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REALISTIC VLASOV SLAB EQUILIBRIA 
WITH MAGNETIC, SHEAR 

Harry E. Mynick, William M. Sharp, and Allan N,. Kaufman 

Lawrence Berkeley Laboratory 
University of California 

Berkeley, California 94720 

ABSTRACT 

A method is described for generating exact Vlasov slab equilibria 

to model high-beta plasmas with strong magnetic shear. Physically reasonabi~ 

distribution functions that account for such effects as end losses and 

\ 

density gradients are constructed from constants of the motion and used 

to calculate the self-consistent electrostatic and magnetic fields. As 

an application we present numerically calculated equilibria modeling 

a tormac sheath • 
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I. INTRODUCTION 

Several experimental plasma confinement devices such as tormacs, 

reversed field mirrors, and tokamaks with poloidal divertors have regions 

where fields and plasma properties vary strongly normal to flux,surfaces. 

To analyze plasma stability and transport in these regions, it is essential 

to know the self-consistent equilibrium fields and distribution functions. 

This paper presents a method for constructing exact Vlasov slab equilibria 

to model nearly collisionless plasmas with strong cross-field variation. 

Most previous work on Vlasov slab equilibria has assumed unsheared 

magnetic fields.
l

-
7 

Both Holdren
8 

and Channell
9 

obtain slab equilibria 

with magnetic shear, but they neglect the electrostatic potential and 

limit themselves to anlytically tractable distribution functions which 

are inappropriate for modeling many experimental plasmas. In this paper 

we introduce a formalism free of these restrictions and use it to construct 

realistic slab equilibria. Section II presents a general set of equilibrium 

equations for a collisionless plasma slab. A method is described in 

section III for constructing physically plausible distribution functions 

from the constants of the motion, and we discuss calculation of the the 

corresponding self-consistent fields. This procedure yields exact,equilibria 

without a small-gyroradius expansion. In section IV, we USe the method 

to find equilibria modeling a tormac sheath and present the numerically 

calculated results. 

.,.' 

• 
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obtain slab equilibria 

with magnetic shear, but they neg~ect the electrostatic potential and 

limit themselves to anlytically tractable distribution functions which 

are inappropriate for modeling many experimental plasmas. In this paper 

we introduce a formalism free of these restrictions and use it to constr~ct 

realistic slab equilibria. Section II presents a general set of equilibrium 

equations for a collisionless plasma slab. A method is described in 

section III for constructing physically plausible distribution functions 

from the constants of the motion, and we discuss calculation of the the 

corresponding self-consistent fields. This procedure yields exact equilibria 

without a small-gyroradius expansion. In section IV, we use the method 

to find equilibria modeling a tormac sheath and present the numerically 

calculated results. • 
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, II. MODEL 

We follow Channell in writing the equilibrium field equations in 

a form appropriate for a slab geometry_ A Cartesian frame is chosen 

with the x-axis in the direction of the plasma spatial variation. Since 

the electrostatic potential ~ and vector potential ~ then depend only 

on x, they give an electric field ~ = (-a~/ax,O,O) and a magnetic field 

B = (O,-aA lax, aA lax). The gauge is chosen so that A = O. In these 
~ z y x 

fields, the constants of the motion for a particle of species s are the 

Hamiltonian 

1 222 
H = -2 m (v + v + v ) + q ~ 

s x y z s 
(2.1) 

and the y and z components of canonical momentum 

P + 
qs 

A = m v 
y s y c y 

P 
qs 

A = mv +-
z s Z c z 

(2.2) 

Here qs and ms are the charge and mass of a particle of speciess, and 

Y is particle velocity. Any equilibrium distribution function f 
s 

describing the phase-space distribution of particles of the species 

10 
can then be written as a function of these invariants alone, and the 

steady state charge and current densities for the species are 

appropriate moments of f : 
s 

q 2 1/2 

Ps 
s ~}' m s. s 

(Xl 

f dp 
.,..~ 

y 

(Xl co., 

f J fs (f' ':l,T? z ~H) 
dP dH . . -' 

z 1/2 
~po- H (H .. H ) , 

s. s 

(2.3) 
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qs .. 1/2 00 00 00 f (P ,P ,H) qs 

