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REALISTIC NUCLEAR SINGLE-PARTICLE HAMILTONIANS 
. + 

AND THE PROTON SHELL 114 

. x 
Heiner Meldner 

Lawrence Radiation Laboratory and Department of Physics 

University of California 

Berkeley, California 

ABSTRACT 

A simpleselfconsistent single -particle equation is investigated 

and compared with similar attempts. The proposed model is de signed to 

be particularly suitable for the calculation of (adiabatic) fission processes. 

The kernel of this integro-differential equation has a structure that allows 

to reproduce satisfactorily with one constant set of five physical parameters 

1) charge density distributions, including isotope shifts, 

2) 1 s proton levels as measured in (e,e 'p) scattering, 

3) total binding energies or nuclear mass defects, and 

4) the shell model spin assignments and mass structure 

throughout the periodic table. Hence, it seems that all future work in this 

direction has to confirm quantitatively the essential features determined 

here; in particular the nonlocality and rearrangement effects. Rearrangement 
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energies appear explicitly', since the present model, similar. to self­

consistent fields of appropriate many-body formalisms, yields different 

eigenvalue spectra and mass defects for different occupation functions. 

The partial derivative d E/ ~ Z of the total binding energy (mass) changes 

considerably at the proton number Z till 114 when the present Hamiltonian 

is used for super-heavy nuclei. This confirms an earlier suggestion made 

by this author on the basis of a gap in the proton eigenvalue spectrum at 

Z = 114. The present calculations show this shell effect to become insigni­

ficant for isotopes too far from the extrapolated beta stability line, in 

particular for N ~ 172. 
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INTRODUCTION 

Phenomenologically" the Hamiltonian for a nucleon bound in a 

nucleus allows a rapidly converging expansion: H:o: HI + H2 + •.. in terms 

of o~e-body~ two-body" etc. operators; Le. a "realistic" model for the single­

particle Hamiltonian HI accounts rather accurately for gross nuclear data 

of bound and scattering states - thus leaving only small phenomenological 

many-body forces to produce residual correlations. This picture compre­

hends essential facts like the pronounced nuclear shell structure and the 

extremely small ratio of the odd-even mass staggeririgs to the nuclear . . 

binding energies. However" even a dozen years after the establishment of 

. the shell model phenomenologyh3)" baSiCqUanti~ative questions~ e. g. about 

the extent of nonlocality of HI and it's rearrangement - type response 

are far fr9m being noncontroversially settled. 

One purpose of this work is to investigate such features of realistic 

nuclear single:-particle Hamiltonians without the usual strong restrictions 

and oversimplifications due to rather limited computer facilities. For 

example" self-consistent equations with nonlocal potentials are solved 

(numerically) exactly here. 

Two approaches for the determination of HI are easily 

distinguished: Number one is the direct pragmatic way" L e. an ansatz' 

for a phenomenological single particle equation (usually involving nonlocal 

one -body potentials). Number two deploys some many-body formalism 

with phenomenological two -body potentials . "At the present stage of the 

" preference 6f the latter is unfortunately based on the prejudice 

that a complicated answer to a complicated question is 'more reliable than 

a simple one. This uncertainty is due to the fact that all number two 

approaches - although potentially closer to a first principle method -

still have to be based on a practically unsolved many-hadron problem. 
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The NN interaction is not sufficiently understood at the distances of 

major importance for this purpose, i. e. smaller than half the inverse 

pion mass 4). This implies the high uncertainty about the off energy shell 

behaviour of NN potentials 5) - in particular about their nonlocality. 

The latter quite obviously exhibits the ambiguity of fits of the two-body 

NN scattering with potential models; since one can always construct 

classes of phase shift equivalent potentials with identical spectra but 

quite different off energy shell behaviour, including cases which give 

singular Hartree -Fock-type matrix elements. E. g. any unitary transfor­

mation acting on a given two-body Hamiltonian that contains some NN 

phase . shift fitting potential gives another Hamiltonian, say e
i

.!2. He -i Sl­

with a potential of generally different nonlocality of off energy shell 

behaviour. The fit to the on shell data is preserved, as long as the change 

of the T-matrix (proportional to the change of the Hamiltonian 6)) vanishes 

there, i. e. 6 T "- t H""" [n , H] = O. Thus, all such transformations 

with hermitian two-body operators 11. yield equivalent on shell potentials, 

once the transition matrix element of this commutator vanishes 7). This 

can be viewed as a formal method to obtain families of equivalent potentials' 

by generalized Scott-Moszkowski-type 8) separations. Therefore, it would 

seem futile to work numerically with approach number two, as long as the 

question of off energy shell behaviour is not sufficiently understood quanti­

tatively. Presently, it is hardly possible to decide here qualitatively, 

namely between the extre'me cases of purely local hard core versus highly 

nonlocal smooth potentials 9). 

Safe, however, seems the basis of a nonrelativistic potential 

descript~on of NN forces at the low kinetic energies 'of nucleons bound 

in many-baryon systems. This belief is due to the small ratio of the 

pion to the nucleon mass 10). Thus, it is also safe to rely on the gross 

e., 
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structure of single particle equations as given by many-body formalisms 

and approximations which are based on sufficiently general NN potentials. 

This - presently wise - restriction to the qualitative results of such formalismS 

requires the parametrization of a nuclear single-particle Hamiltonian" as 

is done e. g. via the ansatz of a Woods -Saxon or Nilsson-type potential; 

usually with some velocity dependence 11! 14). However" these simple 

models of a nuclear self-consistent field can be replaced now. Modern 

i computers allow a considerably improved simulation of the nuclear 

single-particle equations that are expected from reasonable many-body 

formalisms. 

