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In this paper we derive the complete set of formulas which is needed to generate physically plausible images of uniaxial crystals.
So far no computer graphics publication contains all the formulas one needs to compute the interaction of light with such crystals
in a form that is useable by a graphics application, especially if a polarisation-aware rendering system is being used.

This paper contains the complete derivation of the Fresnel coefficients for birefringent transparent materials, as well as for
the direction cosines of the extraordinary ray and the Mueller matrices necessary to describe polarisation effects. The formulas
we derive can be directly used in a ray based renderer, and we demonstrate these capabilities in test scenes.
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1. INTRODUCTION

Crystals can exhibit a number of interesting optical properties, such as double refraction, optical rotation
or polarisation effects. So far, the rendering community has only made a few isolated attempts to simulate
these phenomena.

The reasons for the apparent reluctance to investigate these effects are twofold: most of them do not cause
very prominent changes in object appearance, and – in contrast to “normal” refraction and reflection from
isotropic transparent objects, which is easy to understand – the theoretical foundation needed for getting
them right is not trivial.

Since most of the time computer graphics is about generating believable images (as opposed to radiomet-
rically exact ones) the fact that no complete, immediately reproducible treatment of some of these effects
has been published so far has not been perceived as a significant omission up to now.

However, in the gemstone industry, computer-aided prototyping of gemstone cuts is slowly becoming
a standard; as a consequence, the computation of physically accurate images of crystals is increasing in
importance. But practically all of the rendering solutions which have been developed for this area so far
assume the gemstones to be plain isotropic materials; this is an assumption which can cause inaccuracies
and mispredictions for those types of crystals where one of the neglected effects – such as birefringence – is
a prominent feature.

The aim of this paper is to complete the computer graphics knowledge of crystal rendering in one particular
problem area, and to derive all the formulas one needs to implement a ray-based renderer for uniaxial,
birefringent crystals.
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Fig. 1. A photograph (left) and rendered image (right) of a calcite crystal placed on a luminescent background with a grid
pattern. The setting was chosen in order to maximise the visibility of the birefringence effects, and the formulas derived in
this paper were used for calculation of the synthetic image. The remaining differences in the refraction patterns can be traced
to small differences in the camera parameters as well as volume inhomogeneities and surface irregularities in the real sample
calcite.

1.1 Structure of this Paper

We first discuss the state of the art in crystal rendering in section 2, give a short general overview of the
physical background needed to understand optical properties of uniaxial crystals in section 3, and then
identify the distinguishing aspects of the problem of ray propagation in such crystals in section 3.4.

In sections 3, 4, 5 and 6 we then cover all these sub-problems in turn by deriving the formulas needed for
an implementation, i.e. the refraction index for the extraordinary ray, the Fresnel coefficients, the direction
cosines of the e-ray and the Mueller matrix which is needed in polarisation–aware rendering systems.

The resulting formulas which are to be used in a renderer are spread through sections 3, 4, 5 and 6.
Therefore we give a concise overview of what exactly is to be done if one wants to perform raycasting
operations on a birefringent interface in section 7.

We conclude by demonstrating the viability of this approach by testing it in various representative settings
in section 8, and giving some directions for future work in section 9.

2. RELATED WORK

Light which passes through a crystal can be subjected to a wide variety of optical effects; some are peculiar
to crystals, while others can be found in all transparent materials. Practically all of them have already been
simulated in a computer graphics system at some time, although some of these efforts did not yield results
that are immediately useable in the context of a modern rendering system, or were inefficient proof-of-concept
studies.

With the notable exception of [Guy and Soler 2004], who presented an integrated real-time system capable
of interactively rendering gemstones including dispersion effects, all the publications discussed in this section
deal with ray-based, non-interactive rendering systems.
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Dispersive refraction is perhaps the simplest, but also one of the most visually prominent attributes of all
transparent materials. The simulation of this effect was first introduced to computer graphics by [Thomas
1986] as an add–on to a standard ray tracer. Dispersion was obtained by breaking up the incident energy
into six subrays, where each one represented only a part of the spectrum, and the incident ray is adaptively
subdivided further so that the spread of each refracted ray is small enough. [Yuan et al. 1988] managed to
reduce the computational complexity by using only three rays to represent a spreading incident ray.

[Yokoi et al. 1986] published an algorithm to render asterism or chatoyancy effects of gems, and achieved
light dispersion through a microfacet model. Dispersion was further investigated by [Sun et al. 2000b], who
used a hybrid spectral model which decomposed the spectrum into its smooth component, and a collection
of spikes to optimally represent monochromatic light rays and spiky emission spectra.

The exact simulation of light absorption in transparent media is a problem which is frequently underesti-
mated, especially for uni- and biaxial crystals; for these no computer graphics treatment exists so far, and
the relevant discussions in crystallographic texts are highly involved.

For normal isotropic materials solutions have been known for a long time, however, and a recent discussion
can be found in [Sun et al. 2000a], where they combined the effects of light dispersion with volume absorption
to simulate the colour of diamonds. Absorption in homogeneous transparent materials was also investigated
in [Sun et al. 1999].

Another prominent feature is the darkening of certain facets in crystals due to polarisation. Among the
few publications which discuss polarisation in ray tracing are [Wolff and Kurlander 1990], who were among
the first to investigate this problem, and used 2 × 2 coherency matrices to represent the polarisation state
of light. [Wilkie et al. 2001] used Mueller matrices to avoid the complex numbers of coherency matrices.
With this description of polarisation state, fluorescence effects could be included in a natural fashion in a ray
tracing system. However, neither of them explicitly dealt with polarisation in the context of crystal optics.

The only authors to discuss ray-based rendering of birefringency were [Tannenbaum et al. 1994], who
investigated the behaviour of light–material interactions with optically anisotropic media. They extended
the work of Wolff and Kurlander by taking the coherency alterations that occur when a light ray interacts
with an anisotropic medium into account, and derived some formulas for the intensity and the direction of the
extraordinary ray. However, even in the longer version of the paper – which provides some of the intermediate
steps that are missing in the short version found in the SIGGRAPH proceedings – the derivations are difficult
to understand, because some crucial steps and end results are still omitted, and those formulas which are
provided as end results would be very hard to implement, even if one had a rendering system that can work
with coherency matrices.

