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REALISTIC VLASOV SLAB EQUILIBRIA
WITH MAGNETIC- SHEAR

Harry E. Mynick, William M. éharp, and Allan N. Kaufman
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

- ABSTRACT
A method is described for generating exact‘Vlasov slab equilibria
to model high-beta plasmas with strong magnetic shear. Physically reasonable
distribution functions that account for such éffects as end losses and
denéity gradients are constructed from constants of the motion and used
to calculate the sélf—consistent electrostatic and magnetic fields. As
. an application we present numerically calculated equilibria modeling

a tormac sheath.



I. INTRODUCTION

Sevéral experimental plasma confinement devices éuch as tofmacs,
reversed field mirrors, and tokamakSIWith poloidal divertqrs have regions
where fieids and piasma properties vary strongly normal to flux\#urféces.

To énélyze plésma stability and ;ransport in thése regions, it is essential
to know ghe self-consistent equilibrium fields_and distribution functions.
Thié’paper pfésents a method for constructing exact Vlasov slab equilibria
to ﬁodél néérly collisionless plasmas with strong cross-field variation.:

Most previous work on Vlasov slab equilibria has assumed unsheare§
magnetic fields.l—7 Both Holdren8 and Channell9 obtain slab equilibria
wiﬁh ﬁagnetic)shear, but théy he@lect’the electrostatic poteﬁtial and
limit themselves to anlyfically tractable distribution functions which
are inappropriate for modeling many experimental plasmas. Iﬁ this paper
Qe introduce a formalism free of these restrictions and use it to construct
realistic slab equilibria. Section II presents a general set of equilibrium
equations for a collisionless plasma slab. A method is described in.
section III for constructing physically plausible distribution functions
from the constants of the motion, and we‘discuss calculation of the the
éorresponding_éelf-consistent fields. This prdcedure yields exact‘equiiibria
without a smail—gyforédius expansion. In section IV, we use the method

to find equilibria modeling a tormac sheath and present the numerically

calculated results.
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I. INTRODUCTION ' -

Several'experimeﬁtal plasma confinement devices such as tormacs,
reversed field mirrors, and tokamaks with poloidal divertors have regiops
where fields and plasma prope;ties vary strongly normal to flux surfaces.

To analyze plésma stability and trénsport in these regions, it is éssentiél
to know ghe self—consistent equilibfium fieids and distribution functioﬂs.

This paper presents a method for constructing.exact‘Vlasov slab equilibrié

to model nearly collisionless piasmas_with strong cross-field variafion.

Most previous work on Vlasov s;ab equilibria has/assumed unsheared _
magnetic fields.l—7 Bottho.ldren8 and Channell9 obtain slab equilibria
with.magnetié shear, but they neglect the electrostatic pofeﬂtial and
1imit themselves to énlytically tractable distribution functions which’
are inappropriate for modeliné many experimental plasmas. in this papef
we introduce a formalism free of these restrictions and use it to conStrgct
realistic slab equilibria. Section II presents a general éét of equilibrium
equations for a cblliéionless plasma slab. A method is‘described in
section III for constructing physically plausible distribufion functions
from the consténts of the mdtion, and we discuss calculation of tﬁe the
corresponding §elf~consistent fields. This procedure yiélds e#actAequilib?ia
without a small-gyroradius expansion. In section 1V, we use the method |

to find equilibria modeling a tormac sheath and present the numerically

calculated results. o .



