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Abstract

Speech-driven facial animation is the process that automatically synthesizes talking characters based on speech signals. The

majority of work in this domain creates a mapping from audio features to visual features. This approach often requires post-

processing using computer graphics techniques to produce realistic albeit subject dependent results. We present an end-to-end

system that generates videos of a talking head, using only a still image of a person and an audio clip containing speech, without

relying on handcrafted intermediate features. Our method generates videos which have (a) lip movements that are in sync with

the audio and (b) natural facial expressions such as blinks and eyebrow movements. Our temporal GAN uses 3 discriminators

focused on achieving detailed frames, audio-visual synchronization, and realistic expressions. We quantify the contribution

of each component in our model using an ablation study and we provide insights into the latent representation of the model.

The generated videos are evaluated based on sharpness, reconstruction quality, lip-reading accuracy, synchronization as well

as their ability to generate natural blinks.

Keywords Generative modelling · Face generation · Speech-driven animation

1 Introduction

Computer Generated Imagery (CGI) has become an inextri-

cable part of the entertainment industry due to its ability to

produce high quality results in a controllable manner. One

very important element of CGI is facial animation because

the face is capable of conveying a plethora of information not

only about the character but also about the scene in general

(e.g. tension, danger). The problem of generating realistic

talking heads is multifaceted, requiring high-quality faces, lip

movements synchronized with the audio, and plausible facial

expressions. This is especially challenging because humans
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are adept at picking up subtle abnormalities in facial motion

and audio-visual synchronization.

Facial synthesis in CGI is traditionally performed using

face capture methods, which have seen drastic improvement

over the past years and can produce faces that exhibit a high

level of realism. However, these approaches require expen-

sive equipment and significant amounts of labour, which is

why CGI projects are still mostly undertaken by large studios.

In order to drive down the cost and time required to produce

high quality CGI researchers are looking into automatic face

synthesis using machine learning techniques. Of particular

interest is speech-driven facial animation since speech acous-

tics are highly correlated with facial movements (Yehia et al.

1998).

These systems could simplify the film animation process

through automatic generation from the voice acting. They

can also be applied in post-production to achieve better lip-

synchronization in movie dubbing. Moreover, they can be

used to generate parts of the face that are occluded or missing

in a scene. Finally, this technology can improve band-limited

visual telecommunications by either generating the entire

visual content based on the audio or filling in dropped frames.

The majority of research in this domain has focused on

mapping audio features (e.g. MFCCs) to visual features

(e.g. landmarks, visemes) and using computer graphics (CG)
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methods to generate realistic faces (Karras et al. 2017). Some

methods avoid the use of CG by selecting frames from a

person-specific database and combining them to form a video

(Bregler et al. 1997; Suwajanakorn et al. 2017). Regardless of

which approach is adopted these methods are subject depen-

dent and are often associated with a considerable overhead

when transferring to new speakers.

Subject independent approaches have been proposed that

transform audio features to video frames (Chung et al. 2017;

Chen et al. 2018). However, most of these methods restrict the

problem to generating only the mouth. Even techniques that

generate the entire face are primarily focused on obtaining

realistic lip movements, and typically neglect the importance

of generating facial expressions. Natural facial expressions

play a crucial role in producing truly realistic characters and

their absence creates an unsettling feeling for many viewers.

This lack of expressions is a clear tell-tale sign of generated

videos which is often exploited by systems such as the one

proposed in Li et al. (2018), which exposes synthetic faces

based on the existence and frequency of blinks.

Some methods generate frames based solely on present

information (Chung et al. 2017; Chen et al. 2018), without

taking into account the dynamics of facial motion. How-

ever, generating natural sequences, which are characterized

by a seamless transition between frames, can be challeng-

ing when using this static approach. Some video generation

methods have dealt with this problem by generating the entire

sequence at once (Vondrick et al. 2016) or in small batches

(Saito et al. 2017). However, this introduces a lag in the gen-

eration process, prohibiting their use in real-time applications

and requiring fixed length sequences for training.

In this work we propose a temporal generative adversarial

network (GAN),1 capable of generating a video of a talking

head from an audio signal and a single still image (see Fig. 1).

Our model builds on the system proposed in Vougioukas

et al. (2018) which uses separate discriminators at the frame

and sequence levels to generate realistic videos. The frame-

level discriminator ensures that generated frames are sharp

and detailed, whereas the temporal discriminator is responsi-

ble for audio visual correspondence and generating realistic

facial movements. During training the discriminator learns

to differentiate real and fake videos based on synchrony or

the presence of natural facial expressions. Although the tem-

poral discriminator helps with the generation of expressions

and provides a small improvement in audio-visual correspon-

dence, there is no way of ensuring that both these aspects are

captured in the video.

To solve this problem we propose using 2 temporal

discriminators to enforce audio-visual correspondence and

realistic facial movements on the generated videos. By

1 Videos are available on the following website: https://sites.google.

com/view/facial-animation.

Fig. 1 The proposed end-to-end face synthesis model, capable of pro-

ducing realistic sequences of faces using one still image and an audio

track containing speech. The generated sequences exhibit smoothness

and natural expressions such as blinks and frowns

separating these two tasks, which were undertaken by a

single discriminator in Vougioukas et al. (2018), we are

able to explicitly focus on audio-visual synchronization

through a synchronisation discriminator trained to detect

audio-visual misalignment. Furthermore, isolating expres-

sions from synchronisation further encourages the generation

of spontaneous facial expressions, such as blinks.

We also present a comprehensive assessment of the per-

formance of our method. This is done using a plethora of

quantitative measures and an in depth analysis that is miss-

ing from previous studies. Our model is trained and evaluated

on the GRID (Cooke et al. 2006), TCD TIMIT (Harte and

Gillen 2015), CREMA-D (Cao et al. 2014) and LRW (Chung

and Zisserman 2016a) datasets.