1s (~ ) J dP J dP f dH s 1. z 
(~- - ~). 

m y z (H-H )1/2 c 
s s -00 -00 H 

s s 

Here p and j are functions of x through the lower bound on H, 
s _s 

H 
s 

1 
2m 

s 

q 2 q 2 
[(P - ~ A) + (P - ~ A ) ] + q q, , 

y c y z c z s 

(2.4) 

(2.5) 

and f is normalized so that integration over velocity space gives the 
s 

species number density N 
s 

the sums p = L p and j 
s s 

Poisson's equation 

and Ampere's equation 

P /q Total charge and current density are s s· 

L j . With appropriate boundary condi tions " 
s -s 

d 2q, 
-4rrp = 

2 
dx. 

(2.6) 

d2~ 4rr 
j 

dx 
2 c 

(2.7) 

then determine the self-consistent fields. 

The field equations (2.6) and (2.7) are rewritten in a convenient 

form using expressions for p and j obtained from. the momentum conserva-

tion equation 

v·n 1 
= p~ + j x ~ 

c -
(2.8) 

where II is the pressure tensor. Since the xx component of ll' given by 

.. 
~ 

• 
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rr L: J d 3
v f s (2')vx 

2 
= m 

xx s s 
(2.9) 

2 3/2 00 00 00 

L: 1 (-) " J dP J dP J dH f (p ,P ,H) (H-H )1/2 = 
s m m y z s y z s 

s s _00 _00 H 
s 

is afunctional of ~ and ~ through Hs' the x component of £.~ can be 

rewritten 

orr 
xx 

dx 
d~ arrxx ~rr arr arr 

= _'i' ___ + dA xx (_~) E + [(~) x B] • 
dx a~" dx· a~ = a~ x a~ - x 

(2.10) 

Comparing (2.10) with the x component of (2.8) then gives the relations 

arr 
xx 

p -~ (2.11) 

and 

arr 
j 

xx 
= c a~ (2.12) 

Introducing the functional U(~,~) - 4rr rr (~,~), the field equations 
xx 

(2.6) and (2.7) take the form 

d2~ aU 

dx 
2 a~ 

and 

d
2
{\ aU 

= . 
dx 

2 a~ 

For any choice of functions f and any initial values of ~, ~, and 
s 

their derivatives, (2.13) and (2.14) may in principle be integrated 

(2.13) 

(2.14) 

to give the self-consistent fields as functions of x. Since evaluation 



-6-

of U(cl>,A) can be unwieldly in practice, it is often convenient when 

E = IplIL Ipsi « 1 to calculate ~(~) from thequasineutrality condition 
s 

au ... 
a~ - 0 , (2.15) 

rather than from (2.13). This approximation is equivalent to expanding 

~ in powers of E and solving (2.13) to lowest order. The vector 

potential may then be calculated from (2.14) using a two-dimensional 

functional U(~) = u[~(~) ,~]. Redefining U does not change the form of 

Ampere's equation because 

dU(A) 

d~ 
(2.16) 

for a quasineutral plasma. When ~ is eliminated in this way, Ampere's 

equation has the same form as the motion equation of a particle in 

a two-dimensional potential: Components of ~ correspond to spatial 

coordinates, x is analogous to time, and U may be considered a 

pseudopotential. 

