside the cylinder

formed by other ions. In this particular digital experiment

synchronousmotion of locked ions survives for a longer time

than in the z-stressed case. From these two experiments it is

evident that the initial form of the ion cloud plays a crucial

role in FTICR-MS signal formation. It is clear that peak

positions in these two cases will be different for at least two

reasons: (i) because in the first case phase-locked ions will

experience coulombic forces from the ions forming the

internal cylinder and in the second case according to Gauss’

law this interaction is absent and (ii) because in the second

case the averaged magnetron frequency is higher and

effective measured frequency smaller. These two effects

have opposite signs and the resulting frequency shift could

be of both signs. In both cases (z-stressed and elongated

geometry of clouds), the frequency shift depends on the

portion of total number of ions redistributed between

phase-locked and dephased ensembles making measured

frequency time dependent and pick position stochastical.
c The choice of a relatively small magnetic field strength not used
in current FTICR practice is caused by two reasons: first the
possibility to compare results with what Mitchell obtained in his
research at 1 T and, second, to accelerate the computational time,
which is inversely proportional to cyclotron frequency and
proportional to the magnetic field at the chosen accuracy of
the calculations.

Copyright # 2007 John Wiley & Sons, Ltd.
This phenomenon will have significant effects on the mass

accuracy that can be achieved.

The role of the excitation time
In Fig. 7 the distribution of the potential along the magnetic

field is presented for the cubic cell at different distances from

the axis of the cell. These distributions were calculated by

solving Laplace’s equation for cubic cell geometry used in

our modeling. The bottom of the potential well becomes

flatter when ions approach the side electrodes during

excitation of the cyclotron motion. Consequently, the electric

field contribution from the trapping electrode gets smaller

and the ions are freer to spread along the z-axis at higher

cyclotron radius.

At smaller radii ions are more compressed in the

z-direction and phase locking should be more pronounced.

This effect can be seen in Fig. 8, where ion cloud dynamics

were followed for 5000, 20 000 and 50 000 ions using an

excitation time of 45ms. We do not see any comet formation

when 50 000 ions are used and almost total phase locking is

observed. Even in the case of 5000 ions in the cell phase

locking takes place for some of them (see below).

The role of the number of ions in the cloud
Figures 8 and 9 demonstrate that the number of ions plays a

crucial role in phase locking and determines the total time of

synchronous ion motion and as a result the mass resolution.

In Fig. 9 the dynamics of ion clouds with 5000, 20 000 and

50 000 ions are presented for an excitation time of 70ms.

Ion losses during excitation
and detection periods
In Figure 10 the total number of ions in the cell is presented as

a function of the time after the start of the RF-excitation event.

It demonstrates significant losses during excitation for high
Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546
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Figure 8. Dynamics of single mass (m/z 100.0) ion clouds (initially z-compressed) with 5000

(1st and 4th columns), 20 000 (2nd and 5th columns) and 50 000 (3rd and 6th columns) ions.

Excitation time 45ms.

3534 E. N. Nikolaev et al.
values of excitation time (up to 25% from initial number for

70ms excitation time) and stepwise losses during the comet

formation period when the tail particularly reaches the head

of the comet. After the comet closes, i.e. when the cloud head

reaches its tail, ejection of ions from the cell stops. This

behavior is not understood yet andmore analysis is required.

The majority of lost ions are lost on the side electrodes rather

than the trapping electrodes.

Frequency drift during the detection event
The ion cloud structure in the ICR cell constantly evolves

during the detection period. During this time the radial force
Copyright # 2007 John Wiley & Sons, Ltd.
acting on a particular ion, which includes coulombic

interaction, is changing because of continuous charge-

density redistribution. This in turn leads to effective

cyclotron frequency drift during the detection. To follow

this drift one should divide the original time-domain signal

into parts of short length so that in every interval the ion

cloud structure is approximately constant. Then we trans-

form each of the intervals into frequency-domain spectra to

determine the evolution of the ion’s cyclotron frequency. The

fast Fourier transform (FFT) resolution is not high enough for

short transients and that is why the covariance algorithm, a

parametric spectral estimation method based on minimizing
Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546
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Figure 9. Dynamics of ion clouds (initially z-compressed) with 5000, 20 000 and 50 000 ions

(snapshots layout is the same as in Fig. 10). Excitation time 70ms.
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the forward prediction error, was used. This method

estimates the power spectral density by first estimating

the parameters (coefficients) of the linear system that

hypothetically ’generate’ the signal. It tends to produce

better results than classical non-parametric methods

when the data length of the available signal is relatively

short.

