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T . X
Heiner Meldner

(

-Lawrence Radiation Laboratory and Department of Physics

University of California

Berkeley, California

ABSTRACT

A simple selfconsistent single-particle equation is investigated

ahd-‘compafed with similar attempts. The proposed model is designed to
be par‘ticﬁlarly suitable for the calculation of (adiabatic) fission processes.
The kernel .of this integro?differential equation has a structure that allows
to reproduce satisfactorily with one constant set of five physical paramefers
 1)' Charge_-density distributions, .including isotope shifts,

2) 1s i)roton levels as measured in {e, e'p) scattering,

3) total binding e_f;ergies or nuclear mass défects, and’

4) the shell model spin assignments and mass structure

tﬁroughout the_périodic table. Hence, it seems that all future work in this -

- direction has to confirm quantitatively the essential features determined

here; in particular the nonlocality and rearrahgement effects. Rearrangement
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energies appear explicitly', since the present model, similar to self-
consistent fields of appropriate many-body formalisms, yields different
eigeﬁvalue spectra and mass defects for different occupation functions.

The partial derivative BE/ 9 Z of the total binding energy (mass) changes
considerably at the proton number Z = 114 when the present Hamiltonian
is used for super-heavy nuclei. This confirms an earlier suggestion made
by this author on the basis of a gap in ’the proton eigenvalue spectrum at

Z = 114, The present calculations show this shell effect to become insigni-
ficant for isotopes too far from the extrapolated beta stability line, in

particular for N € 172,
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INTRODUCTION

Phenomenologicaily, the Hamiltonian for a nucleon bound in a
nucleus allows a rapidly‘_converging' exvp.ansion: H=HIl+H2+,.. in terms
of one—body, two—body, “etc. operators; i.e. a ”‘realistic" model for the single-
particle Hamiltonian H1 accounts" rather aeourately for gross nuclear data
of bound and scatterlng states - thus leaving only small phenomenological
many-body forces to produce re51dua1 correlatlons This picture compre-
hends essential facts like the pronounced nuclear shell structure and the
extremely small ratio of the odd-even mass staggerings to the nuclear

binding energies, However, even a dozen years after the establishment of

-3)

the shell model phenomenology 1 , basic quantitative questions e.g. about

the extent of nonlocallty of Hl and it's rearrangement - type reSponse

are far from belng noncontrovers1a11y settled.

One purpose of this work is to investigate such features of realistic

vnuclear single-particle Harn_iltonians without the usual strong restrictions

and oversimplifications due to rather limited computer facilities. For
example, self-consistent equations with nonlocal potentials are solved

(numerically) exactly here.

Two approaches for the determlnatlon of Hl1 are eas11y
d1st1ngu1shed' Number one is the direct pragmatlc way, i.e. an ansatz’
for a phenomenologlcal s1ng1e particle equation (usually involving nonlocal
one -body potentlals). Number two deploys some _many—body formalism ,
with phenomenological two-body potentials. At the present stage of the
theory °~ , preference of the latter i‘sﬂ'unfortu'nately based on the prejudice
that a complicated answer to a complicated question is more relia_ble' than '

a simple one, This uncertainty 'is due to the fact that all number two

approaches - although potentially closer to a first principle method -

still have to be based on a practically unsolved many-hadron problem.
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The NN interaction is not sufficiently understood at the distances of .
major importance for this purpose, i.e. smaller than half the inverse
pion mass 4). This implies the high uncertainty about the off energy shell .
behaviour of NN potentials 5) - in particular about their nonlocality.

- The latter quite obviously exhibits the ambiguity of fits of the two-body
NN scattering with potential models; since one can always construct
classes of phase shift equivalent potentials with identical spectra butb
quite different off energy shell behaviour, including cases which give
singular Hartree-Fock-type matrix elements. E. g. any unitary transfor-
mation acting on a given two-body Hamiltonian that contains some NN
phaseA.shift fitting potential gives ahother Hamiltonian, say. ei = He_i ok s
with a potential of generally different nonlocality of off energy shell
behaviour. The fit to the on shell data is preserved, as long as the change

6)

of the T-matrix {proportional to the change of the Hamiltonian ’) vanishes.
there, i.e. ET ~ §H ~ [£2 , H] = 0. Thus, all such transformations
with hermitian two-body operators {L yield equivalent on shell potentia‘ls,

7). This

once the transition matrix element of this commutatbr vanishes
can be viewed as a formal method to obtain families of equivalent potentials
by generalized Scott-Moszkowski-type 8) separations. Therefore, it would
seem futile to work numerically with approach number two, as long as the
question of off energy shell behaviour is not sufficiently understood quanti-

tatively . Presently, it is hardly possible to decide here qualitatively ,

namely between the extreme cases of purely local hard core versus highly

9)

nonlocal smooth potentials

_ Safe, however, seems the basis of a nonrelativistic potential
description of NN forces at the low kinetic energies 'of nucleons bound
in many-baryon systems. This belief is due to the small ratio of the

10)

pion to the nucleon mass . Thus, it is also safe to rély on the gross
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structure of _sing_le particle equations as given by many‘ébody formalisms

and approximations which are based on sufficiently general NN potentials.
This - presently WiS_é - restriction to the qualitative results of such formalisms
- requires the parametrization of a nuclear single-particle Hamiltonian, as

is done e.g. via the ansatz of a Woods-Saxon or Nilsson-type potential;

151 '
! '14). However, these simple

usually with some velocity dependence
models of a nuclear self-consistent field cén be replaced now. Modern
computers allow a considerably improved simulation of the nuclear

single-particle equations that are expected from reasonable many-body

formalisms.

