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The increasing miniaturisation of animal-tracking tech-

nology has made it possible to gather exceptionally

detailed machine-sensed data on the social dynamics

of almost entire populations of individuals, in both ter-

restrial and aquatic study systems. Here, we review

important issues concerning the collection of such data,

and their processing and analysis, to identify the most

promising approaches in the emerging field of ‘reality

mining’. Automated technologies can provide data sens-

ing at time intervals small enough to close the gap

between social patterns and their underlying processes,

providing insights into how social structures arise and

change dynamically over different timescales. Especially

in conjunction with experimental manipulations, reality

mining promises significant advances in basic and ap-

plied research on animal social systems.

Origin and potential of reality mining

The existence of ‘digital footprints’, which humans leave

behind when they go about their daily lives in the modern

world, has fundamentally changed the way in which hu-

man behaviour can be studied [1]. ‘Reality mining’ (see

Glossary), which is one aspect of digital-footprint analysis,

can be defined as the collection and analysis of machine-

sensed data regarding human social behaviour with the

goal of modelling behavioural patterns (sensu Eagle and

Pentland [2]). Reality mining enables researchers to

investigate the social behaviour of almost entire human

populations, in extraordinary detail and with exceptional

spatiotemporal resolution [2–4]. The sample sizes achieved

by state-of-the-art human reality-mining studies are stag-

gering. For example, more than 95% of the human inha-

bitants of most western countries carry and use mobile

phones, Facebook currently has approximately 900 million

users worldwide, and more than 400 million messages are

posted on Twitter every day [5]. Tapping into these rich

data sources provides unique insights into human daily

activity patterns, the topology and dynamics of social net-

works, and the flow of information within and across

populations [6,7]. In this review, we argue that, thanks

to the advent and increasing refinement of a range of

miniature tracking technologies, biologists will soon be

able to emulate this powerful reality-mining approach in

their studies of animal social behaviour and ecology, re-

cording field data sets of unprecedented size and quality.

This will progressively shift the focus from the challenges

of data generation to issues concerning data management

and analysis.

Systematic, disturbance-free observation of free-rang-

ing animals is often difficult, or impossible, in species that

have secretive life styles or live in inaccessible habitats. To

overcome these constraints, field biologists are increasing-

ly using miniature animal-attached tags that can aid in the

remote collection of data about the movements, behaviour,

physiology, and/or environments of animals [8–12].

Although reality mining in humans and animals differs

in some fundamental ways (see below), basic research

objectives and methodological approaches have much in

Review

Glossary

Association matrix: quadratic matrix whose cells reflect association patterns

between individuals.

Biologging and biotelemetry: use of miniature animal-attached tags for

logging and/or transmission of data about the movements, behaviour,

physiology, and/or environments of animals.

Global positioning system (GPS): satellite-based system that provides location

and time information.

Hidden Markov model (HMM): a probabilistic model comprising an underlying

stochastic process that is hidden and can only be observed through other

stochastic processes that produce the observable output.

Logger: an electronic device (animal attached or field deployed) that collects,

and subsequently stores, data.

Passive integrated transponder (PIT) tag: a small microchip that transmits its

identification code when moved past a reader at a short distance.

Proximity logging: biologging system that enables the dynamic mapping of

animal-to-animal distances, using animal-borne transceiver loggers.

Radio-frequency identification (RFID): a non-contact data transmission tech-

nology comprising a transponder (e.g., attached to an animal) and a receiver;

passive transponders use the energy of the electric field of the receiver and

have a smaller detection range compared with active, battery-powered

transponders.

Reality mining: the collection and analysis of machine-sensed data pertaining

to the social behaviour of animals or humans, with the goal of modelling

behavioural patterns.

Received signal strength indicator (RSSI): RSSI values are recorded by

proximity loggers and, following appropriate system calibration, can be

converted into estimates of animal-to-animal distance.

Transceiver: an electronic device that can both transmit and receive informa-

tion (usually, radio pulses).

Wireless sensor network (WSN): data collection system comprising fixed and/

or roaming (e.g., animal-borne) transceivers (‘nodes’) that collect and

exchange data through wireless radio transmission.0169-5347/$ – see front matter

� 2013 Elsevier Ltd. All rights reserved. http://dx.doi.org/10.1016/j.tree.2013.06.002

Corresponding authors: Krause, J. (j.krause@igb-berlin.de);

Rutz, C. (christian.rutz@st-andrews.ac.uk).

Keywords: animal social network; biologging; biotelemetry; group-living;

high-resolution data; movement; proximity logging; social behaviour.

Trends in Ecology & Evolution, September 2013, Vol. 28, No. 9 541

http://dx.doi.org/10.1016/j.tree.2013.06.002
mailto:j.krause@igb-berlin.de
mailto:christian.rutz@st-andrews.ac.uk
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.tree.2013.06.002&domain=pdf
http://crossmark.dyndns.org/dialog/?doi=10.1016/j.tree.2013.06.002&domain=pdf


common, and we see considerable potential for cross-ferti-

lisation between these two young fields.

