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Abstract

Due to increasing ease of use and ability to quickly collect large samples, online behavioural research is currently booming.With

this popularity, it is important that researchers are aware of who online participants are, and what devices and software they use to

access experiments. While it is somewhat obvious that these factors can impact data quality, the magnitude of the problem

remains unclear. To understand how these characteristics impact experiment presentation and data quality, we performed a

battery of automated tests on a number of realistic set-ups. We investigated how different web-building platforms (Gorilla

v.20190828, jsPsych v6.0.5, Lab.js v19.1.0, and psychoJS/PsychoPy3 v3.1.5), browsers (Chrome, Edge, Firefox, and Safari),

and operating systems (macOS and Windows 10) impact display time across 30 different frame durations for each software

combination. We then employed a robot actuator in realistic set-ups to measure response recording across the aforementioned

platforms, and between different keyboard types (desktop and integrated laptop). Finally, we analysed data from over 200,000

participants on their demographics, technology, and software to provide context to our findings. We found that modern web

platforms provide reasonable accuracy and precision for display duration and manual response time, and that no single platform

stands out as the best in all features and conditions. In addition, our online participant analysis shows what equipment they are

likely to use.

Keywords Accuracy . Experiment builder . Big data . Reaction time . MTurk . Online testing . System testing . Automated

hardware testing . Psychophysics

Introduction

Conducting behavioural research online has vastly increased

in the past few years. For instance, the number of papers

tracked by Web of Science with the keywords ‘MTurk’ or

‘Mechanical Turk’ (Amazon’s popular platform for accessing

online participants or workers, available since 2005) was 642

in 2018, over a five-fold increase over five years from 121

publications in 2013 (Fig. 1). While scientists do not exclu-

sively use MTurk for psychological experiments, it is indica-

tive of a trend. For example, Bohannon (2016) reported that

published MTurk studies in social science increased from 61

in 2011 to 1200 in 2015—an almost 20-fold increase.

A unique problem with internet-based testing is its reliance

on participants’ hardware and software. Researchers who are

used to lab-based testing will be intimately familiar with their

computer, stimulus software, and hardware for response collec-

tion. At the very least, they can be sure that all participants are

tested using the very same system. For online testing, the exact

opposite is true: participants use their own computer (desktop,

laptop, tablet, or even phone), with their own operating system,

and access experiments through a variety of web browsers.

In addition to participant degrees of freedom, researchers

can choose between various options to generate experiments.

These vary from programming libraries (e.g. jsPsych) to

graphical experiment builders (e.g. Gorilla Experiment

Builder), and come with their own idiosyncrasies with respect

to timing, presentation of visual and auditory stimuli, and

response collection.

This presents a potential problem for researchers: Are all of

the unique combinations of hardware and software equal?

Here, we first investigate the types of software that potential

participants use, and how common each option is. We then

provide a thorough comparison of the timing precision and
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accuracy of the most popular platforms, operating systems,

internet browsers, and common hardware. We specifically

compare four frequently used platforms that facilitate

internet-based behavioural research:

& Gorilla Experiment Builder build 20190828 (www.

gorilla.sc)

& jsPsych v6.0.5 (www.jspsych.org)

& Lab.js v19.1.0 (lab.js.org)

& PsychoJS v3.1.5 (building in PsychoPy3, and hosting on

www.pavlovia.org)

We included these packages because they are among the

most frequently used platforms, in our experience, but little

quantitative data is available to support this. Regrettably, other

notable platforms such as LabVanced (www.labvanced.com)

and the OSWeb extension to OpenSesame (Mathôt, Schreij, &

Theeuwes, 2012) have remained untested here due to practical

restrictions on our time and resources.

A brief history of online experiments

The almost exponential increase in papers citing MTurk is

surprisingly recent. While the internet has been available since

the 1990s, and tools like MTurk have existed since the mid-

2000s, the adoption of online research has begun to accelerate

only in the past 5–10 years. There are, however, some early

examples of online experimentation, for example, investigat-

ing spatial cognition (Givaty et al., 1998), visual motion ex-

trapolation (Hecht et al., 1999), probability learning

(Birnbaum &Wakcher, 2002), and establishment of labs ded-

icated to web experiments (Reips, 2001). In the late 1990s and

early 2000s, several guidance books and articles on the subject

were published (Birnbaum, 2000; McGraw et al., 2000), with

one 1995 review even coining the term ‘Cyberpsych’ to

describe internet-based psychological science (Kelley-

Milburn & Milburn, 1995). Sadly, it appears that the term

did not catch on. Articles providing technical guidance pub-

lished for running experiments, such as maintaining a web

server (Schmidt et al., 1997) and analysing server logs

(Reips & Stieger, 2004), also emerged around this time.

However, despite the availability of these tools and the prom-

ise of larger sample sizes, it took years to reach the current

high levels of demand. There are several potential explana-

tions for this apparent research adoption lag: the required level

of technical ability, availability of personal devices, and con-

cerns over data quality.

Building a research project online in the late 2000s required

a much higher level of web-specific technical skills.

Experimenters would have to have known how to construct

web pages and load resources (e.g. images and videos), cap-

ture and transmit participant data, configure and maintain a

server to host the web pages and receive the participant data,

and store the participant data in a database. Additionally, the

capabilities of web applications at this time did not allow for

much more than slow image and text presentation. Interactive

animations and dynamic elements were inconsistent, and of-

ten slow to load for most users. There were survey tools avail-

able such as Qualtrics, Survey Monkey, and Lime Survey

(Baker, 2013), but these really only permitted relatively sim-

ple experiments.

In the early 2010s, the situation began to change with better

tools becoming available. In particular, the High Resolution

Time API, which allowed for far better timing accuracy than

older methods such as setTimeout(), began appearing in

browsers in 2013 (although it was not supported in all major

browsers until 2015—www.caniuse.com/#feat=high-

resolution-time). Running online research, allowing dynamic

presentation of experimental trials and stimuli, and recording

reaction times was possible through tools such as QRTEngine

Fig. 1 Trends over time in papers mentioning Mechanical Turk, taken from Web of Science
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(Qualtrics Reaction Time Engine; Barnhoorn, Haasnoot,

Bocanegra, & Steenbergen, 2015) and jsPsych v6.0.5

(JavaScript Library for building and presenting experiments;

de Leeuw, 2015), which originally appeared around 2013. As

more tools and platforms have become available (for an over-

view, see Anwyl-Irvine, Massonnié, Flitton, Kirkham, &

Evershed, 2019), the technical barrier to web-based research

seems to have been at least partially alleviated, allowing more

research to be conducted online.