We applied this method to a time-domain signal (3 000 000

time-steps¼ 0.2 s) with a relatively long coherent part and

sharp decay. The signal was divided into 3000 intervals of

equal length (1000 time-steps¼ 10 cyclotron periods). For

each interval Matlab toolbox function pcov implements the
Copyright # 2007 John Wiley & Sons, Ltd.
covariance method (order of the model, p¼ 200, number of

points, nfft¼ 4 194 304). In Fig. 11 the results of frequency

drift analyses are presented for the signal obtained from an

initially z-elongated ion cloud (50 000 ions, m/z 100, B¼ 1 T,

trapping voltage 1V, relaxation period 420ms (P¼ 1.5mTorr),

excitation voltage 10V, excitation period 59.4ms, detection

period 0.2 s). Figure 11(a) shows the time-domain and

frequency-domain spectrum corresponding to the first

2 million time-steps (0–0.13 s) and Fig. 11(b) shows the last

million of the time-steps (0.13–0.2 s). We can see that besides

monotonic drift there are spikes on the dependence of

frequency on time. As can be seen from Fig. 11(c), where ion
Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546
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Figure 10. Ion losses during excitation and detection periods. The total

number of ions in the cell is presented as a function of time after the start

of the RF-excitation event. Up to 25% from the initial number of ions are lost

for 70 us excitation time simulation. After the comet closes, ions ejection from

the cell stops.

Figure 11. The result of frequency drift analysis during the detection event:

(a) time-domain and frequency-domain spectrum for the first 0.13 s of the

signal and (b) time-domain and frequency-domain spectrum for the rest of the

detection time 0.13–0.2 s. On the frequency-domain spectrum the frequency

is given in 105Hz. In both cases the horizontal axis is scaled in millions of

time-steps. Besides monotonic drift there are spikes on the frequency

dependence on time. (c) Ion density distribution at different positions on

the time-scale. For more details, see Supplementary Material.

Copyright # 2007 John Wiley & Sons, Ltd. Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546
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Figure 12. Dependence of ion cloud dynamics on magnetic field strength. Snapshots of ion xy positions for the

initially z-stressed 50 000 ion cloud are shown for three different magnetic fields: 1 T (top), 5 T (middle), and 10T

(bottom). Excitation time 70ms. The evolution time to reach different stages of cloud evolution is proportional to the

magnetic field strength.
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distribution snapshots obtained for different detection times

are presented, these spikes are caused by charge redistribu-

tion inside the cloud having periodical behavior.

Dependence of ion cloud dynamics on
magnetic field magnitude
In Fig. 12 the comparison of ion cloud dynamics for three

different magnetic fields is presented. The figure clearly

demonstrates that the time to reach different stages of cloud

evolution is proportional to the magnetic field magnitude.

Note that the increased magnetic field strength does not lead

to a change in ion cloud structure but only slows down its

evolution. This implies that once the phase-locking phenom-

enon happens at 1 T it will also happen at 10T, but the comet

extension will be 10 times slower (in real time) in the latter

case. This retardation is due to the linear decrease of

magnetron frequency (which is responsible for comet

extension rate) with growth of the magnetic field strength.

The strength of the magnetic field does not have an

influence on the number of ions needed for phase locking

to occur.

The behavior of two interacting ion
clouds in the ICR cell
In Fig. 13 the snapshots of two different m/z (100, 100.3) ion

ensembles during a detection event are presented for

different numbers of ions N in the ensembles. We can see

that atN¼ 350 000 the two clouds aremoving synchronously.

This phenomenon is known as peak coalescence.56 In FTICR

spectra we see only one peak instead of twowith its ownm/z.

In Fig. 14 theminimal number of ions in the ensemble needed

for peak coalescence to occur is presented as a function of the
Copyright # 2007 John Wiley & Sons, Ltd.
magnetic field magnitude. It is clear that this peak

coalescence shows the expected quadratic dependence on

the magnetic field strength. Note that this coalescence is a

different type of motion ’locking’ to the phase locking

described in the previous paragraph. We should note that

the beginning of coalescence with increasing magnetic

field strength is difficult to detect precisely. More extensive

calculations should be done at higher magnetic field to

prove the quadratic dependence on the magnetic field

strength.

The behavior of three interacting ion
clouds in the ICR cell
In Fig. 15 the results of modeling the three ion cloud

interactions are presented for three totally different numbers

of singly charged ions in the ICR cell (75 000, 150 000 and

225 000), with the same relative amount of different m/z

inside the clouds. Ion mass-to-charge ratios in the clouds

were chosen to be close to each other (99.7, 100.0 and 100.3) to

observe the effect of peak coalescence. A strong difference in

the behavior of all three clouds is evident for total numbers of

ions larger than 100 000. During evolution because of strong

ion–ion interaction smaller m/z ions are acquiring larger

cyclotron radius and because of this are forming comet-like

structures. Two higher m/z ion clouds (100.0, 100.3) coalesce,

while the m/z 99.7 cloud is very unstable and splits into two

for the 225 000 ions calculation. From FTICR spectra

presented in Fig. 16 for all three cases it can be seen that

even for the smallest number of ions, 75 000, ion–ion

interaction between the clouds causes a strong disturbance

of the peak magnitudes and positions.
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Figure 13. Snapshots in xy and yz perspective of two differentm/z (100.0, 100.3)

ion ensembles during the detection event (after 1.3ms) and corresponding FTICR

spectra for 150 000 ions (left) and 350 000 ions (right) in the ensembles, B¼ 1T.