3. OPTICAL PROPERTIES OF UNIAXIAL CRYSTALS

3.1 Dielectric Tensor

Computer graphics texts usually assume that materials are isotropic, which means that the propagation
characteristics of an electromagnetic wave are independent of its propagation direction within the medium.
In such isotropic materials the electric field vector E is parallel to the dielectric displacement vector D. They
are related to each other by the product of the relative permittivity ǫr and the permittivity of free space ǫ0,
so that ǫ = ǫ0ǫr.

D = ǫE (1)

In optically anisotropic materials – which include most crystals – the propagation characteristics of a ray
depend on the relative orientation of the electric field vector to the inherent axial directions of the crystal.
As a consequence D will no longer necessarily be oriented in the direction of E, and therefore ǫ has to be –
in contrast to isotropic transparent material, where the relationship between E and D can be described by
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a single scalar – a tensor of rank 2 [Born and Wolf 1999].

Dx = ǫxxEx + ǫxyEy + ǫxzEz

Dy = ǫyxEx + ǫyyEy + ǫyzEz

Dz = ǫzxEx + ǫzyEy + ǫzzEz

The dielectric tensor ǫ is symmetrical, and hence has only six instead of nine independent components.
As a consequence, a coordinate system can be found for any crystal in which the nondiagonal elements in
this matrix disappear. By defining such a coordinate system, i.e. finding a rotation that transforms the
symmetric tensor into the diagonal form, the components of the dielectric tensor can be reduced to three
scalars ǫ′xx = n2

x, ǫ′yy = n2
y and ǫ′zz = n2

z. These remaining elements are called the principal dielectric
constants, or principal permittivities. The axes of this coordinate system are known as principal axes. With
this choice of axes, D can be written as





Dx

Dy

Dz



 =





ǫ′xx 0 0
0 ǫ′yy 0
0 0 ǫ′zz









Ex

Ey

Ez



 .

3.2 Types of Crystal Structures

It is a defining property of crystals to exhibit a periodical arrangement of atoms in an ordered geometrical
pattern, which repeats in all three dimensions on a lattice. The exact arrangement is characteristic for
each type of crystal, and is referred to as its crystal structure. Seven distinct basic configurations of such
structures can be distinguished, and are known as crystal systems. These can be further grouped into three
classes according to the relationship between their principal permittivities:

— Crystals with a cubic structure – e.g. Diamonds – are isotropic, and have three equal principal per-
mittivities, ǫ′xx = ǫ′yy = ǫ′zz. Snell’s law1 – the classical law of refraction – can be used to determine the
propagation angle for the single refracted ray which occurs in such materials, the direction of which is
obviously independent of the relative orientation of incident ray and crystal lattice.

— Crystals with trigonal, tetragonal or hexagonal structures are called uniaxial, and have two equal
principal permittivities, ǫ′xx = ǫ′yy 6= ǫ′zz. Zirconia and Quartz are examples of uniaxial materials. In
such crystals, the refracted part of any incident light wave is split into two wavetrains, which are linearly
polarised in orthogonal directions. The first one – the so-called ordinary ray – is polarised perpendicular to
the principal plane, obeys Snell’s law, and propagates in the same direction as if the material were isotropic;
this ray is sometimes also called s–polarised. The second ray – the extraordinary ray – is polarised parallel
to the principal plane, and is called p–polarised2; see figure 2 for an illustration. As their name implies,
uniaxial crystals have one optical axis – the one direction within the crystal where ordinary and extraordinary
refraction rays coincide.

— Finally, crystals with orthorhombic, monoclinic or triclinic structure are referred to as biaxial materials,
as they have two optical axes. Olivine and Kyanite belong to this group. For them, all principal permittivities
ǫ′xx 6= ǫ′yy 6= ǫ′zz are different. In biaxial crystals the refracted light wave is split into two extraordinary rays
– there is no ordinary ray, which means that no part of the refracted light obeys Snell’s law.

1Snell’s law (sin θ1 · n1 = sin θ2 · n2) gives the relationship between angle of incidence sin θ1 and angle of refraction sin θ2 of a
light wave when travelling between two media with different refraction indices n1 and n2.
2The terms ”s–polarised” and ”p–polarised” are derived from the German word ”senkrecht” (i.e. perpendicular) and ”parallel”,
respectively, which refer to the oscillation direction of the electric field. The continuing usage of these terms in English literature
is apparently a legacy from the days when most optical literature was published in German.
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Fig. 2. Left: Split of an incident ray into an ordinary and an extraordinary ray upon incidence on a uniaxial crystal. Right:
Ray surface of a positive uniaxial crystal. The ray–velocity surface describes the velocity of rays in their propagation direction,
which for e–rays depends on the direction of the wave vectors except for propagation along a principal axis. The semi–axes
of the ellipse define the directions of the two permitted polarisation directions which can propagate through the crystal, and
the lengths of these semi–axes give the refractive indices experienced by these two polarisations. The surface for o–waves is a
sphere, since the refractive index is independent of the propagation direction. Note that the ray velocity vr = vp cos(ϑ

′

− ϑ).

3.3 Light Propagation in Uniaxial Crystals

The refractive index of the extraordinary ray can be derived from Fresnel’s equation of wave normals. This
equation is biquadratic and has two solutions. For uniaxial crystals with nx = ny 6= nz the two solutions

correspond to the ordinary refractive index n
′

and the extraordinary n
′′

[Yariv and Yeh 1984]

n
′

= ns = no

n
′′

= np =
none

√

n2
o sin2 ϑ′ + n2

e cos2 ϑ′

(2)

where ϑ′ is the angle between the unit wave–normal s and the z–axis. In the case of the electric field being
oriented along the crystal coordinate axes, the refractive index n′′ assumes the values no or ne. When the
electric field vector points in other directions, n′′ takes on values which are between no and ne.