One’ suggéstiOn in this direction is made here {Sect. 1).
Actual complications in comparison to the an'ciént nuclear well ansatz were
found to. be unnecessary. The proposed single parﬁcle Hamiltdnian has a . 7
structure close  to the one given grossly by Hartree—Fock-Bogolubov or
Brueckner—type-formali_sms. I.e._ nonlocality, density-, spin’-orbit—? and
i—spin—dependences ai-e introduced into the kefnel of this equétion in a form
as expected in first order from such formé.lisr_ns involving rather general

nonlocal NN potentials,

Sect. 2.2 shows that only five physical parameters allow a
surprisingly good fit to many independent data throughout the periodic
table. Such a widespread application was inconceivable with previous models
of H1. The esséntial features of a realistic single-particle Hamiltonian seem
to be determined rather uniquely this way. They will have to be confirmed,
once substantial experimental information on the off energy shell behavio‘ur
“of NN potentials has been accumulated s0> that some number two approaches '
can leave the status of model{dependent mod'eis. The quantitative results
of the fairly conservative and pragmatic approach adopted here provide a
rather safe foundation. This resembles the situation in nuclear phjsics of

small baryon humber hadron systems, where a pragmatic approach now
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determines basic features in terms of Regge singularity parameters.

Rearrangement-type responses {Sect. 3) of this self-consistent
model appear to have the right order of magnitude. Orbital rearrangement

energies, for example, were found to be comparable to level spacings

15)

in nuclear potential wells. °’ This result seriously questions the usual

identification of such level spacings with the mass differences observed e.g.

in nucleon transfer reactions.

In the presence of fluctuating rearrangement energies, a gap in
the eigenvalue spectru-m,. as e.g. found at the proton number 114, does not
necessarily lead to a real shell effect in the masses as a fﬁnction of nucleon
numbers. The deployment of this realistic Hamiltonian.i.n the region of
super-heavy nuclei {Sect. 4) therefore provides an almost independent
check on the magic proton number 114 which was originally 13, 14, 16-18)

suggested from extrapolations of proton eigenvalue s’pectra.

All data in this paper refer to spherical nucleij Sect. 5 deals in
some detail with the straightforward extension of this self-consistent
field model to axially symmetric deformed densities. The present form

has particular advantage for the description of adiabatic fission processes.

The appendices are concerned with some of the computational

problems.
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1. The Self-Consistent Field Model

A single-particie equation éf the type ‘
2 \2 . ' '
R a ) -l d—" K a _af
(o 3zx = Ewym) Q) = JdFK R0
Y- 4 yim / ) 1

is sufficienﬂy general to al'lowv'for a rather realistic model of the nuclear
self-consistent field. The subscript VY stands for all quantum numbers
sp'ecifying a bound nucleon except for its i-spin 3-component m, . The

deployment of plain Hartree Fock, for instance, i.e.

K (n%) / (ﬁﬁ?ﬁ)u(ﬁf')f@ -§ (F‘~'“’")fdf ﬁ?ﬂuﬂ‘ff’ '){.@(F')) |
- (2)

* %-‘mf).K(

OU.LMM‘:

with suitable models for ul(r', r') provides nuclear single-particle Hamiltonians
which are quantitatively almost as useful as the ones inentioned_ in the intro-
duction 19). Therefore HF, i.e. the result in the limit where perturbation
methods are applic'able_to more _gerieral many-body formalisms is sometimés
referred to in the folléi&ing discussion - although one should by no means regard
the phenomenologlcal kernel proposed here as being necessarlly connected

with a plain HF formalism.

A comparison of (2) with the symmetrical factorized Van Vleck-

20)

K FF) = VR U, (Fa?) +(z- ”‘)chz b o
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"ranges" of u and v. Namely the

yields uppéf bound estimates for the
range in |r - r'| shbuld not exceed the order of the inverse pion mass

(1.4fm) and thé function u should essentiaily vanish for its argument lar-
ger than nuclear radii (A1/3fm) .. Therefore u is usually taken to be pro-
portional to the nuclear matter distribution. Lower limits on the range of
the factor v are, for instance, required in order to reproduce the obser-
ved momentum dependence of local potential wells, i.e. the fact that the

effective mass of bound nucleons is not larger than 0.5 in real nuclei
As is shown in the next section, this clearly excludes nonlocality ranges
which are small enough to render a ({—function for v , i.e. local po-
tentials a reasonable ansé.tz. Since the factorized form {3) also allows
for selfconsistency, it would appear to yield the simplest kernel that haé

a chance to simulate any realistic nuclear self-consistent field.

1.1 Nonlocalify

Fig. 1 accumulates empirical information on the Fourier
transform of v{ Jr - r'] ). I.e. the approXimately equivalent

(momentu.m)z- dependent local potential depth '\}'(kz), defined e.g. through
‘ v 2 = dku L/ .- | -0 ! ‘ .a' l: E‘(F‘“F! -~k e ? -
pvic) = JaF K@e)pr) = plo di'e VIE-FD  (a)

Therefore, in order to specify reasonably well a nonlocality function
v{ [r - r'| ), one needs in addition to its width in |r - r'| at least one

more property like its asymptotic slope. For example, Yukawa and

3,21)
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Gaussian formfactors v{ |r - r'| ) fit the dashed curve in fig. 1
vole)=vle -v (&) - (5)

with widths around 0.8 and 1.5 fm respectively (cf. ref. 14).