- II. MODEL

We follow Channell in writing the equilibrium field équations in
a form appropriafe forva.slab geometry. A Cartesian framé is chosen
with tﬁe.x—axis'in the direction of the plasma spatial variation. Since
the electrostatic potential ® and vector potential A then depena only
on x; ﬁhey give an electric field E = (-99/9x%,0,0) and a magnetic field
B = (0,—8Az/8x, 3Ay/3x). The gauge is chosen so that Ax = 0. In these
fields, the gonstants of the motion for a particle of species s are the

Hamiltonian

Ii=£m(v2+v2+v2)+q® _ (2.1)
2 vy z s

and the y and z components of canonical momentum

qs
P =mv + — A
y sy c y
qs
P =mv +— A . (2.2)
z z c z

Here q and m_ are the qharge and mass of a particle of species s, and
v is particle velocity. Any equilibrium distribution function fs
describing the phase-space distributibn of particles of fhe séecies
can thén he wfitten as a function of these invariants alone,10 and the
steady state charge and current densities for the species are

appropriate moments of fS:

q_ . 1/2 ' £.(p _,P_,H) '
_ s 2y)° : - s Tzl
s b)Y f‘“’y | o, Jan 2 e

~0d T 00 5 -] !
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q_ 172 = ® ® £ _(p_,P_ ,H) g '
== [ae  [ap, [an =T @-—=a) (2.4
~ s Mg ¥ H_ (H-H_) c

Here pS and js are functions of x through the lower bound on H,

l q

S
H = —— P
L Y

q. .

2 s 2 :
-— A"+ -—=A + .
SR) H @, - a0, (2.5)
and fS is normalized so that integration over velocity space gives the
species number density Ns = ps/qs. Total'charge and current density are
the sums p = X pS and j =.Z js. With appropriate boundary conditions,:

s ~ s~ v

Poisson's equation

2,
a : .
——% = -47p : . (2.6)
dx. : :

and Ampere's equation

2

d’A m . . :
—-01-2 = - ———c J (2-7)
dx - :

then determine the self-consistent fields.
The field equations (2.6) and (2.7) are rewritten in a convenient
form using expressions for p and j obtained from the momentum conserva-

tion equation

(2.8)

<
L]
==
Il
e
o
+
Q=
!
X
i)

where II is the pressure tensor. Since the xx component of II, given by

&



_ 3 2
Hxx = E m_ f a’v fs(g)vx ‘
(2.9)
3/2 oo o0 © .
=312 (&) fap. [ap [am £ (p ,p_,m) m-u)/?,
s m, m - ¥ % Zy sy z s :

S

is a functional of ¢ and A through H, the x component of VeIl can be

rewritten
al T an o a1
xx _d® “xx ,dn ., xx _ ¢ Txx %X
dx = ax 99 | ax oa ( 3¢‘J E_+[( 33 ) X §]X . (2.10)

Comparing (2.10) with the x component of (2.8) then gives the relations

8Hxx_
p=- 73 (2.11)
and
. aHxx '
j=c 33 . (2.12)

" Introducing the functional U(®,A) = 47 Hxx(¢,A), the field>equations

(2.6) and (2.7) take the form

2
ase ou . :
= — (2.13)
dxz od v
and
2
. d’A _ _9du _
5 =3 ¢ (2.14)
dx ~

For any choice of functions fS and any initial values of 9, A, and
their derivatives, (2.13) and (2.14) may in principle be integrated

to give the self-consistent fields as functions of x. Since evaluation

-

e



of U(P,A) can be unwieldly in practice, it is often convenient when.

e = |p|/z |pS| << 1 to calculate ®(A) from the quasineutrality condition
_ s
U . . ' |
S0, - (2.15)

tather than from (2.13). This approximation is equivalent to expénding
® in powerslof € and solVing (2.13) to lowest order. The vector
potential may then be calculated from (2.14) using a two-dimensional

functional U(a) = U[®(A),A]. Redefining U does not change the form of

Ampere's equation because

du(a) _ 4% du(®,a) , dU(d,n) . 3U(D,R)
oa  aa 3% oA T oA

(2.16)

for a‘quasineutral plasma. When ¢ is eliminated in this way, Ampere's
equation has the same form as thevmotion eqﬁation of a particle in

a two-dimensional pqtential:»vComponents of A éorrespond to spatial
coordinates,‘x is analogous to time, and.U may be consideréd.a

pseudopotential.