Evidently, s– and p–polarised light refracts into an anisotropic crystal at two different angles, and has
different velocities in the crystal.

— For ordinary rays light behaves the same way regardless of the incident angle, because the refractive
index n is independent of ϑ′. Therefore, for the ordinary wave the velocity is equal in every direction, and
it propagates with wave–normal (or phase) velocity vp = c0/n along s.

— For extraordinary rays the situation is more complicated, since the extraordinary index of refraction
exhibits an angular dependence. In this case we have to distinguish between the ray vector (the direction
of energy propagation) and the wave–front normal, because, unlike ordinary waves, ray velocity and wave–
normal velocity are different. However, the difference is small even for strongly birefringent materials.

v
′2
p = v2

o

v
′′2
p = v2

o cos2 ϑ′ + v2
e sin2 ϑ′.
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If the ordinary ray is faster than the extraordinary (ve < vo) a crystal is said to be positive uniaxial.
Otherwise, if the ordinary ray is slower than the extraordinary (ve > vo), the crystal is negative uniaxial.
Since the propagation speed is equal in every direction for the ordinary ray, its ray surface is a sphere of
radius vp = vo. For the extraordinary ray the ray surface is an ellipsoid (figure 2).

Usually a part of light is absorbed inside a transparent material by traveling through it; since this is
a completely different – and very complex – problem in its own right for crystals, we do not deal with
absorption in this paper. For a detailed discussion of the theory of absorption in crystals we e.g. refer
the reader to [Szivessy 1928] or [Ramachendran and Ramaseshan 1961]. However, since a large number
of minerals exhibit absorption to some degree, it is desirable to have at least an approximate solution. A
practicable approach of this type is the solution of [Guy and Soler 2004], who use characteristic constants
(e.g. from measured absorption spectra) for both the absorption of ordinary and the extraordinary rays.

3.4 Calculation of Light Propagation in Uniaxial Crystals

Four distinct problems have to be solved in order to perform rendering computations which involve the
propagation of light in uniaxial materials. These are addressed as follows in the subsequent sections:

(1) The index of refraction which governs the behaviour of the extraordinary ray is not constant – it depends
on the incident angle, and the orientation of the crystal axis. The appropriate formulas were already
discussed in section 3.3. Note that these formulas are common knowledge and can be found in numerous
physics books.

(2) The relative distribution of the refracted light between the o− and e−ray has to be determined. This
problem is discussed in section 4, where the Fresnel coefficients for an isotropic-uniaxial interface are
derived.

(3) Since it usually leaves the plane of incidence, the extraordinary ray clearly does not obey Snell’s law,
and a different approach is needed to determine its direction. We provide the necessary formulas in
section 5, where the direction cosine of the extraordinary ray is discussed.

(4) If a polarisation-aware rendering system is used, the polarisation state of the two rays has to be deter-
mined. The derivation for the Mueller matrices needed in this case is given in section 6.2.

4. FRESNEL COEFFICIENTS FOR UNIAXIAL CRYSTALS

The purpose of this section is to formulate the physical properties of crystals in tensor notation and give
explicit formulas for the Fresnel coefficients. The Fresnel coefficients describe the behaviour of reflection
and refraction and calculate the amount of reflected light relative to the amount transmitted through an
interface. The exact values depend on the incident angle, the polarisation and the wavelength of an incident
light ray.

Only a few publications on the derivation of Fresnel coefficients for anisotropic materials exist, all of them
outside computer graphics. [Lin and Wu 1998] examined the reflection coefficient for waves which propagate
from an isotropic medium to an anisotropic medium and [Schwelb 1987] derived the Fresnel coefficients in
terms of the characteristic admittance matrix for anisotropic media which exhibit loss or gain. Other methods
deal with a 4 × 4 matrix formalism, like the technique proposed by [McClain et al. 1993a], who derived the
Fresnel coefficients for anisotropic optically active materials, non–optically active uniaxial materials and
isotropic optically active materials. These formulas were used by Guy and Soler in their paper, who then
outlined a rendering solution.

The disadvantage of these formalisms is that the eigenvalue problem is not solved; this has to be done by
the user. In this paper all calculations are carried through, so that the resulting formulas can be used in a
renderer.
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The sequence of derivation we use – which is based on [Lekner 1991] – is the following: we transform the
dielectric tensor so that it is given in terms of the dielectric constants and use the result to solve equation
(1). Then we can express the electric fields in terms of the optical axis, the refractive indices and the incident
ray, and derive the Fresnel coefficients from the boundary conditions.

4.1 Transformation of the Dielectric Tensor

As mentioned earlier the dielectric tensor can always be diagonalised. This is an eigenvalue problem which
can be solved by rotating the tensor around the x–, y– and z -axes of its coordinate system. One way to
express the rotation matrix needed for this is to make use of Euler angles. Another possibility is to do an
orthogonal transformation, which will be done here. A detailed explanation can be found in [Goldstein 2002].

Any three dimensional vector can be defined by its direction cosines which can be expressed in terms of
two sets of Cartesian coordinates. For example, the x–axis is given by its three direction cosines with respect
to another set of axes x’, y’ and z’, so that

α1 = cos(x′,x) = x′ · x

α2 = cos(x′,y) = x′ · y

α3 = cos(x′, z) = x′ · z.

Similar equations can be set up for the direction cosines of the y’–axis and the z’–axis. Thus the vectors
x′,y′ and z′ can be written as

x′ = α1x + α2y + α3z

y′ = β1x + β2y + β3z

z′ = γ1x + γ2y + γ3z,

and the inverse transformation is

x = α1x
′ + β1y

′ + γ1z
′

y = α2x
′ + β2y

′ + γ2z
′

z = α3x
′ + β3y

′ + γ3z
′.