The most impoi'tant evid'en_ce on vo( £ ) in region 1 comes from the

22) . 0. 75 ‘
(e, e'p) experiments 2 ). Thf_a data on  Ca and = As suggest that 1s pro-

S

tons are bound by at least 80 MeV in heavier nuclei. Other limits on
vo( £ ) in this region may be inferred from estimates of the effective

3
nucleon mass in nuclear matter ’ 21).

In region 2, i.e. for & around the Fermi energies, vo( £)
is most accurately determined in absolute magnitude - via the observed
separation 'energies. But the slope there is subjebt to quite some specu-
lation . One schobl_ suspecfs an appreciable wiggle there 23),- a zero or
even.sig'_n change of the s.lop,e as indicated by'th.e dotted line in fig. 1.

However, the arguments presented for such anomalies are not conclusive

yet (cf. Sect. 3 and ref. 15).

In region 3 and 4 the evidence comes mainly from fits of

24- o
28). Although one cannot completely

disentangle the energy dependencesof real and imaginary parts, there
is general agreement now that the real'part has the minimum decrease
with energy indicated in fig. 1 for the well analyzed 10 MeV region.

Straightforward use of the real part of an optical model fit did exvéctly

11)

yield the shell structure . However, the nonlocality there did corr‘esp_ovnd

to the lower limit for the slope'indicated in region 3 {(derived from refs.

29)

. Therefore,

25, 26) and gave only about half the total binding energy '
: . 27)

the stronger energy dependence indicated by other optical model fits
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is favoured from the bound state fits - if one excludes a strong curvature
of vo( £ ) for & £0. No appreciable energy dependence is established

for the 100 MeV r'egi_on,- v, may essentially become a constant there24 28)_

The dashed curve in fig. 1 corresponds to a Yukawa nonlocality
function with the width used here {cf. set A of table 1 ). This simple form
can account quite well for the data. Superpositions of several YukaWas
that did, for instance, give a‘wiggle in region 2 were found to be unnecessa-
ry at this stage of the phenomenology. A Yukawa i.e. a NN potential-
type function is suggested from the Van Vleck kernel and seems to fit .

the curvature in fig. 1 a little better than a Gaussian.

1.2 Saturation and Density Dependence

The real part of u in Van Vleck-type kernels is usually

20, 25)

taken to be similar to the matter density P : Taklng literally

u = O ( ?:»%-:J——- ) is, of course, not consistent; The output P from a
bound state calculation has a smaller rms radius than the input. This
self-consistency problem can be solved by adding to the width ftmction
v, the Minteraction” in the Van Vleck kernel some density dependence

like

'\/(\'—"' [ ... o ?(F_,? ) N J ((‘;)
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with o, (5 > 0. The resultmg kernel fvv « (1- o<p ) glves a sum of

terms proportional to D3 - P , and {D for the energy - readily

! _
seen from the Thomas-Fermi approximation. One can therefore get it

stationary at the observed nuclear saturation densities. In this class is,
for 1nstance Bethe s recent propoesal for the effective NN interaction 30):
v.{1l - o<f> ) . A similar term appears in HF -type formalls_ms as a first
order correction for nonlocality of the two-body potential. This is seen
from fhe analogous formula to éq. (4) for a nonlocal NN potenﬁal. The
equivalent momentum dependent pbtential derived this way is a local one

multiplied by the usual power series in momentum operators squared - if

the kernel is symmetric:
| ' | o2 4 . |
Vo (1‘ -ap . -bp ._°',') ‘ _ (7)

And eq. {6) follows from the statistical approximation: .

‘The particular power {3=% is therefore suggested from such considera-

tions and used in the model below. The choice is not critical as long as it

is not very different from this value: Some variations in the range 0.3 é’ﬁ <1

with adjustments of other parameters left results practically unchanged.
Similar arguments hold for the simplification of taking P\—?——*

instead of P(FJ r) P(lr”- } for the spherical density distributions

.

con51dered here (for nonspherical P see sect. 5). Both ch01ces should
give essentially the same fits to the data up to some parameter renormahza?

tion.

A summation of the precie ding considerations therefore yields as

the most étraightforward model of a riuclear kernelf

Keeey = vir-e| | ~(f—’") ] 0, _x‘.,. FLEL

A

' This will be adorned by two ''fine structure"_-terms discussed in the

following subsections.
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1.3 I-Spin Dependénce

Conventionally, the i-spin dependence of nuclear single-particle

, 31 v
Hamiltonians is introduced via a Lane potential ) , -
N
t. T/A 9)

—
where t and T are respectively the i-spins of the nucleon and residual

nucleus in question. Howe ver, this term yields the wrong isotopic varia- |
tion of rms radii of e.g. Ca isotopes if it is used with the strength necessary
in optical model fits or as required to fit the neutron/proton ratio in hea'vy
nuclei. Only an inconsistently small strength parameter could reproduce

3¢ .
the data 2) . _

 Considerations similar to the ones that led to the kernel (8) would
suggest to use for the effective P an appropriately weighted average of

the densities p(: 1) corresponding to neutrons and protons, namely
| *z :

~~ . (10)
B’\{. IFD{"W’.{;) * T ﬁw’f) .