One suggestion in this direction is made here (Sect. 1). 

Actual complications in comparison to the ancient .nuclear well ansatz were 

found to, be unnecessary. The proposed single particle Hamiltonian has a 

structure close to the one given grossly by Hartree -Fock-Bogolubov or 

Brueckner-type formalisms. 1. e. nonlocality" density-oJ spin-orbit-, and 

i-spin-dependences are introduced into the kernel of this equation in a form 

as expected in first order from such formalisms involving rather general 

nonlocal NN potentials. 

Sect. 2.2 shows that only five physical parameters allow a 

surprisingly good fit to many independent data throughout the periodic 

table. Such a widespread application was inconceivable with previous models 

of· H1. The essential features of a realistic single-particle Hamiltonian seem 

to be determined rather uniquely this way. They will have to be confirmed, 

once substantial experimental information on the off energy shell behaviour 

of NN potentials has been accumulated so that some number two approaches 

can leave the status of model-dependent models. The quantitative results 

of the fairly conservative and pragmatic approach adopted here provide a 

rather safe foundation. This resembles the situation in nuclear physics of 

small baryon number hadron systems, where a pragmatic approach now 
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determines basic features in terms of Regge singularity parameters. 

Rearrangement-type responses (Sect. 3) of this self-consistent 

model appear to have the right order of magnitude. Orbital rearrangement 

energies, for example, were found to be cornparable to level spacings 

in nuclear potential wells. 15} This result seriously questions the usual 

identification of such level spacings with the ~ differences observed e. g. 

in nucleon transfer reactions. 

In the presence of fluctuating rearrangement energies, a gap in 

the eigenvalue spectrum, as e. g. found at the proton number 114, does not 

necessarily lead to a real shell effect in the masses as a function of nucleon 

numbers. The deployment of this realistic Hamiltonian in the region of 

super-heavy nuclei (Sect. 4) therefore provides an almost independent 

h k h · b 114 h"h .. 11 13,14, 16-18} c ec on t e magIC proton num er. w IC was orlglna y 

suggested from extrapolations of proton eigenvalue spectra. 

All data in this paper refer to spherical nuclei; Sect. 5 deals in 

some detail with the straightforward extension of this self-consistent 

field model to axially symmetric deformed densities. The present form 

has particular advantage for the description of adiabatic fission processes. 

The appendices are concerned with some of the computational 

problems. 

I. 

" 
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1. The Self":Consistent Field Model 

A single-particle equation of the type 

(1) 

. . ." 
is sufficiently general to allow for a rather realistic model of the nuclear 

self -consistent field. The subscript)} stands for all quantum numbers 

specifying a bound nucleon except for its i-spin 3 -component m
t

. The 

deployment of plain Hartree Fock, for instance, i. e . 

(2) 

with suitable models for u(r, r') provides nuclear single -particle Hamiltonians 

which are quantitatively almost as useful as the ones mentioned in the intro­

duction 19). Therefore HF, i. e. the result in the limit where perturbation 

methods are applic'able to more general many-body formalisms is sometimes 

referred to in the following discussion - although one should by no means regard 

the phenomenological kernel proposed here as .being necessarily connected 

with a plain HF formalism. 

A comparison of (2) with the symmetrical factorized Van Vleck-
20) 

type kernel 

(3) 
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yields upper bound estimates for the "ranges" Qfu and v. Namely the 

range in I r - r'l should not exceed the order of the inverse pion mass 

(1.4fm) and the function u should essentially vanish for its argument lar­

ger than nuclear radii (A 1/3fm ) .. Therefore u is usually taken to be pro­

portional to the nuclear matter distribution. Lower limits on the range of 

the factor v are, for instance, required in order to reproduce the obser­

ved momentum dependence of local potential wells, i. e. the fact that the 

effective mass of bound nucleons is not larger than 0.5 in real nuclei 3,21). 

As is shown in the next section, this clearly excludes nonlocality ranges 

which are small enough to render a 6 -function for v , i.e. local po­

tential s a reasonable ansatz. Since the ·factorized form (3) also allows 

for selfconsistency, it would appear to yield the simplest kernel that has 

a chance to simulate any realistic nuclear self -consistent field . 

1.1 Nonlocality 

Fig. 1 accumulates empirical information on the Fourier 

transform of v( J r - r' J ). I. e. the approximately equivalent 

(momentum) 2 dependent local potential depth v(k 2), defined e. g. through 

(4) 

Therefore, in order to specify reasonably well a nonlocality function 

v( I r - r' I ), one needs in addition to its width in I r - r'l at least one 

more property like its asymptotic slope. For example, Yukawa and 

, 
... ! 
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Gaussian formfactors v{ I r - r'l ) fit the dashed curve in fig. 1 

v (£ ) = v( £. - v ( E ) ) 
o . 0 

(5) 

with widths around 0.8 and 1.5 fm respectively (cf. ref. 14). 

The most important evidence on v ( E. ) in region 1 comes from the 
22) 0 40 75 . 