The direction cosines are related to each other, because the axes of both coordinate systems are mutually
orthogonal. These relations are called orthogonality relations. Therefore

x · y = y · z = z · x = 0

and

x · x = y · y = z · z = 1.

This also holds true between the direction cosines. We now return to the dielectric tensor, which is given by

ǫ =





ǫxx ǫxy ǫxz

ǫyx ǫyy ǫyz

ǫzx ǫzy ǫzz



 .

Its components are given with reference to a coordinate system x, y, z. Since the dielectric tensor describes a
physical quantity, its components transform according to a rule that makes it possible to find the components
for any given set of axes. For a second–rank tensor T the transformation law is [Nye 2003]

T ′
ij =

∑

k

∑

l

aikajlTkl
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where aij are the elements of the transformation matrix3. If we want to transform the dielectric tensor
according to this law so that it is given in terms of the principal axes, we have to do an orthogonal trans-
formation. The rotations are represented by the matrix R. The transformation law of the tensor can also be
formulated by writing the aik–term after the tensor and transposing the result. The transformation of axes
for the components of the dielectric tensor is equivalent to

ǫ = R · ǫ′ · R−1 =





α1 α2 α3

β1 β2 β3

γ1 γ2 γ3



 ·





ǫ′xx 0 0
0 ǫ′yy 0
0 0 ǫ′zz



 ·





α1 β1 γ1

α2 β2 γ2

α3 β3 γ3





Since we are only interested in the uniaxial case here, we can assume ǫ′xx = ǫ′yy = ǫo and ǫ′zz = ǫe. If we
take advantage of the orthogonality relations of the direction cosines, the dielectric tensor reduces to [Lekner
1991]

ǫ =





α2
3(ǫe − ǫo) + ǫo α3β3(ǫe − ǫo) α3γ3(ǫe − ǫo)
α3β3(ǫe − ǫo) β2

3(ǫe − ǫo) + ǫo β3γ3(ǫe − ǫo)
α3γ3(ǫe − ǫo) β3γ3(ǫe − ǫo) γ2

3(ǫe − ǫo) + ǫo



 .

The direction cosines α3, β3 and γ3 coincide with the optical axis.

4.2 Normal Modes in Uniaxial Crystals

Light can be seen as an electromagnetic wave and can therefore be thought of as composed of an electric
field and a magnetic field. The electric field vector E and the magnetic field vector H as well as the magnetic
induction B oscillate perpendicular to each other and to the propagation direction k as well. Maxwell’s
equations connect the five quantities E, H, B, the dielectric displacement D and the electric current density
j (see [Born and Wolf 1999] for details). Starting from these equations, we now can derive the Fresnel
coefficiets for the uniaxial case. To derive these results, we make use of Faraday’s law to relate E and B.
The two curl Maxwell equations are then

∇× E = ikB

and

∇× B = −ikD

with k = ω/c = 2π/λ where λ denotes the wavelength . E and D are related through the dielectric tensor
so that after eliminating B and specialising the resulting equations for the case of anisotropic crystals, three
equations remain [Lekner 1991]:

−q2Ex + qKEz + k2Dx = 0

−(q2 + K)Ey + k2Dy = 0

−qKEx − K2Ez + k2Dz = 0.

q is the component of the wave–normal vector and K is the tangential component of all wave vectors, i.e.
K = kn sin θi. This is equivalent to





ǫxx − q2/k2 ǫxy ǫxz + qK/k2

ǫyx ǫyy − (q2 + K2)/k2 ǫyz

ǫzx − qK/k2 ǫzy ǫzz − K2/k2



 ·





Ex

Ey

Ez



 = 0

3Although both the transformation matrix and the dielectric tensor are arrays of nine numbers, there are some fundamental
differences between the two. The coefficients of aij put two sets of axes into relation, while the components of the tensor
represent a physical quantity for one given set of axes.
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if we fall back on the dielectric tensor in terms of the dielectric constants and substitute its elements into
the tensor matrix. Now we have to find a solution for E. The determinant of the tensor matrix must equal
zero. Otherwise the only solution for the electric field is E = 0. We get solutions for the ordinary electric
field Eo if we solve this eigenvalue problem by replacing q with

qo =
√

ǫok2 − K2.

It is convenient to set k = ω/c = 1 [Lekner 1991] and if we also assume ni = 1, Eo is given in normalized
form by

Eox = β

√

−sin2 θi + ǫo · No

Eoy =

(

−γ sin θi + α

√

−sin2 θi + ǫo

)

No

Eoz = β sin θiNo

N2
o =

1

β2ǫo +
(

γ sin θi − α
√

− sin2 θi + ǫo

)2

Also, qe becomes

qe =
αγ sin θi (ǫo − ǫe) +

√

ǫo

[

γ2ǫ2e + β2 sin2 θi (ǫe − ǫo) + ǫe

(

ǫo − sin2 θi − γ2ǫo

)]

γ2ǫe + (ǫo − γ2ǫo)

and the extraordinary electric field can be written as

Eex = −
(

αq2
o − γqe sin θi

)

/Ne

Eey = βǫo/Ne

Eez = −
(

γ − ǫo + q2
e − αqe sin θi

)

/Ne.

N2
e =

(

sin θiγqe − αq2
o

)2
+ β2ǫ2o +

(

sin θiαqe + γq2
e − k2γǫo

)2
.

No and Ne are normalisation factors that normalise Eo and Ee to unit magnitude.

4.3 Reflection and Transmission Coefficients

Now that we are able to express the ordinary and the extraordinary electric field in terms of the optical axis,
the refractive indices and the incident ray, it is a simple matter to derive the Fresnel coefficients from the
boundary conditions, which imply that the tangential components of E and B are continuous:

—If the reflection surface is in the xy plane, Ex and Ey are continuous.

—The partial derivatives of Ex and Ey, ∂Ex/∂z − iKEz and Ey/∂z, are continuous as well at z = 0.