Instead of using traditional data-collection techniques,

such as standardised resighting of a comparatively small

sample of individually identifiable animals once per

month, week, or day, a reality-mining approach employing

cutting-edge, animal-borne technologies can be applied to

entire local populations, enabling automated charting of

individuals’ daily activities and social associations with a

temporal resolution of hours, minutes, or even seconds

[3,13,14]. Such near-continuous and simultaneous sam-

pling of social encounters for all individuals in a group

or population provides the basis for comprehensive de-

scriptive and predictive models of a range of dynamic

processes in free-ranging animals, such as disease trans-

mission, predator–prey interactions, information flow

within and between populations, formation of social hier-

archies, cooperation between individuals, and responses to

sporadic ecological events (e.g., sudden changes in food

availability). Importantly, for the first time, it will be

possible to gather robust empirical evidence on how popu-

lation-level social structure emerges from highly dynamic,

individual-level associations, which is one of the major

unresolved challenges in the field of animal social network

research [15,16].

Here, we examine how a reality-mining approach can be

applied to animal systems, discussing human case studies

where appropriate. Reality mining integrates machine-

based data collection, analysis, and modelling, and the

scope and structure of our review reflects this combination

of different sets of methodologies. In particular, we: (i)

review the most promising tracking technologies for re-

cording social behaviour and activity patterns in wild

animals; (ii) discuss challenges posed by large tag-gener-

ated data sets, in terms of data screening and processing;

(iii) highlight opportunities for modelling data sets with a

range of analytical techniques; and (iv) illustrate the po-

tential of reality mining in biological field research, by

summarising recent breakthroughs with avian applica-

tions. To conclude, we identify several areas where a

reality-mining approach could significantly advance our

understanding of animal behaviour and ecology.

Data collection

Most reality-mining studies on humans opportunistically

harvest data that are generated through subjects’ natural

use of omnipresent electronic devices or services, such as

mobile phones, websites, or credit cards [5]. Such studies

require careful processing of large, complex data sets, but

biologists face the additional challenge of generating suit-

able data in the first place, by deploying tags on study

subjects and subsequently recovering tag-generated infor-

mation. In ‘biologging’ applications, data are stored in the

internal memory of animal-borne loggers, and later re-

trieved through download from recovered devices or uplink

transmission to receivers (Table 1). By contrast, in ‘biote-

lemetry’ applications, a signal from a transmitter is sent

immediately to a receiver where it can be either stored or

interpreted in real time by fieldworkers; telemetry systems

are usually classified as ‘active’ (internal power source) or

‘passive’ (transmission induced by external readers).

Terrestrial and aquatic animal-borne technology is based

on the same basic rationale, although the mode of signal

transmission and the specifics of device construction differ

[12].

One of the key challenges of any study of animal

social dynamics is to map association patterns, that is,

the physical proximity of two or more individuals. Biolog-

ging or biotelemetry systems offer two main conceptual

approaches to achieving this: encounters can either be

recorded ‘directly’, with technology that enables animal-

to-animal data exchange (one piece of information pro-

duces an encounter record), or ‘indirectly’, with technology

that charts the spatiotemporal positions and movements of

individual animals (two pieces of information are combined

to produce an encounter record; Table 1). Direct encounter

mapping uses animal-borne proximity loggers (for a review

of available systems, see footnotes to Table 1), which unlike

conventional telemetry tags (terrestrial, VHF radio-telem-

etry [17]; aquatic, acoustic telemetry [12], Figure 1), have

dual functionality, acting both as transmitters and recei-

vers of coded signals (hence the synonym ‘transceiver

tag’)*. Whenever two tagged animals come within recep-

tion range, their tags record the encounter in reciprocal

date-, time- and ID-coded log files, a process some research-

ers have likened to the swapping of business cards when

humans meet (hence, the second synonym ‘business card

tag’; [18]). In some (terrestrial) systems, tags record the

strength of received radio pulses as ‘received signal

strength indicator’ (RSSI) values, which are converted into

an estimate of animal-to-animal distance at the data-anal-

ysis stage, using an appropriate calibration curve; this

conversion is based on the basic premise that, all else

being equal, animals in close proximity should exchange

comparatively stronger radio signals than animals that are

farther apart (Box 1). Logger data can be retrieved through

field-deployed wireless sensor networks (Box 1; for a re-

view of alternative methods, see Table 1).

Indirect encounter mapping, which is currently used

more frequently, can be conducted (for details and further

references, see Table 1) either with tags that enable the

recording (with a specified sampling rate) of the uncon-

strained movement trajectories of animals (terrestrial,

VHF radio-telemetry [17] or global positioning system

(GPS) logging [19,20]; aquatic, mainly acoustic telemetry

[21–24], Figure 1), or systems where fixed receivers detect

the visits of animals to specific localities within a study

area (coded radio tags [25–27], acoustic tags [21], and

passive integrated transponder/radio-frequency identifica-

tion (PIT/RFID) systems [28–32]). The former approach

generates independent data sets that are integrated at the

analysis stage, whereas the latter produces temporal

records of co-location (Box 2).