(e, e'p) experiments The data on . Ca and As suggest that 1s pro-

tons are bound by at least 80 MeV in heavier nuclei . Other limits on 

v ( E ) in this region may be inferred from estimates of the effective 
o 

1 
. 1 3, 21)' . 

nuc eon mass In nuc ear matter 

In region 2, i.e. for c: around the Fermi energies, v ( £. ) 
o 

is most accurately determined in absolute magnitude - via the observed 

separation energies. But the slope there is subject to quite some specu­

lation . One school suspects an appreciable wiggle there 23), a zero or 

even sign change. of the slope as indicated by the dotted line in fig. 1. 

However, the arguments presented for such anomalies are not conclusive 

yet (cf. Sect. 3 and ref. 15)". 

In region 3 and 4 the evidence comes mainly from fits of 

. 24-28) 
nucleon-nucleus scattermg . Although one cannot completely 

disentangle the energy dependencesof real and imaginary parts, there 

is general agreement now that the real part has the minimum decrease 

with energy indicated in fig. 1 for the well analyzed 10 MeV region. 

Straightforward use of the real part of an optical model fit did exactly 

yield the shell structure 11). However, the nonlocality there did correspond 

to the lower limit for the slope indicated in region 3 (derived from refs. 

25,26) and gave only about half the total binding energy (29). Therefore, 

the stronger energy dependence indicated by other optical model fits! 27) 
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is favoured from the bound state fits - if one excludes a strong curvature 

of v ( E ) for E:f. o. No appreciable energy dependence is established 
o 

O M . 11 b h 24,28) for the 10 eV region! v mayessenha y ecome a constant t ere 
o , 

The dashed curve in fig. 1 corresponds to a Yukawa nonlocality 

function with the width used here (cf. set A of table 1 ). This simple form 

can account quite well for the data. Superpositions of several Yukawas 

that did, for instance,give a wiggle in region 2 were found to be unnecessa­

ry at this stage of the phenomenology. A Yukawa, i.e. a NN potential­

type function is suggested frotn the Van Vleck kernel and seems to fit 

the curvature in fig. 1 a li,ttle better than a Gaussian. 

1 . 2 Saturation and Density Dependence 

The real part of u in Van Vleck-type kernels is usually 

taken to be similar to the matter density p. 20,25) Taking literally 
-" -.It 

u = p ( ,_.'r ; r ) is, of course, not consistent: The output P from a 

bound state calculation has a smaller rms radius than the input. This 

self-consistency problem can be solved by adding to the width function 

v , the "interaction" in the Van Vleck kernel some density dependence 

like 

(6) 

.. 

,. 
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with ()(, (S> O. The resulting kernel "'v' (1- 0( pf!> ) gives a sum of 
3· I~ . 

terms proportional to P3, -p, . and P for the energy - readily 

seen from the Thomas-Fermi approximation. One can therefore get it 

stationary at the observed nuclear saturation densities. In this class is, 

for instance, Bethe I s recent proposal for the effective NN interaction 30): 
~ 

v . (1 - ()( p3 ) . A similar term appears in HF-type formalisms as a first 

order correction for nonlocality of the two-body ·potential. This is seen 

from the analogous formula to eq. (4) for a nonlocal NN potential. The 

equivalent momentum dependent potential derived this way is a local one 

multiplied by the usual power series in momentum operators squared - if 

the kernel is sYmmetric: 

2 4 
v . (1 - ap . - bp - ••• ) (7) 

And eq. (6) follows from the statistical approximation: 

The particular power ~ = ~ is therefore suggested from such considera­

tions and used in the model below. The choice is not critical as long as it 

is not very diH'erent from this value: Some variations in the range O. 3 ~'r ~ 1 

with adjustments of other parameters left results prretically unchanged. 

,,'-"I t .... ") 
Similar arguments hold for the Simplification of taking p( Ir:;, r I 

instead ofp( t= ~ F) ;:: p(l r ~?') for the spherical density distributimls . 

considered here (for nonspherical p see sect. 5). Both choices should 

give essentially the same fits to the data up to some parameter renormaliza­

tion. 

A summation of the prec'e ding considerations therefore yields as 

the most straig,htforward model of a nuclear kernel: 

?. 

kU=;f') == v(l ~-r'l)~ [I ~ (f)3 J. F(x) 

This will be adorned by two "fine structure" terms discussed in the 

following subse ctions. 

(8) 
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1 . 3 I -Spin Dependence 

Conventionally, the i- spin dependence of nuclear single -particle 

Hamiltonians is introduced via a Lane potential 31) 

..! .-10 

t . T/A (9) 

~ ....I. 

where t and T are respectively the i-spins of the nucleon and residual 

nucleus in question. Howe ver, this term yields the wrong isotopic varia­

tion of rms radii of e, g. Ca isotopes if it is used with the strength necessary 

in optical model fits or as required to fit the neutron/proton ratio in heavy 

nuclei. Only an inconsistently small strength parameter could reproduce 

the data 32) 

Considerations similar to the ones that led to the kernel (8) would 

suggest to use for the effective p an appropriately weighted average of 

the densities Pr ') corresponding to neutrons and protons, namely 
I ,± 2. 

(10) 

with a dimensionless parameter r (. 1. This can be interpreted as assuming 

that only a fraction of the like nucleons interact with the particle in question. 

or are felt by the particle as attractive as the unlike ones. One can there­

fore account for effects of the Pauli principle as well as for i-spin dependent 

terms in the NN interaction. It is only the latter that led to the assumption 

of the Lane potential. In the statistical limit, where surface terms are 

neglected, a simple exercise showsthe present ansatz (10) to be completely 
, ' 

~ -l 

equivalent to Lane's term p' (1 + c.( t·T/A), However, eq. (10) can repro-

duce satisfactorily the neutron/proton ratios or optical model results as 

well as the isotope ·shifts in rms radii. Recent fine structure investigations 

of the, i-spin dependence 33) also seem to favour a term like (10). 