From these four boundary conditions we get eight equations. To calculate the Fresnel coefficients, E has
to be decomposed into its two components parallel (‖) and perpendicular (⊥) to the plane of incidence.
By decomposing the incoming field into its two different polarised fields, we get four equations for the
perpendicular polarised wave [Lekner 1991]

rsp cos θi = tsoEox + tseEex

1 + rss = tsoEoy + tseEey

− cos2 θirsp − sin2 θirsp = qotsoEox + qetseEex − sin θi(tsoEoz + tseEez)

sin θi − sin θirss = qotsoEoy + qetseEey
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Fig. 3. Fresnel coefficients for uniaxial crystals with no = 1.54426 and ne = 1.55335. Left: Reflection from a basal plane
(α = β = 0, γ = 1). Middle: Reflection from a plane parallel to the optical axis (α = cos ϕ, β = sin ϕ, γ = 0). Right:

Arbitrarily oriented optical axis (α = 0.75, β = 0.5, γ = 0.433).

and four equations for the parallel polarised field.

rps = tpoEoy + tpeEey

cos θi + cos θirpp = tpoEox + tpeEex

nik(1 − rpp) = qotpoEox + qetpeEex − sin θi(tpoEoz + tpeEez)

− sin θirps = qotpoEoy + qetpeEey

They have to be solved for the unknown coefficients rss, rsp, rpp, rps, tso, tse, tpo and tpe.

4.3.1 Reflection Amplitudes. rss and rsp are the reflection amplitudes of an incoming perpendicular
polarised wave, rpp and rps those of an incoming parallel polarised wave. The cross reflection terms rps and
rsp are zero when Eo and Ee are orthogonal, which is not true in general. rps = rsp when the optical axis
lies in the plane of incidence, i.e. if γ = 0, or at normal incidence (K = 0).

rss = [(cos θi − qe)AEey − (cos θi − qo) BEoy] /C (3)

rsp = 2ni(AEex − BEox)/C (4)

rpp =
(

2n2
i / cos θi/C

)

[(cos θi + qe) EoxEey − (cos θi + qo) EexEoy] − 1 (5)

rps = 2ni (qe − qo)EoyEey/C (6)

A = (qo + cos θi + sin θi tan θi) Eox − sin θiEoz

B = (qe + cos θi + sin θi tan θi) Eex − sin θiEez

C = (cos θi − qe) AEey − (cos θi + qo) BEoy.

4.3.2 Transmission Amplitudes. tso and tpo are the transmission amplitudes of the refracted ordinary
wave and tse and tpe those of the extraordinary wave.

tso = −2 cos θiB/C (7)

tpo = 2ni (cos θi + qe)Eey/C (8)

tse = −2 cos θiA/C (9)

rpe = −2ni (cos θi + qo) Eoy/C (10)

As it can be seen in figure 3, the reflection coefficients hardly change if the direction of the optical axis
changes in contrast to the transmission coefficients. If |ne − no| is small, the cross reflection terms can be
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neglected, because in that case rps and rsp are vanishingly small.
The intensity coefficients define the relationship of the radiant intensities of the incoming and the reflected

and transmitted waves, respectively

R =
Ir

Ii

= r2. (11)

For unpolarised light the reflection coefficient is R = (R⊥ + R‖)/2 and the transmission coefficient T is

T =
It

Ii

=
nt cos θt

ni cos θi

t2. (12)

T is not t2, because the different phase velocities of the two rays and therefore the relation between the
refractive indices has to be taken into account. Furthermore R‖ + T‖ = 1 and R⊥ + T⊥ = 1.

The Fresnel coefficients are not directly applicable to surfaces that are not perfect mirrors (although they
may figure as a component in statistical models of rough surfaces), but since crystal surfaces are usually
smooth we do not have to concern ourselves with more complex BRDF models here.

5. DIRECTION COSINE OF THE E–RAY

5.1 Previous Work

Anisotropic materials are included much less frequently in optical systems than isotropic ones; as a result
ray tracing of birefringent materials is a rather rare feature even in optical literature.

Nevertheless various methods for ray tracing calculations can still be found. [Simon 1983] started from
Maxwell’s equations to derive formulas for the direction cosines. Liang’s [Liang 1990] method for uniaxial and
Zhang’s [Zhang 1992] method for biaxial crystals are based on phase matching conditions for wave vectors.
[Beyerle and McDermid 1998] proposed analytical expressions for calculating refraction and internal reflection
in uniaxial crystals by transforming the coordinate system of the e–ray into a nonorthogonal one so that its
normal surface is spherical and follows Snell’s law. Furthermore, formulas for the propagation of light can
be found in [Swindell 1975], and [McClain et al. 1993b] presented an iterative algorithm for optically active
uniaxial crystals.

This calculation of the cosine direction of the extraordinary ray is based on Huygens’s principle. According
to Huygens’s principle every point of a wave front can be seen as centre of a second set of spherical wavelets4,
so that the wave front can also be considered as the envelope of these wavelets.

5.2 Derivation of the Direction Cosine

Starting from the ordinary ray vector So = (ξo, ηo, ζo), which can be determined by Snell’s law, we have to
find the ordinary wave front5 that passes through the coordinate origin so that

Po · So = xoξo + yoηo + zoζo = 0,

if Po = (xo, yo, zo) is the point where the ordinary ray and the ordinary wavelet intersect and Pr = (h, l, 0)
is a point on the refracting surface with

xo = h + ξoPrPo/no

yo = l + ηoPrPo/no

xo = ζoPrPo/no.

4In this context wavelets are secondary spherical waves originating from each point of the surface.
5The ordinary wave front is by definition normal to So.
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The parameter PrPo is the geometric distance along the ray from Pr to Po. Then the equation for the
ordinary wavelet is

F ≡

(

xo − h
yo − l

)T (

xo − h
yo − l

)

+ z2
o − n2

o

[

(

h
l

)T (

ξo

ηo

)

]2

= 0.

The envelope of the wavelets can be calculated by taking the partial derivatives of F with respect to h
and l and solving the equations for h and l.