The access individuals have to the internet via a personal or

shared device has also increased over this time, and continues

to increase relatively linearly. This is illustrated in Fig. 2,

using data provided by the United Nations International

Telecommunication Union. This pattern indicates a continu-

ing increase in the potential reach of any web-based research

to larger proportions of populations across the globe. This is

particularly important considering a historical problem with

under-powered research leading to unreliable results, where

increased sample sizes provide one way to address this issue

(Button et al., 2013).

The current state

Despite the potential availability of large samples online, there

is a hesitancy to adopt certain types of tasks and experiments,

particularly those that utilise short stimulus durations (e.g.

visual masking experiments) or that need very accurate re-

sponse time logging (such as an attentional flanker task).

The relative noise from online studies can be characterised

as coming from two independent sources:

1) Differences in participant behaviour relative to a lab

setting

2) Differences in technology, such as software (OS, web

browsers, and platforms) and hardware (screens, com-

puters, mobile devices)

The differences in participant behaviour when taking part

remotely is difficult to address systematically with software or

hardware, and ultimately comes down to the design of the

experiment, and utilisation of certain tools. That being said,

there are ways to reduce this noise—a brief summary of how

to improve the quality of data collected online is given by

Rodd (2019), and is also discussed in Clifford & Jerit (2014)

and more recently in a tutorial by Sauter, Draschkow, &Mack

(2020). This paper, however, focuses on issues related to the

second point: measurement error introduced by technology.

This issue can be improved through restriction of hardware

and software, and quantifying the introduced imprecisions

would help reassure researchers, enabling them to utilise large

web-based samples easily in timing-sensitive experiments.

There have been various claims made on the scientific re-

cord regarding the display and response timing ability of ex-

perimental set-ups using web browsers—for instance, that

timing can be good depending on device and set-up (Pronk,

Wiers, Molenkamp, & Murre, 2019), and that different tech-

niques for rendering animations lead to reduced timing preci-

sion (Garaizar & Reips, 2019). Ultimately, though, the vari-

ance in timing reflects the number of different ways to create

an online experiment, and the state of the software and hard-

ware landscape at the time of assessment—all of these are

changing at a fast rate. We previously undertook a discussion

of the changing hardware and software ecosystem in Anwyl-

Irvine et al. (2019). To address this variance, it is important to

report any timing validation on a range of devices. To the

authors’ knowledge, the largest number of devices tested with

online software was undertaken by Reimers and Stewart

Fig. 2 Global internet users over time; data taken from the UN International Telecommunication Union (https://www.itu.int/en/ITU-D/Statistics/Pages/
stat/default.aspx)
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(2015), where 19 Windows machines were assessed, and it is

suggested that systems (OS and devices) contribute the

greatest variability, with Windows XP displaying less vari-

ability than Windows 7. The justification for only testing

Windows devices was that 85–90% of their participants used

these. However, this has changed since 2015; see the demo-

graphics section of this paper for more details.

In a highly commendable concurrent effort, Bridges, Pitiot,

MacAskill, and Peirce (2020) compare a wide range of online

and offline experimental software across several different op-

erating systems (Windows, Linux, and macOS) and web

browsers (Chrome, Edge, Edge-Chromium, Firefox, and

Safari). Their data paint an encouraging picture, with reaction

time (RT) lags of 8–67ms, precision of < 1ms to 8 ms, visual

lagging of 0–2 frames, and a variance of under 10ms for most

combinations. Auditory lag is poorer across the board, with

average delays ranging in the hundreds of milliseconds. Our

study asks similar questions, and uses a similar approach as

theirs, with a few crucial differences. Firstly, Bridges et al.

(2020) employed a test that is highly suitable for testing lab

environments, whereas we aimed to realistically simulate par-

ticipants' home environments by using an actuator to perform

presses on keyboards (Bridges and colleagues employed a

high-precision USB button box). Secondly, the authors only

assessed one frame duration (200ms), so they were not sen-

sitive to any interaction between duration and timing errors,

whereas we assess 29 different durations. Thirdly, the authors

used a lower number of trials for their duration tests than we

do (1000 vs 4350), and were therefore less likely to detect

irregular delays. Nevertheless, our two concurrent studies

have come to similar conclusions, with some differences and

limitations to ecological validity in both studies that are further

explored in the Discussion. Together, the two studies provide

a richer picture of the current state of affairs than each would

alone.

A vital issue with research into timing is that it is tempting

to interpret results from one (or a set of) studies, and extrapo-

late this to all ‘online research’. However, most online re-

search is undertaken using different builders, hosting

websites, and entire software-as-a-service (SaaS) platforms;

very little is made using written-from-scratch JavaScript.

These different platforms and websites are separate software,

each providing different animation, rendering and response

polling code. Just because good timing is possible using one

particular JavaScript method in a specific scenario does not

mean that it will be great in all online studies. Therefore, in

this paper, we compare a variety of online study platforms.

A realistic approach to chronometry

Researchers must be furnished with the information they need

to make sensible decisions about the limitations of browsers,

devices, and operating systems. With this information, they

can trade off the size of their participant pool with the accura-

cy and precision of the collected data. If we are to make any

timing validation functionally informative to the users, we

have to ensure that our methods are representative of the

real-world set-ups that our participants will be using. Failure

to do so could result in unexpected behaviour, even when

running previously well-replicated experiments (Plant, 2016).

When researchers assess the accuracy of software in re-

spect to timing, often the software and hardware set-ups are

adjusted significantly in order to record optimum performance

in the most ideal environment. These set-ups require the re-

moval of keyboard keys and soldering on of wires (Reimers &

Stewart, 2015) or specialised button boxes (Bridges et al.,

2020), and include discrete graphics cards (Garaizar,

Vadillo, & López-de-Ipiña, 2014; Bridges et al., 2020). This

does not represent the average internet user's devices at all. For

instance, in the first quarter of 2019, less than 30% of new PCs

sold included discrete (i.e. non-integrated) graphics cards

(Peddie, 2019), likely representing an even smaller number

of online participants. Recently, Pronk et al. (2019) utilised a

robotic actuator to press keyboard keys and touchscreens, a

more representative assessment of RT recording. Testing on

ideal-case set-ups, whilst vital for realising the frontier of what

is possible with online software, is likely to poorly reflect the

situation researchers face when collecting data online.

Consequently, we have made an attempt to use more realistic

set-ups in our study, such as an actuator on consumer key-

boards in our research.