... ' 

• 
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I 

III. CONSTRUCTION OF EQUILIBRIA 

Important qualitative features of the equilibrium fields and 

velocity space distribution functions of a plasma are often known from 

experiment or physical arguments. We construct V1asov slab equilibria 

incorporating these features by a procedure with three principal steps: 

a. A physically plausible reference vector potential ~(x) is first 

chosen, along with an appropriate set of velocity space distribution 

functions fs(x,vlI ,v1). Here, vII and v1 are the components of 

particle velocity respectively along and perpendicular to the 

magnetic field at x. 

b. To construct equilibrium distribution functions f (P ,P ,H) 
s y z 

resembling the reference functions f , we define a generalized 
s 

guiding center x (P ,P ) for a particle moving in the reference 
c y. z 

field ~, and equate f with f [x ,vII (x ) ,v1 (x ,H)]. s s c c c 

c. The pseudopotentia1 U q~) is evaluated for this set of equilibrium 

distributions, and Ampere's equation (2.14) is then integrated to 

obtain the self-consistent vector potential. Initial values of A -
and ~/dx in the int~gration are adjusted to minimize I~-~I. 

Each of these steps will be discussed subsequently. Provided that the 

calculated se1f..-.consistent vector ;potential approximatelYlllatches the 

reference field ~, the equilibrium distribution functions retain the 

physical teatures of the reterence distributions 'i ahd give an 
s 

equilibrium llIagnetic field resembling ~ 

The reference distribution functions fs (x,v1 'VII) are chosen to 

model prominant physical effects, such as particle losses, density and 
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temperature gradients, and plasma currents. Since, these distributions 

serve only to simulate important velocity space features, it is 

unimportant that the local variables x, vi' and vII are not constants 

of the motion. Differences between f and the equilibri~~ distributions 
s 

f finally calculated arise automatically from the intrinsically self­
s 

consistent formalism. The normalizing factor of each f and parameters 
s 

controlling the mean parallel velocity are chosen to make the reference 

distribution functions consistent with the reference field. We first 

analytically evaluate the moments of f giving the species number density 
s " , 

and the contributions of sp~cies s to the parallel current density and 

II 
xx 

N 
s 

~s 

JII 

~s 

II xx 

= 

I d
3

v 
~ 

f 
s 

qs I d
3

v 
~ 

VII fs 

I d
3

v 
2~ 

m v f 
s x s 

For a quasineutral plasma, these quantities must satisfy three 

conditions. Approximate charge neutrality requires that 

o . 

(3.1) 

( 3.2) 

(3.3) 

(3.4) 

A condition on the total parallel current is obtained from the parallel 

t 4! I t' ,11 componen 0,., Amperes equa l.on~ 

13, 2 B. 
j'n -= 2: ,:,s c z d (fJ C3 .51 JU = 41f' ~ .. di {, 

S, R 
z 

.. 

• 
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whereB _ I~I. Finally,' a pressure balance constraint results from 

writing 

dU -= 
dx 

dq> dU 
dx dq> + 

dA aU -.Y __ + 
dx dA 

Y 

dA 
~dU 
dx dA 

z 

and substituting (2.13) and (2.14): 

, 

U = 41TL iis 
s xx 

, '- 2 
1 {[' -2 -2 (dq» } 
2 B (~) - B ] + ldx . (3.6) 

When arbitrary quantities, such as the relative species parallel currents 

and the relative number density of each ion species are specified, 

(3.1)-(3.6) can be solved analytical,ly or numerically for the 

normalizing factors, the self-consistent potential q>, and parameters 

governing :IIi as functions of x. Since integration over velocity phase 

in (3.1)-(3.3) averages out the lowest order finite gyroradius 

corrections to f , this normali~ation procedure ensures self-consistency 
s 

to first order in a IL, where a is a typical ion gyroradius and L is 
ss 

the scale length of field inhomogeneities 

dE -1 
L - min[E (~) x dx' 