The frame quality is measured using well-established

reconstruction and sharpness metrics. Additionally, we use

lip reading systems to verify the accuracy of the spoken

words and face verification to ensure that the identity is

correctly captured and maintained throughout the sequence.

Furthermore, we examine the audio-visual correspondence

in produced videos by using a recent speech synchronization

detection method. Finally, using a blink detector we measure

the number of blinks on the generated videos as well as the

blink duration.

This work provides an in-depth look at our method, exam-

ining how each element affects the quality of the video. The

contribution of each discriminator in our GAN is quantified

using the aforementioned metrics through an ablation study

performed on the GRID (Cooke et al. 2006) dataset. Further-

more, we examine the latent space in order to determine how

well our system encodes the speaker identity. Moreover, we

analyze the characteristics of the spontaneous expressions on

videos generated using our method and compare with those

of real videos. Finally, we present the results of an online

Turing test, where users are shown a series of generated and

real videos and are asked to identify the real ones.

2 RelatedWork

The problem of speech-driven video synthesis is not new in

computer vision and in fact, has been a subject of interest for

decades. Yehia et al. (1998) were first to investigate the rela-
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tionship between acoustics, vocal-tract and facial motion,

discovering a strong correlation between visual and audio

features and a weak coupling between head motion and the

fundamental frequency of the speech signal (Yehia et al.

2002). These findings have encouraged researchers to find

new ways to model the audio-visual relationship. The fol-

lowing sections present the most common methods used in

each modelling approach.

2.1 Visual Feature Selection and Blending

The relationship between speech and facial motion has been

exploited by some CG methods, which assume a direct cor-

respondence between basic speech and video units. Cao et al.

(2005) build a graph of visual representations called animes

which correspond to audio features. The graph is searched

in order to find a sequence that best represents a given

utterance under certain co-articulation and smoothness con-

straints. Additionally, this system learns to detect the emotion

of the speech and adjust the animes accordingly to produce

movements on the entire face. The final result is obtained by

time-warping the anime sequence to match the timing of the

spoken utterance and blending for smoothness. Such meth-

ods use a small set of visual features and interpolate between

key frames to achieve smooth movement. This simplification

of the facial dynamics usually results in unnatural lip move-

ments, which is why methods that attempt to model the facial

dynamics are preferred over these approaches.

2.2 Synthesis Based on HiddenMarkovModels

Some of the earliest methods for facial animation relied on

Hidden Markov Models (HMMs) to capture the dynamics

of the video and speech sequences. Simons and Cox (1990)

used vector quantization to achieve a compact representa-

tion of video and audio features, which were used as the

states for their fully connected Markov model. The Viterbi

algorithm was used to recover the most likely sequence of

mouth shapes for a speech signal. A similar approach is used

in Yamamoto et al. (1998) to estimate the sequence of lip

parameters. Finally, the Video Rewrite method (Bregler et al.

1997) relies on the same principles to obtain a sequence of

triphones, which are used to look up mouth images from

a database. The final result is obtained by time-aligning the

images to the speech and then spatially aligning and stitching

the jaw sections to the background face.

Since phonemes and visemes do not have a one-to-one

correspondence some HMM-based approaches replace the

single Markov chain approach with a multi-stream approach.

Xie and Liu (2007) propose a coupled HMM to model the

audio-visual dependencies and compare the performance of

this model to other single and multi-stream HMM architec-

tures.

2.3 Synthesis Based on Deep Neural Networks

Although HMMs were initially preferred to neural networks

due to their explicit breakdown of speech into intuitive states,

recent advances in deep learning have resulted in neural net-

works being used in most modern approaches. Like past

attempts, most of these methods aim at performing a feature-

to-feature translation. A typical example of this, proposed in

Taylor et al. (2017), uses a deep neural network (DNN) to

transform a phoneme sequence into a sequence of shapes for

the lower half of the face. Using phonemes instead of raw

audio ensures that the method is subject independent.

Most deep learning approaches use convolutional neural

networks (CNN) due to their ability to efficiently capture

useful features in images. Karras et al. (2017) use CNNs

to transform audio features to 3D meshes of a specific per-

son. This system is conceptually broken into sub-networks

responsible for capturing articulation dynamics and estimat-

ing the 3D points of the mesh.

Analogous approaches,which are capable of generating

facial descriptors from speech using recurrent neural net-

works (RNNs) have been proposed in Fan et al. (2015),

Suwajanakorn et al. (2017), Pham et al. (2017). In partic-

ular, the system proposed in Suwajanakorn et al. (2017) uses

Long Short Term Memory (LSTM) cells to produce mouth

shapes from Mel-Frequency Cepstral Coefficients (MFCCs).

For each generated mouth shape a set of best matching frames

is found from a database and used to produce mouth images.

These mouth shapes are blended with the frames of a real

target video to produce very realistic results.

Although visual features such as mouth shapes and 3D

meshes are very useful for producing high quality videos they

are speaker specific. Therefore, methods that rely on them

are subject dependent and require additional retraining or re-

targeting steps to adapt to new faces. For this reason methods

like the one proposed in Zhou et al. (2018) use speaker inde-

pendent features such as visemes and Jaw and Lip (JALI)

parameters.

Finally, Chung et al. (2017) proposed a CNN applied on

MFCCs that generates subject independent videos from an

audio clip and a still frame. The method uses an L1 loss at the

pixel level resulting in blurry frames, which is why a deblur-

ring step is also required. Secondly, this loss at the pixel level

penalizes any deviation from the target video during training,

providing no incentive for the model to produce spontaneous

expressions and resulting in faces that are mostly static except

for the mouth.

2.4 GAN-BasedVideo Synthesis

The recent introduction of GANs in Goodfellow et al. (2014)

has shifted the focus of the machine learning community to

generative modelling. GANs consist of two competing net-
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works: a generative network and a discriminative network.

The generator’s goal is to produce realistic samples and the

discriminator’s goal is to distinguish between the real and

generated samples. This competition eventually drives the

generator to produce highly realistic samples. GANs are typ-

ically associated with image generation since the adversarial

loss produces sharper, more detailed images compared to L1

and L2 losses. However, GANs are not limited to these appli-

cations and can be extended to handle videos (Mathieu et al.