The first and second parts of this paper test the visual dis-

play and response logging performance of different software

on different common browsers and devices, in order to give an

indication of each set-up’s limits. The final part of the paper

then provides an overview of the device demographics of

online participants, with a snapshot sample of over 200,000

Gorilla participants taken in 2019. Pronk et al. (2019) use

global web user data to select the browsers they use, but this

may be different from the sub-population of those who engage

in online research. Our approach is therefore well-suited to

estimate the distribution and variability of devices and

browsers within the online participant population.

For the testing sections, we selected a realistic variety of

devices. Windows and macOS operating systems cover the

majority of the population for online testing (73% of our user

sample). The devices we use are split between a desktop PC

with an external monitor, a desktop Mac with an integrated

monitor, a high-spec Windows Ultrabook, and a lightweight

Mac laptop. Further to this, the devices are assessed as they

are, with no steps taken to restrict the browsers or operating

systems, increasing the likelihood that they reflect users’ ac-

tual set-ups.

In order to provide researchers a barometer of how their

participants’ devices will perform, we have endeavoured to

cover as many commonly used tools, operating systems, and
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devices as possible (given the number of trials needed for each

test). We have assessed these using an external chronometry

device that can independently capture the accuracy and preci-

sion of systems.

We also distinguish between the average accuracy of the

timing of set-ups (e.g. on average, how close to the actual

reaction time is a given set-up’s record) and the variability

of this accuracy (i.e. will the reaction time error vary a great

deal within one experiment). Variability in presentation and

reaction times increases the noise in the experiment. For ex-

ample, a delayed—but consistent—reaction time record per-

mits comparisons between trials and conditions, whereas var-

iability in this can potentially obscure small differences be-

tween conditions. These concepts are referred to respectively

as accuracy and precision.

In all data reporting, we have intentionally avoided the use

of inferential statistics, and chosen to show descriptive statis-

tics, an approach previous studies have taken (Neath et al.,

2011; Reimers & Stewart, 2015, 2016). We made this choice

for two reasons. Firstly, the distributions of the data traces

produced are highly irregular, and deviations are either very

small and frequent or very large and infrequent, making for-

mal comparison very difficult. Secondly, there is no ideal way

to define a unit of observation. If we consider each sample

within a condition, the large number of samples is likely to

make any minor difference statistically significant, even if it is

not practically meaningful. Alternatively, if we consider each

device-browser-platform combination, comparisons would be

severely under-powered. We thus report descriptive statistics,

as well as the entire distribution of samples within each cell.

We undertake three analyses in this paper to answer the

questions of accuracy and precision in realistic set-ups. The

first deals with the timing of visual stimuli presented on a

screen, where the delay we report is the difference between

the expected duration on the screen versus the actual duration.

The second characterises the accuracy of each set-up in re-

cording keyboard presses in response to a displayed item on-

screen, where the delay is the difference between the recorded

press onset and the actual onset. The third characterises the

participants themselves: what devices they use, where they are

based, and what recruitment services are used—this provides

context to our results.

Visual duration accuracy

This experiment looks at how robust different web-based tools

are when it comes to both response recording and display

accuracy. We compare our platform, Gorilla v.20190828,

with three other web-based tools: jsPsych v6.0.5, psychoJS/

PsychoPy3 v3.1.5 (produced from their builder and hosted on

Pavlovia.org), and Lab.js v19.1.0 (using their builder).

These implementations are tested in a variety of configura-

tions to represent some of the most common participant sce-

narios. Five browsers are used: Chrome, Firefox, Edge,

Safari, IE; and two operating systems are used, Windows 10

and macOS Mojave.

Methods

Display duration

The visual duration delay (VDD) experiment assessed the

accuracy of the platform’s visual display timing on the test

rigs. A series of white squares were presented for a variable

duration on a black background, with a 500-ms/30-frame

inter-stimulus interval. Stimuli were presented for a duration

of 1–29 frames (1/60th of a second to one-half of a second) to

create a profiling trace for each system. Each duration was

repeated 150 times, for a total of 4350 presentations per hard-

ware and software combination. The order of these durations

was randomised. The white and black squares were PNG im-

ages, and were identical for each platform.

We constructed each task according to each platform’s

documentation. The details are described for each platform

below:

Gorilla v.20190828 A task was created with two screens, both

containing an ‘image zone’ and a ‘timing zone’. The first zone

was configured to show the black PNG image, and the second

a white PNG image; these were uploaded as stimuli to Gorilla

v.20190828. The timing zone was set to read information

from a configuration spreadsheet containing the timings de-

scribed above; the duration was variable for the white PNG

and set to 500ms for the black PNG. Fullscreen was enabled

by requesting this in the ‘onScreenStart’ function in the Task

Builder. The task was run in the browser using the ‘Preview’

button.

jsPsych v6.0.5 jsPsych v6.0.5 had a GUI builder at the time of

running the experiment; however, we did not use it, as this

was still in beta, and we wanted to assess the most common

implementation at the time. The black and white PNG images

were presented using the ‘image-keyboard-response’ plugin,

with black and white trials alternating, and both the

‘stimulus_duration’ and ‘trial_duration’were set from a series

of ‘timeline_variables’ to hold the durations described above.

These were randomised by setting the ‘randomize_order’ val-

ue to ‘true’. The task was run locally by opening up an HTML

file containing the JavaScript and importing the toolbox using

script tags. As jsPsych was set to pre-load assets and scripts,

running the task locally would not result in differences com-

pared to running on a remote server (like the Gorilla and

PsychoJS examples). The fullscreen plugin was used to re-

quest the fullscreen window.
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psychoJS/PsychoPy3 v3.1.5 We used the PsychoPy3 v3.1.5

Builder GUI to construct this task. A trial was created contain-

ing two image stimuli, one the black PNG image and the other

the white PNG image. The black stimulus had a start time of

0.0 s and a stop time of 0.5 s; the white stimulus had a start

time of 0.5 s and a stop duration of a variable value described

above (referred to in the builder using the ‘$’ syntax). These

trials were presented using a loop within a builder routine, the

CSV containing durations for the white trial was specified in

the ‘Conditions’ field of the loop properties, and the

‘loopType’was set to ‘random’. The task requested fullscreen;

this was done using the experiment settings in the builder—in

the JavaScript code, the openWindow ‘fullscr’ attribute is set

to ‘true’. The task was then exported to PsychoJS v3.1.5 and

uploaded to Pavlovia.org using the GUI, where the task was

run from a browser.

Lab.js v19.1.0 The task was created in Lab.js v19.1.0’s in-

browser GUI builder tool. A frame was used containing an

HTML canvas. A ‘Loop’ was created with the spreadsheet

variables uploaded, containing the required durations of the

white squares. Within the loop a ‘Sequence’ was created,

which contained two components, one with the black PNG

and one with the white PNG, both uploaded as ‘media’ in the

Content tab. The timeout field in the Behaviour tab for the

black PNG was set as 500 ms, and the field value was taken

from the loop for the white PNG. Fullscreen was requested

using the fullscreen pre-made class on the canvas.