with a dimensionless parameter 7" < 1. This can be interpreted as assuming
that only a fraction of the like nucleons interact with the particle in question.
.or are felt by the particle as attractive as the unlike ones. One can there-
fore account for effects of the Pauli principle as well as for i-spin dependent
terms in the NN interaction. It is only the latter that led to the assumption
of the Lane potential. In the statistical,limit,_ where surface terms are
neglected, a simple exercise showsthe present énsatz (10) to be pompletely
equivalent to Lane's term Fj (1 + o ?-—’f‘/A). However, eq. (10) can repro-
duce satisfactorily the neutron/proton ratios or optical model results as

well as the isotope -shifts in rms radii. Recent fine structure investigations

33)

of the 1i-spin depe‘ndence : also seem to favour a term like (10).
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1.4 - Spin-Orbit Interaction

A single-particle spin-.orbi‘t term of the type
- .
2pLde 3 (11)

34) and now even its strength

35)

appears to be understood in this framework

can be derived from HF ~type forfn_aliéms
. About equally satisfactory
seems to be the pragmatic introduction of this term as the simplest invariant
(with respect to rotations and inversions) proportional to P, S, and Ve,
namely 36) (ﬁ X 8)- VP . This gives eq. {11) fof sphérical nuclei. How-

ever, the present calculations with such a term did not show very clearly

the shell structure for heavy nuclei, as seen'e.g. from the results of the

next section. One reason seems to be the factor r—‘df/o(r that emphasizes
the influence of wiggles in the inside density distribution. This did not show
up in similar but non-self-consistent models where fhe density (or potentiéi)
wés proportional to the usual Fermi function that is practically conétant

inside. Therefore, a form
2 - - ‘
Y {(pxs)ve - (12)

might improve the results.
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2.1 The Five Parameter Kernel

The accumulation of all essential pieces from sect. 1 yields the five
parameter kernel |
Vexp(-y/a) RO o
™, ) T X - ! :
¢ | )//Q, ﬁ ’ , _ wy  13)

+4 )z ;'“tl'vcou

[ W

.
oA

é(x-) )

t i (m,) HZ?t)
and | P(W‘t) = 3 ) ?,mé‘ | (14)

for the self—coﬁsistent field model {1) of spherical nuclei. The electro-
magnetic part is assumed to be given by the static Coulomb potential

VCoul of the proton density P(—é) normalized to ‘Z - 1; cf. { 17).

1) The parameter v simply determines the emrgy scale and was adjusted

in all computatidns to give {within 0.3 MeV) the total binding energy

for Pb20.8.

2) According to the discussion in sect. 1.2, the nonlocality range should

be 0.7¢ =
fm

decreases the effective nucleon mass = as is readily seen from eqgs.

£ 0.9. An increase in a widens the level spacings, i.e.

(4) and {5). An increased a yields larger rms radii 1f v is
decreased according to 1) and all other parameters are kept fixed

(cf. the discussion below on parameter set B).

I
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3) The parameter ﬁ stan.d_s’ for the (a{/erage) critical nucleon density
where the nucleon-nucleus interaction changes from attractive to
repulsive. Since actual nuclel saturate with {average) central dens1t1es
around 0.15 fm 3_, R must be larger than this value. An upper |
limit around 0.5 fm" is glven from hard sphere packing according
to hard core _NN potential models. It turns out that the %resent model

\

reprcduces the rms radii of actual nuc1ei for 0.2 < o

4) The observed sequence of shell closures allows a fairly' unique determina-
tion of the strength & fovr the conventional spin-orbit .term. This
- parameter is confined here to 0.45 £ %ni £ 0.55 if one wants to:
reproduce the magic nucleon numbers up from N = Z = 20, Of course,
even narrower limits result if the other parameters are kept fixed and/
or further details of the shell model spin assignments are required.

5) T_he i~spin mixing parame‘ter ’z~ determines (like & ).essentially
some sort of fine Structure; e.g. the isotope shifts in rmsv radii.
Satisfactory fits to most gross data, like masses and rad11 are
possible with a very wide range of T values. But in order to fit the

| isotope mass~-- as well as rms~dependences and the neutron/proton
ratios in heavy nuclei thie parameter should be in the range

0.1< 7 £ 0.5.

The above discussion reveals the problem of a "fit" here; there are
various data of different dimen_éions that should be 're_produced reasonably
Well. ‘But within the scope of this ‘WOI‘k there is no obvious selective
principle for the preference of a better fit to one particular set of data,._ :
say radii, on the expense of flttmg other data masses for example |
Naturally, it depends on the application of the model, to which- data some

sort of least square fit will be performed. In any case, the parameters
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should be confined to their "physical” limits discussed above.

The parameter set A of table 1 was used here for the fairly exten-
sive comparison with data bf spherical nuclei. The set B of table 1 has
the parameters o and £ close to the limits of their reasonable regions.
A decrease in rms . radii {(by about 4%) that would result due to the increase
of P from 0.3 to 0.4 fm-3 is compensated in this case by increasing
the nonlocality from 0.8 to 0.9 fm. Some resulis for parameter set B

are given in.table 2.