The central step in constructing equilibria is making a 

correspondence between f, (p,p ,H) and,the reference distribution 
, s y z , 

, "..-

(3.7) 

f s. (x'Vi ,vII). We do this by equating fs' with the value of fs at SOllle 
"..-

point Xc on a particle 'orbit in the fields q> and ~{ taking for v,t and 

VII the velocity compone'nts at xc. The choice of.x is somewhat 
c 

arbitrary because any point on the ,orbit specified by P
y

,1?Zf and H 

could be used. We sele~t a point which coincides with the usual 



-10-

guiding center when a /L «1. This choice guarantees that the 
s 

species number density and contributions to jll and IIxx agree with 

(3.1)-(3.3) to first order in a /L in the small gyroradius limit. To 
s 

define x , we note that the Hamiltonian H = P 212m + H is just the 
c x ,s s 

Hamiltonian of a particle in a one-dimensional potential H. Each s 

trajectory is confined to an x interval where H > H , and when a /L « 1, s . s 

a particle oscillates harmonically about a local minimum of Hs. This 

minimum point corre~ponds to the usual guiding center of the particle 

orbit, and since the location depends only on P and P when the fields 
y z 

<P and ~ are given, i~ is a suitable choice for the generalized guiding 

center x. Explicitly, we define x by the conditions 
c c 

dH 

(d: )x=x - 0 (3.8) 
c 

and 

(3.9) 

When the fields are nonmonotonic or B is sheared, H may have more than 
- s 

one minimum for some P and P values. In this case, x becomes 
y z c 

multivalued, and as Fig. 1 illustrates, some particles with the same 

value ot H. can then be trapped in separate x intervals. To construct 

the equilibrium distribution function t CI? ,P ,H) we first use (3.81 s y z . 

and (3.9) with fields q; and ~ to find the. generalized guiding center Xc 

appropriate for the reference fields. Since (:3.8) gives the relation 

1 d<P 
. - Cv R .,.. v B 1 + dx· = 0 

c y z z y 
. C3.10) 



at the generalized guiding 

found to be 

2 
= v 

and 
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center, the velocity components at x 
c 

are 

1 qs - 2 q 2 d:f: 2 
[(P - - A) + (p - ~ A ) ] - (~ -~) 

m 
2 Y c Y 2 c z Bdx 
s 

(3.11) 

2 
(3.12) 

m 
s 

where all field quantities are evaluated at x. When x is single-valued 
c c 

for some choice of P and P , we make the identification 
y z 

f (p ,P ,H) 
s y z 

f [x (P ,P ) ,vII (p ,P ) 'V1 (P ,P ,H)]. s c y z . y z y z 
(3.13) 

-If x is multivalued, f is taken to be a weighted average of f values. 
c s s 

Using superscripts to distinguish quantities at the different xc' the 

form of f is 
s 

f (p P H) =" Ci. -f [-CI. ( P) _CI. ( P) -CI. ( ) ] 
" L. W X P, ,vII P, ,v1 P , P ,H I s Y z CI. s c y z y z y z 

where the weighting factors wci. are normalized to give L: wCl. 
a 

(3.14) 

1. Since 

the contributions to f from particles trapped in separate x intervals 
s 

are independent, these factors may be chosen arbitrarily; We take wci. 

proportional to the difference between H 
s 

~.CI. . 
at x and the value at the 

c 

nearest H. maximum. This choice is mathematically conveni,ent because 
s· 

it yields a continuous and single.,..valued distribution .function. 
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Normally both the pseudopotential U and the plasma fields must be 

-
calculated numerically. To find ~(~), the quasineutrality condition 

(2.15) is first written as 

00 

f dP 
Y 

00 00. 

f dP f dH z 
-00 H 

s 

f (P ,P ,H) 
s y z 

(H~H )1/2 
s 

0, (3.15) 

which is a transcendental equation for ~ when ~ is given. This type 

. 12 
of equation is often efficiently solved by recursive methods or by 

13 root-finding techniques such as Newton-Raphson. The specific method 

of solution chosen will depend on the form of the distribution 

functions. A straightforward numerical evaluation of (2.9) with 

~ = ~(~) then gives U(~), and the self-consistent fields are calculated 

by numerical integration of Ampere's equation (2.14), using ~ and ~/dx . 