The task was then exported for local use, using the offline

data collection option in the ‘save’ menu. As Lab.js pre-loads

assets and scripts, running the task locally would not result in

differences compared to running on a remote server (like the

Gorilla and PsychoJS examples).

The duration of each white square was recorded using a

photodiode/opto-detector connected to a Black Box Toolkit

version 2 (BBTKv2) (Plant, 2014). This photo-diode was at-

tached to the centre of each screen with an elastic strap, en-

suring it was attached firmly and flatly to the screen. In line

with the BBTKv2 user manual, an amplitude threshold was

used that was relative to each screen. This was titrated before-

hand with a continuously flashing square, and the highest

threshold that permitted detection of the flashing white square

was chosen.

Browsers

Browser versions were verified from the browsers themselves

on each machine rather than via version tracking tools within

testing platforms, as these were sometimes inaccurate, or used

different versioning conventions (e.g. Edge 44 on Windows

10 desktop PC was recorded as Edge 18.17763 by Gorilla—

the first being the version of the browser and the second being

the HTML engine version). The browser versions used were

Chrome 76 (Windows), Chrome 75 (macOS), Firefox 68

(Windows), Firefox 69 (macOS), Safari 12 (macOS), and

Edge 44 (Windows).

At the time of testing, PsychoJS v3.1.5 would not run on

Edge on our set-ups; this compatibility issue has been fixed,

but we were unable to test this set-up, as this was a recent

development and would require re-testing all platforms to be

equitable, which is not feasible due to the resources needed.

Devices

The two devices were (1) a Windows desktop running

Windows 10 Pro, with an Intel Core i5-2500 3.3 GHz CPU,

8 Gb of RAM, and a 60 Hz ASUS VS247 23.6”monitor with

1920 × 1090 resolution; and (2) a 2017 Apple iMac running

macOS 10.14.1 with an Intel Core i5-7400 3.0 GHz CPU, a

built-in 21.5” monitor with a 4096 × 2304 resolution. The

devices used were not adjusted or restricted in any way. This

meant that background processes such as virus scans and file-

sharing services could spike in activity during the study, just

as they could on a participant’s computer.

Platforms

All data were collected between June and September 2019. The

Gorilla task was run on builds 20190625, 20190730, and

20190828, and the PsychoJS task was made with PsychoPy3

v3.1.5 and hosted on Pavlovia.org—this was up to date at the

time of testing, although a newer version has since become

available, and is reported to have better timing (Bridges et al.,

2020). The jsPsych task was made using v6.0.5. The Lab.js task

was built using the GUI, and was made with version 19.1.0.

Data processing

The metric of interest is the accuracy and precision of

displaying the white square for the requested duration. This

can be expressed as a delay score where the expected duration

of the square and the actual recorded time from the photodiode

are compared in milliseconds. Outliers (defined as more than

four standard deviations from the mean) were included in the

plots, and their range is reported, as we believe these very rare

trials may still be of interest. Occasionally, on under-presen-

tation, durations of a single frame would not be rendered,

leading to a continuous black square; these had to be manually

accounted for in the analysis by replacing the missing opto-

detector value with a ‘0’, and were identified when the opto-

detector recordings became offset by 1.

Results

Summary statistics for this test are shown in Table 1. The

cumulative distributions of these summary statistics are also
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illustrated in Fig. 3. Figure 4 shows a summary of these delays

on the level of individual testing sessions, with the standard

error and mean for each combination. We have not converted

all timings to frames, and have summarised the data in milli-

seconds for transparency, as the iMac screen appeared to not

always stick to 60 Hz. All platforms exhibited a positive delay

(on average, they overrepresented the duration of items), ex-

cept for PsychoJS v3.1.5, which both overestimated and

underestimated. In terms of timing, Chrome and Windows

appear to show the smallest delay. In terms of variance, the

smallest standard deviation was with Lab.js v19.1.0, which

had a maximum delay of 16.49 ms (one frame at 60 Hz) and

an average of 9.8 ms. The other platforms appear to exhibit

almost equivalent delay. Browsers and platforms showed no

superiority in terms of variance.

A more fine-grained overview of the results for VDD can

be seen in Fig. 5. The overall story is complex, with traces

varying in shape, but some themes are apparent. In macOS,

across different devices and platforms, jsPsych v6.0.5 consis-

tently showed a slight delay for requested durations between 3

and 20 frames. Firefox showed the largest amount of variance

out of all the browsers, both between different frame lengths

(Fig. 5) and between different platforms (Fig. 4), leading to a

more drawn out distribution in Fig. 6. The best all-round

browser was Chrome— it showed the least variance across

devices and platforms, although it was more spread out be-

tween platforms on macOS (Fig. 4).

The traces in Fig. 5 also tell us that delays persist in longer

durations as well as shorter durations: in most platforms, the

error at one frame (16.66ms) was the same as the error at 30

frames (500ms). This is positive for users who wish to con-

duct research with different durations for different images, and

means that variability will be broadly equivalent between

times. The exceptions to this are jsPsych v6.0.5, Firefox, and

Edge, which should probably be avoided in this scenario.

Outliers are very rare, with 22 trials out of 103,500. They

range from 95.75 to 265ms. They are fairly equally distribut-

ed among some platforms (10 Gorilla, 9 PsychoJS v3.1.5, 4

Lab.js v19.1.0, 0 jsPsych v6.0.5), but it is difficult to draw

inferences from so few instances. These are likely due to dis-

play or external chronometery anomalies—it is difficult to tell

with such low rates of replication.

We note that the above descriptions relate to the data col-

lected from tested devices, and would not necessarily gener-

alise to the population of participants’ home devices.

Reaction time accuracy

This experiment assessed the accuracy of an entire system to

record responses on a keyboard. The BBTK robotic actuator

was programmed to press a space key in reaction to a white

square at a pre-specified reaction time. This actuator uses a

motor to propel a metal ‘finger’ with a foam tip onto the

keyboard of the device. Once calibrated, it can deliver reaction

times with sub-millisecond accuracy. We opted for using an

actuator instead of deconstructing a keyboard to attach wires

to the underlying board, for two reasons: it enables us to easily

test touchscreen devices in the future, and it more closely

resembles what participants of online experiments do, without

optimising for an unrealistic set-up.

Methods

RT task

As in the VDD experiment, an opto-detector was connected to

each system on an elastic band, and connected to the BBTK.