T " -
III. CONSTRUCTION.OF EQUILIBRIA

Important qualitative features of the equilibrium fields and
velocity space distribution functions of a plasma are often known from
experiment or physical arguments. We construct Vlasov slab equilibria

incorporating these features by a procedure with three principal steps:

-a. A physically plausible reference vector potential é(x) is first

chosen, along with an appropriate set of velocity space distribution
functionslgs(x,v”,yl). Here, V” ana \ are the components of
particle velocity respectively along and perpendicular to the
magnetic field at x.

b. To construct equilibrium distribution functions fsku,Pz,H)
resembling the reference functions Es' we define a generalized
guiding center ic(Py'Pz) for.a particle moving in the reference
field &, and equa#e fS with %s[ic'ﬁl(ic)’§L(§c’H)]'

c. The pseudopotential U(é)vis evaluated for this set of equilibrium
distributions, and>Ampere's equation (2.14) is then integrated to
obfain the self-consistent vector potential. Initial values of A
and dA/dx in the integration are adjusted to minimize lé—él.

Each of these steps will be discussed subsequently. Provided that the

calculated self~consistent vector potential appraximately matches the

reference field 5, the‘equilibrium distribution functions retain the
physical features of the reference distributions-%s and give an
equilibrium magnetic field resembling B = VUx&. ~

The reference distribution funcﬁioné Es(x,vl,vn) are.chosen to

model prominant physical effects, such as particle losses, density and



temperature gradients, and piasma currents. ~Since,thesé distributions
serve iny ﬁo simulate important'velocity space featurés, it is
 unimportant_that‘;he local variébles g, Vi and Wi are not constants
of»the»motion. Differénces between %s and the equilibrium dist?ibutions
fs finally calculatéd arise automatically from the intrinsically self-
.consistent formalism.. The normalizing factor of each %s and parameters
controlling the mean parallel velocity are chosen to make the reference
distribution functions consistent with the reference field. We first
analytically evaluate the momeﬁts of %s giving thé specigs number density .

1

and the contributions of species s to the parallel current density and

I .
XX
_— 3= : '
R, = [ a’v £ : (3.1)
~S : 3 =~ )
° = m f d3v v 2f . (3.3)
s’ X s _ i

XX

For a quasineutral plasma, these gquantities must satisfy three

conditions. Approximate charge neutrality fequires that
TqN =0. ‘ _ (3.4)
s

A conditidn on the total parallel current is obtained from the parallel

componeht of Ampere's equationill

8 ~
B - 5 o d - % : o
WEEYmwm vom (£ - Ge



where 8 = |B|. Finally, a pressure balance constraint results from

writing . .
au _ a® du dAy U dAz U

dx - dx 9% T ax . aa ax on
. - y z

and substituting (2.13) andj(2.14):

~ ’ ' z .2
U =4n ¥ I° =%{[§2(°°,) - 8% 4 [99)} . (3.6)

s XX dx

When arbitrary éuaﬁtities;sﬁch as the relative speéies parallei cﬁrrents
and the relative'nuﬁbér density of éach ion species.are specified, -
(3.1)-(3.6) can bevsolﬁed analyt;callf or nuﬁe£icélly for the
normalizing factors, the seif—bqnsistent potentiél 5, and parameters
governing 5; as functioﬁs of x.. Sincg integration over velocity phase
in (3.1)-(3.3) averages out the-lowesp order finite gyroradius
corrections to Es' this normali%Zzation procédure ensures self-consistency
to first ordér in aS/L, where ag is a typiqal ion gyroradius and L is

the scale length of field inhomogeneities

dE -1 dB -1

| e
L = min[E (5F) , B, () 8, (52) - @

The central steb in const;ﬁcting eéﬁilibria is making a
'corresponéence between.fs(Pngz;ﬁ) and‘the'referenée distrihution
Es(x,jlfwl). We do this.by eqguating fs‘with,tﬁe'value of’%s at sdme
point %, ona pa;tiCle orbit in the'fie}ds  and g,';aking'for vy and
vh the velocity compénehts at x_. The éhoice df'xc is somewhat
arbitrary because any point on‘the-prbit épecified by Py"?z’ and H

could be used. We select a point which coincides with the usual
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guiding center when as/L << 1._ This choice guarantees that the
species number density and contributioﬁs to j“ and Hxx agree with.
‘-(3:1)—(3.3) to first order in aé/L in the small gyroradius limit. To
cefine X, we note that the Hamiltonian H = P /2m +H_ is juSt the