. ~' , 

- 11 - UCRL 17801 

1.4 Sp1n .. Orbit Interaction 

A single-particle spin-Qrbit term of the type 

(11) 

can be derived from HF ... type formalisms 34) and now even its strength 

appears to be understood in this framework 35). About equally satisfactory 

seems to be the pragmatic introduction of this term as the simplest invariant 

(with respect to rotations and inversions) proportional to p, s, and vp 
namely 36) (p x -§)- '7P . This gives eq. (11) for spherical nuclei. How­

ever, the present calculations with such a term did not show very clearly 

the shell structure for heavy nuclei, as seene. g. from the results of the 

next section. One reason seems to be the factor r'dr/cir that emphasizes 

the influence of wiggle s in the inside denSity distribution. This did not show 

up in similar but nonMself-consistent models where the density (or potential) 

was proportional to the usual Fermi function that is practically' constant 

inside. Therefore, a form. 

z(~ .... ) r . pxs ''Vf (12) 

might improve the results . 
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2.1 The Five Parameter Kernel 

The accumulation of all essential pieces from sect. 1 yields the five 

paramete r ke rnel 

'J. " 

;:: V exp(-y/a) (1_ ( ~/)())3J' r, - (J sl ~ I p (x) 
y fa. ~ L X r);l. .. )~t 

(13) 

+ [(Y).[i -WlilVG,u/X) ) 

with 
I 

X = J:±r. 
2. ) 

and (14) 

for the self-consistent field model (1) of spherical nuclei. The electro­

magnetic part is assumed to be given by the static Couiomb potential 

V Coul of the proton density f(-~) normalized to Z - 1; cf. ( 17). 

1) The parameter v simply determines the eIH'gy scale and was adjusted 

in all computations to give (within 0.3 MeV) the total binding energy 

for Pb
208

. 

1;' 

2) According to the discussion in sect. 1.2, the nonlocality range should ,.;\ 

be O. 7 ~ f~ ~ 0.9. An increase in a widens the level spacings, i. e. 

decreases the effective nucleon mass - as is readily seen from eqs. 

(4) and (5). An increased 9- yields larger rms radii if v is 

decreased according to 1) and all other parameters are kept fixed 

(cf. the discussion below on parameter set B). 
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3} The parameter, P, stands for the (average) critical nucleon density 

where the nucleon .. nucleus interaction changes from attractive to 

repulsive. Since actual nuclei saturate with (average) central densities 

around 0.15 fm -3, ?. m~st be larger than ,this value. An upper 

limit around 0.5 fm ... 
3 

is given from hard sphere packing according 

to hard core NN potential models. It turns out that the pre sent model 

reproduces the rms radii of actual nuclei for 0.2 <. f~~ ~ 0.4. 

4} The observed sequence of shell closures allows a fairly unique determina­

tion of the strength () for the conventional spin-orbit term. This 

parameter is confined here to O. 45 ~ ~"2.. £ 0.55 if one wants to 

reproduce the magic nucleon numbers up from N == Z == 20. Of course, 

even narrower limits result if the other parameters are kept fixed and/ 

or further details of the shell model spin assignments are required. 

5) The i-spin mixing parameter T determines (like u ) essentially 

some sort of fine structure; e. g. the isotope shifts in rms radii. 

Satisfactory fits to most gross data.~ like masse s and radii, are 

possible with a very wide range of T values. But in order to fit the 

isotope mass- as well as rms ... dependences and the neutron/proton 

ratios in heavy nuclei this parameter should be in the range 

0.1 < (~ 0.5. 

The above discussion reveals the problem of a "fit" here; there are 

various data of different dimensions that should be reproduced reasonably 

well. But within the scope of this work there is no obvious selective 

principle for the preference of a better fit toone particular set of data, 

say radii, on the expense of fitting other data, masses for example. 

Naturally, it depends on the application of the model, to which data some 

sort of least square fit will be performed. In any case, the parameters 
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should be confined to their "physical" limits discussed above. 

The parameter set A of table 1 was used here for the fairly exten­

sive comparison with data of spherical nuclei. The set B of table 1, has 

the parameters ex and R close to the limits of their reasonable regions. 

A decrease in rms radii (by about 4%) that would result due to the increase 

of ~ from o. 3 to 0.4 fm -
3 

is compensated in this case by increasing 

the nonlocality from 0.8 to 0.9 fm. Some results for parameter set B 

are given in table 2. 

2. 2 Re suIts for a Typical Parameter Set 

It should be emphasized that all results in this paper except for table 2 

refer to computations done with just the one parameter set A of table 1. 

I. e. everything is computed with simply the rough center values of the 

above estimated parameter regions. In view of this fact, the general 

agreement with data throughout the pe riodic table is surprisingly good. 

Absolute values for masses, radii and Is proton levels are reproduced 

within a few percent. The mass and radius difference data are quite satis­

factorily reproduced, mostly within 30 %. Even the higher order difference 

quantities like rearrangement energies or isomer radius shifts seem to 

result with the correct order of magnitude. 

'-, 
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Fig. 4 shows density distributions of protons andneutrons (lower and 

upper solid lines). One point of recent interest is the "neutron skin" of 

. 37 -40) 41) 208 
heavy nucleI, the Johnson-Teller effect. In the case of Pb, 

for example, the results of pionic scattering and isobaric analog state 

analyses seem to disagree significantly with mu or K mesic experiments. 