The choice of biologging or biotelemetry technology is

affected by a multitude of general trade-offs (Table 1), as

well as by study-specific research priorities and con-

straints. Although under most circumstances, direct en-

counter mapping will generate richer and more accurate

association data sets than will indirect approaches, this

* The proximity-logging principles outlined here are not limited to radio or acoustic

transmission, and future applications may use other communication technologies.
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technology is not yet suitable for all study systems and

research contexts. For example, even the smallest avail-

able proximity loggers (terrestrial: ca. 9 g [14]; aquatic: ca.

30 g in air [33]) are still considerably larger than passive

transponders [28], and their long-term utility is severely

constrained by their limited battery lifespan (several

weeks to months, depending on battery size [14,33]).

Furthermore, in its most basic form, direct encounter

mapping does not provide geospatial referencing of

association data, so in studies that seek high-resolution

movement data (e.g., for hidden Markov models (HMMs);

see below), other technologies (e.g., GPS logging in terres-

trial applications) are preferable, unless a high-density

grid of fixed receiver stations can be deployed for cross-

triangulating roaming proximity loggers [14,34]. The lat-

ter approach illustrates that there are no absolute bound-

aries between the two major conceptual approaches (direct

versus indirect encounter mapping) and that technologies

can sometimes be combined effectively in a single appli-

cation [34,35].

Table 1. Basic functionality, advantages, disadvantages, and deployment examples of different biologging and biotelemetry

technologies for mapping animal associations

Technology Habitata Concept Prosb Consb Application examples

Direct encounter mapping

Proximity

logging

(radio)c

T Animal-borne

transceiver loggers;

tag-to-tag

communication during

social encounters; data

retrieval through tag

recovery, or wireless

transfer to field-

deployed receivers

(fixed or handheld)

Very high sampling rates;

reliable recording of ‘zero’

edges in social networks;

spatially unconstrained;

reciprocity (each encounter is

recorded independently by each

participating tag); basic loggers

can be adapted to relay

additional sensor information

(e.g., video or audio); no or

minimal human disturbance

during data collection

Expensive; depending on

size, tags can be severely

battery and/or memory

limited; laborious field

calibration for robust

conversion of RSSI values

into estimates of animal-

to-animal distance; in

most basic configuration,

no geospatial information

Social dynamics in zebras

[79]; mating in cattle [34];

potential for disease

transmission in possums

[80], Tasmanian devils

[81], badgers/cattle

[55,82,83], and rabbits [84];

detection of lion kills [85];

and social networks in

crows [14]

Proximity

logging

(acoustic)d

A As for terrestrial

proximity logging

As for terrestrial proximity

logging

As for terrestrial proximity

logging

Social dynamics in sharks

[18,33]

Indirect encounter mapping

VHF radio-

telemetry

T Animal-borne radio-

tags (transmit only);

mapping of

spatiotemporal animal

movements with

handheld receivers or

fixed receiver towers

(for automated cross-

triangulation)

Small tags with good battery

lifetime; in some study systems,

opportunities to collect

behavioural data for social

encounters (through ‘homing in’

and direct observation of tagged

animals)

Very low sampling rates;

labour intense (manual

tracking) or costly and

logistically challenging

(fixed receiver towers); in

case of manual tracking,

risk of disturbing tagged

subjects; comparatively

large location error (often

several tens of meters)

Potential for disease

transmission in rodents

[86]

Ultrasonic

acoustic

telemetry

A Animal-borne acoustic

tags (transmit only);

mapping of

spatiotemporal animal

movements with fixed

hydrophones arrays

(for automated cross-

triangulation)

Comparatively small tags; no or

minimal human disturbance

during data collection; very high

burst rates of few seconds

Expensive and logistically

demanding hydrophone

array; requires

sophisticated data

processing; macrophytes

and noise environments

limit data quality; in some

commercial systems, code

collisions limit the number

of animals that can be

tracked

Positional telemetry,

habitat association, and

movements in fish [22–

24,56,57]

Coded VHF

radio-tags

(fixed receivers)

T Animal-borne radio-

tags (transmit-only);

fixed receiver stations

record the presence of

tagged animals at

selected locations

Small tags with good battery

lifetime; reliable data collection

at sites of research interest (e.g.,

nests, leks, or foraging sites); no

or minimal human disturbance

during data collection

Data collection spatially

constrained (i.e., only at

receiver stations);

laborious field calibration

Lekking in manakins

[25,26]e

GPS tracking Tf Animal-borne GPS

loggers; satellite-based

mapping of

spatiotemporal animal

movements; data

retrieval through logger

recovery, satellite

uplink, or wireless

transfer to field-

deployed receivers

(handheld or fixed)

High-resolution spatiotemporal

mapping; spatially

unconstrained; no or minimal

human disturbance during data

collection

Expensive; depending on

size, tags can be severely

battery and/or memory

limited; not suitable for

densely vegetated

habitats (loggers require

clear ‘view’ of the sky, and

can sometimes have

surprisingly large location

errors)

Social dynamics in sheep

[87]
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A major limitation of both direct and indirect encoun-

ter-mapping technologies is that they can only detect the

physical proximity of tagged animals, but provide no

contextual information for these encounters. In other

words, it remains unknown whether the animals ‘inter-

acted’ with each other (rather than passing by passively)

and, if so, what the nature (i.e., affective or antagonistic)

and biological context (e.g., allogrooming, mating, fighting

over resources, or observing foraging behaviour) of these

interactions was. Rapid technological progress means that

tags will soon become available that can record such

information with a multitude of additional on-board

sensors [10]. For example, basic proximity loggers could

be fitted with miniature video cameras [36–41] or

microphones that directly record the behaviour of animals

during social encounters [42], or with accelerometers that

provide proxy measures of behavioural states [43–45];

other sensors could enable the real-time measurement

of physiological processes [8], such as hormone levels or

even brain activity [46]. Obtaining these additional data

layers will contribute considerably to the productive im-

plementation of some of the analytical approaches out-

lined below (HMM; see below and Box 3).