2.2 Results fof a Typical Parameter Set

It ‘should be emphasized that all results in this paper except for table 2
refer to computations done with just the one parameter set A of table 1.
I.e. everything is computed with simply the rough center values of the

above estimated parameter regions. In view of this fact, the general

agreement with data throughout the periodic table is surprisingly good.
Absolute values for masses, radii and 1s proton levels are reproduced
within a few percent. The mass and radius difference data are quite satis-
factorily reproduced, mostly within 30 %. Even the higher order difference
quéntitiés like rearrangement energies or isomer radius shifts seem to

result with the correct order of magnitude.

h
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Fig. 4 shows deneity distributions of protons and neutrons {lower and
upper solid lines). One point of recent interest is the "neutron skin" of

37-40) the Johnson-Teller effect. 41) o 208

heavy nuclei, In the case of ©  Pb,

for example, the results of pionic scattermg and 1sobar1c ‘analog state
analyses seem to disagree 81gn1flcant1y w1th mu or K mesic experiments.

Rms radius differences of neutron and proton densities deduced from the

40)

former type of data are about two percent whereas more than 10

percent are reported frompfatoms and K™ capture as well as from some

38) .

optical and shell model analyses. The present self-consistent model

gives rms(n) - rmS(p) 0.07 fm (see table 3) in excellent agreement with

the value 0.07 'i' 0.03 fm due to an analysis of the 1_sobar1c analog state 39)

which is consistent with recent T -Pb scattering data.4q) In addition,

~ the absolute magnitude of the 2%8pp rms charge radius given in table 3
agrees perfectly with elastic electron scatter_ing experiments yielding the
value 5.42 1 0,03 fm.42). One 'Shodld notice the.neutron skin or halo of
208Pb shown in fig, 4 which looks surprismgly large in view of the small
rms radlus‘ d1fference. - In the case of 40 Ca, the effect is reversed,
According t.o the present calculation, the rms radius of neutrons is 0,04 fm
smaller than that of the pfotons; in qualitative agreement with a recent

optical model analysis.43

Figﬁre and table 5 give calculated isotopic variations of charge
densities for some Sn and. Ca isotopes. For examp].e, the calculated
44C to 40 Ca rms charge radius difference agrees well with experiments

Use of the standard (N~ Z)/ A term from optical model fits (mstead of the

term {10) ) would yield the wrong sign for this shift.

44)
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3. Rearrangement Effects

In any HF -type many~body formalism kernels depeﬁd on the occupation

functions which are for the ground state e. g. Q(Ev&mf Ey) in HF or
(1+ (ﬁ); 59)/ V(fvp‘fv)"ﬁz )/2 in Hartree -Bogoligbc}vétype formalisms.

The effective force acting on a single nucleon will therefore change when
different states {orbits) ar‘e occupied by the other particles, i.e. when the
residual nuclei.ls rearranges. The corresponding orbital rearrangement
energies have been discussed with this model in some detail elsewhere 15).
They were shown to be comparable to eigenvalue=~differences in local
{Woode-Saxon=type) potential wells. Hence, it is an unjustified simplification

to identify such level spacings with the mass differences observed e.g. in

nucleon transfer reactions. Parameter set A of table 1 gave a good fit
to all difference data in the Ca region. One typical example is the first
neutron hole state for 47Ca : The observed mass difference to the grourid
state of about 2.6 MeV is reproduced by the present single-particle Hamil~
tonian that gives at least 6 MeV for the corre sponding level spacing; i.e.

more than 3.4 MeV re‘sult from orbital rearrangement {cf. ref. 15).

The agreement with the mass data is also excellent for the
40 '

Ca T one nucleon differences (see table 4). For this example another
type of rearrangement effect is revealed in fig. 6. Conventionally, the
eigenvalues were fitted to the experimental total binding energy differences;
i.e. rearrangement was totally neglected. Of course, one could not do
better in calculations thaf had no chance to get the right order of magnifude
for the total binding like in local potential model fits. Here, in fig. 6,
.the observed binding energy differences are reproduced within 0.2 MeV.
However, due to rearrangement, fhey differ up to 6 MeV from .the

corresponding eigenvalues.




-17 - UCRL-17801

It might be argued that for some reason this model strongly
overestimates rearrangement effects. But the magnitude of this models
rearrangement response can be checked to some extent by a comparison
with the calculated isomer shifts due to single-particle excitations {table 6).
Their order of magnitude seemsto be confirmed by some relevant data 45).
This. corroborates the present results on rearrangement energies becanse

of the well=known radial and eigenvalue shift correlation for single=particle .

potential. models,

This observation also casts doubts on shell model calculations
that uee the observed total binding energy differences {of A*1 nucleon |
systems)v as the eigenvalues for one constant single~particle Hamiltonians
Rearrangement destroys the orthogonality of the wave functions for single=

particle states of nuclei with different excitations and / or nucleon numbers.
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4. The Magic Proton Number 114

The charge spectrum of cosmic ray nuclei indicates the existence of

nuclei with Z > 110 46).A’n increasing amount of experimental effort is |

47)

spent now to produce such super~heavy nuclei . For some time, Z = 126
was the main theoretical candidate for a relatively stable super-heavy
nu‘cléus. This belie%j\%ised on a simple minded shell model picture that

did not differentiate between protons a_nd_n_eutrons and thus assumed a

repetition of the N = 126 shell in Z.

Shell closures, i.e. structure dependent tendencies to prefer spherical

shapes, have been shown to be of prime importancé for the spontaneous

17)

fission half lifes of supersheavy nuclei . The contribution to the barrier

height due to shells is negligible at the proton number Z = 50 and is about

30 % of the total for Z around 82 near the beta stability line. In the region
beyond Z =110 the average value or liquid-drop~model barrier becomes
practically negligible, since it is quite small as compared to the present

uncertainties about structure dependent contributions there.