Rms radius differences of neutron and proton densities deduced from the 
. .. 37 40) 

former type of data are about two percent' whereas more than 10 

percent are reported fromp:'atoms and K-capture as well as from some 

optical and shell model analyses. 38) The present self-consistent model 

gives rms(n) - rms{p) = 0.07 fm (see table 3) in excellent agreement with 

the value 0.07 't 0.03 fm due to an analysis of the isobaric analog state 39) 

which is consistent with recent rt -Pb scattering data. 40) In addition, 

the absolute magnitude of the 208pb rms charge radius given in table 3 

agrees perfectly with elastic electron scattering experiments yielding the 

42l 
value 5.42 :': 0.03 fm. One should notice the neutron skin or halo of 

208pb shown in fig. 4 which looks surprisingly large in view of the small 

rms radius difference. In the case of 40Ca~ the effect is revers·ed. 

According to the present calculation~ the rms radius of neutrons is 0.04 fm 

smaller than that of the protons; in qualitative agreement with a recent 

optical model analysis. 4
3 

Figure and table 5. give calculated isotopic variations of charge 

densities for some S:t;l and Ca isotopes. For example~ the calculated 

44Ca to 40Ca rms charge radius difference agrees well with experiments. 44) 

Use of the standard (N -Z)/ A term from optical model fits (instead of the 

term (10) ) would yield the wrong sign for this shift. 
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3. Rearrangement Effects 

In any HF-type many-body formalism kernels depend on the occupation 

functions which are for the ground state e. g. e (EVf:~i- 't:y ) in HFor 

(I t (tvr-Ey)/ V(E'JF-l.)-A'l. )/2. in Hartree-Eogoliubov';type formalisms. 

The effective force acting on a single nucleon will therefore change when 

different states (orbits) are occupied by the other particles, Le. when the 

residual nucleus rearranges. The corresponding orbital rearrangement 

15) 
energies have been discussed with this model in some detail elsewhere 

They were shown to be comparable to eigenvalue-differences in local 

(W ooc&Saxon-type) potential wells. Hence, it is an unjustified simplification 

to identify such level spacings with the mass differences observed e. g. in 

nucleon transfer reactions. Parameter set A of table 1 gave a good fit 

to all difference data in the Ca region. One typical example is the first 

47 . 
neutron hole state for Ca : The observed mass dIfference to the ground 

state of about 2.6 MeV is reproduced by the present single-particle Hamil­

tonian that gives at least 6 MeV for the corresponding level spacing; i. e. 

more than 3.4 MeV result from orbital rearrangement (cf. ref. 15). 

The agreement with the mass data is also excellent for the 

40 Ca '! one nuCleon differences (see table 4). For this example another 

type of rearrangement effect is revealed in fig. 6. Conventionally, the 

eigenvalues were fitted to the experimental total binding energy differences; 

L e. rearrangement was totally neglected. Of course, one could not do 

better in calculations that had no chance to get the right order of magnitude 

for the total binding .. like in local potential model fits. Here, in fig. 6, 

the observed binding energy differences are reproduced within 0.2 MeV. 

However, due to rearrangement, they differ up to 6 MeV from the 

corresponding eigenvalues. 
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It might be argued that for some reason this model strongly 

overestimates rearrangement effects. But the magnitude of this models 

rearrangement response can be checked to some extent by a comparison 

with the calculated isomer shifts due to single -particle excitations (table 6). 

Their orde~ of magnitude seem:;to be confirmed by some relevant data 45) . 

This corroborates the present results on rearrang:ement energies because 

of the well-known radial and eigenvalue shift correlation for single ... particle 

potential models. 

This observation also casts doubts on shell model calculations 

that use the observed total binding energy differences (of At1 nucleon 

systems) as the eigenvalues for one constant single ... partic1e Hamiltonian: 

Rearrangement destroys the orthogonality of the wave functions for single .. 

particle states of nuclei with different excitations and I or nucleon numbers. 
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4. The Magic Proton Number 114 

The charge spectrum of cosmic ray nuclei indicates the existence of 

nuclei with Z ~ 11 0 46) . An increasing amount of experimental effort is 

spent now to produce such super .. heavy nuclei 47). For some time, Z III 126 

was the main theoretical candidate for a relatively stable super-heavy 
was 

nucleus. This belief based on a simple minded shell model picture that 
1\ 

did not differentiate between protons and neutrons and thus assumed a 

repetition of the N = 126 shell in Z. 

Shell closures, i. e. structure dependent tendencies to prefer spherical 

shapes, have been shown to be of prime importance for the spontaneous 

fission half lifes of super ... heavy nuclei 17). The contribution to the barrier 

height due to shells is negligible at the proton number Z = 50 and is about 

30 % of the total for Z around 82 near the beta stability line. In the region 

beyond Z = 110 the average value or liquid-drop-model barrier becomes 

practically negligible, since it is quite small as compared to the present 

uncertainties about structure dependent contributions there. 

About 4 years ago, calculations of this author showed Z = 114, N = 184 

to be a clearly preferable . candidate 16). This has since. been confirmed 

b . ddt' 14, 18) d' 'd 1 d' d 48) Y many 1n epen ent compu atlons an 1S W1 e y 1scusse now . 