2015; Li et al. 2017; Vondrick et al. 2016; Tulyakov et al.

2018).

Straight-forward adaptations of GANs for videos are pro-

posed in Vondrick et al. (2016) and Saito et al. (2017),

replacing the 2D convolutional layers with 3D convolu-

tional layers. Using 3D convolutions in the generator and

discriminator networks is able to capture temporal depen-

dencies but requires fixed length videos. This limitation was

overcome in Saito et al. (2017) but constraints need to be

imposed in the latent space to generate consistent videos.

CNN based GAN approaches have been used for speech to

video approaches such as the one proposed in Zhou et al.

(2019).

The MoCoGAN system proposed in Tulyakov et al. (2018)

uses an RNN-based generator, with separate latent spaces

for motion and content. This relies on the empirical evi-

dence shown in Radford et al. (2015) that GANs perform

better when the latent space is disentangled. MoCoGAN

uses a 2D and 3D CNN discriminator to judge frames

and sequences respectively. A sliding window approach

is used so that the 3D CNN discriminator can handle

variable length sequences. Furthermore, the GAN-based

system proposed in Pham et al. (2018) uses Action Unit

(AU) coefficients to animate a head. A similar approach

is used in the GANimation model proposed in Pumarola

et al. (2018). These approaches can be combined with

speech-driven animation methods (Pham et al. 2017) that

produce AU coefficients which drive facial expressions from

speech.

GANs have also been used in a variety of cross-modal

applications, including text-to-video and audio-to-video. The

text-to-video model proposed in Li et al. (2017) uses a com-

bination of variational auto encoders (VAE) and GANs in

its generating network and a 3D CNN as a sequence dis-

criminator. Finally, Chen et al. (2017) propose a GAN-based

encoder-decoder architecture that uses CNNs in order to

convert audio spectrograms to frames and vice versa. This

work is extended in Chen et al. (2019), using an atten-

tion mechanism which helps the network focus on frame

regions that correlate highly with the audio. However as a

result this method neglects other areas such as the brow and

eyes.

Fig. 2 The deep model for speech-driven facial synthesis. It uses 3

discriminators to incorporate different aspects of a realistic video

3 Speech-Driven Facial Synthesis

The proposed architecture for speech-driven facial synthesis

is shown in Fig. 2. The system consists of a temporal genera-

tor and multiple discriminators, each of which evaluates the

generated sequence from a different perspective. The capa-

bility of the generator to capture various aspects of natural

sequences is proportional to the ability of each discriminator

to discern videos based on them.

3.1 Generator

The generator accepts as input a single image and an audio

signal, which is divided into overlapping frames correspond-

ing to 0.2 s. Each audio frame must be centered around a

video frame. In order to achieve this one-to-one correspon-

dence we zero pad the audio signal on both sides and use the

following formula for the stride:

stride =
audio sampling rate

video fps
(1)

The generator network has an encoder-decoder structure

and can be conceptually divided into sub-networks as shown

in Fig. 3. We assume a latent representation that is made up of

3 components which account for the speaker identity, audio

content and spontaneous facial expressions. These compo-

nents are generated by different modules and combined to

form an embedding which can be transformed into a frame

by the decoding network.

3.1.1 Identity Encoder

The speaker’s identity is encoded using a 6-layer CNN.

Each layer uses strided 2D convolutions, followed by batch
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Fig. 3 The architecture of the generator network which consists of

a Content Encoder (audio encoder and RNN), an Identity Encoder, a

Frame Decoder and Noise Generator

normalization and ReLU activation functions. The Identity

Encoder network reduces a 96 × 128 input image to a 128

dimensional encoding zid .

3.1.2 Content Encoder

Audio frames are encoded using a network comprising of

1D convolutions followed by batch normalization and ReLU

activation functions. The initial convolutional layer starts

with a large kernel, as recommended in Dai et al. (2017),

which helps limit the depth of the network while ensuring

that the low-level features are meaningful. Subsequent lay-

ers use smaller kernels until an embedding of the desired

size is achieved. The audio frame encoding is input into a 1-

layer GRU, which produces a content encoding zc with 256

elements.

3.1.3 Noise Generator

Although speech contains the necessary information for lip

movements it can not be used to produce spontaneous facial

expressions. To account for such expressions we propose

appending a noise component to our latent representation.

Spontaneous expressions such as blinks are coherent facial

motions and therefore we expect the latent space that models

them to exhibit the same temporal dependency. We there-

fore, avoid using white noise to model these expressions

since it is by definition temporally independent. Instead we

use a Noise Generator capable of producing noise that is

temporally coherent. A 10 dimensional vector is sampled

from a Gaussian distribution with mean 0 and variance of 0.6

and passed through a single-layer GRU to produce the noise

sequence. This latent representation introduces randomness

(a) (b) (c)

Fig. 4 The effect of adding skip connections to the generator network.

The frames obtained without skip connections shown in (a) do not

resemble the person in the ground truth video (b). Adding skip connec-

tions ensures that the identity is preserved in frames (c)

in the face synthesis process and helps with the generation

of blinks and brow movements.

3.1.4 Frame Decoder

The latent representation for each frame is constructed by

concatenating the identity, content and noise components.

The Frame Decoder is a CNN that uses strided transposed

convolutions to produce the video frames from the latent rep-

resentation. A U-Net (Ronneberger et al. 2015) architecture

is used with skip connections between the Identity Encoder

and the Frame Decoder to preserve the identity of the subject

as shown in Fig. 4.

3.2 Discriminators

Our system uses multiple discriminators in order to capture

different aspects of natural videos. The Frame Discriminator

achieves a high-quality reconstruction of the speakers’ face

throughout the video. The Sequence Discriminator ensures

that the frames form a cohesive video which exhibits natu-

ral movements. Finally, the Synchronization Discriminator

reinforces the requirement for audio-visual synchronization.