Hamlltonlan of a partlcle in a one—dlmen51onal potentlal H . Each

trajectory iS'confined to an X interval where H > Hs' and when aS/L <1,

a particle_oscillates harmonically about a local minimum of Hs. This
minimum point corresponds to the usual guiding center of the particle
orbit, and since the iocation‘depends only on Py and PZ when the fields.
¢ and Q.are'given, it is a'suitable choiCe for the generalized guiding

‘center xc. Explicitly, we define xc by the conditions

st L .
(—ax_)x=x. =0 . o (3.8)
' c - .
and '
d2H : : , _
=" ek >0 - : (3.9)
dx

When the fields are nonmcnotonrc or B is sheared, Hé may.have more than
one miﬁimum for some ?y and Pz values. ' In this.case, X Becomesv
multivalued,'and as.Fig.»l illﬁstrates,’some particles with the same
value of H can then be trapped in separate x 1ntervals. To construct
the equlllbrlum dlstrlbutlon functlon f (Py P H) we flrst use (3.8}
and (3.9) with fields @ and A to find the generallzed gu1d1ng center x

appropriate for the reference fields. Since (3.8) gives the relation

1 - a0 , o
S B, -VB) T =0 (3.10)

.
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at the generalized guiding center, the velocity components at ic are

found to be

q q x 2
~2 2 1 ~ 2 1 s ~ .2 - c 49
= - — X = — - — -—— - — .
(| M 2 (x> E) 2 [(Py c Ay) +(P2 c Az) ] (B dx) (3.11)
B m
s
and
~ 2 2 iy ~2
v = ms ﬂH.— qsé) - v” , ‘ » (3.12)

where all field quantities are evaluated at ﬁc. When ic is single-valued

for some choice of Py and PZ, we make the identification
f 14 I = £ X P r v 3 14 v r b -
S(PY P_,H) = f_[X_( v P (VPY PV (Py,pz H) ] (3.13)

If §c is multivalued, fS is taken to be a wéighted average of %S values.
Using superscripts to distinguish quantities at the different ic, the

form of fs is

£ (P ,P H) =71 w
sy z a

~ .0 ~0 oL,

P P .
fs[xc(Py' Z) 'V” (Pyl Z) IVJ_ (PY,PZIH)]’ (3 14)
where the weighting factors w” are normalized to give X w® = 1. Since

B . : o v
the contributions to fS from particles trapped in separate x intervals
. ’ . - . . o o
are independent, these factors may be chosen arbitrarily. We take w
. : . ] ~00 L
proportional to the difference between Hs at xc and the wvalue at the

nearest Hs_maximum. This choice is mathematically convenient bhecause

it yields a continuous and singlevValﬁed distribution function.
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Normally both the pseudopotential U and the plasma fields must be
calculated numerically. To find @(é), the quasineutrality condition
(2.15) is first written as

~

co B 0 fS(P ,PZ,H) ,
T ap ap gi- —X 2 __ -9 (3.15
qu-o{fy-o{'znf‘ w-u )2 319
. s _ s _

which is a transcendental eqﬁaﬁion for ¢ wﬁen évis.given.. This:type
of equation is.often-efficiently solvea by recursive méthods12 or by
root-finding techniques such as Newton—Raphson.13 Thé specific mefhod
of solution chosen will depend on the form of‘the distribution
functions;. A straightforwérd numerical evaluation of (2.9) with

® = ¢(a) then gives U(a), and the self-consistent fieldé are calculated
'by numerical integratiqn of Ampere's equation’(2.14), using A and dA/dx .
specified at some point xb as initial.vélues. Choosing the initial
"values corresponds.physicaliy to’specifying the vector potential and
magnetiq field at X, Even though each set of initial §alues 1eaas to
a self-consistent ééuiiibfium éAfield, only values for whiéh