specified at some point Xo as initial values. Choosing the initial 

values corresponds physically to specifying the vector potential and 

magnetic field at x. Even though each set of initial values leads to 

° a self-consistent equilibrium ~ field, only values for which 

as = Iqs' '~-~I/mscis small compared with the species thermal velocity 

V generally yield an equilibrium velocity space distribution function 
s 

with the physical features modeled by f. Larger deviations of A can 
s . -

significantly distort the velocity space loss boundary of the species 

and alter the number density and parallel current. Since the reference 

distributions are normalized to give self-consistency in the small 

gyroradius limit, satisfactory agreement between ~ and ~ is usually 

obtained by choosing ~ and ~/dx at Xo as initial values. Deviation of 

the calculated ~ from ~ then results only from nonlocal current"and 

4 • 

:. 
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charge density contributions due to the finite extent of gyration 

"j orbits. The self-consistent electrostatic potential associated with any 

calculated vector potential is found by substituting A into <P(~). 



-14-

IV. APPLICATION 

To illustrate the method of section III, Vlasov equilibria are 

14 
constructed that model the sheath of a tormac. The poloidal magnetic 

field of an idealized two-cusp tormac is shown schematically in Fig. 2. 

Across the sheath the poloidal beta drops from effectively unity on 

the separatrix to near zero, while the magnetic field direction rotates, 

substantially. Since the sheath thickness is expected to be comparable 

with typical ion gyroradii and much smaller than the major or minor 

. radii of the plasma, a slab model of the sheath retaining only the 

spatial variation normal to flux surfaces is an acceptable approximation. 

A single ion species .with q. = Z.e is assumed. 
1 ]. 

The reference vector potential ~(x) is chosen to have the principal 

qualitative features expected for tormac fields. If z is taken to be 

the toroidal direction, then the reference magnetic field components 

have the limits B -+ a and B-+ B inside the plasma as x -+ ~ and 
Y z 

1 + d + . aJ?proach the cons.tant vacuum va ues B . an B asymptot].callyas 
y z 

x -+ +"". Also B should increase monotonically with x, because a tormac 

is an absolute minimum B configuration. A model magnetic field with 

these features is 

B 
y 

dA 
z --= 

dx 

cIA 
-.X 
dx 

[1 + 1/2 
exp(-ax)] 

(4.1) 

] , 

where the parameter a controls sheath thickness and [(B+) 2 + (B+)2 U (B-) 2 > 1 
Y z . 

is required. Integrating (4.1) gives the reference vector potential: 

• 

.; 
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x 
A f dx'B (x') 

y 
0 

z 

B+ 1/2 
- 1 A 1 In{ 

[l+exp(-ax)] } (4.2) 
1/2 

. z a [l+exp(-ax) ] + 1 

Figure 3 shows a typical field configuration with B +/B + 
Y z 

1.0 and 

13(00)/13(-00)= 2.0. 

Since field lines in a tormac sheath are open, the local velocity 

space distribution functions of both the electrons and ions are expected 

to resemble those in mirror devices. Electrons are assumed significantly 

colder than ions due to their better thermal contact with the device 

walls. Consequently, the negative electrostatic potential difference 

~~ that develops along field lines to balance electron and ion losses 

should be a few times the electron thermal energy T and small compared _ e 

with T.. Since most electrons are electrostatically trapped, a 
1 

Maxwellian distribution function 

C -e 

m 
e expI- 2T 
e 

is an appropriate and mathematically convenient choice. Ions are 

trapped along field lines principally by the higher magnetic field 

(4.3) 

strength at the cusps and are assumed to carryall parallel current. 

TO model these features' f. -is taken to be a drifting Maxwellian 
1 

~;q)ul tipled by, a cuto;f;f factor that vanishes continuously at the 

velocity space loss surface separating the Itrapped and untrapped 

particles. If R is the ratio of the maximum B along a flux line to the 
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,22 
local value, then particles are trapped when v1 > (vII 

2q.f1~ 
_l. __ ) 1 (R-l) , 

m. 

and the distribution function of trapped particles is 

q.~ 
l. 
T. 

l. 

l. 