The populations of ions with different m/z values are the same in each simulation.

At higher number density the clouds are moving synchronously. Corresponding

FTICR spectrum displays only one peak instead of two.
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DISCUSSION

As we see from the results the behavior of an ion cloud in an

ICR cell depends on many parameters. The main parameter

is the number of ions in the cell. At small numbers of ions

(around 1000) we see pronounced comet structure formation.

The explanation for comet formation is simple. The tail of the

comet is formed by ions having larger z-oscillation

amplitudes. In an ideal hyperbolic cell the ion effective

(cyclotron minus magnetron) frequency is independent of

z-oscillation amplitude. This is not the case in cubic and

cylindrical cells. The larger is the z-amplitude the larger is the

ion magnetron frequency at turning points (where ions are

spending an essential amount of time). There, the non-ideal
Figure 14. The minimal number of ions in the ensemble

needed for peak coalescence to occur is presented as a

function of the magnet field strength. The dependence is

nearly quadratic.

Copyright # 2007 John Wiley & Sons, Ltd.
field results in a smaller rotation frequency of ions with

larger z-amplitude (that is roughly equal to the difference

between the cyclotron and magnetron frequencies). Already

a relatively short time after their formation the head of the

comet (formed by ions with smaller z-amplitude) reaches the

tail and the ICR signal disappears. This implies that it is

impossible to obtain high resolution at small ion numbers

with non-ideal cubic and cylindrical cells. Only in the case of

an ideal hyperbolic cell can we avoid this comet structure

formation and obtain high resolution even at low ion

numbers.

The new phenomenon revealed by our modeling is phase

locking or ‘condensation’ of the same m/z ion ensembles.

When the number of ions is increasing we see a kind of

condensation of part of the ion ensemble with pronounced

phase locking. We want to stress here that the phase locking

of the same m/z ions looks similar to phase locking of close

m/z ions, which we call coalescence, but in fact it is a different

phenomenon. We will investigate this phenomenon more

carefully in the future. We see similarity between our

observations and observations made in multiple pass TOF

instruments, where high resolution is obtained only with a

large number of ions and this effect is attributed to their

phase locking.57,58

The main difference is its dependence on the magnetic

field strength. The number of ions in the cell (or better to

say charge density) at which the condensation of the same

m/z ion clouds starts is independent of magnetic field, while

the number of ions necessary for phase locking depends

quadratically on magnetic field. Condensation takes place
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Figure 15. Snapshots in xy and yz projections of three interacting ion clouds (m/z 99.7, 100.0, and 100.3) for

three different total numbers of ions in the ICR cell: 75 000 (left), 150 000 (middle) and 225 000 (right). The

number of ions with different m/z values is the same in each simulation. Strong difference in the behavior of all

three clouds is evident for total numbers of ions larger than 100 000.
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in different parts of the ion cloud depending on the initial

cloud configuration. For z-compressed initial cloud forms

we have condensation at the head of the comet and for

z-elongated at different regions of the comet tail. The

condensed part has the form of an ellipsoid. It survives
Copyright # 2007 John Wiley & Sons, Ltd.
quite a long time giving the main contribution to the ICR

signal. After some evolution time this cigar-shaped cloud

becomes isolated from the other part of the ion ensemble. In

the case of a z-compressed initial cloud the condensed part

is positioned outside the cylinder, which is formed by the
Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546
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Figure 16. Fourier transform of the time-domain signals induced by ion clouds from Fig. 15.

3540 E. N. Nikolaev et al.
non-condensed ions and in the case of a z-elongated initial

cloud it becomes encapsulated into the cylinder of

non-condensed ions. This pronounced difference in beha-

vior of initially z-compressed and z-elongated ions has

the following explanation. The ions in the tail have a

smaller rotation radius (and kinetic energy) because they

have a larger z-oscillation amplitude and are exited to a

smaller radius because of excitation field inhomogeneities.