For the following reasons, proximity logging is likely to

become the method of choice for reality mining in wild

animals (cf. Table 1; Box 1): (i) high quality of association

data; (ii) recent advances in tag miniaturisation (and likely

further improvements of tag lifespan); (iii) high tag

functionality; (iv) effective automated data collection; and

(v) scope for integrating complementary sensors (e.g., GPS

for detailed movement information in terrestrial systems,

and/or video or accelerometers for behavioural context).

Proximity logging is a cutting-edge methodology that

requires commitment of considerable financial and other

resources for successful calibration and field deployment,

but it has the potential to change fundamentally the way in

which social associations in free-ranging animals can be

quantified.

Data analysis and modelling

Although enormous tracking data sets can accumulate with

relative ease (Box 1), detecting biological signals of interest

Table 1 (Continued )

Technology Habitata Concept Prosb Consb Application examples

PIT/RFID technology T and A Animal-borne (or

implanted) tags; fixed

readers record the

presence of tagged

animals at selected

locations

Very small tags (<<1 g);

inexpensive and, therefore,

suitable for large-scale studies;

excellent tag lifetime

(theoretically unlimited for

passive tags); no or minimal

human disturbance during data

collection

Very short reading

distances (usually <1 m);

relatively high rate of

missed detections (e.g.,

when two or more

individuals are present at

the same time only one

gets registered); data

collection spatially

constrained (only at reader

locations)

Social dynamics in cattle

[88] and badgers [89]; pair

formation [28] and food-

patch discovery [29] in

great tits; and boldness in

fish [90]

aAbbreviations: A, aquatic; T, terrestrial.

bAdvantages and disadvantages of certain technologies inevitably vary with study-specific constraints, including: (i) size of the study species (and, hence, permissible tag

mass; large tags are usually less battery and memory limited); (ii) behaviour of the study species, and topography and/or habitat of the study site; and (iii) project budget.

cIndependently developed systems: MateID [91,92], ZebraNet [79,93], encounter from Sirtrack Ltd. [94], EcoLocate [35], and Encounternet [14].

dCommercially available systems: ‘businesscard tags’ from Vemco [18] and ARX from Sonotronics Inc. [33].

eRyder et al. [26] used animal-borne coded VHF radio-tags that are detected by field-deployed fixed receiver stations. Although they referred to their system as ‘proximity

logging’ technology, we suggest that this term remains strictly reserved for applications with tag-to-tag communication and (temporary) data storage in on-board tag

memory.

fGPS devices have been used on aquatic species [10], but require animals to ‘surface’ for the generation of fixes. For this reason, they can be used for mapping movements,

but are generally unsuitable for mapping social associations.

(A)

(B)

TRENDS in Ecology & Evolution 

Figure 1. Whole-lake acoustic array. (A) The Kleiner Döllnsee, a natural lake in

Brandenburg, Germany, was equipped in 2009 with a whole-lake acoustic array

that enabled high-resolution positional telemetry by hyperbolic triangulation;

surgery was used to insert tags into the body cavity of northern pike (Esox lucius).

(B) A series of 20 hydrophones (black vertical symbols) enabled the 3D tracking of a

large number of individual fish (visualised by coloured data points). Reproduced,

with permission, from David March Morla (B).
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in machine-sensed information can be challenging. Here, we

review two main approaches that have been used success-

fully in reality-mining studies and that are likely to prove

useful in future applications: social network analysis and

HMMs. Readers who are primarily interested in modelling

spatial data for movement analyses are referred to more

specialised reviews [47–49], because our focus is on the

social fine structure of animal groups and populations.

Social network analysis

Social networks are quickly becoming the method of choice

for visualising, describing, analysing, and predicting so-

cial-association patterns in human and animal populations

[15,50,51]. Networks comprise nodes (individuals) and

edges (associations between individuals) where the latter

can be weighted (depending on the frequency or duration

of contact between two individuals) and/or directed

(denoting an asymmetric relationship, for example, due

to dominance hierarchies). One of the key strengths of the

network approach is that it enables measurement of indi-

vidual characteristics as well as of global (network) prop-

erties, thereby providing a convenient tool to span the

range of social complexity from individuals to social group,

to population [15,50]. Another advantage is that networks

put the individual in the context of the population without

neglecting the social fine structure of the latter. For exam-

ple, game theoretic approaches tend to assume that all

individuals in a population freely admix, whereas empiri-

cal studies show that this is not usually the case. Thus,

game theory played on networks produced some novel

predictions regarding the evolution and maintenance of

behavioural strategies, such as cooperation [52,53].