} , (4.4) 

where VII is the velocity of the Maxwellian. Outside the loss boundary, 

fi is assumed to be zero. In general, C
i

, R, f1~, and VII in (4.4) vary 

with x, while C , T , and T. are treated here as constants. To make eel. . 

these distributions.consistent with 13, the normalization equations 

( 3 .1) - (3.6) are reduced to a di fferential equation for N. : 
l. 

dN. 
l. 

-- =-
dx 

where 

(8'ITe
2
N.)1/2 1 Z.T q . 

____ l. __ {?T (1 +_ + ~ _ ~ f1~ )N2 
T ~ i 4R T. R-l T. i 

~2( ) ~2 B 00 -B 

8'IT 
e l. l. 

- 4 
+ 1 (~4) 

(R-l)T. 
l. 

2T. 1/2 
(_1. ) 

m. 
1. 

a. 2 1/2 
(_1.) }J 

L s 

is the local gyroradius of an ion with energy T., and 
l. 

E 
s 

-2 
2 Bz d 

- [--­
'IT 132 dx 

13 -1 

(t-) ] 
z 

N. 
1. 

is the local shear length of the reference field. The numerical 

solution of (4.5) is then used to calculate required quantities in 

(4.5) 
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~ 

f and f.: 
e 1 

(4.8a) 

(4.8b) 
~ 

B2 R a· 1 

VII = N.L 8 (R-1) 1/2 (2m. T. ) 1 S 
1 1 

(4.8c) 

~ 
T 

in [Ni~~O)J e 
<P = e 

(4.8d) 

where <P is taken to be zero at the arbitrary point xO. The requirement 

that dN./dx in (4.5) be real imposes a constraint on a./L : 
1 1 S 

~ 

~2 ~2 

[2(1+4iR+ r
/2 a. 

~< 1 B (00) - B R-1 
L 7T B2 z.T q. 

~:) " 

s 1 e 1 ---
T. R-1 

1 

This limit on shear length results from the particular form chosen for 

fi and is not intrinsic to the method. With Ce , Ci ' VI/' and 1) given by 

(4.8), the equilibrium electron and ion distribution functions are found 

from (3.14) to be 

and 

f. (p , P I H) = L. WCl 
1 Y z 

(4.9) 

~ ( - 2)~ -H+2v V -V 
C. (R-l) (H-H ) exp 1/ 1/ 1/ 

1 C T. ~Cl 
1 x=x (p ,P ) . 

x y z 

'(4.10) 

H>H 
c 
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Here the cutoff energy H' is defined 
c 

H 
c 

- 1 - q.4? + 
~ R-l 

and from (3.11) vII is given approximately by 

2 1 qi - 2 
vII' ~ [ (P - -A) + 2 y c y 

m. 
~ 

(4.11) 

(P 
z 

q. 2 
2:.. A) ] 
c z 

(4.12) 

Neglecting the ion drift term in (3.11) is permissible for'the hot ion 

plasma considered here because 

cE m 
~-z e 

B i m. 
~ 

V 2 
e 

v. 
~ 

«v. 
~ 

(4.13) 

Since R and ~4? in' f. remain arbitrary functions of xin this model, 
~ 

fairly realistic models of ion trapping in the sheath may be, used, 

and the sensitivity of the equilibrium fields to these choices is 

readily tested. 

The equilibrium distribution functions (4.9) and (4.10) simplify 

calculation of the pseudopotential U. Using (2.9), the electron 

contribution to U is found to be 

U ;::: - 47fC T 
e e e exp (~4?) 

e 
(4.14) 

The a integral in the ion contrihution U. can likewise he evaluated 
~ 

analytically, giving 



.. 

.,," 

.. 

(,' ii \ 

,C 

U. = exp (- qTi. 4» r dP exp f--
1. 1. LX) Y , 

L. 

where 
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1 
~- (p 
2m.T. Y 

1. 1. 

q ~ 00 

~ A )21 J dP 
c YJ-oo Z 

l} VII ) j x=x 0'. (P ,P ), 
c y z 

r q 1 
exp 1- 1 (p - -~Az) 2J

' 
2m.T. z c L 1. 1. 