At their z-oscillation turning points, the excitation field is

weaker compared to the central regions. So if a conden-

sation in the head part of the cloud occurs, this condensed

part having higher rotation radius will be outside of the

rest of the non-condensed ensemble. If condensation takes

place in the tail region the condensed ions will have a

smaller radius and will be encapsulated by the rest of

ensemble. For these two distinctly different cases there is a

big difference in the total coulombic interaction between

the ions, which gives the ICR signal, and the rest of the

cloud. In the case of a z-compressed initial cloud the

condensed part of the ion cloud experiences a strong

repulsion from the rest of the ion cloud. This repulsion

decreases the detected frequency. In the other case, when

the condensed part of the cloud is inside a cylinder formed

by other ions, we do not have the strong influence of the

coulombic forces from this cylinder on the ion frequency

and the resulting detected ICR signal frequency. If we

increase the number of ions further we will see strong

phase locking for all ions in the cloud in the case of single

m/z ensembles and peak coalescence in FTICR spectra when

two or more clouds of different m/z ions are rotating in the

cell. The coalescence is a result of the phase locking of ions

having different (but close) m/z values. The nature of this

effect is the same as discussed above for ions of the samem/z

having different z-oscillation amplitudes and as a con-

sequence different effective ICR frequencies. The phase

locking and coalescence both take place in the initial ion

clouds (before excitation) and survive during the excitation

and detection period.

At small excitation times we observe phase locking for

smaller numbers of ions. As we see from Fig. 7 the potential

profile along the axis has a more pronounced minimum at

smaller radius. It is getting flat when the radius increases. So

at small excitation times we have higher local ion densities at

the same number of ions in the cell.

Phase locking is a crucial effect for FTICR-MS. Without

phase locking ions cannot induce a long-lasting signal in
Copyright # 2007 John Wiley & Sons, Ltd.
conventional ICR cells (cubic or any kind cylindrical) because

the dephasing of their cyclotron motion is in the millisecond

range. As a result it is impossible to obtain signals in

conventional cells for numbers of ions smaller then 103.

The mechanism of ion evaporation from the cloud is not

understood yet. It is clear that ion–ion interactions cause a

redistribution of the kinetic energy and ions receiving high

enough energy are striking the cell electrodes. This is a topic

that will be investigated further. The results presented in this

paper clearly demonstrate that all analytical considerations

undertaken so far were too naı̈ve to describe it. With the next

generation of PIC codes currently under development we are

going to undertake research concentrated on:
1. S
WIFT vs. chirp excitation;
2. E
ffect of frequency sweep (low-to-high vs. high-to-low);
3. C
oalesences – highest m/z at which two equally abundant

packets of ions separated by 1Da in mass, as a function of

B-field;
4. Is
otopic envelope shape;
5. N
on-cubic and other than Penning trap type cells;
6. E
ffect of inhomogeneous B-field; and
7. E
ffect of various ion injection modes.
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APPENDIX 1

Charge distribution and field interpolation
Electric field potential uðrÞ at point r ¼ fx; y; zg produced by

Np particles is defined as:

uðrÞ ¼ 1

4p"0

XNp

p¼1

qp
jr � rpj

�

On the other hand, the same potential satisfies Poisson’s

equation:

Du ¼ � r

"0
; (1)

where r is the volume charge density expressed via the Dirac

d-function for point charges:

rðrÞ ¼
XNp

p¼1

qpdðx� xpÞdðy� ypÞdðz� zpÞ: (2)

Thus, the calculation of electric potential is reduced to

finding a generalized solution of Poisson’s equation

(Eqn. (1)) with the source function (2) on a finite grid. To

do that, it is necessary to switch from generalized function (2)

to mesh function rijk. One can implement this using a

procedure of smoothing (e.g., averaging). Let us associate:

Wijkðx; y; zÞ ¼ WiðxÞWjðyÞWkðzÞ: (3)

function to each grid point ði; j; kÞ. Weighting multiplier

functions take different shapes depending on the chosen

method of interpolation. We use the linear interpolation

method, where weighting multipliers can be written as:

WiðxÞ ¼
1� x�xi

h

�� ��; x� xij j < h;
0; x� xij j � h:

�
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For smoothing (2) with averaging kernel (3) the following

expression was used:

rijk ¼
Z

rðx; y; zÞWijkðx; y; zÞdV;

which gives for rijk

rijk ¼
1

h3

XNp

p¼1

qpWijkðxp; yp; zpÞ:

Then, using mesh function rijk, we obtain the electric

potential value uijk at all grid points via Poisson’s equation

solving method which is described below. Effective force is

proportional to electric field strength. The latter is found at all

grid points by numerical differentiation of uijk. To interpolate

the electric field from mesh points to particles, piecewise

linear extension of the mesh functions Ex
ijk, E

y
ijk and Ez

ijk is

constructed on the basis of weighting functions (3). We

assign a value of thementioned piecewise-linear extension as

the field value at point ðxp; yp; zpÞ occupied by the particle.
APPENDIX 2

Three-dimensional Poisson solver
We used direct the Poisson’s equation solver based on

three-dimensional (3D) fast Fourier transformation (FFT)

library routines. Poisson’s equation solver is a crucial part of

the particle-in-cell (PIC) code and it requires extensive

optimization to achieve a reasonable efficiency. We tried

different 3D FFT subprograms and our final choice was a FFT

routine provided by the FFTW library.59,60 All computations

were performed on the shared-memory system IBM eServer

pSeries 690 Regatta based on 64-bit IBM Power4 (1.1GHz)

processors running IBM AIX OS. Solving Poisson’s equation

to double precision on a single processor required 0.0049 s,

0.043 s, and 0.58 s for 323, 643 and 1283 grids, correspond-

ingly. Use of four processors decreased times to 0.0023 s,

0.015 s, and 0.31 s, correspondingly. The electric potential u

inside the ICR trap Twas derived by the solution of Poisson’s

equation with Dirichlet’s boundary conditions:

Du ¼ �r="0; ðx; y; zÞ 2 T;
ujG¼ g;

�
(1)

where "0 ¼ 8:85� 10�12 F m�1 was the vacuum permittivity,

gwas the given potential value on the boundary G ¼ @T, and

r was the charge density.

For the sake of simplicity, a cubic trap with lateral length L

is considered here. A generalization on an arbitrary

parallelepiped is obvious. First, if an analytical solution of

problem (1) is given in the case of homogeneous boundary

conditions ujG¼ 0, then a numerical solution is found and,

finally, similarities are pointed out in both methods. In

conclusion of this appendix, some performance issues are

discussed.
Analytical solution in case of homogeneous
boundary conditions
Let us remind ourselves that in some cases the analytical

solution of differential problem (1) with homogeneous
Copyright # 2007 John Wiley & Sons, Ltd.
boundary condition ujG¼ 0 may be found as the series

expansion on the basis of eigenfunctions of the following

eigenvalue problem:

Dvþ lv ¼ 0; ðx; y; zÞ 2 T;
vjG¼ 0:

�
(2)

In the case of adequate smoothness of functions u and r

(both functions should at least vanish on the boundary),

these functions can be expressed via the following series:

u ¼ 2
L

� �3=2 P
l;m;n

ûlmn sin
plx
L sin pmy

L sin pnz
L ;

r ¼ 2
L

� �3=2 P
l;m;n

r̂lmn sin
plx
L sin pmy

L sin pnz
L :

Here indices l, m, n vary from 1 to1. After substitution of

the above series expansion into Poisson’s equation, a relation

between Fourier coefficients r̂lmn of known charge and

coefficients ûlmn of unknown potential can be obtained in the

following form:

ûlmn ¼ r̂lmn

"0llmn
:

So, the solution of the problem (1) with homogeneous

boundary condition ujG¼ 0 can be expressed as a series

expansion:

uðx; y; zÞ ¼
X
l;m;n

r̂lmn

"0llmn
mlmnðx; y; zÞ; (3)

where

lmnl ¼
p2

L2
ðl2 þm2 þ n2Þ (4)

are eigenvalues and

mlmn ¼ 2

L

� �3=2

sin
plx

L
sin

pmy

L
sin

pnz

L
(5)

are eigenfunctions of the differential eigenvalue problem (2).

Fourier coefficients r̂lmn can be found from the integral:

r̂lmn ¼
Z
T
rmlmn dV: (6)

Numerical solution
In order to present a numerical solution to differential

problem (1) let us introduce in T a rectangular homogeneous

mesh:

vh ¼ fxijk ¼ ðxi ¼ ih; yj ¼ jh; zk ¼ khÞg:

Here indices i, j, k vary from 0 toN; h ¼ L=N. For the sake of

simplicity let us consider N to be one and the same in all

dimensions. In the case of different partitioning of each

dimension, the above expression changes in an obvious

manner. By vh we denoted internal, and by gh we denoted

boundary nodes of the mesh vh.

We substitute differential Laplacian D by the seven-point

finite-difference operator Dh ¼ Dh;x þ Dh;y þ Dh;z, which is the

sum of finite-difference derivation operators in x, y, and z

directions, and obtain the second order of approximation:

Du� Dhu ¼ Oðh2Þ.
Let us find mesh function (vector) uijk ¼ uðxijkÞ that is

defined in themesh points ofvh, and being the solution of the
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following algebraic problem:

Dhuijk ¼ �rijk="0; xijk 2 vh;
uijk ¼ gijk; xijk 2 gh:

�

Here rijk; gijk are the values of r and g functions in the

corresponding mesh points. Following the well-known rule,

we can substitute inhomogeneous boundary conditions on gh
into the right-hand side of the equation. For instance, in the

node x122 2 vh we have:

u022 � 2u122 þ u222
h2

þ Dh;y;zu122 ¼ � r122
"0

:

Taking into account that u022 ¼ g022, we get:

�2u122 þ u222
h2

þ Dh;y;zu122 ¼ � r122
"0

� g022
h2

:

We denoted Dh;y;z ¼ Dh;y þ Dh;z.