Social networks can be generated using field data from

different tracking technologies, as described in the

section on data collection above. In the case of PIT/RFID

technology, time-stamped records of the presence of

Box 1. Reality-mining studies in birds

The first study to achieve direct encounter mapping in a wild bird

population examined social network dynamics in New Caledonian

crows (Figure IA [14]), a species renowned for its use of complex

foraging tools [95]. The researchers were particularly interested in

social interactions between nonfamily birds, because horizontal or

oblique transmission processes could have an important role in the

‘cultural’ accumulation of tool-related information. In total, 41 crows,

a large proportion of the study population, were fitted with miniature

proximity loggers (‘Encounternet’; contact: John Burt, Washington

University, Seattle, USA), which emitted ID-coded radio pulses every

20 s while continuously ‘listening’ for other nearby tags. Using 45

tree-mounted fixed receiver stations, data were harvested remotely

from roaming loggers, enabling near real-time charting of association

patterns [14]. Importantly, because loggers recorded uncensored

RSSI values, the researchers were able to subsample their data set at

the analysis stage according to estimated animal-to-animal distances,

producing ‘close-range’ (birds within ca. 5 m of each other) and ‘wide-

range’ (within ca. 20 m) networks that correspond to distances over

which different social-learning mechanisms would operate (e.g.,

direct observational learning versus local enhancement). Analysis of

approximately 28 000 encounter logs for 34 individuals over the first 7

days of a 2-month data-collection period revealed a substantial

degree of close-range association between nonfamily birds as well as

potential for rapid information flow in the network.

Indirect encounter mapping was implemented on a scale that fits

our definition of reality mining by a study on social dynamics in great

tits and other woodland passerines in Oxfordshire, UK (Figure IB

[28,29,96]). Using ID-coded PIT tags attached to the rings of hundreds

of birds, and a dense grid of RFID readers mounted near experimental

bird feeders, the researchers amassed many thousands of time-

stamped bird location records. Using techniques explained in Box 2,

dyadic association metrics were derived from co-occurrence patterns

at readers and subsequently used to conduct a range of analyses

within a social network framework. Even during its early stages, this

ongoing study has shed light on processes that had hitherto

remained difficult to study in small birds, such as the formation of

pair bonds [28], the discovery of novel food patches [29], and the

structure and dynamics of mixed species flocks [96].

These two studies, as well as pioneering work using coded radio-

tags in conjunction with stationary receivers (for the automated

investigation of lekking in manakins [25,26]), illustrate the potential of

a reality-mining approach for advancing understanding of social

dynamics in wild bird populations, especially when combined with

experimental manipulations [29].

(A)

(B)

(i) (ii)

(i) (ii) (iii)

(iii)

TRENDS in Ecology & Evolution 

Figure I. Social networks in birds. (A) A New Caledonian crow [14] fitted with a harness-mounted miniature proximity logger (i), the miniature transceiver board of a

crow proximity logger (on finger tip for scale) (ii), and a sample network generated by the tracking system (iii). (B) A great tit with a PIT tag [28] fitted to its leg ring (i), an

RFID reader at an experimental feeding site, and a sample network from the feeding site (Box 2) (iii).
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animals are produced by readers positioned at strategic

locations with high animal activity (Boxes 1 and 2), for

example at preferred foraging, courtship, or roosting sites

(if different behaviours are reliably expressed in different

locations within the study site, this can be exploited for

inferring behavioural activity for more detailed HMM

analyses; see next section). This can lead to the rapid

accumulation of hundreds of thousands of tag reads. The

challenge, then, is to extract social ties from (co-)occurrence

records, by examining the extent to which potential

encounters at a reader location signify social affiliation

(for a case study, see Box 1; for a possible analytical

approach, see Box 2). If proximity loggers are used instead,

direct records of animal-to-animal distances are produced

(see above), but analysis will require careful data-quality

checking [14,54] and hardware calibration [14,25,55]. In

terms of data screening of proximity logger data, essential

steps include: (i) post-hoc synchronisation of internal log-

ger clocks, to ‘align’ encounter logs from different loggers;

(ii) filtering out of corrupt encounter logs and data duplica-

tions; and (iii) verification of the symmetry of dyadic

encounters, by examining the raw association matrix (if

individual A was associated with individual B, then B

should have also been associated with A). Once the final

data sets have been obtained, robust biological interpreta-

tion is dependent on results from adequate calibration

Box 2. Analysis of spatiotemporal data streams

Some indirect encounter mapping technologies, such as PIT/RFID

systems, generate time-stamped records whenever tagged individuals

visit field-deployed receivers (see main text; Box 1 and Figure IB).

When analysing such temporal visitation data, it is reasonable to

assume that, the smaller the time between the visits of two subjects to

the same location, the higher the likelihood of them being ‘associated’

in a biologically meaningful way. For example, individuals that are

observed at the same site within 2 s are likely to be associated,

whereas individuals that appear 2 h apart may have no social bond.

Here, we discuss two methods for extracting such association

information from (co-)occurrence data streams.