GS E.lqs[lg-gl/msc.is shgll.cqmpared with thé species thermal velocity
VS generally yield an equilibrium velocity space distributioh'function
with the_physical featuresvmodeled by Es.__Laxger deviatiohs of é can
significantly_distbrt the velocity space loss boundary of the,speciés
and alter the number'density aﬂd parallel current. Since the reference
distributions are normalizéd'to give self-consistehcy in the small
gyroradius. limit, satisfactory agreement between A and 5 is usually

obtained by choosing & and di/dx at x, as initial values. Deviation of

the calculated A from § then results only from nonlocal current-and
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charge density contributions due to the finite extent of gyration
orbits. The self-consistent electrostatic potential associated with

calculated vector potential is found by substituting A into o(n).

any
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IV. APPLICATION

To illust;ate the method(of section III, Vlaéov equilibfia are
constructed that mbdel the sheath of a tormac.14 The poloidal‘magﬁetic-
field of an idealized two;cusp_tofmac is shqwn schematically in Fig. 2.
Acrdss-the sheath the éoloidal beta drops.frém effectively unity'on
the separatrix to nearbzero,‘while the magnetic field diréction rotates
sﬁbstaﬁtially.» Sinée'the sheath thickness is exﬁeéted to be comparabie
Vwith typical ion gyrorédii and much smaller than the m;jor or minor |
'radii of the plasma, a sléb(model of the sheath retaining only the

- spatial variation normal to flux surfaces is an acceptable approximatioh.
A Single ion épecies_with q = Zie is assumed.

The‘reference vector potential g(x)'is chosen to pave the principal
qualitative features expected for tormac fields. If z is taken to be
the tofoidal direction, then the refefence magnetic field components
have the limits ﬁy - 0 and ﬁz'+-B_ inside the plasma as x + —© and <
épproach,the constant vacuum:values By+ and BZ+ asymptotically'as

X > o, Also B should increase monotonically with x, because é‘tormac
is an absolute minimum B configuration. A ﬁodel magnetic field'wfth

these features is
' - +

. da - B
g E "7 Z = y
¥ dx 1+ exp(—ocx)]l/2 .
(4.1)
~ =2 '+ 2 ' v
g = .c_i_A.z - [ (B+) 2 + (.B. _)_ _- (Bz_) ] .
z ~ dx z 1 + exp(oax) !

' ' +.2 4 -2
where the parameter o controls sheath thickness and [(By) +—(BZ)2]/(B )y >1

is required.  Integrating (4.1) gives the reference vector potential:



-15-

A =

ax'B (x')
v z

X
/
0
v st
& ='&X { [1+exp(—ux)] 1}

(4.2)
Z .

[1+exp(- ax)] +1
Figure 3 shqws a typical fiéld.configuration with By+/l§z+ = 1.0 and
B() /B(~0) = 2.0.

Since fiéld lines in a torméc sheath are open, the local velocity
space distributioﬁ functions of both the'eiectrons and ‘ions are expected
to resemble those iﬂ mirror devices. Electrons are assumed siénificantly
colder than ions due to their better thermal contaéﬁ with the device
walis. Consequenﬁly, the negative electrostafic potential difference
A% that develéps along field lines to balance electron and ion losses
should be a few times the electron thefmal gnergy Te and small compared
wiﬁh Ti' Since most electrons are electrostatically trapped, a
Maxwellian distribution function

m

~ ed
ieCng”,vl) = C exp[— e (v” + v ) +

E; ] - (4.3)
is an appropriate‘and mathematically convenient choice. TIons are

- trapped along field lines principally by thé higher magnetic field
strength at the cusps and are assumed to carry all parallel current.