About 4 years ago, calculations of this author showed Z =114, N =184
to be a clearly preferable.candidate 16). This has since been confirmed

4
by many independent computations 14, 18) 48).

and is widely discussed now
The extrapolations were based on singleesparticle potential fits that showed
a shell structure in the eigenvalues similar to the one observed in the ex=
perimental mass defects. Flﬁctuéting rearfangement effects were totaliy
neglected. Most authors used the questionable procedure of identifying

eigenvalue spacings with mass differences {cf. sect. 3J.
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The present calculatiors check the real shell effects in the nuclear
masses. As can be seen from table 4, the partial derivative JE/ o Z

of the total binding energy {mass) changes 'con‘siderably at the proton

- number Z =114 whe'r_1 parameter set A of table. 1 is used for supere

heavy nuclei. The present calculations for N = 172 and 186 show the
expected decrease of the shell effect for isotopes far from the extrapolated
beta stability line. At N =172 and Z =114, the lack of neutron 'excéss
seems to smoothen the step in the mass function to an insignificant wiggle.
For 186 neutrons the shelléf_fect has the magniiude observed at established

magic numbers. Therefore, experiments on Z = 114 should aim for compound

nuclei with mass numbers around 290 or higher.

5.. Deformed Nuclei and Fission

‘It is rather straightforward to extend the model givén by eqs. (1), (13)

and {14) to nonsphérical, in particular axigllj syfnmetric d'ensivty distribu-

“tions. Present computer sizes, however, seem to require some sort of |

"ocal energy approximation” to the nonlocality problem. For this case,

most aspects of the resulting numerical work have been inve stigated

49)

recently . The preserit Hamiltonian is in such an approximation for ainal '

symmetric cases cf. ref. 49, eq. 2;8)
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a2 zb\ % |
- e v [ spavls e o Wkd o
where cylinder coordinates {z, b) are introduced, b2 = x2 + y2, and
is the effective density calculated according to eqs. (13) and (14) .
Mainly two methods are used for the computation of the energy dependent
local potential that corresponds to a given Van Vleck-type kernel. In bound
state caléulations the simple technique of using the Fourier transform
according to eqs. {4) and (5); i.e.

V() = [+ 23 ofe-vrs))] - (16)

50) 51)

is probably as good as the fancier LEA . Equations (15) and {16)

give a framework for selfsconsistent calculations of nuclear single=-particle
data. The problematic boundary condition of "volume conservation" in
equipotential contours, for example, is completely avoided here. In fact

52)

all the classical difficulties = of the Nilsson»type models for deformed

nuclei and adiabatic fission computations do not arise.
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6. Conclusions

The final remarks of the proceeding section reveal the main reason
for the computations done S0 far" A check of the .qual‘ities of the proposed
model that is designed to Work for a much wider range of appllcatlons
- Already here the proposed Hamiltonian was used for the calculation of more
independent data than was concelvable with previous models. For spherlcal

nuclei, one constant set of five physical parameters allowed to reproduce

satisfactorily
1) charge density distributions,» including isotope and isomar shifts,
2) 1s proton levels as measured in (e, e'p) scattering,
3) total binding energies of nuclear mass defects, and
4)  the shell model spin assignments ‘and mass structure

throughout the periodic table. Hence, it seems that all future Work'in this

direction has to confirm quantitatively the essential features of a nuclear

kernel determined here; in partieular the nonlocality and rearrangement

effects. The present concept works quantitativély good enough to allow

predictions like the proton shell 114,

Equation (1) was solved {(numerically) exactly. The results can there-
fore be used to check approximations that might be hecessary for deformed

and fissioning nuclei.

Naturally, there are many 1mprovements to be cons1dered like those o
mentioned in the discussion about the spin~orbit term Some re sidual
interaction effects of the pairing type, for instance, could be taken into
account by apprepriately smoethening the step func_tioh-used in eq.' {14)

for the occupation probability distribution.
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APPENDIXES

For spherical symmetric density distributions the radial equation is

MRE (o A
i#\ (d(l )) ~qut]u~hf',‘mt(r) =

{ 210 o

ety 1= (B [0 Grd-t-2) oty 0

v
+ (4 -m) Zg 6 -l; go{\f'r ﬁ ) + fo(( ){\")j Mw!jmf(\')
o 2

where Xx-= Yar n denotes the radial, (7 the orbital angular momentum,
T

“e

") the total angular momentum quantum number, and w, the i-spin
3-component for‘the nucleon in question; P' is the derivative of P W]'.th‘
respect to the argument and € = 1.4368 MeVfm. The he are the partial
wave projections of the width-function V (| F - &']).