So, without loss of generality, we can consider a zero

boundary value problem:

Dhuijk ¼ �rijk="0; xijk 2 vh;
uijk ¼ 0; xijk 2 gh:

�
(7)

Any mesh function (vector) that is defined on the point set

vh and vanishing on gh can be expanded on the basis of mesh

eigenfunctions (eigenvectors) of the algebraic eigenvalue

problem for the operator Dh:

Dhvijk þ lvijk ¼ 0; xijk 2 vh;
vijk ¼ 0; xijk 2 gh:

�
(8)

Mesh functions uijk, rijk may be represented as finite sums:

uijk ¼ 2
L

� �3=2 P
l;m;n

ûlmn sin
pli
N sin pmj

N sin pnk
N ;

rijk ¼ 2
L

� �3=2 P
l;m;n

r̂lmn sin
pli
N sin pmj

N sin pnk
N :

Here indices l, m, n vary from 1 to N�1. Substituting these

finite sums into the equation, we can express unknown

coefficients ûlmn via known r̂lmn:

ûlmn ¼ r̂lmn

"0llmn
:

So, the solution of the boundary problem (7) can be expressed

as the finite sum:

uijk ¼
X
l;m;n

r̂lmn

"0llmn
mlmnðxijkÞ: (9)

Here

lmnl ¼
4

h2
sin2

pl

2N
þ sin2

pm

2N
þ sin2

pn

2N

� �
(10)

are eigenvalues and

mlmnðxijkÞ ¼
2

L

� �3=2

sin
pli

N
sin

pmj

N
sin

pnk

N
(11)

are mesh eigenfunctions (eigenvectors) of the algebraic

eigenvalue problem (8). Coefficients r̂lmn are found from the

dot product (that is defined on the space of mesh functions

that are defined on the vh and vanishing on gh) for mesh
Copyright # 2007 John Wiley & Sons, Ltd.
functions (vectors) rijk and mlmnðxijkÞ:

r̂lmn ¼ h3
X
i;j;k

rijkmlmnðxijkÞ: (12)

An analogy between analytical
and numerical solutions
An analogy between analytical and numerical solutions

Generally speaking, numerical solution (9) might be

envisioned as analytical solution (3) without residual

harmonics from N to 1, or, in other words, as (N�1)th

partial sum of series (3) (however, the (N�1)th partial sum of

series (3) mismatches the finite sum (9) because (a) we

consider homogeneous boundary conditions in the analytical

case and inhomogeneous boundary conditions in case of

numerical solution, (b) eigenvalues of two problems and

formulas for r̂lmn coefficients are different). It is necessary to

indicate that mesh eigenvectors (11) of algebraic eigenvalue

problem (8) are, in fact, the projections (restrictions) of

eigenfunctions (5) of differential eigenvalue problem (2) to

the space of mesh functions that are defined on the vh and

vanishing on gh; eigenvalues (10) of algebraic problem (8) at

limit h ! 0 (N ! 1) are transformed into eigenvalues (4) of

differential problem (2); formula (12) is actually a numerical

method for computing integral (6) (quadratic formula).
Efficiency of the numerical solution
A direct summation of series (9), (12) requires O(N6)

operations and has no advantage over classic methods of

system (7) solution (e.g. Gauss’ elimination). Formulas (9),

(12) represent discrete Fourier transform (DFT) of the ûlmn

and rijk data sets, respectively. A fast Fourier sum calculation

may be performed using the FFT algorithm,whichwith some

restrictions on N (as a rule N must be a power of 2, but not

necessarily) requires only O(N3/logN) arithmetical oper-

ations. There are many FFT program packages available now

over the internet. We prefer an open-source library named

FFTW being developed by Frigo and Johnson.59,60 FFTW

employs O(NlogN) algorithms for all sizes, including prime

numbers. The current version, FFTW 3.1.2, includes parallel

(multi-threaded) transforms for shared-memory systems

(including OpenMP parallelism61). Our computations were

performed on supercomputer system IBM eServer pSeries

690 Regatta that is a shared memory multiprocessor machine

(SMP, also known as symmetric multiprocessor machine). To

take advantage of the shared memory, we used the OpenMP

interface61 when we wrote a parallel program. In addition,

the OpenMP support was enabled when building FFTW.

Using a parallel library for the DFT results in a very fast

solving of Poisson’s equation. This is highly important,

becausewemust solve it at each time-step, and the number of

time-steps in a computation can attain several millions.