The extrapolations were based on single .. particle potential fits that showed 

a shell structure in the eigenvalues similar to the one observed in the ex ... 

perimental mass defects. Fluctuating rearrangement effects were totally 

neglected. Most authors used the questionable procedure of identifying 

eigenvalue spacings with mass differences (cf. sect. 3}. 
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The present calculat~oIB .check the real shell effects in the nuclear 

masses. As can be seen from table 4, the partial derivative d EJ d Z 

of the total binding energy (mass) changes considerably at the proton 

number Z = 114 when parameter set A of table 1 is used for super-

heavy nuclei. The present calculations for N • 172 and 186 show the 

expected decrease of the shell effect for isotopes far from the extrapolated 

beta stability line. At N = 172 and Z Ie 114, the lack of neutron excess 

seems to smoothen the -step in the mass function to an insignificant wiggle. 

For 186 neutrons the shell ,effect has the magnitude observed at established 

magic numbers. Therefore, experiments on Z = 114 should aim for compound 

nuclei with mass numbers around 290 or higher. 

5 .. Deformed Nuclei and Fission 

It is rather straightforward to extend the model given by eqs. (1), (13) 

and (14) to nonspherical, in particular axially symmetric density distribu­

tions. Present computer sizes, however, seem to require some sort of 

"local energy approximation" to the nonlocality problem. For this case, 

most aspects of the resulting numerical work have been investigated 

recently 49). The present Hamiltonian is in such an approximation for axial 

symmelriccasescf. ref. 49, eq. 2.8} 
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(15) 

where cylinder coordinates (z# b) are introduced~ b 
2 

• x
2 

+ y2, and 

is the effective density calculated according to eqs. (13) and (14) . 

Mainly two methods are used for the computation of the energy dependent 

local potential that corresponds to a given' Van Vleck-type kerne1. In bound 

state calculations the simple technique of using the Fourier transform 

according to eqs. (4) and (5'1; i. e. 

v(E) ::: [J 4- \~ a:(£-V(z.))]-' (16) 

is probably as good 50) as the fancier LEA 51). Equations (15) and {16) 

give a framework for self-consistent calculations of nuclear single-particle 

data. The problematic boundary condition of "volume conservation" in 

equipotential contours, for example, is completely avoided here. In fact 

all the classical difficulties 52) of the Nilsson .. type models for deformed 

nuclei and adiabatic fission computations do not arise. 

J 



/ 
" , 

- 21 - UCRL-17801 

6. Conclusions 

The final remarks of the proceeding se ction reveal the main reason 

for the computations done so far:' A check of the qualitie s of the proposed 

model that is designed to work for a much wider range of applications. 

Already here, the proposed Hamiltonian was used for the calculation of more 

independent data than was conceivable with previous models. For spherical 

nuclei, one constant set of five physical parameters allowed to reproduce 

satisfactorily 

1) charge density distributions, including isotope and isomar shifts, 

2) 1s proton levels as measured in (e, erp) scattering, 

3) total binding energies of nuclear mass defects, and 

4) the shell model spin assignments and mass structure 

throughout the periodic table. Hence, it seems that all future work in this 

direction has to confirm quantitatively the essential features of a nuclear 

kernel determined here; in particular the nonlocality and rearrangement 

effects. The present concept works quantitatively good enough to allow 

predictions like the proton shell 114. 

Equation (1) was solved (numerically) exactly. The results can there­

fore be used to check approximations that might be necessary for deformed 

and fissioning nuclei. 

Naturally, there are many improvements to be considered like those 

mentioned in the discussion about the spin ... orbit term. Some residual 

interaction effects of the pairing type, for instance, could be taken into 

account by appropriately smoothening the step function used in eq. (14) 

for the occupation probability distribution. 
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APPENDIXES 

For spherical symmetric density distributions the radial equation is 

r~(rA1. _ R(R+I)) _ F '. ]U . (r) = 
! 2\'11\ rAf1. \0-2 -""/"WI nf.!~ 
'- lIt t 

00 2-

V r dr' h/r,r') [/-(f'TH e.;") - ~ (i(i ·HrM - ~) e:~<) ] 1)."1';(r') (17) 

() 

r C>:') 

+ (i -~t) 2;1 e2. [ ~ rdylr'2fr_})~'J + fJ.r'r' Fr-tV') ] !A..ij, (rl 
o '- r 

where h denotes the radial, ~ the orbital angular momentum, 
\ 

1 the total angular momentum quantum number, and I'I'lt the i-spin 

3 -component for the nucleon in question; pi is the derivative of p with 

respect to the argument and e2. = 1.4368 MeVfm. The hf are the partial 

wave projections of the width-function V ( I r - r 'I ). 

The single-particle equation is assumed to emerge from pure two-body 

internucleon forces. The total binding energy is therefore 

( 18) 

where the sums extend over the occupied levels; t. is for the spherical cases 
1 

( 19) 

'. 
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A1. Eigenstates in Strongly Nonlocal Potentials 

The computer problem is to find the first few eigenvalues e and 

eigenvectors u of an integro-differential' equation 

00 

(e+Ccr»)] U(r) + fdrl~(r;r')IJ(r~) =0 (20) 

o 

tH 
for boundary conditions of the type lim I),(Y) rv r and lim U(r) N e~(-rV€) 