(

h
l

)

=
1

ζ2
o

[

I −

(

η2
o −ξoηo

−ξoηo ξ2
o

)] (

xo

yo

)

This is an expression for the coordinates of the ordinary wavelet centre in terms of the ordinary ray and has
to be substituted back into F . I is the identity matrix.

After that, Huygens’s extraordinary wavelets have to be found, which are centred on the refracting surface.
The ordinary wavelets are replaced by the extraordinary wavelets, where their envelope is the extraordinary
wave front, as shown in figure 4. If A = (α, β, γ) is the optical axis, the equation of the ellipsoidal wavelets
in matrix form is

H ≡ n2
e

(

xe − h
ye − l

)T

+ n2
ez

2
e + N

[

(

xe − h
ye − l

)T (

α
β

)

+ zeγ

]2

− n2
o

[

(

h
l

)T (

ξo

ηo

)

]2

= 0,

where

N = n2
o − n2

e.

The extraordinary wavelets have the form of rotationally symmetric ellipsoids which are connected with
the ordinary wavelets at the minor axis. The major axis is in the direction of the crystal axis. Again, the
envelope of the wavelets can be calculated by taking the partial derivatives of H with respect to h and l.
Now the coordinates of the extraordinary wavelet centre in terms of the extraordinary ray are

(

h
l

)

=
1

∆2

{

[

n2
o

(

n2
eI + N

(

β2 −αβ
−αβ α2

)) (

ξ2
o ξoηo

ξoηo η2
o

)

+ ∆2I

]

(

xe

ye

)

+ Nγze

[

n2
eI − n2

o

(

η2
o −ξoηo

−ξoηo ξ2
o

)] (

α
β

)

}

,

with

∆2 = Γ
[

n2
e − n2

o(1 − ζ2
o )

]

+ n2
oNα2.

Substituting this back into H leads to the extraordinary wave–front.
By equating the expressions for the coordinates of the wavelet’s origin in terms of the ordinary and the

extraordinary rays we eliminate h and l and get the relationship between Po and Pe = (xe, ye, ze). Pe is
the point where the extraordinary ray and the extraordinary wavelet intersect. Since the extraordinary ray
Se = (ξe, ηe, ζe) is a vector from the centre of the wavelet to its point of contact with the extraordinary wave
front, i.e. Pe, we can find Se through this.

If we choose a coordinate system x, y, z whose z–axis is parallel to the surface normal, the direction cosine
of the extraordinary ray is given by the refractive indices ni, no and ne, the direction vector that describe
the optical axis A, the direction vector of the ordinary ray and the incident angle θi.





ξe

ηe

ζe



 =
1

δeg

[





n2
o(n

2
e + Nβ2) −n2

oNαβ 0
−n2

oNαβ n2
o(n

2
e + Nα2) 0

0 0 Γ∆/ζo



 ×





ξo

ηo

ζo



 − γN∆





1 0 0
0 1 0
0 0 0









α
β
γ





]

,
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incident ray

reflection ray

z

o-ray
e-ray

θe1
θe2

isotropic medium

uniaxial crystal

incident ray

surface normal

o-ray

e-ray

Po

Pr

Pe

wo

we

wfo

wfe

Fig. 4. Left: Incident ray, surface normal, reflective ray and o–ray lie in the plane of incidence. The e-ray does not lie in the
plane of incidence. The z–axis is in the direction of the surface normal. Right: Huygens’s principle; wo and we are the ordinary
and extraordinary wavelets, wfo and wfe are the ordinary and the extraordinary wave fronts.

where

δ2
eg = n2

e[n
2
oΓ

2 − N(γ∆ + n2
oα)2],

Γ = n2
e + N(1 − γ2).

The full derivation can be found in [Avendano-Alejo et al. 2002] and [Avendano-Alejo and Stavroudis 2002].
Since we mainly need the direction cosines of the extraordinary ray instead of the ray direction and we can
assume the incident refractive index as 1, the formula reduces to

θe1 =

(

n2
e − n2

o

)

α [noβ sin θi + γ · G]
√

n2
e[n

2
e(n

2
enoγ2 − n3

o(γ
2 − 1))2 + (n2

e − n2
o) · G]2

(13)

and

θe2 =
F · G

√

n2
e[n

2
e(n

2
enoγ2 − n3

o(γ
2 − 1))2 + (n2

e − n2
o) · G]2

(14)

with

F = n2
eγ

2 − n2
o(γ

2 − 1)

G =
√

F · (n2
e − 1 + cos2 θi + (n2

o − n2
e) · β sin θi

and (θe1,
√

1 − θ2
e1 − θ2

e2, θe2
) after replacing the incident ray with (0, sin(θi), cos(θi)). The numerical results

agree with those of [Avendano-Alejo and Stavroudis 2002] and [Beyerle and McDermid 1998].
Generally the surface normal is not aligned with the z–axis and a coordinate rotation has to be done to

align the equations with the surface normal.

6. MUELLER MATRICES FOR UNIAXIAL CRYSTALS

As said before, a characteristic feature of uniaxial crystals is that unpolarised light that passes through it
will split into two beams each with a different polarisation. In the following section we will describe these
polarisation properties with the help of Stokes vectors and Mueller matrices.
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6.1 Stokes parameters

The polarisation state of an electromagnetic wave can be characterized by the Stokes parameters. The four
parameters are related to its amplitude and the direction of the orthogonal components of the electric field,
Ex and Ey. Only three parameters are necessary to describe the polarisation ellipse, e.g. the amplitudes
and the phase difference. The Stokes parameters are defined with I0 as the intensity of the light wave and
I1 as the intensity of the horizontal linear polarisation, I2 as the intensity of linear polarisation at an angle
of 45◦ and I3 as intensity of left–handed circularly polarised light [Hecht 1998].