To model these features~%i~is taken to be a drifting/Maxwellian
multipled by a cutoff factor that vanishes continuously at the

Qelocity space loss surface separating the ‘trapped and untrapped

particles. If R is the ratio of the maximum B along a flux line to the
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. : . 2q Ad .
local value, then partiéles are trapped when'yf > (v” )/(R—l),
and the distribution function of trapped partiéleS'is

- m R 5 m
fi(x,y“,vl) = C [ ———-vl + q; A® — —— (v” + Vl)]
m q 0] } _
-exp { [(V” V“) +V.!.] - Ti } ’ : N (4.4)

where V“ is the velocity of the Maxwellian. Outside the loss boundary,
’ %i is assumed to be zero. In general, Ci' R, Ad, and V” in (4.4) vary
with x, while Ce’ Te' and Ti are treated here as constants. To make

these distributions consistent with B, the normalization equations

(3.1)-(3.6) are reduced to a differential equation for ﬁi:

~ 2. .1/2.
an, _ (8me"N, ) {21 sl +_zi'I'-e ) 94 ne .. -‘ﬁz(w)_ﬁz <
dx . Te “. i 4R T R-1 T i am i
- | (4.5)
Pt &) ()
(R-1)T, ‘4° L '
where

., a Byt
= 3= (z)]

]

"

-~
ERIN

is the local shear length of the reference field. The numerical

solution of (4.5) is then used to calculate required guantities in
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*
(¥%)
N
N

(4.8a)
' 3/2 Z.T /T 4
. - 1 < mi ) R1/2 N:L i“e oo —qi. _A_Q R <B><
i Ti 21rTi (R-1) 3/2 Ni(xo) R-1 Ti f(R—1)2 4
(4.8b)
. 2 a. ‘ ‘
R B 1 )
V = " I (4.80)
il 8(R-1) (2m,T.)l/2 N, L, _
i7i
.~ T ﬁl
o = = ln TR ’ ’ _ (4.84)
i "0

where & is taken to be zero at the arbitrary point Xy The requirement

that dﬁi/dx in (4.5) be real imposes a constraint on 5i/is:

a1 5% - B2 R-1
f—.< E- ~2 7. T °
s g I U N S T )
. : ar T T, R-1 T,
_ v i i

This limit on shear length results from the particular form chosen for
%i and is not intrinsic to the method. With Ce’ Ci;vV”, and & given by

(4.8), the equilibrium electron and ion distribution functions ‘are found

from (3.14) to be

| fe(H) = Ce exp <};ﬁ;> | .(4.9)
and-

T

| o 20 ) )
fi(Py,Pz,H) =§w C, (R-1) (H-H_) exp _—:—_ )

(4.10)
=% (P ,P) - '
X'y z

H>H
c
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Here the cutoff energy H_ is defined 2

- 1 lhmiR é : L
HC : qiq) + R-_l <—2-— V” - in‘I) ' (4.11)

and from (3.11) 5":is'given_approximately by

. d. ' qd.
~ _.1_ - _l 2 2 - _l. x 2
v”; 5 [(Py S Ay) ‘+, (Pz . gz) ]. (4.12_)

=

i
' Neglecting the ion drift term in (3.11) is permissible for'the hot ion

plasma considered here because
< me v . v
< "% v <Ky, . o ©(4.13)
i

Since R and A9 in'fi remain arbitrary functions of x in this model,
fairly realistic models of ion trappipg in the sheath may be used,
and the sensitivity of the equilibrium fields to these choices is
readily testéd.