This detector acted as a trigger for the actuator to make a re-

sponse, programmed with a fixed reaction time of either 100,

200, 300, or 500ms representing a reasonable range of fast re-

sponses by human participants. As in the VDD experiment, the

opto-detector threshold was adjusted to suit each screen and set-

up. The actuator was calibrated before each testing run, using a

TTL trigger button provided as part of theBBTKkit. Ten presses

on this button give an initiation latency for the actuator, and this

latency is accounted for when programming the key presses.

Some software tools force a fullscreen by default on certain

operating systems (e.g. Lab.js v19.1.0 on Safari on macOS),

which caused a white flash between setting the photodiode as

Table 1. Summary of Visual Duration Delay results in milliseconds.
Visual Duration Delay is calculated as the difference in milliseconds
between the requested duration of a white square and the duration that
is recorded by a photodiode sensor. It is broken down by Platform
(Gorilla versions 20190625, 20190730, and 20190828; Lab.js version
19.1.0; PsychoJS/PsychoPy version 3.1.5; jsPsych version 6.0.5),
Browser, and Device

Visual Duration Delay

Platform Mean Standard Deviation Percentiles

25% 50% 75%

Gorilla 13.44 15.41 2.25 17.50 22.50

Lab.js 9.79 4.69 6.17 6.90 15.70

PsychoJS -6.24 12.99 -13.00 -10.75 -1.00

jsPsych 26.02 17.40 15.25 26.50 37.00

Browser Mean Standard Deviation Percentiles

25% 50% 75%

Chrome 11.50 15.40 0.50 7.22 22.75

Edge 18.72 17.88 3.50 18.75 32.25

Firefox 22.58 19.80 3.50 19.75 36.25

Safari 30.02 15.07 17.50 29.25 42.50

Device Mean Standard Deviation Percentiles

25% 50% 75%

Windows 12.43 17.11 0.50 15.25 19.75

macOS 25.45 17.17 14.25 23.50 34.50
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a trigger and the experiment starting. This potential measure-

ment problem was addressed by adding an extra single 10ms

press of the actuator (not long enough to touch a key) before

the main task, so that the initial flash did not impact the rest of

the task. Very rarely (occurring only twice during all of the

tests) the actuator would fail to be triggered by the opto-de-

tector, or the keypress would not be registered. These trials

were excluded from the analysis.

Fig. 3 Cumulative frequency plots for delays in visual duration, separated by testing platform (top panel), browser (middle panel), and operating system
(bottom panel). (Gorilla versions 20190625, 20190730, and 20190828; Lab.js version 19.1.0; PsychoJS/PsychoPy version 3.1.5; jsPsych version 6.0.5)

Fig. 4 Average visual delay across all frame lengths, broken down by
browser, platform, and operating system. Each point represents the
average, with bars representing the standard error across all frames.

(Gorilla versions 20190625, 20190730, and 20190828; Lab.js version
19.1.0; PsychoJS/PsychoPy version 3.1.5; jsPsych version 6.0.5)
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We constructed each task according to each platform’s

documentation, using a GUI whenever possible. Most details

are identical to the first experiment above; below we describe

the key changes made for the RT experiment:

Gorilla The screens were identical to Experiment 1, but with a

‘Response Keyboard’ zone replacing the ‘Timelimit’ zone—

which ended the trial when the key was pressed.

jsPsych v6.0.5 The task was identical to Experiment 1, except

that there was no time limit on the white PNG trial, and the

‘response_ends_trial’ was set to ‘true’.

psychoJS/PsychoPy3 v3.1.5 The task was identical to

Experiment 1, except a key response component was added,

with the default options set, and the duration of the white PNG

not set.

Lab.js v19.1.0 The task was identical to Experiment 1, except

the timeout was set to ‘never’ for the white PNG image and a

keydown response was added.

Browsers

As in the VDD test, we did not want to configure the browsers

in any way beyond a standard user set-up, so there was very

minor variance in versions. The browser versions usedwere as

follows: macOS desktop: Chrome 76, Firefox 69, Safari 12;

macOS laptop: Chrome 75, Firefox 69, Safari 11; Windows

Fig. 6 Visual delay violin plots of data broken down by platform,
browser, and device. The shaded error represents the distribution
density, the lines represent the span of times, and the white dot

represents the mean. (Gorilla versions 20190625, 20190730, and
20190828; Lab.js version 19.1.0; PsychoJS/PsychoPy version 3.1.5;
jsPsych version 6.0.5)

Fig. 5 Visual delay traces broken down by web browser, operating
system, and platform. Visual delay is the delta between requested and
recording duration in milliseconds, shown across 30 frames. The shaded
errors represent standard error. Safari on Windows, and Edge on macOS,

are not supported (so missing). (Gorilla versions 20190625, 20190730,
and 20190828; Lab.js version 19.1.0; PsychoJS/PsychoPy version 3.1.5;
jsPsych version 6.0.5)
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desktop: Chrome 76, Firefox 68, Edge 44; Windows laptop:

Chrome 75, Firefox 67, Edge 44.

At the time of testing, PsychoJS v3.1.5 would not run on

Edge on our set-ups; this compatibility issue has been fixed,

and we hope to include these data in a future version of this

paper.

Devices

The two desktops were (1) a Windows desktop running

Windows 10 Pro, with an Intel Core i5-2500 3.3 GHz CPU,

8 Gb of RAM, and a 60Hz ASUS VS247 23.6”monitor with

1920 × 1090 resolution; and (2) a 2017 Apple iMac running

macOS 10.14.1 with an Intel Core i5-7400 3.0 GHz CPU, a

built-in 21.5” monitor with 4096 × 2304 resolution.

Because laptops have different configurations of keyboards

compared to desktops (i.e. they are connected internally rather

than through USB), we employed two in this experiment.

These were (1) a Windows Surface Laptop 2, with an Intel

core i7 CPU, 16 Gb RAM, and an integrated touchscreen

13.5” 60Hz display with a 2256 × 1504 resolution; and 2) a

MacBook Air early 2016, running macOS 10.14.1 with an

Intel Core m5 1.2 Ghz CPU, 8 Gb RAM, with a 12” 60Hz

Retina display with 2304 × 1440 resolution.

The devices used were not adjusted or restricted in any way.

This meant that background processes such as virus scans and

file-sharing services could experience a spike in activity during

the study, just as they could on a participant’s computer.

Platforms

The same versions of experiment software were used as in the

VDD.

Data processing

The delay scores were calculated as the difference between the

known actuator reaction time and the recorded time on the

software. No outliers (more than four standard deviations from

the mean) were detected.