The single-particle equation is assumed to emerge from pure two-body

internucleon forces. The total binding energy is therefore
! Y% o K
E=)ti—4)u; = 5] [& +(de go_(r)ﬁ(r)gz{r)] (18)
; 0] C : ‘

where the sums extend over the occupied levels; ti is for the spherical cases

o0

| L I(P-H) d  Untim (r)
t-V‘Qq'm{: = 5= gdr[ u,, Bl )+(r i ) ] (19)
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Al. Eigenstates in Strongly Nonlocal Potentials

The computer problem is to find the first few elgenvalues e and

elgenvectors u of an 1ntegro dlfferentlal equat1on
[ - e+C(r) ] Wee) + go(r %(r\ ‘)u(r') = o (20)

for boundary conditions of the type 11rr%J A (\') ~ t"e and }_erclo u(r>~exy(~rYé)
Selecting an appropriate finite integration interval {0, R), divided into N
: partsrand with s = R/\N,v ¢ : = C(is), and gij . = 'g(is, js) one gets the
‘corresponding difference equation (h - e) u = 0 with a symmetric matrix -
(9-E sk om, o g, )
w st 12 S 13 N
S?zﬁéz , S%Z—-C{— —‘%.‘

v | o - S@m*c.“—

' S _ .51
A good approximation w10 u. is obtained e.g. from a LEA program )

The vector u'® fulfills approximately the same boundary conditions as u

and has the same number of nodes. An appropriate iteration p-rogrém' iss
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. L. o L
[1]  nomalize W )ef weTor Wl
: ( (0T (0
[2] compute e Y- u h u"
[3] solve uﬂﬁi):(h—'em)',um with some standard inversion program 3)
| (4] Q) Y
[4]  i:=i+1, goto [1] until |e' " -gl \/1e) < 1
This "Wielandt Inverse Iteration" % ) works as follows:
Let v be the exact solution, i.e. {( h - em) Vi = 0. Then, step [3] is in
spectral decomposition
1 ! C(o
( | {L‘.; - = M
" ﬂ .
()
i.e. C::u> u

Cpm €8V

Therefore, the iteration converges to the nearest eigenvector Vo which

is picked out via the above pole.




M

since 55) PYP(”“JYZ*Jz 2"“2) Zw' ‘
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A2. Partial Wave PrOJectlons of Yukawafunctlons

EXP( Ir—ri/a)
X A

~) ﬁ

The above' h, are hg(r,r')v_:i’lrrr' Sdz

with \,’=lv‘-‘! 7=+

\!‘r ! *er 2 7

e. ng(r,r'):%a\!?f ,(ﬁ)k ({) for rex!

3*”5 ..34»—‘5\ ,

and also from . ref 55, p 80

~ B 4 - ¥ ‘ ‘.‘
EM(X) K, L00= -fr-':{ 3 Z( Y T (~) pZJ w)| e ‘,?;)E(X)

wi T - (Q‘H‘
th W) k! (04! m*

“the following formula is feasible for computations:

v g

hytee) = { Z()Qﬁ R an AR

N

: ~x
lv(rr) Zn:cx(e @ e“ " ete.

r

(22)
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A3. Charge Density and Proton Formfactors

The nuclear charge density EL‘ is obtained by folding the proton

probability distribution with the electric proton formfactor f

Vg ( 5 :
(F) = 'r'-\' f\ 2
R =2 Jdelp Frar-e) - (23)
The éR’“_; are properly normalized single-particle wave functions and thé

sum extends over all occupied proton levels. The best phenomenological
56
proton formfactor appears to be an exponential )

f‘(r).* e)qv(w(r) with ¢ = VT; and {r*y= ﬁ;{rr

For spherical symmetric S:) Z)(P] one has

R (r) = Zr _(a(rr p(r')fd?{(m)

which is here

X} - (\'H’) :
P = Tr (dr'r'?(r)[“ r-r'} *’1 e ~ (x (r+r)-‘-})£>°< j (24)

‘ch

The present calculations were done with the value {r*> = 0.75 fm (cf. ref. 56).
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S Table 1. The two parametér sets used in the present calculation.

- Except for table 2 all results refer to parameter set A,

v/MeV a/fm  p/tm  o/fm 7
set A 391.3 0.8 0.3 0.5 0.3
set B 289.0 0.9 0.4 0.5 0.3
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Table 2. Some resultsb for parameter set B; cf. sect. 2.1. For

experimental data and the pairing correction see tables 3 and 4.

Binding Engrgy/ MeV <r 9>c%harge [fm
44Ca-  396.4 ~3.18
208py, | 1636.2 5.38
209, 208, 4.9
2085~ 207, 5.7
209p,,- 208 4.8
208_ = 207

Pb Pb 5,3




' S A Fy
Tablée 3. Binding energies and rms radii for some sphericai 'nuélei'. ’
Additional comparisons with experimental data give e.g. 1 s proto'n.level : .
in'40Ca: experimental 77714 MeV 22), calculated 79 MeV.
Binding Energy/MeV . | L B - Calculated rms radii/fm
o : < 2% NN | 2,2
NucleusA Exp. Cale. _ {r >charge _ | (r» >17; Lr 7n .
g0, o0 | | & g
Ca o 342,0 - 339.4 | 3.15 3.06 3,02
" o . _ . | |
7 Ca 380.9 380.3 _ 3.22 _ 3.13 : 3.20
Ca 416.1 426.6 | 3,29 3.20 0 3.3¢ ¥
38 - - o | c
Sr _ 768.5 - 7,5 : - 4,02 - 3.95 B 4,02
118, R - - | o |
Sn - 1004.8 1017.9 - 4,50 _ - -4.,43 4,47
40ce 11728 1189.0 447 4.8 . +4.73
208pp,  1636.4  1636.4 5.44 5.38 5.45
0 2140.5  6.26 - 6.21 6.24

TOgLT~THDN
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—+

Rms radius and binding energy differences at closed shells _ one

nucleon for established magic numbers and for Z =114.