The first approach [97–100] involves partitioning the raw data

stream into a series of segments of fixed size Dt and placing ties

between individuals that fall within the same time window (Figure IA);

the association strength, or weight, is simply the total number of pair-

wise co-occurrences across all time windows. An alternative approach

is based on exploiting the observation density profile of data streams

where visits may not be uniformly spread across time, but appear in

‘bursts’ [28] (i.e., lots of visits clustered together) interspersed by long

observation-free periods (Figure IB). Using appropriate statistical

methods, it is possible to identify such increased data density, which

can be viewed as ‘gathering events’ of socially affiliated individuals

[28]. The social associations between animals can then be recon-

structed from their coparticipation in such gatherings (the more

events two individuals co-occur in, the stronger the tie between them).

Method choice depends on the problem setting. Time-slicing

approaches are usually simpler to implement but require some prior

knowledge of the system to determine an appropriate sampling

window size. Gathering event identification overcomes this problem,

but may fail in cases where observations are spread uniformly across

the data stream.

Event 1 Event 2 Event 3

t

(A)

(B)

∆t

t

∆
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Figure I. Illustration of a hypothetical visitation sequence. (A) Data stream

segmented based on a fixed time window of size Dt. Individuals that fall within Dt

are assumed to be associated, as for example, the blue � and the red 4 (with a

weight of 3). (B) Gathering events, as identified by applying a clustering algorithm

on the data stream. Individuals within such events are assumed to be associated.

Box 3. Applications of hidden Markov models

HMMs have proven to be useful for modelling systems that can be

thought of as passing through states that cannot be directly observed

or that are uncertain, but that have some observable effect. A state

can be anything that has a duration and that can be distinguished

from other states. For example, an individual might be regarded as

being in the state ‘social’ after it has joined a group and in the state

‘alone’ after it has left the group, the kind of information that is readily

obtainable with current tracking technology (see main text and Table

1). A particular strength of HMMs is that they are capable of

modelling simultaneously the variability of both the durations and

the observable effects of the states. The durations are modelled by

state-transition probabilities and the observable effects by state-

specific probability distributions that specify the possible outputs of

each state. For constructing a basic HMM, the empirical data set is

usually split into at least two parts, the training set and the test set.

The training set is used for probability estimation and the test set for

model evaluation.

A good example of a reality-mining application of HMMs is a study

that developed behavioural models of honeybees, based on data

generated by automated video tracking [72]. The models described

behaviours such as performing a waggle dance, following a dancer,

or accomplishing some work inside the hive. The states of these

models corresponded to elementary movements (e.g., arcing left,

arcing right, moving straight, or waggling), such that each behaviour

could be modelled by a Markov chain specifying the characteristic

transition probabilities between these states. Given that it was

practically impossible to identify uniquely and correctly these states

in their large data set, the researchers used HMMs to deal with

uncertainty, by additionally attaching probabilities to observed

movements, that is, by regarding the observed movements as

observable effects produced by the ‘real’ states of the HMMs. The

video-tracking system produced time series of x- and y-coordinates

for individually marked bees, from which features such as changes in

speed and heading could be extracted, which were further processed

to yield sequences of information about the movement of bees. The

resulting models were used to recognize automatically the beha-

viour of honeybees in data not used for model construction.

However, model outputs could have also been used for comparisons

between hives or time periods, as outlined more generally in the

main text.
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experiments that characterise tag-to-tag signal transmis-

sion within the full envelope of recording conditions expe-

rienced by the field-deployed system (including variation in

relative antenna angles, habitat composition, and tag

height above ground). Similar demands exist for high-

resolution positional data generated by indirect positional

biotelemetry systems, where raw data have to be post

processed to remove erroneous fixes ([22–24,56,57]; for

an example of a whole-lake array, see Figure 1).

To explore the structural properties of networks, a large

number of local and global network descriptors and tests

have been devised [50]; in the context of this review, we

only highlight a few, referring the interested reader to

specialised reviews on this topic for further information

[16,50,58]. One of the most frequently used metrics is the

‘degree’ or ‘connectivity’ of individuals, which is defined as

the number of edges that a given individual has in the

network [16]. Node degree is likely to be a good predictor of

transmission processes on networks, as recently highlight-

ed in a population of tool-using New Caledonian crows ([14]

Box 1), and is relatively robust against missing observa-

tions and/or recording errors [16]. Unlike most other data-

collection techniques, proximity logging can also indicate

the absence of edges (so-called ‘zero’ edges) with high

confidence [14], enabling researchers to study which ani-

mals may actively avoid each other. Another useful ana-

lytical approach is to search for ‘substructures’ (i.e.,

communities or subgroups) within networks. For example,

in a human reality-mining study investigating mobile-

phone use at societal level, ‘strong’ ties were found to be

important for within-community connections, whereas

‘weak’ ties created links between communities and, there-

fore, were crucial for the global flow of information in the

population [6]. The study used aggregated call duration as

a measure of tie strength between nodes, but very little is

currently known about the relation between the frequency

and duration of encounters in social networks, in either

human or animal systems. Reality mining holds the po-

tential to elucidate whether preferential associations are

characterised by particularly frequent and/or long associa-

tions (and whether these two parameters are correlated),

with important implications for our understanding of in-

formation transmission and social-learning processes.