'1"" .... 0 r~cO 

Selecting an appropriate finite integration interval (0, R), divided into N 

parts and with s = R!N, c. : = C(is), and g .. : = g{is, js) one gets the 
. 1 ~ 

corresponding difference equation (h - e) u = 0 with a sym~etric matrix 

r 
sa -c - ~ 
-0" " S 

I S~ +~ 
21 , 

sq , 
O!I 

S~NI 

SCI 
d!N 

, 

51 
A good approximation u(oJ to u is obtained e. g. from a LEA program 

The vector u.(O) fulfills approximately the same boundary conditions as u 

and has the, same number of nodes. An appropriate iteration program is: 



i : = 0 

[1 ] nomalize 

[2 ] compute 

- 30 -

LA u.}:::: u. (() ----'­
liOT ()...(l) 

e (i) .::: uWT h u.W 

UCRL-17801 

[3] solve u.(i+l) = (h-efi)r' uCO with some standard inversion program 53 ) 

I e(i+J) - e(i) \ II -:-,U)) -1C 1 [4] . i : = i + 1, go to [1] until ':':" '" 

This "Wielandt Inverse Iteration" 54 ) works as follows: 

Let v be the exact solution, i. e. (h - e ) v = O. Then, step [3] is in 
m m 

spectral decomposition 

i. e. 

Therefore, the iteration converges to the nearest eigenvector v which 
m 

is picked out via the above pole. 

(21) 

" 

.. 

'. 
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A2. PartialWave Projections of Yukawafunctions 

The above hI are 

~ .... , 
)

' 0 exo(-/~-rilla) 
L (r I):::: ">rrrr' d:c r,,(:.) -~-.-~.-----
Ylo }r I L..H. ~. L I"'> _v-::'i / ( . r . Of 0 .. 

-I . 

with r =: I f!1 y ,?:i: ~~ .. 
. '-:. 

since 

. i.. 

with 

the following formula is feasible for computations: 

r e 'r P _.I' Q 

h~(\)r') :::: 2Jc6-[~t:iL(_)k1;k(!:)-(-)~eC;[T;k{~)Je ~[1e,J!)for r-c.r' (22) 

k~o k~D k=o 

i. e. " etc. 
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A3. Charge Density and Proton Formfactors 

The nuclear charge density Q is obtained by folding the proton 
leI-. 

probability distribution with the electric proton formfactor f 

"'1' 

P Cr) = L f cir'l \L) II~ (Or-f'j) 
left y. Iv,-)E T \ 

(23) 

The tD I are properly normalized single-particle wave functions and the 
T~/-a 

sum extends over all occupied proton levels. The best phenomenological 
56 ) 

proton formfactor appears to be an exponential : 

. s 
fer-) == ~ ~p (-on-) with 

'2. 0...) t 

and <r / == )Vir '("'f(r) 

For spherical symmetric p ='L 1<P12 one has 

00 , 

e (r) ::: 21[ S otr'r''l prr') [rJ t f(ftiH,2-2rr'?) 
ch 0 _I 

which is here 

0( [Coo ~ _~lr-r'l _ C>((nr')1 
F (r) ;::= '+r dr'r'p(r')L(~'r-r'l +1)e - (()((r+rl)+j)e J 
ck 0 

(24) 

The present calculations were done with the value <r'2.> = 0.75 fm (cf. ref. 56). 

)' 

~I 
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Table 1. The two par'atrieter sets used in the present calculation. 

Except for table 2 all results refer to parameter set A. 

v/MeV a/fm p,/fm (S/fm T 

set A 391.3 0.8 0.3 0.5 0.3 

set B 289.0 0.9 0.4 0.5 0.3 
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Some re suUs for parameter set B; cf. se ct. 2. 1. For 

experimental data and the pairing correction see tables 3 and 4. 

I 

Binding Energy/MeV <r.1'\Z Ifm 
/ charge 

396.4 3.18 

1636.2 5.38 

4.9 

208pb - 207 Tl 5.7 

4.8 

5.3 



Table 3. 

Nucleus 

40
Ca 

44Ca 

48
Ca 

88
Sr 

118
Sn 

140
Ce 

208
pb 

300
114 

, 
~ ~ ~, 

Binding energies and rms radii for some spherical nuclei. 

Additional comparisons with experimental data give e. g. 1 s proton level ~ 

40 . . 22) 
in Ca: experimental 77"±.-14 MeV ~ calculated 79 MeV. 

Binding Energy / Me V 
2 .1 

Calculated rms radii/fm 
I 

I 

.(r7! Exp. Calc. 
<r >~harge zr 1» "i: 

p 

342.0 339.4 3.15 3.06 3.02 

380.9 380.3 3.22 3.13 3.20 

416.1 426.6 3.29 3.20 3.34 

768.5 777.5 4.02 3.95 4.02 

"1004'.8 1017.9 4.50 4.43 4.47 

1172.8 1189.0 4.47 4.68 '·4.73 

1636.4 1636.4 5.44 5.38 5.45 

2140.5 6.26 6.21 6.24 

I 
w 
Vl 
I 

c:: 
(J 

~ 
t:-' 
I 
/-' 
...... 
CD 
o 
/-' 
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Table 4. Rms radius and binding energy differences at closed shells ~ one 

nucleon for established magic numbers and for Z = 114. 