However, it is possible to gain even better results using

Hockney’s method as a tool for numerical solution of

Poisson’s equation. Hockney’s method is based on a

combination of a batch series of 2D Fourier transformations

and tridiagonal matrix solving routines. Hockney’s method

has the same O(N3)logN complexity as our current 3D FFT
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method (however, it is worth noting that a series of

tridiagonal matrix solving routines require only O(N3)

operations), but this algorithm has greater potential when

using parallel computers: 2D Fourier transformations and,

then, tridiagonal matrix-solving routines are entirely inde-

pendent of each other, which gives perfect capabilities for

parallelization.
APPENDIX 3

Algorithm for integration of ion
motion equation
To write an equation of motion in the form of a difference

equation, we used the scheme described by Hockney and

Eastwood,39 and applied to the ICR simulation by Mitchell

and Smith.5 Let tn be a time level number n, and t ¼ tnþ1 � tn

the time-step. We are centering the Lorentz force relative to

the time level tn by averaging vn�1 and vnþ1, what gives

us the following recursive equation for ion velocity:38,39,62

vnþ1 � vn�1 ¼ 2tq

m
En þ vn�1 þ vnþ1

2
� B

� �� �

Ion coordinates are calculated on even time levels while

velocities, on odd levels. Time derivatives in an equation of

motion are determined using a double time-step. To calculate

the electric force, which depends only on coordinates, this

scheme is equivalent to a leapfrog scheme.39 For calculation

of magnetic force, which depends only on velocities, this

scheme is equivalent to an implicit time-centered scheme.39

With this computational scheme, the digital stability is

determined by only the character of drift motion (because

electric field is computed explicitly on the time level n). The

scheme is absolutely stable (implicit unconditional stability

for velocity) in connection to the fast cyclotron rotation.39

When the scheme is written in coordinates, the right-hand

side of equations will contain different (by coordinates)

components of velocities and magnetic field. This makes it

necessary to find a matrix solution to the system of implicit

equations to determine velocities on the next time-step.

Importantly, it is necessary to separate a slow ion motion

related to the electric field and fast motion across the field. To

avoid this, we use the algorithm described by Boris54 and

Buneman,62 which takes fewer operations. In this algorithm,

electric and magnetic forces are separated in the equation

system for calculation of the velocities on the time level (nþ1)

from velocities on time level n. To perform the E�B

separation, two intermediate variables are introduced, these

are velocities vþ and v�:

vn�1 ¼ v� � qEn

m t;

vnþ1 ¼ vþ þ qEn

m t:

If we substitute these new variables into the equation of

motion, we find that the electric field disappears from the

equation and it is reduced to an equation for simple rotation

of an ion in a magnetic field. The ion energy is conserved in

this motion because rotation does not change the absolute

velocity. The algorithm for the velocity calculation on the
Copyright # 2007 John Wiley & Sons, Ltd.
level (nþ1) from the velocity on the level (n�1) consists of the

three steps:
1. A
ddition of the half of the electric momentum to vn�1:

v� ¼ vn�1 þ qEn

m
t

2. D
etermination of vþ by transformation via rotation in

accordance with:

vþ � v�

t
¼ l

q

m
v� þ vþð Þ � B½ �
3. A
ddition of the second half of the electric momentum to

vþ to obtain vnþ1:

vnþ1 ¼ vþ þ qEn

m
t

During the next step, the implicit equations are solved

analytically for the upcoming velocities without introducing

any digital errors. The obtained factorized equations

constitute a basis of the CYLRAD algorithm invented by

Boris.54 Calculated frequency of ion motion vc is different

from the real one Vc when a fixed time-step is used in the

calculations. Without a frequency correction, the difference

equation gives for the angle of rotation on step t:

u ¼ 2 arctan
qB

m
t

� �
¼ vct 1� vctð Þ2

12
þ . . .

 !
:

So, for vct < 0:35, the error is approximately 1%.39 To

make the integration procedure more accurate, we intro-

duced the correction coefficient l into the integration

scheme,38,39 equal to:

l ¼ tan
Vct

2

� �	
Vct

2
�

APPENDIX 4

Modeling of ion–neutral collisions
The main part of our simulations was performed for

collision-free cases. We have found that even for the largest

number of ions in an ensemble (5� 105) there is not enough

time for relaxation of initial velocity distribution via

columbic collisions. If we start from a random space

distribution inside the cylinder located in the cell center

after 100ms, we do not see equilibrium elliptic distribution.

We see collective oscillations along magnetic field lines with

amplitudes corresponding to initial positions of ions in the

trapping axial field. Even in the collision-free case, we see a

loss of ions by way of ejection from the ICR cell during

excitation and detection, and collisions do not influence the

phase-locking effect. The deformation of ion cloud shape in

the collision-free case is determined by the initial velocity

distribution for which we used the Maxwell-Boltzmann law.