3.2.1 Frame Discriminator

The Frame Discriminator is a 6-layer CNN that determines

whether a frame is real or not. Adversarial training with

this discriminator ensures that the generated frames are real-

istic. Furthermore, the original still frame is concatenated

channel-wise to the target frame and used as a condition,

which enforces the identity onto the video frames.

3.2.2 Sequence Discriminator

The Sequence Discriminator distinguishes between real and

synthetic videos. At every time step the discriminator will use

a CNN with spatio-temporal convolutions to extract transient
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Fig. 5 The synchronization discriminator decides if an audio-visual

pair is in or out of sync. It uses 2 encoders to obtain embeddings for

audio and video and decides if they are in or out of sync based on their

Euclidean distance

features, which are then fed into a 1-layer GRU. A single

layer classifier used at the end of the sequence determines if

a sequence is real or not.

3.2.3 Synchronization Discriminator

The Synchronization Discriminator is given fixed-length

snippets (corresponding to 0.2 s) of the original video and

audio and determines whether they are in or out of sync.

This discriminator uses a two stream architecture to compute

an embedding for audio and video. The Euclidean distance

between the 2 embeddings is calculated and fed into a single

layer perceptron for classification. The architecture of this

discriminator is shown in Fig. 5.

Showing the discriminator only real or fake audio-video

pairs will not necessarily result in samples being classified

based on their audio visual correspondence. In order to force

the discriminator to judge the sequences based on synchro-

nization we also train it to detect misaligned audio-visual

pairs taken from real videos. During training the discrimi-

nator learns to reduce the distance between the encodings

of synchronized audio-video pairs and increase the distance

between misaligned pairs. The distance for the fake pair (gen-

erated video with real audio) lies between these two distances

and its location is determined by how dominant the discrim-

inator is over the generator. Finally, since movements on the

upper half of the face do not affect audio-visual synchrony

we have chosen to use only the lower half of the face to train

the Synchronization Discriminator.

3.3 Training

The Frame discriminator (Dimg) is trained on frames that are

sampled uniformly from a video x using a sampling function

S(x). Using the process shown in Fig. 6 we obtain in and

out of sync pairs pin , pout from the real video x and audio a

and a fake pair p f . We use these pairs as training data for the

Synchronization discriminator (Dsync). Finally the Sequence

Discriminator (Dseq ), classifies based on the entire sequence

x . The total adversarial lossLadv is made up of the adversarial

losses associated with the Frame (L
img
adv

), Synchronization

Fig. 6 All possible pairs that are used to train the synchronization

discriminator. Pairs belong to in one of the following categories {real

video, in-sync audio}, {real video, shifted audio}, {fake video, match-

ing audio}

(L
sync
adv

) and Sequence (L
seq
adv

) discriminators. These losses

are described by Eqs. 2–4. The total adversarial loss is an

aggregate of the losses associated with each discriminator as

shown in Eq. 5, where each loss is assigned a corresponding

weight (λimg , λsync, λseq ).

L
img
adv

= Ex∼Pd
[log Dimg(S(x), x1)]

+ Ez∼Pz [log(1 − Dimg(S(G(z)), x1))] (2)

L
sync
adv

= Ex∼Pd
[log Dsync(pin)]

+
1

2
Ex∼Pd

[log 1 − Dsync(pout )]

+
1

2
Ez∼Pz [log(1 − Dsync(Ssnip(p f ))] (3)

L
seq

adv
= Ex∼Pd

[log Dseq(x, a)]

+ Ez∼Pz [log(1 − Dseq(G(z), a))] (4)

Ladv = λimgL
img
adv

+ λsyncL
sync
adv

+ λseqL
seq
adv

(5)

An L1 reconstruction loss is also used to help capture

the correct mouth movements. However we only apply the

reconstruction loss to the lower half of the image since it

discourages the generation of facial expressions. For a ground

truth frame F and a generated frame G with dimensions

W × H the reconstruction loss at the pixel level is Eq. 6.

LL1 =
∑

p∈[0,W ]×[ H
2 ,H ]

|Fp − G p| (6)

The loss of our model, shown in Eq. 7, is made up of

the adversarial loss and the reconstruction loss. The λrec

hyperparameter controls the contribution of of the recon-

struction loss compared to the adversarial loss and is chosen

so that, after weighting, this loss is roughly triple the adver-

sarial loss. Through fine tuning on the validation set we find

that the optimal values of the loss weights are λrec = 600,

λimg = 1, λsync = 0.8 and λseq = 0.2. The model is trained
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until no improvement is observed in terms of the audio-visual

synchronization on the validation set for 5 epochs. We use

pre-trained lipreading models where available or other audio-

visual synchronization models to evaluate the audio-visual

synchrony of a video.

arg min
G

max
D

Ladv + λrecLL1 (7)

We used Adam (Kingma and Ba 2014) for all the networks

with a learning rate of 0.0001 for the Generator and Frame

Discriminator. The Sequence Discriminator and Synchro-

nization Discriminator use a smaller learning rate of 10−5.

Smaller learning rates for the sequence and synchronization

discriminators are required in order to avoid over-training the

discriminators, which can lead to instability (Arjovsky and

Bottou 2017). The learning rate of the generator and discrim-

inator decays with rates of 2% and 10%, respectively, every

10 epochs.

4 Datasets

Experiments are run on the GRID, TCD TIMIT, CREMA-D

and LRW datasets. The GRID dataset has 33 speakers each

uttering 1000 short phrases, containing 6 words randomly

chosen from a limited dictionary. The TCD TIMIT dataset

has 59 speakers uttering approximately 100 phonetically rich

sentences each. Finally, in the CREMA-D dataset 91 actors

coming from a variety of different age groups and races utter

12 sentences. Each sentence is acted out by the actors multi-

ple times for different emotions and intensities.