| The eQuilibrium distribution functiqns (4.9) and (4.10) simplify
calculation of the pSeudopotential U. Using (279), thé electron

contribution to U is found to be

- - Tes/z o o
b, = - 4ncT_ - exp (E;) ) (4.14)

e

The H integral in the. ion contribution Ui can likewise be evaluated

analytically, giving



-19~

q.9 q i | q
i 1 s 2 1 ]
U. = exp ——fdP exp |- (p ———A)]j dP_ exp |- = (p_--—A_)
i ( 5 ) ) o | 2 T,y c ¥ |/, 2 2miT c
l V ] '
o [ x=x_ (P_,P ),
where )
Z =D(l - 2\ ' x<o
i 3 .
: 1/2 :
2 _ v
=p{-5n 0 - ert (A% +2(%)‘ exp(-M)}. A>0
Here the definitions
21TTi 3/2 ,
D = 4TrTi — > -Gy (R-1) (4.16)
i
and
HC - Hi
)\ = —E——-‘—' ] ’ (4.17)
i .
. _ 2 2., :
have been introduced, and erf(x) = —i72 dy exp(-y ) is the error
. m -
function. Since iéx is in general a complicated function of Py and Pz,-
the remaining integrals in (4.15) requiré numerical evaluation. The
choice of distribution functions also allows the quasineutrality con-
dition (2.15) to be rewritten in a convenient form. Equating the
derivatives of (4.14) and (4.15) yields; after some manipulation,
-l .
! q -
/ e i f I(q)lA) 1
¢ ={— + ——-} In (=== - (4.18)
/ \T. T, | \TT0,R(x )1 ‘
where
o0 r q 2] o r q
I(@,A)Ej' dp exp | - L (P - = a ) ‘j dp expf - L (p - = a )2v
A [ 2m. T, Ty c Y |le z 7 2mT. Tz c oz
\Y/ 1
'Zwa\fffexp[ii‘gu‘ .
a | A =x_ (P ,P)
c yiz
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‘and ‘
%:D(l-ﬁzx) A<o
_ " : 1/2 «
= {201 -ert WA 1+ 2 B) exp-n}. >0
In (4.18) ¢ has been taken to be zerb for.A = é(xo) with X, arbitrary.

The 6nly o] dependénce of the integral I in (4.18) comes from Hc’ and’
sincev|e®| ;’Te << Ti for a hot ion plasma, Hc<for typicai ions is
inSenéitive tq changes in 0. .Consequently, I is weakly dependent on
®, and a recursive numerical solution of (4.18) for &(a) is practical.

A computer code has been deveioped to evaluate U and & from (4.14),
(4.15), and (4.18)., and to calculate the self-cbnsistent fields. The
functions R and AQ, tﬁe temperaﬁure ratio Te/Ti, ana parameters
controlling the shear leﬁgth ana asymptotic values of E are specified
initially.. For these parametgrs, @(é) and then U[@(é),é] are calculated
in dimensionless form on a nonorthogonal grid witﬁ oneicoordina£e
constant along the curve é = g - and the othef constant along normals
to this curve. Thié nQnorthogonalvgrid ié chosen so thaﬁ U vélﬁes are
Calculaﬁed only where the pseudbpotenti#l is largest. Thé éalculation
of the self-consistent vector pbténtial is interactive: The user‘first

.enters initiai valﬁes of x, A, and B from a keyboard. The code.theﬁ
integfafes (2.14) numerically, computiné the derivativeé by two-
dimensional cubic spline .interpolation between U yalues'un the
nonortthonal grid, and returns the deviétion paraﬁetet S = max(éi/vi)
and the final B value. The user may then changeithe initial values
and rerun the routine, or run an output routine té plot the self—

consistent fields, the number density profile, and the ion velocity
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‘space distribution function at selected x values.

ﬁesults of a typical equilibrium calculation are shown in Fig. 4.
For tﬁis example a sheath width a_l = l.5_ai was speéified for the
reference field, with ﬁy/ﬁ-z = 1.0 at x=° and B(x)/B(-») - 2.0. The
energy‘ratio-Te/Ti‘= 0.1 used hgre is typical for mirror plasmas. The
mirror ratio R was assumed to decrease exponentially from 10.0 to 1.2
across the-sheath, while inQ/Ti Varied liﬁearly between -0.25 and
-0.35. This choice of spatial dependences for R and Ad is arbitrary.
Since Ei is normalized to give a parallel current appropriate for
E, R,and Ad principally affect the ion loss boundary, réther than the
equilibrium fields. Tests with.other dependences confirm that
equilibria are/insensitive to these functions. The initial values of
A and B used here weré arrived at by several trials to minimize §. For
this case, § = 0.3, andvthe calculéted B compénents in Fig. 4c closely
resemble the reference magnetic fiéld of Fig. 3. Some deviation of the
caiculated vector potential from\g occurs because.the finite size of
gyration orbits causes a lower peak parallel current than that expected
from a small gyroradius treatmeﬁt. This discrepency is found to wvanish
when a—l >> ai. One weakness of the present»method for constructing
sheath eqﬁilibria is éeeh in the contéur plots of the ion velocity '
space distribution function of Fig. 5. Since A‘deviafes‘from é, the
“ loss boundary of the equilibrium distribution function is distorted