After excitation, the effective temperature of the ion

ensemble is increased due to conversion of potential energy

of axial oscillation into kinetic energy; this conversion takes

place due to lowering of the trapping potential at larger

radius of cyclotronmotion. For themost realistic simulations,

that is when a neutral bath gas is present, ion–neutral elastic

collisions are implemented by using the Monte Carlo

algorithm.5,15,32,38 At a given neutral gas mass, temperature,
Rapid Commun. Mass Spectrom. 2007; 21: 3527–3546

DOI: 10.1002/rcm



Realistic modeling of ion cloud motion in an FTICR cell 3545
pressure, and hard-sphere cross-section, ion–neutral col-

lisions are accurately treated by this method. At the

beginning of every simulation run, a random set of

about 104 neutral atom collision partner speeds are generated

from the Maxwell-Boltzmann distribution and stored in an

array. In addition, an array of about 105 unit vectors is

generated to represent possible directions of neutral atom

velocities.

At each time-step in the calculation, the following

sequence is performed for each ion next to the particle push

stage:
1. A
Co
neutral atom velocity is chosen by randomly selecting a

speed from the Maxwell-Boltzmann array and multiply-

ing this speed by a random unit vector from the precal-

culated set.
2. A
 collisional cross-section, s, which is the sum of the hard

sphere and Langevin cross-sections, is calculated:15

slangevin ¼ q

2"0vr

ffiffiffiffi
al

m

r

shard ¼ pd2ion
4

s ¼ slangevin þ shard

where q is the charge on the ion, al is the electric

polarizability of the gas atom (for a helium atom

al ¼ 1:8� 10�42F m2), "0 is the permittivity of free space,

m and nr are the reduced mass and the relative velocity of

the collision partners, dion is the ion size. (In our

simulations we consider dion ¼ 1 nm for a 100Da ion,

neutral atoms being point objects.)
3. T
he probability Pc of a collision per time-step Dt is deter-

mined:38

Pc ¼ 1� expð�ngsnrDtÞ
where ng is the neutral gas density.
4. A
 random number between 0 and 1 is generated. If this

number is less than or equal to the probability Pc, then a

collision is deemed to have occurred, in which case:

a. The velocity of the center of mass of the collision

partners is determined.

b. Themagnitude of the velocity of the ion in the center of

mass reference frame is calculated.

c. The particle’s center of mass velocity is given a random

direction in the center of mass frame (isotropic scatter-

ing).

d. The scattered ion’s new velocity is transformed to the

laboratory reference frame.
pyr
APPENDIX 5

Influence of the computational mesh size on
the accuracy of simulations
In Fig. 17, the influence of the computational mesh size on the

accuracy of simulations is shown. Starting from the mesh
ight # 2007 John Wiley & Sons, Ltd.
4� 4� 4 further increase in number of nodes does not lead to

significant changes in ion cloud structure.
APPENDIX 6

FTICR signal detection
In accordance with Gauss’ law applied to the small element

of the electrode surface, the internal normal component of

the electric field is defined as En ¼ s="0. The total charge is

computed by integrating over the detector plate when the

induced surface charge density s is known:

q ¼
Z

sdS: (1)

After solving Poisson’s equation, we calculate the electric

potential on all internal mesh points (boundary values are

given). Numerical differentiation methods are subsequently

applied to compute the electric field at the grid points: a

central difference derivation with a second-order approxi-

mation is used for internal points, and one-sided first-order

differences are used for the boundary points. For example,

the y component of the E field at (i,j,k) point is defined by

E
y
i;j;k¼

ui;jþ1;k � ui;j�1;k

2h
;

E
y
i;0;k¼

ui;1;k � ui;0;k
h

;

E
y
i;N;k¼

ui;N;k � ui;N�1;k

h

(2)

for internal, left and right boundary points, respectively,

where uijk is the potential at the mesh point (i,j,k). However,

we may apply formulae with a formally larger order of

approximation, e.g.:

E
y
i;0;k ¼

�3ui;0;k þ 4ui;1;k � ui;2;k
2h

gives us the second order on h for mesh point (i,0,k) to

compute the electric field strength at the boundary points,

but it may result in significant errors due to peculiarities of

the one-sided difference derivation operation.

With the normal components of the electric field at all

detection electrode mesh points, it is possible to apply

numerical integration to compute the values given by

expression (1). We use a two-dimensional analogue of the

rectangular quadratic formula for this purpose:

q ¼ "0
d2

N2

XN�1

i¼1

XN�1

k¼1

Ex
i;j;k:

Here j is equal to 0 andN, whereNþ1 is the number of grid

points on the detection electrode along one of the directions

and d is the size of the electrode (the signal is picked up from

the plates that are parallel to the magnetic field (z-axis)). As a

result of this procedure (performed at each time-step), the

time-dependent image charge difference between detector

plates can be obtained. We apply Fourier transformation on

the time-domain signal or its time derivative (which is

computed via difference derivations) to obtain the mass

spectrum.
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Figure 17. Influence of the computational mesh size (43 to 1283, from left to right) on the simulation results for single

m/z ion cloud.
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