We use the recommended data split for the TCD TIMIT

dataset but exclude some of the test speakers and use them as

a validation set. For the GRID dataset speakers are divided

into training, validation and test sets with a 50–20–30% split

respectively. The CREMA-D dataset is also split with ratios

70–15–15% for training, validation and test sets. Finally, for

the LRW dataset we use the recommended training, valida-

tion and test sets. However we limit our training to faces that

are nearly frontal. To do this we use pose estimation software

(Jianzhu Guo and Lei 2018) based on the model proposed in

Zhu et al. (2017) to select faces whose roll, pitch and yaw

angles are smaller than 10◦ (Table 1).

Table 1 The subject IDs that our model is tested on for each dataset

Dataset Test subjects

GRID 2, 4, 11, 13, 15, 18, 19, 25, 31, 33

TCD TIMIT 8, 9, 15, 18, 25, 28, 33, 41, 55, 56

CREMA-D 15, 20, 21, 30, 33, 52, 62, 81, 82, 89

Table 2 The samples and hours of video in the training (Tr), validation

(V) and test (T) sets

Dataset Samples/hours (Tr) Samples/hours (V) Samples/hours (T)

GRID 31639/26.4 6999/5.8 9976/8.31

TCD 8218/9.1 686/0.8 977/1.2

CREMA 11594/9.7 819/0.7 820/0.68

LRW 112658/36.3 5870/1.9 5980/1.9

As part of our pre-processing all faces are aligned to the

canonical face and images are normalized. We perform data

augmentation on the training set by mirroring the videos. The

amount of data used for training and testing is presented in

Table 2.

5 Metrics

This section describes the metrics that are used to assess

the quality of generated videos. The videos are evaluated

using traditional image reconstruction and sharpness metrics.

Although these metrics can be used to determine frame qual-

ity they fail to reflect other important aspects of the video such

as audio-visual synchrony and the realism of facial expres-

sions. We therefore propose using alternative methods that

are capable of capturing these aspects of the generated videos.

Reconstruction Metrics We use common reconstruction

metrics such as the peak signal-to-noise ratio (PSNR)

and the structural similarity (SSIM) index to evaluate the

generated videos. During our assessment it is important

to take into account the fact that reconstruction metrics

will penalize videos for any facial expression that does

not match those in the ground truth videos.

Sharpness Metrics The frame sharpness is evaluated

using the cumulative probability blur detection (CPBD)

measure (Narvekar and Karam 2009), which determines

blur based on the presence of edges in the image. For this

metric as well as for the reconstruction metrics larger

values imply better quality.

Content Metrics The content of the videos is evaluated

based on how well the video captures identity of the tar-

get and on the accuracy of the spoken words. We verify

the identity of the speaker using the average content dis-

tance (ACD) (Tulyakov et al. 2018), which measures the

average Euclidean distance of the still image representa-

tion, obtained using OpenFace (Amos et al. 2016), from

the representation of the generated frames. The accuracy

of the spoken message is measured using the word error

rate (WER) achieved by a pre-trained lip-reading model.

We use the LipNet model (Assael et al. 2016), which

surpasses the performance of human lip-readers on the
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(a) (b)

Fig. 7 Landmarks used for EAR calcula tion. An open eye (a) will have

a larger EAR compared to a closed eye (b)

GRID dataset. For both content metrics lower values indi-

cate better accuracy.

Audio-Visual Synchrony Metrics Synchrony is quanti-

fied using the methods proposed in Chung and Zisserman

(2016b). In this work Chung et al. propose the SyncNet

network which calculates the euclidean distance between

the audio and video encodings on small (0.2 s) sections

of the video. The audio-visual offset is obtained by using

a sliding window approach to find where the distance is

minimized. The offset is measured in frames and is posi-

tive when the audio leads the video. For audio and video

pairs that correspond to the same content the distance

will increase on either side of point where the mini-

mum distance occurs. However, for uncorrelated audio

and video the distance is expected to be stable. Based

on this fluctuation Chung and Zisserman (2016b) further

propose using the difference between the minimum and

the median of the Euclidean distances as an audio-visual

(AV) confidence score which determines the audio-visual

correlation. Higher scores indicate a stronger correlation,

whereas confidence scores smaller than 0.5 indicate that

audio and video are uncorrelated.

Expression Evaluation We investigate the generation of

spontaneous expressions since it is one of the main factors

that affect our perception of how natural a video looks.

According to the study presented in Bentivoglio et al.

(1997) the average person blinks 17 times per minute

(0.28 blinks/s), although this rate increases during con-

versation and decreases when reading. We use a blink

detector based on the one proposed in Soukupova and

Cech (2016), which relies on the eye aspect ratio (EAR)

to detect the occurrence of blinks in videos. The EAR is

calculated per frame according to the formula shown in

Eq. (8) using facial landmarks p1 to p6 shown in Fig. 7.

The blink detector algorithm first calculates the EAR sig-

nal for the entire video and then identifies blink locations

by detecting a sharp drop in the EAR signal.

E AR =
‖p2 − p6‖ + ‖p3 − p5‖

‖p1 − p4‖
(8)

Fig. 8 A blink is detected at the location where a sharp drop occurs in

the EAR signal (blue dot). We consider the start (green dot) and end

(red dot) of the blink to correspond to the peaks on either side of the

blink location (Color figure online)

Table 3 Performance of the blink detector on a small selection of videos

from the GRID database that was manually annotated

Accuracy Precision Recall MAE (Start) MAE (End)

80% 100% 80% 1.4 2.1

Once the blink is detected we can identify the start and

end of the blink by searching for the peaks on either side of

that location as shown in Fig. 8. Using this information we

can calculate the duration of blinks and visualize the blink

distribution.

To gauge the performance of the blink detector we mea-

sure its accuracy on 50 randomly selected videos from the

GRID validation set that we have manually annotated. The

performance metrics for the blink detection as well as the

mean absolute error (MAE) for detecting the start and end

points of the blinks are shown in Table 3. The MAE is mea-

sured in frames and the video frame rate is 25 fps.