In captive or semi-captive settings, loggers or tags can

potentially be deployed on all individuals in a group, unless

they are so numerous that this becomes prohibitively

expensive (e.g., thousands of chickens in a poultry farm).

By contrast, in free-ranging animals, often only a certain

proportion of a local population can be fitted with devices,

because of logistical constraints. Therefore, social network

analyses will have to deal with missing data (which can

also result from device malfunction), a problem that is

increasingly receiving attention [59,60].

Several programs are available for automated network

visualisation (e.g., Gephi and Netdraw) and analysis (e.g.,

UCINET [61] and SocProg [62]), which provide an excellent

starting point for any investigation.

Hidden Markov models in animal behaviour

Hidden Markov modelling is a well-established stochastic

modelling tool that has been applied successfully in a wide

range of contexts, including speech recognition in humans,

pattern recognition, and the analysis of genetic sequences

[63], as well as first reality-mining studies [2,13,64].

HMMs are based on simple Markov chains where the

future state of a system is only dependent on its current

state, the so-called ‘Markov property’ [63]. In a simple

Markov chain model, each observed data sequence corre-

sponds to a unique sequence of states. This means that a

model can be constructed based on a sequence of given

states of a system (e.g., ‘being asleep’, ‘foraging’, or ‘mat-

ing’). In many systems, the states can be observed directly,

and transition probabilities between states (e.g., the prob-

abilities of other states following ‘being asleep’) can be

estimated to construct a Markov chain model. Examples

include studies on grooming behaviour in flies [65], moth-

er–infant interactions in monkeys [66], and stress-related

behavioural changes in animal-welfare projects [67]. How-

ever, in a typical reality-mining scenario with remotely

collected data, it is often impossible to map the data to a

unique sequence of states; usually, a sequence of data can

have multiple explanations in terms of state sequences. In

an HMM, we assume that we cannot directly observe the

states but only the variable outputs they produce. This

makes HMMs suitable models of processes where the

identification of states is part of the problem. HMMs then

enable the identification of the state sequence that, given

the reality-mining output, has the greatest probability

(Box 3).

As mentioned above, HMMs are limited by the Mar-

kov property. Although simple Markov chains can easily

be generalised to higher-order chains that take a finite

sequence of previous states into consideration, this is

more difficult for HMMs. However, it is possible to

construct compound models, where, for example, HMMs

form the states of a simple, higher-order Markov chain.

Such a compound model would then simultaneously

take into consideration the probabilities of the HMMs

producing the observed data sequence and the probabili-

ty of the high-level state sequence modelled by the

simple Markov chain. Of course, other possibilities

exist for combining HMMs with other modelling

approaches that can keep track of a longer history

(e.g., Eigenbehaviors [13]).

Most applications of HMMs to social dynamics of entire

groups or populations have been conducted with human

subjects, presumably because suitable animal tracking

technologies had not been available. In humans, such data

usually provide information about the location of an indi-

vidual at a specific time, which enables inferences about

its behavioural state. If, for example, an individual is at

home at 3.00 am, the probability is high that its state is

‘asleep in her bed’. However, if the same individual were in

the office at 3.00 am, then the state would likely be ‘awake

working at her desk’. Based on this time and location data,

and perhaps the presence of other individuals, it is possi-

ble to reconstruct daily routines of humans with certain

probabilities [13]. Similar reasoning can be applied to

animal data sets. Here, HMMs can be used to detect

behavioural routines of individuals and to link these to

possible drivers, such as time of day, or environmental

factors. In some cases, it may be possible to go beyond a
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descriptive, correlative approach, by experimentally ma-

nipulating the factor(s) of interest (such as food availabili-

ty) and measuring the response of the system. In this

sense, HMMs provide a more sophisticated version of

ethograms [64,68], with behavioural state changes being

modelled according to environmental contexts. This ap-

proach puts social behaviour into the wider context of

other behaviours and can provide important information

on when and where social interactions are likely to take

place.

Another advantage of HMMs is that they are generative

models. They can be used to produce state sequences and

output typical of the modelled system. This means that

HMMs can also be used to generate social networks. Most

studies of social networks focus on patterns using data that

were accumulated over time. This means that little is

known about the social dynamics that generated these

patterns [69]. HMMs can fill this gap because they provide

information on behavioural dynamics. Importantly, the

discrete time intervals at which states are inferred by

some tracking systems (Table 1) can be matched to the

temporal dynamics of the activities of interest. Further-

more, information from HMMs can be used to parameterise

individual-based models that simulate social dynamics

and, thus, produce testable predictions, which can then

be confronted with field manipulations to add ecological

validity (e.g., to fish a lake that had previously been

unexploited, and to study consequent changes in fish be-

haviour). A nice example of a dynamic change in network

structure is provided by a study that examined how a

research group behaved in response to an approaching

deadline [2]. Initially, contacts of all group members with

the group leader were frequent and strong. As the project

got closer to the deadline, however, research group mem-

bers became more interdependent, resulting in a different

network architecture.