Binding Energy Differences/MeV Calc. Radius Differences/ fm 
,-; .L 1-

Magic Number Nuclei Exp. Calc. .6 <r .... > 2. ~ /r'2-- 7-

p 
'--- ./'> n 

41C 40
C 8.4 8.4 0.019 0.048 

N = 20 
a- a 

40
C 

39
C a - a 15.6 15.3 0.006 0.005 

41S 40
C 1.1 1.1 0.051 0.022 

Z = 20 
c - a 

40
C 

39 
a - _ K 8.3 8.0 0.021 0.011 

49 48
C 5.0 0 0.010 0.042 

N = 28 
Ca - a 

48
Ca 

_ 47 
Ca 10.1 13.3 0.020 0.034 

63
C 

62
N

" 
6.1 2.7 0.011 0.003 

Z = 28 
u - 1 

62Ni 61c . 11.1 13.9 0.033 0.017 - 0 

N = 50 

89
Sr 

_ 88
Sr 6.8 5.3 0.007 0.013 

88
Sr 

_ 87 Sr 11.1 11.7 0.004 

Z = 50 

119
Sb 

!18
Sn 5.2 2.3 0.008 

lIES 1171 
n- n 9.9 10.7 0.004 

f!1 

.-, , -

~ 



'f' 

-37-

table 4 cont. 

" , 

141C 140
C 5.5 3.3 

N = 82 
e - e 

140
C 

139 
e - Ce 9.1 8.6 0.005 

Z = 82 
209

Bi 
_ 208

pb 3.8 3.3 ' 0.008 

208pb _ 207 Tl 
8.0 5.5 

N == 126 

209
pb 

_ 208
pb 3.9 3.2 0.004 

208pb _207Pb 
7.4 5.4 0.004 

287
115 

_ 286
114 0 

286
114 

_ 285
113 3.4 

Z = 114 

301 115 _30°114 
0.1 

c 300114 - 299
113 5.2 

The pairing correction is assumed to be 15/ Ai MeV 57). For 

experimental rms charge radius differences cf. e.g. ref. 58. 

The energies are calculated with an accuracy of about 0.2 MeV. 

UCRL-17801 

0.007 

0.006 

the radii within about 3. 10-
3 
fm. No radius difference is reported for 

cases where the result was smaller than this error. The calculated 

charge radius differences agree with the corresponding proton 

results within the numerical adcuracy. 
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Table 5. Some calculated isotope shifts of rms radii. 

44C 40C a - a 

48 44 
Ca.., Ca 

120S 118
S n- n 

114S 112S 
n- n 

2.1. 
A(r >~/fm 

0.08 

0.08 

0.04 

0.01 

" .1. t.. .1... 

IJ.( r > Jfm 
n 

0.08 

0.15 

0.06 

0.01 

Within the accuracy of the calculation the charge radius differences are 

. 124-122 122-120 
equal to the corresponding proton results and the Sn. Sn, 

118-116 116-114 . 
Sn as well as the Sn differences are all equal to the 

120-118Sn shift. Note the large calculated neutron rms radius difference. 

f 
48-44C 

or a. 
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Table 6 . Examples of rms charge radius differences between the 

first one neutron hole excitation and the ground state. 

Except for the case of Ca, the amount of computer time invested 

here did not allow to .check for more than the orders of magnitude. 

47C 47 . a - Ca 0.012 0.037 

207 Tl _ 207 Tl 10-3 10- 3 

207 Pb - 207 Pb 10 ... 4 10- 3 
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FIGURE CAPTIONS 

Depth of the nucleon- nucleus potential as function of energy. 

The solid bars give the limits for regions 1 to 4 as discussed 

in sect. 1.1 • 

Proton eigenvalue spectra for spherical nuclei close to the 

line of beta stability. Eigenvalues with equal quantum numbers 

are connected by straight lines (to guide the eye). Note the 

somewhat fluctuating results as compared to the smooth curves 

of non-self-consistent calculations 13) . 

Neutron eigenvalue spectra; cf. fig. 2 • 

Upper and lower solid curves give the density distributions of 

protons and neutrons for some nuclei on the beta stability line. 

The dashed curves are the nuclear charge densities calculated with 

eq. (24) from the corresponding (bare) proton densities. Examples 

of Fermi function fits to electron scattering data are shown as 

dotted curves. The different fits of ref. 44 are practically 

indistinguishable in this figure. . ' 

I t "; "t' f h d "t' d"' "b t' f 40, 44~ 48 so OplC varla lon 0 c arge enSl y lstrl u lOns or ' Ca 

d 112,118" 124S 'f 1 f ~, d 
an ni c • tab e 5 or rms ra fi. 

Example for rearrangement effects: N =Z = 20 shell! one nucleon. 

Compare the eigenvalues/MeV (arrows) with the circled total 

binding energy differences A E/MeV" An excellent fit to the 
, , 

data results ecL table 4) when a pairing correction of 2" 4 MeV is 
40 '---

added to , Ca. Conventionp;lly, the eigenvalues are identified with 

total binding energy differences: cf. sect~ 3 ~ 
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Fig. 6 



o 

LEGAL NOTICE 

This report was prepared as an account of Government sponsored work. 

Neither the United States, nor the Commission, nor any person acting on 

behalf of the Commission: 

A. Makes any warranty or representation, expressed or implied, with 

respect to the accuracy, completeness, or usefulness of the informa­

tion contained in this report, or that the. use of any information, 

apparatus, method, or process disclosed in this report may not in­

fringe privately owned rights; or 

B. Assumes any liabilities with respect to the use of, or for damages 

resulting from the use of any information, apparatus, method, or 

process disclosed in this report. 

As used in the above, "person acting on behalf of the Commission" 

includes any employee or contractor of the Commission, or employee of 

such contractor, to the extent that such employee or contractor of the 

Commission, or employee of such contractor prepares, disseminates, or pro­

vides access to, any information pursuant to his employment or contract 

with the Commission, or his employment with such contractor. 
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