Results

The figures in the above section where replicated for reaction

time (Figs. 7, 8, 9, 10, and 11). Reaction time delay (the

difference between performed reaction time by the actuator

and that recorded on the experiment platform) was broken

down by the requested reaction time (100, 200, 300, and

500ms). This allowed us to investigate whether any particular

duration led to more error in systems in general. This was not

the case overall (Fig. 8). There were also a few differences

between desktop and laptop computers, particularly on

Windows. More importantly, experiment platforms did not

all behave in similar ways.

Gorilla was relatively consistent overall, with around 80ms

of delay for all operating systems and device types. It also had

good precision, with the lowest overall standard deviation out

of all the platforms (8.25ms in Table 2). As discussed above,

high precision in measuring reaction times permits a higher

sensitivity for small differences between conditions. The plat-

form also showed slightly higher standard deviations for lap-

tops compared to desktop keyboards. However, this was in line

with the average results broken down by device type in Table 2.

jsPsych v6.0.5 was consistent (around 70ms) on desktop

devices running Chrome or Safari, but less so for Firefox on

macOS (desktop: around 110ms, laptop: around 100ms) and

Windows (desktop and laptop: around 80ms), and for Edge

(desktop: around 85ms, laptop: around 120ms).

Lab.js v19.1.0 showed a rather distributed pattern across all

combinations of devices and browsers.

PsychoJS v3.1.5 was relatively consistent (around 80ms)

on a macOS, with the exceptions of Firefox on a desktop

(around 100ms) and Safari on a laptop (around 65ms). It

was also consistent on Windows desktop devices (around 95

ms) for Chrome and Firefox, but less so on the laptop (around

60ms on Chrome, and 80 on Firefox). PsychoJS v3.1.5 also

shows clustering around 16ms increments, likely due to RT

logging within the animation loop at the time of testing. We

understand that updates made in late 2019 have changed this.

We note that the above descriptions relate to the data col-

lected from tested devices, and would not necessarily gener-

alise to the population of participants’ home devices.

Participant analysis

Methods

The data were gathered using Gorilla’s user analytics—those

who accessed the website to take part in experiments. This

totalled 202,600 accesses. The logs are produced by combin-

ing IP address information (e.g. server location, operating sys-

tem), referring website (e.g. MTurk, Prolific, etc.), and infor-

mation provided by the client’s web browser (e.g. browser

used, screen dimensions). The resulting information is

displayed using descriptive statistics and graphs, as an over-

view of the web demographics of a representative sample of

Gorilla’s participant population for that year.

Results

Operating systems and browsers

The first thing to consider is the types of devices users are

utilising to access the internet. We found that 77% of these
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devices were desktop or laptop computers, whereas only 20%

were mobile devices, and just over 2% were tablets. A more

detailed breakdown of the operating systems in use can be

seen in Fig. 12. The most common operating system was

Windows, followed by macOS. For mobile devices, users

were roughly evenly split between iOS and Android, and the

overwhelming majority of tablets were iPads running iOS.

Table 3 and Fig. 13 show the breakdown of participants’

browsers by operating system. The most common browser

was Chrome (59%), but this dominance varied depending on

device (it was less popular on mobile operating systems).

Overall, the average percentages for Chrome, Firefox, and

Safari were in line with what we would expect from the global

market share of 64.3%, 16.7%, and 4.5%, respectively

(Browser Market Share Worldwide, 2019). Where our sample

differs is in the use of the Facebook browser (3.6%), which is

not listed in the aforementioned market share statistics. It is

likely to reflect researchers sharing studies in the mobile ap-

plication Facebook Messenger, which opens links with its

built-in browser by default.

Screen size and window

The screen size of the devices limits the objective size of the

items presented on screen. Stimuli size, whilst less important

for some phenomena such as visual object priming

(Biederman & Cooper, 1992) or perceptual learning

(Furmanski & Engel, 2000), is important for others, in partic-

ular in some visual perceptual research—for example visual

crowding (Tripathy & Cavanagh, 2002)—where it can impact

Fig. 7 Cumulative frequency plots for delays in visual duration, separated by testing platform (top panel), browser (middle panel), and operating system
(bottom panel). (Gorilla versions 20190625, 20190730, and 20190828; Lab.js version 19.1.0; PsychoJS/PsychoPy version 3.1.5; jsPsych version 6.0.5)

Fig. 8 Reaction time delay by requested duration. Points represent the
mean, and error bars represent the standard deviation
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the detectability of targets. We therefore looked at the varia-

tion and distribution of the participants’ screen sizes.

It makes sense to analyse computers, mobile devices, and

tablets separately, as experimenters interested in size are likely

to restrict themselves to one of these categories. The two most

common screen sizes for computers were 1366 × 768 pixels

(23.2%) and 1920 × 1080 pixels (21.5%); for mobile devices

these are 375 × 667 pixels (27.8%) and 360 × 640 pixels

(18.5%)—both in portrait mode; and finally tablets with

768 × 1024 (73.7%)—the logical resolution of all iPad minis

and iPad airs.

Looking at the most frequent resolution combinations tells

only part of the story; it becomes more interesting when we

translate size into a continuous variable and look at the distri-

bution of screen dimensions. This is illustrated in the scatter

graph in Fig. 14. The mean width of computer screens was

Fig. 10 Reaction time delay for macOS devices broken down by
browser, device, and platform. Points represent the mean, and bars
represent the standard deviation (bottom panel). (Gorilla versions

20190625, 20190730, and 20190828; Lab.js version 19.1.0; PsychoJS/
PsychoPy version 3.1.5; jsPsych version 6.0.5)

Fig. 9 Reaction time delay for Windows 10 devices broken down by
browser, device and platform. Points represent the mean, and bars
represent the standard deviation. (Gorilla versions 20190625,

20190730, and 20190828; Lab.js version 19.1.0; PsychoJS/PsychoPy
version 3.1.5; jsPsych version 6.0.5)
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1387.6 pixels (SD = 161.9), and the height was 832.3 pixels

(SD = 99.5); mobile screens had a mean width of 393.2 pixels

(SD = 92.4) and a height of 684 pixels (SD=109.5); tablets

had a mean width of 811.7 pixels (SD = 141.1) and the height

was 1025 pixels (SD = 128). The variance in tablets and mo-

bile devices is likely overestimated, as the screen sizes are split

between landscape and portrait users. This landscape/portrait

split is illustrated in Fig. 14, where tablets and mobile points

appear to mirror each other in clusters.

Figure 14 also nicely shows the differing aspect ratios pres-

ent in computers—with strong diagonal lines along those ra-

tios (as the screens scale up with those rules). The most com-

mon aspect ratio was 16:9 / 1.77—41% of computers show

this, and it scales up along the thickest blue line. There are also

less clear aspect ratio lines for mobile devices.