from the loss bodndary of fi. This is a mathematical rather than physical
effect and can be corre;tea by iteratively fecalculating fi and U with

a larger V”. In the small gyroradius limit, a discrepency between A

and A shifts (v”) by about



[y

g8 @a-5
Ay, = - 1 -
2 m, cB
. ER

from.the valug'for A= A. .Since (WI) = (R;l)V”/R for the ion distribu-
-.tion (4.4), changing I by about -fA(v”)bR/(R—l)‘apprqximately
compensates for the fiﬁite gyroradius Weakenihg of paiallel current.
Figure 6 shows‘the self-consistent vector pétential aﬁd the reference
field after a single'adjuétment of V". In this case A coincidés with 5

within-4% at all.x values, andxafter'é second adjustment the discrepency

is less than 1%.
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V. CONCLUSION

.

The method presented here for constructing Vliasov equilibria to

model strongly inhomogeneous slab plasmas is quite general. The field

equations (2.13) and (2.14) are exact, and any degree of physical detail

may be incorporated into the reference distribution functions fs.

Consequently, the equilibria may be used to determine the sensitivity

‘of plasma instabilities and transport to particular features of the

physical situation.

Even though the method reliably generates realistic slab equilibria,

three intrinsic limitations reduce its usefulness:

a.

Qualitative understandihg of a plasma configuration isgneeded to
make appropriate choices for the reference'fieid and distributions.
Equilibria are obtained numerically except in the simplest cases.
Important information about the scaling and parametric dependences
of results is therefore unavailéble, and ?he equilibria are not
readily used in analytic sfability calcﬁlations.

The ﬁethod does not indicate which equilibrié are physically
plausible, because the Vlasov model ignores processes like

collisions and field fluctuations which determine transport and

losses.

To calculate slab plasma equilibria with less guesswork, a more

elaborate numerical treatment using Fokker+Planck equations or particle

simulation is required.
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FIGURE CAPTIONS

Particles are confined to x intervals where H 2’HS. For

'H =H, or H=H, a single region is accessible, whereas a

1 3

particle with H = H2 can be trapped in either of two distinct

intervals. o

'Poloidal magnetic field of an idealized two-cusp tormac. The

plasma excludes poloidal flux from the shaded interior regiqn,
and field.lineS'are tdroidal.‘ Outside, the poloidal field
increaséS’rapidly across a thin éheath. | |

Reference fields & and E. a) Componénts of & vs x.

b) Components énd magnitude of B vs x.

Equilibrium A and B fields. a) Components of A and A.

'b) Cdmpohents of A vs Xx. c¢) Components and magnitude of B vs x.

Reference and equilibrium ion distribution functions %i and fi'

£ is the local maximum value of f. or f. normalized to
max " i i

unity at x = -® Dotted lines are contours of constant
distribution function at equally spaced values between zero and
fmax' Solid lines indicate loss boundariés. ‘a)'x‘= -4.0 ai.

b) x = 0.0. ¢) x=4.0 ai.

Equilibrium A field after one adjustment of V”.

X
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Figure 1. Mynick,‘et al.
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Figure 2. Mynick, et al.
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Figure 4a.. Mynick, et al.
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Figure 4b, c. Mynick, et al.
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Figure 6. Mynick, et al.
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