This method detects blinks with a high accuracy of 80%,

which means that we can rely on it to give us accurate statis-

tics for the generated videos. We have chosen a very strict

threshold for the drop in EAR in order to ensure that there are

minimal if any false alarms. This is evident by the very high

precision of the method. Finally, we note that the detector

detects the start and end of a blink with an average error of

1.75 frames.

We can use the blink detector to obtain the distribution for

the number of blinks per video (GRID videos are 3 s long)

as well as the distribution for blink duration for the GRID

test set. These results are shown in Fig. 9. The mean blink

rate is 1.18 blinks/video or 0.39 blinks/s which is similar

to the average human blink rate of 0.28 blinks/s, especially

when considering that the blink rate increases to 0.4 blinks/s

during conversation. The average duration of a blink was

found to be 10 frames (0.41 s). However, we find that using

the median is more accurate since this is less sensitive to

outliers caused by the detector missing the end of the blink.

Finally, it is important to note that the short length of the

videos will affect our estimate of the blink rate. The blinks

for all the datasets are shown in Table 4.
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(a) (b)

Fig. 9 The distributions for a amount of blinks per video and b the

average blink duration per video from the GRID dataset

Table 4 The average blink rate and median blink duration for real

videos in each dataset

GRID TIMIT CREMA LRW

Blinks/s 0.39 0.28 0.26 0.53

Median duration (s) 0.4 0.2 0.36 0.32

6 Experiments

Our model is implemented in PyTorch and takes approxi-

mately a week to train using a single Nvidia GeForce GTX

1080 Ti GPU. During inference the average generation time

per frame is 7ms on the GPU, permitting the use of our

method in real time applications. A sequence of 75 frames can

be synthesized in 0.5s. The frame and sequence generation

times increase to 1s and 15s respectively when processing is

done on the CPU.

6.1 Ablation Study

In order to quantify the effect of each component of our

system we perform an ablation study on the GRID dataset

(see Table 5). We use the metrics from Sect. 5 and a pre-

trained LipNet model which achieves a WER of 21.76% on

the ground truth videos. The average value of the ACD for

ground truth videos of the same person is 0.98·10−4 whereas

for different speakers it is 1.4 · 10−3.

(a)

(b)

Fig. 10 Frames using a only an L1 loss on the entire face compared to

b frames produced using the proposed method. Frames are taken from

videos generated on the CREMA-D test set

The model that uses only an L1 loss achieves better PSNR

and SSIM results, which is expected as it does not gener-

ate spontaneous expressions, which are penalized by these

metrics unless they happen to coincide with those in ground

truth videos. We also notice that it results in the most blurry

images. The blurriness is minimized when using the frame

adversarial loss as indicated by the higher CPBD scores. This

is also evident when comparing video frames generated with

and without adversarial training as shown in Fig. 10.

The Average Content Distance is close to that of the real

videos, showing that our model captures and maintains the

subject identity throughout the video. Based on the results

of the ablation study this is in large part due to the Frame

Discriminator. Furthermore, this indicates that the identity

encoder has managed to capture the speaker identity. Indeed,

when plotting the identity encoding (Fig. 11) of 1250 random

images taken from the GRID test set using the t-Distributed

Stochastic Neighbor Embedding (t-SNE) algorithm Van Der

Maaten and Hinton (2008) we notice that images of the

same subject have neighbouring encodings. Additionally, we

notice that the data points can be separated according to gen-

der.

The Sequence Discriminator is responsible for the genera-

tion of natural expressions. To quantify its effect we compare

Table 5 Ablation study performed on the GRID dataset. In every experiment we train the model by removing a single term from Eq. (7)

Method PSNR SSIM CPBD ACD WER (%) AV Offset AV Confidence Blinks/s Blink dur. (s)

GT ∞ 1.00 0.276 0.98 · 10−4 21.76 1 7.0 0.39 0.41

w/o Ladv 28.467 0.855 0.210 1.92 · 10−4 26.6 1 7.1 0.02 0.16

w/o LL1 26.516 0.805 0.270 1.03 · 10−4 56.4 1 6.3 0.41 0.32

w/o L
img
adv

26.474 0.804 0.252 1.96 · 10−4 23.2 1 7.3 0.16 0.28

w/o L
sync
adv

27.548 0.829 0.263 1.19 · 10−4 27.8 1 7.2 0.21 0.32

w/o L
seq
adv

27.590 0.829 0.259 1.13 · 10−4 27.0 1 7.4 0.03 0.16

Full Model 27.100 0.818 0.268 1.47 · 10−4 23.1 1 7.4 0.45 0.36

Values in bold signify the best performance
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Fig. 11 t-SNE plot of the identity encoding of random frames from the

GRID test set. Frames corresponding to the same subject have the same

colour. Male subjects are indicated by a cross whereas female subjects

are indicated by a circle

Fig. 12 The distribution of blinks for videos generated by a our pro-

posed model and b a model without the Sequence Discriminator. When

the Sequence Discriminator is used c the distribution of blink duration

closely resembles that of the real videos. The same does not hold when

d the Sequence Discriminator is omitted

(a)

(b)

(c)

(d)

Fig. 14 Facial expressions generated using our framework include b

blinks, c frowns and d shouting expressions. The corresponding optical

flow motion map is shown above each sequence. A reference diagram

for the direction of the movement is shown in (a). Figure best viewed

in color. Color version available online

the distribution of blinks for videos generated by the full

model to those generated without the Sequence Discrimina-

tor. This is shown in Fig. 12, where it is evident that removing

the sequence discriminator drastically reduces blink gener-

ation. Furthermore, we note the similarity of the generated

and real distribution of blinks and blink duration. The aver-

Fig. 13 Animation of different faces using the same audio. The movement of the mouth is similar for both faces as well as for the ground truth

sequence. Both audio and still image are taken from the TIMIT dataset and are unseen during training
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Fig. 15 Videos produced by the proposed method using the same image

taken from the CREMA-D test set and driven by the sentence “its eleven

o’clock” spoken with a female voice with multiple emotions

age blink rate in videos generated by our model is 0.4 blinks/s

with the median blink lasting 9 frames (0.36s). Both the aver-

age blink rate and median duration are very close to those

found in the ground truth videos in Table 4.