Screen size does not account for the entire presentation of

stimuli on-screen. The browser window will always take up

less than 100% unless the user is in fullscreen mode. We

quantified this in our sample by calculating the percentage

coverage the browser window had on each screen. This can

be seen illustrated in Fig. 15. Computers have a longer tail of

coverage, as users are able to scale the window with their

mouse—something not as easy in tablets (highest coverage)

and mobile devices (slightly less).

Geography

We estimated geographical location from participants’ time

zone data. These were recorded in a standard format, and

obtained using moment.js (https://momentjs.com/timezone/

docs/). The labels produced refer to time zone localities,

according to the TZ Database (Lear & Eggert, 2012).

Seventy percent (over 131,000) of the participants were based

in Europe (mostly in the UK: 53%, the Netherlands: 3%,

Germany: 2%, and France: 1%), and 23% (over 44,000) were

based in the American continent (mostly in TZ codes New_

York: 10%, Chicago: 5%, and Los_Angeles: 3%). The distri-

bution (Fig. 16) is heavily biased towards westernised devel-

oped economies, which is not reflective of the broader

Fig 11 Reaction time violin plots organized by platform, browser, and
device. Lines represent the maxima andminima, whereas the shaded error
represents a distribution plot (bottom panel). (Gorilla versions 20190625,

20190730, and 20190828; Lab.js version 19.1.0; PsychoJS/PsychoPy
version 3.1.5; jsPsych version 6.0.5)

Table 2 Summary of reaction time (RT) delay results. RT delay is
calculated as the difference between known and recorded RT. It is broken
down by platform, browser, and device. All results are reported after
outliers have been excluded. (Gorilla versions 20190625, 20190730,
and 20190828; Lab.js version 19.1.0; PsychoJS/PsychoPy version
3.1.5; jsPsych version 6.0.5)

Reaction Time Delay (ms)

Platform Mean Standard Deviation Percentiles

25% 50% 75%

Gorilla 78.53 8.25 73.00 78.00 83.15

Lab.js 71.33 28.16 48.53 61.95 90.65

PsychoJS 82.28 16.36 70.00 79.00 95.00

jsPsych 87.40 15.27 76.00 83.14 95.14

Browser Mean Standard Deviation Percentiles

25% 50% 75%

Chrome 78.81 18.51 67.73 77.00 90.25

Edge 80.10 19.81 66.09 76.63 87.90

Firefox 82.30 18.62 74.00 82.46 94.00

Safari 76.50 21.86 64.00 77.00 84.00

Device Mean Standard Deviation Percentiles

25% 50% 75%

macOS-Desktop 85.35 18.31 75.00 81.00 95.00

macOS-Laptop 83.13 21.38 69.00 82.09 95.00

Windows-Desktop 76.24 14.47 65.73 78.08 84.96

Windows-Laptop 73.65 20.32 62.00 73.90 81.00
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internet-using population, the majority of which is based in

Asia (57%) (International Telecommunication Union, 2019).

We were able to look at the geographical distribution of

participants tested using different recruitment services; a

breakdown between MTurk and Prolific is shown in Fig. 17.

Prolific (previously Prolific Academic) is an online study pan-

el which specifically targets research participants rather than

professional survey responders and human training for ma-

chine learning (Palan & Schitter, 2018). As such, its partici-

pant demographics in our sample (based on machine

timestamp) are more heavily skewed towards Europe and

America—but with Europe being the dominant area—whilst

MTurk seems to show a large number of users from America,

but also a relatively increased number from Africa and Asia.

This difference could represent a difference in panel demo-

graphics, or it could reflect researchers’ criteria for recruitment

within these websites.

Limitations

As the data presented here are restricted to researchers who used

the Gorilla platform, it reflects the recruitment practices and

potential restrictions of their research projects. This caveat is

important when we consider the browser and mobile device

breakdown, as it is possible that researchers used Gorilla’s

GUI tools to restrict participants in some way. Unfortunately,

we do not log these aspects of researchers’ usage. Because

browser vendors do not consistently report OS for security rea-

sons, Gorilla is unable to reliably restrict by operating system,

so this aspect of our data is likely to be representative. Our

sample size is large here—over 200,000 participant devices—

so it is conceivable we would have a reasonable degree of

overlap with the general online participant pool. Specifically,

43% of the sample were recruited using a simple link, and these

are likely to be representative of online participants generally;

33.2% were recruited from Prolific and are likely to be repre-

sentative of Prolific users; 23.8% were recruited using MTurk

and are likely to be representative of MTurk workers.

Discussion

We undertook timing validation of presentation and response

times on common browsers, platforms, and devices.

Encouragingly, all platforms are reasonably accurate and reli-

able for studies not needing < 100ms reaction time accuracy

or < 2 frames presentation accuracy. However, we reveal

Fig. 12 Operating systems and devices, nested and stacked bar chart. Based on a sample of 202,600 participants. Percentages are rounded to the nearest
integer

Table 3 Browser percentage broken down by operating system. The averages are shown in bold for each browser. Each is taken from the total data, so
are not an average of the operating systems—which have unequal numbers of users

Operating System Chrome Firefox Safari Edge Internet Explorer Facebook Webkit Other

Windows 73.60% 12.40% - 8.30% 4.10% - - 1.60%

macOS 53.10% 5.10% 41.40% - - - - 0.40%

iOS - - 61.20% - - 14.50% 19.60% 4.70%

Android 51.80% 1.70% - - - 18.00% - 28.50%

Other 77.80% 17.10% - 0.40% - - - 4.70%

Average 59.00% 8.60% 14.50% 4.80% 2.30% 3.60% 2.40% 4.60%

1420 Behav Res (2021) 53:1407–1425



complex patterns of variation between all set-up variables, and

in general show that experiment platforms do not behave con-

sistently between browsers and operating systems. We also

conducted an analysis of 200,000 online research participants,

and found that some demographic factors do not overlap with

the general online user population, and that choice of

Fig. 13 Nested pie chart representing the breakdown of browsers within each operating system. For readability, wedges less than 3% are not labelled, but
all are in the ‘other’ category

Fig. 14 Scatter graph of screen width and height, with histograms and kernel density estimation plots for each dimension. The diagonal lines represent
the different aspect ratios
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recruitment method impacts one’s population. The device,

browser, and geographical distributions of online participants

reported here could help researchers make sampling decisions.