S0 = 2I0

S1 = 2I1 − 2I0

S2 = 2I3 − 2I0

S3 = 2I4 − 2I0

For S1 < 0 the light wave tends to be horizontally polarised, if S1 > 0 the polarisation state is vertical
rather than horizontal. Otherwise, if S1 = 0 the light wave can be circularly polarised, elliptically polarised
at about ±45◦ or unpolarised. S2 indicates if the light wave is linear polarised at an angle of +45◦ (S2 > 0)
or −45◦ (S2 < 0). Finally, the information about the rotation angle of the wave can be gathered from S3 –
right (S3 > 0), left (S3 < 0) or none of them (S3 = 0).

The Stokes parameters are related to the electric field parameters by [Hecht 1998]

S0 =
〈

E2
x

〉

+
〈

E2
y

〉

S1 =
〈

E2
x

〉

−
〈

E2
y

〉

S2 = 〈2ExEy cos φ〉

S3 = 〈2ExEy sinφ〉 .

Here, φ = φy − φx. If light is unpolarised,
〈

E2
x

〉

=
〈

E2
y

〉

and S1 = S2 = S3 = 0. The Stokes parameters are
often normalized by dividing by S0. For example the parameters (S0, S1, S2, S3) for unpolarised light are
(1, 0, 0, 0), for horizontally polarised light (1, 1, 0, 0) and for right handed circularly polarised light (1, 0, 0, 1).
For completely polarised light

S2
0 = S2

1 + S2
2 + S2

3 ,

while for partially polarised light the degree of polarisation is given by

V =

√

S2
1 + S2

2 + S2
3

S0

.

6.2 Mueller matrices

While a given polarisation state of light can be completely described by its Stokes vector, the 4×4 Mueller
matrix defines the polarising properties of an optical material which is able to alter the polarisation state of
light.

As light passes through an optical device, represented by the Mueller matrix, its polarisation state can
change. Multiplying the 4×4 Mueller matrix M with the input Stokes vector S1 of the incident light, the
corresponding output Stokes vector S2 can be calculated.

S2 = M · S1

A device that exhibits more than one property can be represented as a cascade of N optical devices [Azzam
and Bashara 1999]

Mcomb = MNMN−1...M2M1.
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Since o– and e–ray are linearly polarised after passing a uniaxial crystal, we do not need to derive the
much more complicated Mueller matrices for general retarders or general polarisers. Instead it will suffice to
take the Mueller matirx of a linear partial polariser and rotate it to align the input and the output reference
coordinate system. The Mueller matrix for o– and e–ray is therefore given by

Mpol =
1

2









A B cos 2θ B sin 2θ 0
B cos 2θ Acos2 2θ + 2Csin2 2θ A cos 2θ · sin 2θ − 2C cos 2θ · sin 2θ 0
B sin 2θ A cos 2θ · sin 2θ − 2C cos 2θ · sin 2θ 2Ccos2 2θ + A sin2 2θ 0

0 0 0 2C









A = T⊥ + T‖, B = T⊥ − T‖ and C =
√

Ts Tp, if T⊥ is the transmission coefficient of the o–ray and T‖ is the
transmission coefficient of the e–ray. θ is measured from the x–axis.

This Mueller matrix neglects retardance. The Mueller Matrix for a general phase plate, which produces a
phase retardation δ is

Mret =









1 0 0 0
0 cos2 2θ + sin2 2θ · β cos 2θ · sin 2θ · (1 − β) − sin 2θ · µ
0 sin 2θ · cos 2θ · (1 − β) sin2 2θ + β · cos2 2θ cos 2θ · µ
0 sin 2θ · µ − cos 2θ · µ β









with β = cos δ and µ = sin δ. It reduces to the matrices which represent plain glass, half–wave plate and
quarter–wave plate when one assumes δ to be 0, π and π/2, respectively. However, although uniaxial crystals
act as retarders and cause a phase shift between o– and e–ray, we neglect this effect, because the introduced
phase difference for a phase plate of thickness d

δe − δo =
2π

λ
(ne − no)d

usually cannot be calculated in a ray-based rendering system that relies on standard IEEE floating point
arithmetic due to numerical problems, in particular extinction issues.

In order to meaningfully incorporate interference effects in such a system the distances between macroscopic
objects along a ray would have to be calculated to a precision of significantly more than the wavelength of
light. While IEEE floating point numbers can represent such quantities when taken in isolation, there are
not enough significant digits in the mantissa of even the longest float data type to avoid extinction effects
after intersection calculations have taken place.

One would need to use an arbitrary precision package such as GNU MP for all these computations, which
currently is not feasible due to the enormous slowdown this would mean for the renderer.

7. INTEGRATION OF BIREFRINGENCE INTO A RAY-BASED RENDERER

Rendering of uniaxial crystals can be realised through any ray-based algorithm (such as ray or path trac-
ing); the main difference to the isotropic case is that two instead of one transmission rays are sent out
on encountering a refraction with a birefringent material. However, some additional alterations are also
necessary.

Ordinary and extraordinary rays have different indices of refraction, so two refractive indices have to be
stored for each birefringent material as well as the direction cosines of the optical axis. Also, the energy of the
incident ray is now distributed differently between the reflection and transmission rays when compared with
isotropic materials; the new distribution is governed by the modified Fresnel amplitudes given by equations
(3)-(10).

The ordinary reflection ray is calculated as usual, i.e. the direction cosine is determined through Snell’s
law, and the intensity through the Fresnel coefficients. The procedure is straightforward for the ordinary
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ray, because the index of refraction is constant and independent for each direction.
The calculation of the extraordinary ray is slightly more difficult, because its refractive index depends on

the incident angle. Therefore, it has to be computed from scratch for every single extraordinary ray. The
usual procedure is to calculate the exact refractive index with the help of the wave normal and to use this
solution to calculate the ray vector.