(4.15 ) 

~ = D (1 - t ).) ).~ 0 

2 1/2). 1/2 
= D {(l - -).) [1 - erf (). )] + 2 (-) exp (-).)}. ~ 0 

3 ' n 

Here the definitions 

and 

). -
H - H. c 1. 

T. 
1. 

(4.16) 

(4.17) 

2 x 2 
have been introduced, and erf (x) :: }' dy exp (-y ) is the error 

n l / 2 0 
function. Since x 0'. is in general a complicated function of P and P , 

c Y z 

the remaining integrals in, (4.15) require numerical evaluation. The 

choice of distribution functions also allows the quasineutrality con-

dition (2.15) to be rewritten in a convenient form. Equating the 

derivatives of (4.14) and (4.15) yields, after some manipulation, 

-1 
( e qi \ 

<P =\ -T + -T l 
. I 

\ e 1. , 

(4.18) 

where 

[ , [VII l\ 
• l: wO'.., ~ exp - (VII - vll)1 J 

\ 1. T. J x 0'. \. . _ 1. 
-eX x (p ,P ) 

c Y z 
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and 

?l = D(l - 2;") 
1. 

;"0::;;0 

I ;,. 1/2 
= D{ (1-2;")[1 - erf(;,.l 2)] + 2 C

rr
) exp(-;")}.;" ~O. 

In (4.18) <1> has been taken to be zero for~ = ~(xo) with Xo arbitrary. 

The only <1> dependence of the integral I in (4.18) comes from H , and 
c 

since le<1>1 ,..., T «T. for a hot ion plasma, H . for typical ions is 
e 1. c 

insensitive to changes in <1>. Consequently, I is weakly dependent on 

<1>, and a recursive numerical solution of (4.18) for <1>(A) is practical. 

A computer code has been developed to evaluate U and <1> from (4.14), 

(4.15), and (4.18)., and to calculate the self-consistent fields. The 

functions Rand 6<1>, the temperature ratio T IT., and parameters 
e 1. 

controlling the shear length and asymptotic values of ~ are specified 

initially. For these parameters, <1>(~) and then U[<1>(A) ,A] are calculated 
I IV IV • 

in dimensionless form on a nonorthogonal grid with one coordinate 

constant along the curve A = A and the other constant along normals .,. 

to this curve. This nonorthogonal grid is chosen so that U values are 

calculated only where the pseudopotential is largest. The calculation 

of the self-consistent vector potential is interactive: The user first 

enters initial values of x, ~, and ~ from a keyboard. The code then 

integrates (2.14) numerically, computing the derivatives by two-

dimensional' cubic spline .int~rpolation between U values.m the 

nonorthogonal grid, and returns the deviati,on parameter 0 :: max ( 0 . Iv. ) 
1. 1. 

and the ,final B value. The user may then change the initial values 

and rerun the routine, or run an output routine to plot the self-

consistent fields, the number density profile, and the ion velocity 

, 
" 

;" 



,( 
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space distribution function at selected x values. 

Results of a typical equilibrium calculation are shown in Fig. 4. 

. -1 
For this example a sheath width a = 1.5 a. was specified for the 

). 

reference field, with B IB = 1.0 at x=OO and B(oo)/B(_oo) 
y z 2.0. The 

energy ratio TIT. = 0.1 used here is typical for mirror plasmas. The e ). 

mirror ratio R was assmned to decrease exponentially from 10.0 to 1.2 

across the sheath, while q.~~/T. varied linearly between -0.25 and 
). ). 

-0.35. This choice of spatial dependences for R and ~~ is arbitrary. 

Since f. is normalized to give a parallel current appropriate for 
). 