We also notice that the removal of the sequence discrimi-

nator coincides with a an increase in PSNR and SSIM, which

is likely due to the generation of blinks and head movements.

We test this hypothesis by calculating the PSNR only on the

lower half of the image and find that gap between the non-

adversarial model and our proposed model reduces by 0.3

dB.

The effect of the synchronization discriminator is reflected

in the low WER and high AV confidence values. Our ablation

study shows that the temporal discriminators have a positive

contribution to both the audio-visual synchronization and the

WER.

6.2 Qualitative Results

Our method is capable of producing realistic videos of previ-

ously unseen faces and audio clips taken from the test set. The

same audio used on different identities is shown in Fig. 13.

From visual inspection it is evident that the lips are consis-

tently moving similarly to the ground truth video.

Our method not only produces accurate lip movements but

also natural videos that display characteristic human expres-

sions such as frowns, blinks and angry expressions, examples

of which are shown in Fig. 14. In these examples we high-

light the regions of the frames that exhibit the most movement

using motion maps. These maps are obtained by calculating

the optical flow between consecutive frames, reflecting the

angle of movement in the hue and assigning the magnitude

of the motion to the value component in the Hue Saturation

Value (HSV) color-space.

The amount and variety of expressions generated is depen-

dent on the amount of expressions present in the dataset used

for training and hence faces generated by models trained on

expressive datasets such as CREMA-D will exhibit a wider

range of expressions. This is illustrated in Fig. 15, where the

facial expressions reflect the emotion of the speaker.

The works that are closest to ours are those proposed in

Suwajanakorn et al. (2017) and Chung et al. (2017). The

former method is subject dependent and requires a large

amount of data for a specific person to generate videos. There

is no publicly available implementation for the Speech2Vid

method proposed in Chung et al. (2017) but a pre-trained

model is provided, which we can use for comparison. For

completeness we also compare against a GAN-based method

that uses a combination of an L1 loss and an adversarial loss

on individual frames. We consider this approach as the base-

line GAN-based approach. Finally, we also compare with

the ATVGNet model proposed in Chen et al. (2019), which

is pretrained on the LRW dataset (Fig. 16).

When silent audio is provided as input to our model the

lips do not form words. However, in the case where the initial

frame exhibits a facial expression (i.e. smile) it is suppressed

gradually over a sequence of frames. We verify this by using

silent audio with a small additive pink noise to drive the

generation process. The results in Fig. 17 show how smiles

naturally transform to more neutral expressions. If the initial

expression is neutral it is unaltered. It is important to note that

videos will continue to exhibit spontaneous facial movements

such as blinks even when the audio is completely silent.

Since the baseline and the Speech2Vid model are static

methods they produce less coherent sequences, characterized

by jitter, which becomes worse in cases where the audio is

silent (e.g. pauses between words). This is likely due to the

fact that there are multiple mouth shapes that correspond to

silence and since the model has no knowledge of its past

state it generates them at random. Figure 18 highlights such

failures of static models and compares it to our method.

The Speech2Vid model only uses an L1 reconstruction loss

during training. This loss penalizes spontaneous expressions

which mostly occur on the upper part of the face and is there-

fore likely to discourage their generation. In order to examine

the movement we use optical flow and create a heatmap for

the average magnitude of movement over a set of 20 videos

of the same subject from the LRW test set. The heatmaps

shown in Fig. 19 reveal the areas of the face that are most

often animated. Videos generated using our approach have

heatmaps that more closely resemble those of real videos.

The static baseline is characterized by considerably more

motion on the face which likely corresponds to jitter. The

Speech2Vid and ATVGNet models do not animate the upper

part of the face. This means that that these methods do not
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Fig. 16 Videos produced using model trained on LRW for unseen faces taken from the CelebA dataset. The speech clip is taken from the test set

of the LRW dataset and corresponds to the word “stand”. Frames which contain blinking eyes are highlighted

capture speaker’s tone and cannot therefore generate match-

ing facial expressions. An example of this shortcoming is

shown in Fig. 20 where we compare a video generated from

the CREMA-D dataset using the Speech2Vid model and our

proposed method.

6.3 Quantitative Results

We measure the performance of our model on the GRID,

TCD TIMIT, CREMA-D and LRW datasets using the metrics

proposed in Sect. 5 and compare it to the baseline and the

Speech2Vid model. For the LRW dataset we also compare

with the ATVGNet GAN-based method proposed in Chen

et al. (2019), for which we use the provided pretrained model.

The preprocessing procedure for ATVGNet is only provided

for the LRW dataset hence we do not compare with this model

on other datasets.

The results in Table 6 show that our method outperforms

other approaches in both frame quality and content accu-

racy. For the LRW dataset our model is better not only from

the static approaches but also from ATVGNet. Our model per-

forms similarly or better than static methods when in terms of

frame-based measures (PSNR, SSIM, CBPD, ACD). How-

ever, the difference is substantial in terms of metrics that

measure content such as lipreading WER. Also our method

achieves a higher AV confidence, although it must be noted

that based on the offset estimated using the SyncNet model

our videos generated for the CREMA-D dataset exhibit a

slight lag of 1 frame compared to the Speech2Vid method.

Finally, we emphasize that our model is capable of generat-

ing natural expressions, which is reflected in the amount and

duration of blinks (Table 6), closely matching those of the

real videos, shown in Table 4.

We note that the Speech2Vid and ATVGNet methods are

not capable of generating any blinks. For the Speech2Vid

model this due to using only an L1 loss and for the ATVGNet

this is likely due to the attention mechanism which focuses

only on the mouth since it is the region that correlates with

speech. The static baseline is capable of producing frames
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Fig. 17 Example of frames generated when silent audio, with additive pink noise, is used to drive the generation. Images are taken from the CelebA

dataset. The model is capable of suppressing any expression present in the initial frame through a smooth frame transition

with closed eyes but these exhibit no continuity and are char-

acterised by very short duration as shown in Table 6.