This is rather expensive, so we used the formulas (13) and (14) to compute the ray vector without additional
computations. Nonetheless, we need the exact index of refraction for the Fresnel coefficients, but since we
have already calculated the direction of the extraordinary ray we only have to build the dot product of the
extraordinary ray and the optical axis and evaluate the formula for the refractive index (2). The Fresnel
amplitudes are calculated with the formulas (3)-(10). Care should be taken to note that equations (3)-(10)
describe the Fresnel amplitudes from which the Fresnel coefficients have to be calculated with the formulas
(11) and (12), because the Fresnel coefficients define the relationship of the radiant intensities of the incoming
and the reflected and transmitted waves.

8. RENDERING OF BIREFRINGENCE EFFECTS

In order to validate our results in practical experiments we implemented the birefringence effects we described
as an extension of the standard Fresnel reflection model in the Advanced Rendering Toolkit (ART), the
photorealistic rendering system under development at our Institute.

The images were rendered with a standard Whitted ray tracer. Although twice as many transmission
rays are sent out for each ray-crystal intersection, we experienced no significant slowdown compared with
isotropic materials.

Since these effects are best visible on simple geometries, we used a cube viewed from top on a grid with
a luminiscent background instead of actual crystalline structures to demonstrate the various effects which
different refractive indices and a change in the direction of the optical axis have on the appearance of crystals
in most of our result images. The exception is figure 1, where we used the refractive indices and geometry
of calcite to match the appearance of a real crystal specimen.

8.1 Influence of the Refractive Index

First we were interested in the consequences of a change of the refractive index on the extraordinary ray. As
expected the distance between the doubled lines becomes larger when the difference between no and ne – and
consequently between θo and θe – was increased as can be seen in figure 5. Since no < ne, the extraordinary
grid lines are below the ordinary grid lines. If no > ne, the doubled lines of the extraordinary ray would
be above the original lines. In nature the difference between no and ne is normally not bigger than 0.3 (for
example the refractive indices of rutile are at about 2.616 and 2.903 [Yariv and Yeh 1984]).

8.2 Influence of the Optical Axis

We also wanted to show what influence the direction of the optical axis has on the doubling effects. Therefore
we rendered four cubes with their optical axes pointing in different direction.

As can be seen in figure 6, in our setting the double refraction does not occur if the optical axis points in
the z–direction. This is an understandable result, because when the optical axis points in the z–direction,
i.e. the viewing direction, all rays that reach the eye travel along the optical axis, and the refractive indices
of the ordinary and the extraordinary rays are equal.

The ray surface becomes more and more ellipsoidal from left to right, and the extraordinary ray leaves
the plane of incident. Although the direction of the optical axis is decisive for the direction cosines of the
extraordinary ray, it influences the Fresnel coefficients and therefore the intensity of the rays only marginally.

Since birefringence depends on the orientation of the object in relation to the optical axis, the doubling
effects must change if the object is rotated. To demonstrate this we took a cube with fixed optical axis and
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Fig. 5. Cubes with varying indices of refraction. The index of refraction of the extraordinary ray was increased from ne = 1.5
to ne = 1.6 to ne = 1.7 and ne = 1.8. The refractive index of the ordinary ray is fixed with no = 1.5 and the direction of the

optical axis is (−0.577,−0.577, 0.577). In the beginning, ordinary and extraordinary ray are equal, but with increasing index
of refraction the distance between the grid lines becomes larger.

Fig. 6. Cubes with the optical axis in direction – from left to right – (0, 0, 1), (0.577, 0.577, 0.577), (0.904, 0.302, 0.302) and
(0.707, 0, 0.707) and fixed indices of refraction (no = 1.5 and ne = 1.7).

refractive indices of no = 1.35 and ne = 1.5. Figure 7 shows the results; when the cube is rotated in steps
of 15◦, the distance between the horizontal lines becomes larger and larger while the distance of the vertical
lines becomes smaller. The effect reaches its maximum at about 45◦ and reverses then.

9. CONCLUSION AND FUTURE WORK

We have presented a solution for rendering birefringence effects in uniaxial crystals which is based on the
current understanding of general light transport in dielectric solids. Using Maxwell’s equations and Huygens’s
principle we have demonstrated how to derive formulas for both the direction cosines of the extraordinary
ray and the Fresnel coefficients in a form which is directly applicable to ray tracing calculations.

Our work is limited to the simulation of doubling effects and did not deal with dichroism or absorption
within crystals, although these phenomena have to be considered for the rendering of coloured stones. In
contrast to birefringence which can be described with the above-mentioned techniques, these effects are direct
results of light interacting with the crystal lattice, and – particularly in the case of dichroism – of quantum
effects that depend on the type and relative position of the individual atoms in the lattice. Simulation of
such phenomena is possible and definitely worthy of future research, but significantly beyond the scope of
this paper.

Apart from this it would also be interesting to examine other optical phenomena in crystals like iridescence
or to investigate different types of luster; in contrast to dichroism these should be also treatable through

ACM Transactions on Graphics, Vol. TBD, No. TBD, TBD 20TBD.



128 · A. Weidlich and A. Wilkie

Fig. 7. Orientation–dependency of birefringence. The rotation angle of the cube was increased at steps of 15◦ from image to
image. no = 1.3 and ne = 1.5. The optical axis was originally (0.577, 0.577, 0.577).

application of known computer graphics techniques.
Something that would seem to be just a straightforward extension of the uniaxial ray propagation model

is the derivation of corresponding formulas for biaxial materials; the derivation of the Fresnel terms for this
case would involve changing the coefficients of the dielectric tensor and tracing a second extraordinary ray
instead of the ordinary one. However, in this case the mathematical simplifications used for the derivations
found in this paper are no longer applicable, and therefore the computation of closed formulas for ray-
crystal intersections with arbitrary orientation of the optical axes (i.e. the formulas one would need for a
ray tracer) is a very complicated problem. The fact that dedicated crystallographic literature contains no
general solutions for this problem is a good indicator for this.

Since there are few biaxial crystals which exhibit macroscopically noticeable birefringency effects in the
first place – and none of those are commercially used gemstones – we do not plan to investigate this problem
further.
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