~, R,and ~~ principally affect the ion loss boundary, rather than the 

equilibrium fields. Tests with other dependences confirm that 

equilibria are insensitive to these functions. The initial values of 

~ and ~ used here were arrived at by several trials to minimize o. For 

this case, 0 = 0.3, and the calculated B components in Fig. 4c closely 

resemble the reference magnetic field of Fig. 3. Some deviation of the 

calculated vector potential from ~ occurs because the finite size of 

gyration orbits causes a lower peak parallel current than that expected 

from a small gyroradius treatment. This discrepency is found to vanish 

-1 
when a »a.. One weakness of the present method for constructing 

). 

sheath equilibria is seen in the contour plots of the ion velocity 

space distribution function of Fig. 5. Since A' deviates from A, the - -
loss boundary of the equilihrimn distribution function is distorted 

o 

from the loss boundary of ~ .• This is a mathematical rather than physical 
). 

effect and can be corrected by iteratively recalculating f. and U with 
). 

a larger VII. In the small gyroradius limit, a discrepency between A 

and A shi fts < vII) 'by about 
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q.B • (A 
1~ . ~ 

m. cB 
1 

~) 

from .the value for ~ = A. Since (vII) = (R-l)VII/R for the ion distribu­

tion (4.4), changing VII by about -/::,,( vII ) R/(R-l) approximately 

compensates for the finite gyroradius weakening of parallel current. 

Figure 6 shows the self-consistent vector potential and the reference 

field after a single adjustment of VII. In this case ~ coincides with ~ 

within-4% at all-x values, and, after a second adjustment the discrepency 

is less than 1%. 

,~' 
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V. CONCLUSION 

The method presented here for constructing Vlasov equilibria to 

model strongly inhomogeneous slab plasmas is quite general. The field 

equations (2.13) and (2.14) are exact, and any degree of physical detail 

may be incorporated into the reference distribution functions ~ • 
s 

Consequently, the equilibria may be used to determine the sensitivity 

'of plasma instabilities and transport to particular features of the 

physical situatio~. 

Even though the method reliably generates realistic slab equilibria, 

three intrinsic limitations reduce its usefulness: 

a. Qualitative understanding of a plasma configuration is needed to 

make appropriate choices for the reference field and distributions. 

b. Equilibria are obtained numerically except in the simplest cases. 

Important information about the scaling and parametric dependences 

of results is therefore unavailable, and the equilibria are not , 

readily used in analytic stability calculations. 

c. The method does not indicate which equilibria are physically 

plausible, because the' Vlasov model ignores processes like 

collisions and field fluctuations which determine transport and 

losses. 

To calculate slab plasma equilibria with less guesswork, a more 

elaborate numerical treatment using Fokker.;.Planck equations or particle 

simulation is required. 
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FIGURE CAPTIONS 

Particles are confined to x intervals where H ~ H. For 
s 

H = HI or H = H3 a single region is accessible, whereas a 

particle with H H2 can be trapped in either of two distinct 

intervals. 

Fig. 2. Poloidal magnetic field of an idealized two-cusp tormac. The 

Fig. 3. 

Fig. 4. 

Fig. 5. 

plasma excludes poloidal flux from the shaded interior region, 

and field lines are toroidal. Outside, the poloidal field 

increases rapidly across a thin sheath. 

Reference fields A and B. a) Components of A vs x. 

b) Components and magnitude of B vs x. 

Equilibrium ~ and B fields. a) Components of A and A. -
'b) Components of ~ vs x. c) Components and magnitude of ~ vs x. 

Reference and equilibrium ion distribution functions f. and f .. 
1. 1. 

f is the local maximum value of f. or f. normalized to 
max 1. 1. 

uni ty at x = - 00 Dotted lines are contours of constant 

distribution function at equally spaced values between zero and 

f • Solid lines indicate loss boundaries. a) x = -4.0 a .. 
max 1. 

b) x = 0.0. c) x = 4.0 a .. 
1. 

Fig. 6. Equilibrium A field after one adjustment of VII • 

.. 
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Figure 2. Mynick, et al. 
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Figure 4a. Mynick, et al. 
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Figure 5. Mynick, et al. 
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