We further note the differences in the performance of our

method for different datasets. In particular we note that the

reconstruction metrics are better for the GRID dataset. In

this dataset subjects are recorded under controlled condi-

tions and faces are not characterised by much movement.

Synthesized faces will mimic the motion that is present in the

training videos, generating emotions and head movements.

However since these movements cause deviation from the

ground truth videos and therefore will be penalized by ref-

erence metrics such as PSNR and SSIM. Performance based

on reconstuction metrics becomes worse as datasets become

less controlled and exhibit more expressions. Another note-

worthy phenomenon is the drop in audio-visual correlation,

indicated by the lower AV confidence for the TCD TIMIT

and CREMA-D datasets compared to GRID and LRW. We

attribute to this drop in performance to the fact that the TCD

TIMIT and CREMA-D are smaller datasets. It is therefore

likely that the datasets do not have the sufficient data for

the models to capture the articulation as well as for larger

datasets.

6.4 User Study

Human perception of synthesized videos is hard to quantify

using objective measures (Figs. 17, 18, 19, 20, 21). There-

fore, we further evaluate the realism of generated videos

Fig. 18 Example of consecutive frames showcasing the failure of static

methods to produce a coherent motion. During silent periods static

approaches exhibit jittery motion in the mouth

through an online Turing test.2 In this test users are shown

24 videos (12 real–12 synthesized), which were chosen at

random from the GRID, TIMIT and CREMA datasets. We

have not included videos from the LRW since uploading them

publicly is not permitted. Users are asked to label each video

as real or fake. Responses from 750 users were collected with

the average user labeling correctly 52% of the videos. The

distribution of user scores is shown in Fig. 21.

2 Test available https://forms.gle/XDcZm8q5zbWmH7bD9.
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Fig. 19 Average motion heatmaps showing which areas of the face

exhibit the most movement. The heatmaps are an average of the mag-

nitude of the optical flow taken for 20 videos of the same subject of the

LRW dataset. An example sequence is shown next to the heatmap of

each model

(b)

(a)

Fig. 20 Comparison of the proposed model with Speech2Vid. It is obvi-

ous that Speech2Vid can only generate mouth movements and cannot

generate any facial expression

Fig. 21 Distribution of correct responses of users in the online Turing

test. The red line symbolizes the a Gaussian distribution with the same

mean and std. dev. as the data

7 Conclusion and FutureWork

In this work we have presented an end-to-end model using

temporal GANs for speech-driven facial animation. Our

model produces highly detailed frames scoring high in terms

of PSNR, SSIM and in terms of the sharpness on multiple

datasets. According to our ablation study this can be mainly

attributed to the use of a Frame Discriminator.

Furthermore, our method produces more coherent

sequences and more accurate mouth movements compared to

the GAN-based static baseline and the Speech2Vid method.

This is demonstrated by a resounding difference in the WER.

We believe that these improvements are not only a result of

using a temporal generator but also due to the use of the

Synchronization Discriminator.

Table 6 Performance comparison of the proposed method against the static baseline and Speech2Vid (Chung et al. 2017)

Method PSNR SSIM CPBD ACD WER AV Offset AV Confidence Blinks/s Blink dur. (s)

GRID Proposed model 27.100 0.818 0.268 1.47 ·10−4 23.1% 1 7.4 0.45 0.36

Baseline 27.023 0.811 0.249 1.42 · 10−4 36.4% 2 6.5 0.04 0.29

Speech2Vid 22.662 0.720 0.255 1.48 · 10−4 58.2% 1 5.3 0.00 0.00

TCD Proposed model 24.243 0.730 0.308 1.76 ·10−4 N/A 1 5.5 0.19 0.33

Baseline 24.187 0.711 0.231 1.77 · 10−4 N/A 8 1.4 0.08 0.13

Speech2Vid 20.305 0.658 0.211 1.81 · 10−4 N/A 1 4.6 0.00 0.00

CREMA Proposed model 23.565 0.700 0.216 1.40 ·10−4 N/A 2 5.5 0.25 0.26

Baseline 22.933 0.685 0.212 1.65 · 10−4 N/A 2 5.2 0.11 0.13

Speech2Vid 22.190 0.700 0.217 1.73 · 10−4 N/A 1 4.7 0.00 0.00

LRW Proposed model 23.077 0.757 0.260 1.53 ·10−4 N/A 1 7.4 0.52 0.28

Baseline 22.884 0.746 0.218 1.02 ·10−4 N/A 2 6.0 0.42 0.13

Speech2Vid 22.302 0.709 0.199 2.61 · 10−4 N/A 2 6.2 0.00 0.00

ATVGNet 20.107 0.743 0.189 2.14 · 10−4 N/A 2 7.0 0.00 0.00

A pretrained LipNet model is only available for the GRID dataset so the WER metric is omitted on other datasets. The LRW datasets contains only

one word so calculating WER is not possible

Values in bold signify the best performance
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Unlike the Speech2Vid and ATVGNet that prohibit the gen-

eration of facial expressions, the adversarial loss on the entire

sequence encourages spontaneous facial gestures. This has

been demonstrated with examples of blinks, head and brow

movements. Furthermore, our model is capable of capturing

the emotion of the speaker and reflecting it in the generated

face.

This model has shown promising results in generating life-

like videos, which produce facial expressions that reflect the

speakers tone. The inability of users to distinguish the syn-

thesized videos from the real ones in the Turing test verifies

that the videos produced look natural. The current limitation

of our method is that it only works for well-aligned frontal

faces. Therefore, the natural progression of this work will

be to produce videos that simulate in the wild conditions.

Finally, future work should also focus on extending the net-

work architecture to produce high definition video.
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