Binding Energy Differences/MeV Calc. Radius Differences/fm

G 1 - L
Magic Number  Nuclei Exp. Calc. A(’r"’}; A,{r“;}»zn
N = 20 g - 8.4 8.4 0.019 0.048
400, - 392 1s5.6  15.3 0.006 0.005
oo - %00 1.1 1.1 0.051 0.022
Z =20 40 39
Ca - °’k 8.3 8.0 0,021 0.011
490a - *8ca 5.0 0 0,010 0. 042
N =28 48 47
Ca-"'ca 10.1  13.3 10,020 0.034
7 - 28 Bou - %% 61 2.7 0.011 0,003
52n01 - leo - 1101 13.9 0.033 0.017
895, _ 885, 6.8 5.3 0.007 0.013
N =50 88 817
sr - °'sr  11.1 11.7 0.004 -
119, 1185, 5.2 2.3 0.008 -
Z =50 118, 117, |
""Sn - " 'In 9.9 10,7 0,004 -

-«
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table 4 cont,

141 140

N =82 140Ce -1390e %9 3.3 ST 0.007
- Ce - Ce 9.1 8.6 0,005 -
- _ 209Bi-208Pb 3.8 3.3 0,008 -
Z =82 208_ 207 - B
“Pb-""'T1 8,0 5.5 . N
N =126 208 207 . _ _ ,
' Pb - Pb 7.4 . 5.4 0,004 _ 0,006
287115 -286114 - S0 - o
: 286114 _ 285553 | 3.4 - -
Z =114 ; - : co :
301115 -309114 - 0.1 - ' -
’ 00114,- 299113. - 5.2 - I

The pairing correction is assumed to be 15/A*MeV 57)

. For
experimental .r.'ms ch-erge radius differences cf. e.g. .ref.. 58.

The enefgies are calculavt'e'd With an accuracy of about 0.2 MeV,

the radii within about 3 . 10-3fm.. No radius difference is reported for.
cases where the result was smaller than this eri‘or". The calculated
charge radius differences agree w1th the cor‘respenvd_ihg proton

results within the numerical accuracy.

|I
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Table 5. Some calculated isotope shifts of rms radii.

=

L 7.
ACEfm Ayt
44Cal - 40Ca , : 0;08 | 0.08
48 _ 44 0.08 | 0.15
12‘0Sn i 1188n_ " 0.9'4 0.06
Mg, 1125, o | 0.01 | 0.01

Within the accuracy of the calculation the charge radius differences are
124-122 122-120

equal to the corresponding proton results and the Sn, Sn,
- -114
118 116Sn as well as the 116-11 Sn differences are all equal to the
12'0_1188n shift . Note the large calculated neutron rms radius difference.
48-44 : | | |
for Ca

o
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Table 6. Examples of rms charge radius differences between the |

- first one neutron hole excitation and the ground state.
Except for the case of Ca, the amount of computer time invested
’ here did not allow to check for more than the orders of magnitude.
' 2 J | 2 4
ALrDT tm ALr™> [im
Hea - *ea 0.012 10.037
207T1 _ 207T1 o 10 3 v 10
207y, - 207, - 10°% o 10
BN



Fig. 1

Fig. 2

Fig. 3

Fig. 4

Fig. 5

Fig. 6

‘Compare the eigenvalﬁes/ MeV (arroWs) with the cir‘cled total
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FIGURE CAPTIONS

Depth of the nucleon- nucleus potential as function cf energy;

The ‘solid bars give the limits for regions 1 to 4 as discussed

in sect. 1.1 .

Proton eigenvalue spectra for spherical nuclei close to the

line of beta stability. Eigenvalues with equal quantum numbers
are connected by straight lines {to guide the eye). Note the -
somewhat fluctuating results as compared to the smooth curves

13)

of non-self-consistent‘calculations .

Neutron eigenvalue spectra; cf. fig. 2.

Upper and lower solid curves give the density distributions of .

protons and neutrons for some nuclei on the beta stability line.

-vThe dashed curves are the nuclear charge densities calculated with

eq. {24) from the corresponding {bare) proton densities. Examples
of Fermi function fits to electron scattering data are shown as
dotted curves. The differ_ent fits of ref, 44 are practically
ihdi-stinguishablxe in this figure.

. 20 4
Isotop1c variation of charge dens1ty d1str1but1ons for 0,44, 48Ca

1
and 12,118, 1248 n; cf. table 5 for rms radii.

Example for r'ear‘ranger'n'ent effects: N = Z = 20 shell T one nucleon.
binding energy ‘differences A E/MeV. An excellent fit to the

data results. (cf table 4) when a pa1r1ng correctmn of 2.4 MeV is

added to 4 Ca Conventlonally, the eigenvalues are identified W1th '

total b1nd1ng energy d1fferences, cf sect ‘3.
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LEGAL NOTICE

This report was prepared as an account of Government sponsored work.
Neither the United States, nor the Commission, nor any person acting on
behalf of the Commission: p

A. Makes any warranty or representation, expressed or implied, with

respect to the accuracy, completeness, or usefulness of the informa-
tion contained in this report, or that the use of any information,
apparatus, method, or process disclosed in this report may not in-
fringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages

resulting from the use of any information, apparatus, method, or
process disclosed in this report.

As used in the above, "person acting on behalf of the Commission”
includes any employee or contractor of the Commission, or employee of
such contractor, to the extent that such employee or contractor of the
Commission, or employee of such contractor prepares, disseminates, or pro-
vides access to, any information pursuant to his employment or contract
with the Commission, or his employment with such contractor.
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