We found that the choice of platform contributes greater

variance than the device—contrary to earlier findings that sys-

tems introduced more variance than browsers (Reimers &

Stewart, 2015). This is likely because browser technology

has changed quickly in the past few years—as discussed in

the introduction—and how platforms manage and render

stimuli has also changed. Due to the huge number of trials

we had to conduct, it was not feasible to undertake testing

on more than the four devices assessed here, but it is perhaps

worth replicating this analysis on a wider range of devices,

such as touchscreen Android and iOS (despite these devices

accounting for a smaller proportion of users in our sample). It

is likely that the proportion of participants using these mobile

Fig. 16 Time zones of participants. The data are scaled into percentile rank scores within the whole sample, for interpretability of geographical spread
(but not relative contribution)

Fig. 15 Kernel density estimation of browser window coverage relative to screen size, with individual points as a carpet plot
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devices will only increase. One potential contribution of

timing variance is that theMac computers we used had current

macOS versions installed, which could have a negative impact

compared to Windows devices. This is because Apple opti-

mises their current operating systems to their most recent

hardware. However, using an out-of-date operating system

could also have had a negative impact on timing. As men-

tioned above, we had opted to not alter our set-ups where

possible, but readers may like to consider any possible impact

of OS on their results when recruiting participants. In any

case, the relatively small invariance of devices reported here

is good news for researchers, as the devices are often the

variable that they are least able to control. This bodes well

for the current state of online research.

At the time of testing, we used the most recent versions.

Since then, Gorilla, jsPsych, Lab.js, and PsychoPy have all re-

ceived updates. According to the developers of PsychoPy, their

latest version has substantially improved timing (Bridges et al.,

2020). Fortunately for the research community, software is often

dynamic and constantly improved in regard to how it deals with

presentation and data recording. Unfortunately, this means that

any data reported in a paper will almost certainly reflect an older

version of a software by the time of publication. All packages

assessed here will likely have improved timing at some point in

the future, so we encourage users who really need acute timing

accuracy to gather external chronometrics themselves—as

others also suggest (Bridges et al., 2020).

In our findings, particularly noteworthy are the larger de-

lays (compared to lab-based software set-ups) in the recording

of response times, which on average lag 80ms, and extend to

100ms on some set-ups. These results show larger delays and

variance than recent results from Bridges et al. (2020), who

limit the hardware elements of the sample to two devices with

the same screen and low-latency button box. The authors also

use different versions of software— older versions of jsPsych

(v6.0 vs v6.0.5) and Lab,js (v2.4.4 vs v19.1.0) and a newer

version of PsychoPy (v2020.1 vs v3.1.5). Lastly, for display

duration, Bridges et al. (2020) use a smaller number of trials

(1000 vs 4350) and a single duration (200ms vs 16.66–500

ms). These differences are potential reasons for the different

data we report. Researchers should keep these instances of

larger delays in mind when conducting reaction-time-

sensitive studies, by ensuring relative RTs are used (Pronk

et al., 2019; Bridges et al., 2020). When timing sensitivity is

crucial, we recommend employing within-participant designs

where possible to avoid having to make comparisons between

participants with different devices, operating systems, and

browsers. Additionally, limiting participants to one browser

could remove further noise. Limiting participants’ devices and

browsers can be done programmatically in all tested plat-

forms, and via a graphical user interface in Gorilla.

There were several extreme values reported in the results

for the visual duration assessment, which we reported for

completeness. These are a total of 22 trials out of 104,880

trials (.021%). They range from around 90 ms to 265 ms,

and the causes are difficult to elucidate (even reproducing

them, as a rare event, would be difficult). It is unlikely such

outliers will impact researchers’ data at the group level, as

these errors will appear roughly every 5000 trials. To put this

into context, an example study showing 100 trials per partic-

ipant would have one of these errors every 50 participants. No

such extreme deviations appeared to happen in the reaction

time data.

The accuracy and precision differences between set-ups are

relatively small, and for most researchers the guiding factor

for platform selection should be individual preference and

ease of use. For those interested in particularly niche and

time-sensitive tasks, platform selection strongly depends on

the intended design and sample.

There is a difference in timing accuracy and precision be-

tween the presentation of stimuli and reaction times (not

formally tested, but observable in Figs. 3 and 7). It is often

the case that a task which demands an accurate and precise

reaction time metric also requires reasonable display metrics.

The impact of timing error also changes depending on re-

quired display duration or magnitude of RT differences

Fig. 17 Continents of participants from each recruitment platform. Africa and Asia are combined as they represent a relatively small number of
participants
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expected. For example, for those interested in presenting stim-

uli for a small number of frames or a single frame, a dropped

frame may lead to a stimulus not being presented at all, or an

over-presentation of one frame could double the display time,

whereas for a user presenting stimuli for seconds, these same

display errors would matter much less. When we think about

RT error, the variance should be put into the context of human

variance—often this is in the scale of hundreds of millisec-

onds, so variability of 10–30 milliseconds is unlikely to ob-

scure clear differences between conditions (Damian, 2010).

Researchers should take the time to look at expected RT mag-

nitudes and use short display durations, and consider whether

they need to take steps to improve timing performance, or

whether any tool will provide good enough accuracy and

precision.

In terms of informing researchers, this is among the most

comprehensive assessments of timing accuracy across differ-

ent platforms, browsers, and devices that have been carried

out, in addition to Bridges et al. (2020). In general, our results

indicate that no online platforms should necessarily be

avoided, and that their timing characteristics are suitable for

many types of research. Readers should avoid drawing strong

conclusions from comparisons, as platforms, browsers, and

operating systems evolve rapidly. We suggest researchers

keep up to date with new releases of software, as timing could

change substantially in the future.

General limitations

Only a limited number of computers were used to collect the

data presented here. As outlined in our results, participants in

online experiments use a wide variety of software. In addition,

their hardware will vary substantially, and each home com-

puter will be equipped with its own unique ecosystem of soft-

ware that can potentially interfere with timing accuracy.

Three of the authors (AAI, NH, and JKE) are employed by

Cauldron, which operates the Gorilla experiment platform.

Conclusions

Whilst offering larger sample sizes, web experimentation in-

troduces variation in participants’ geographical locations and

computer set-ups. We show that the accuracy and precision of

display and response timing is not always consistent across

different devices, operating systems, and experiment plat-

forms, with no single platform standing out as the best. Our

results also suggest that MTurk and Prolific participants are

predominantly European and American, and that the best

combination of browser and device (Chrome and Windows)

is also the most common in use. Researchers who are keen to

conduct online studies that include experiments for which

timing is crucial would be wise to scrutinise the complex

interactions between platforms, operating systems, and

browsers, and opt for within-participant designs, or potentially

consider restricting participants’ set-ups.
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