Many network measures are sensitive to the number of

nodes (individuals) and edges (social connections between

the nodes) and to missing observations [16] and, therefore,

are only of limited use for network and/or population

comparisons. By contrast, HMMs are usually less affected

by these issues because they are aimed at providing gen-

eral models of social behaviour for the whole group or

population. Therefore, HMMs may provide a more prom-

ising approach for population comparisons, because they

focus on differences in social processes, by comparing the

transition probabilities between states rather than the

resultant patterns.

Several software packages are available for the imple-

mentation of HMMs, such as HMMER (http://hmmer.jane-

lia.org/) and ESMERALDA (http://esmeralda.sourceforge.

net/) (reviewed in [63]).

Concluding remarks

In conclusion, reality mining involves the collection and

analysis of machine-sensed data sets, to investigate social

dynamics across scales, from the fine structure of individual

behaviour to population-level processes. Originally con-

ceived to study human social behaviour, pioneering studies

illustrate how this basic conceptual approach can be applied

productively to animal systems [14,28,29,70], through the

effective combination of powerful data-harvesting techni-

ques (such as animal-borne proximity loggers) and innova-

tive analytical tools (such as social network analyses and

HMMs).

In humans, reality mining can capitalise on existing,

self-generated data sets (e.g., mobile phone calls [6]), but

may encounter problems of data confidentiality that se-

verely limit data exploration and publication. Animal

studies are free from these constraints, but require invest-

ment of considerable resources into data generation, in

terms of money to buy hardware and time to calibrate,

deploy, and operate a system in the field. Furthermore,

data-handling procedures need to be in place to address

problems that arise, for example, when incomplete or

nonrepresentative samples of individuals are studied,

tag performance varies across different habitats, or logger

batteries fail (for strengths and weaknesses of different

tracking technologies, see Table 1).

A major concern in traditional studies of animal social

dynamics is the quantity and quality of field data, and the

question of whether small samples adequately describe

population-level phenomena [16]. Notwithstanding the

challenges mentioned above, reality mining addresses

these issues, both with regards to the number of subjects

that can be simultaneously studied and the quality of the

data generated per individual. Studies that track associa-

tion patterns of large numbers of individuals with multi- or

even subsecond sampling rates have the potential to con-

verge, within obvious limits, on the ultimate goal of map-

ping biological ‘reality’. Social network studies, for

example, routinely suffer from the problem that weak links

and zero associations between pairs of individuals, and

sparse networks in general, cannot be trusted, because

they may simply be due to undersampling [16]. In proxim-

ity-logging applications, such zero associations become

robust and meaningful data, because we can be relatively

confident that all associations were recorded by the system

and that those individuals that appear unconnected in the

inferred network indeed had no encounters during the

observation period [14].

Most conventional social network studies identify

patterns from cumulative data, collected over days,

weeks, months or even longer, through repeated obser-

vation or recapture of marked, or otherwise identifiable,

subjects [16], an approach that ignores underlying short-

term (transitional) dynamics. Current tracking technol-

ogy can provide data sensing at time intervals small

enough (e.g., the fish tracked in the study lake in

Figure 1 were tracked for 3 years with a 9-s burst

interval) to enable investigation of dynamic processes

[71], for example, of how network topology tracks envi-

ronmental conditions or responds to major natural or

anthropogenic perturbations [2]. An understanding of

behavioural dynamics is also an important prerequisite

for the study of disease- or information-transmission

processes in animal populations. With the help of HMMs,

for example, it might become possible to detect state

changes in animals that enable effective, real-time mon-

itoring of the spread of diseases, highlighting a potential

role of reality mining for population management. In

domestic settings, high-resolution data could be valuable
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for animal welfare studies that aim to design environ-

ments for livestock where competition for resources and

stress levels are minimised [67].

With basic association data no longer a limiting factor,

researchers’ attention can focus on generating, and inter-

preting, information on the behavioural context of encoun-

ters. In terms of data collection, additional sensors (video

cameras or accelerometers) will soon be integrated into

existing systems (such as ‘Encounternet’), producing ro-

bust data on behavioural states. As in human studies [4],

these data can then be analysed with HMMs, to help

identify patterns and routines that individuals have in

common, or that differ between groups, populations, or

time periods, providing a more comprehensive description

of fundamental biological processes than was previously

possible for wild animals.

Even with current battery technologies, reality-mining

projects can run over ecologically relevant time scales of

weeks or months, which would cover a breeding period in

many species. Therefore, data on mate choice [28] and

mating behaviour, or relative positioning within social

networks, can be collected and subsequently related to

reproductive success and other components of fitness. This

means that reality mining can contribute to efforts of

modelling ecological phenomena from the bottom up, from

individual interactions to population-level patterns, with

an assessment of the fitness consequences of different

behavioural strategies. The latter then joins ecology and

evolution, resulting in the potential for modelling behav-

iour-mediated eco-evolutionary feedback.

We restricted our review to technologies that generate

data using animal-attached devices, but note that

other forms of machine sensing are conceivable. In the

laboratory, it is already possible to perform tracking of

individuals and their encounters using computer vision

(Box 3 [64,72–75]), and we anticipate that similar auto-

mated approaches will soon be implemented in field stud-

ies, where grids of video cameras could monitor

individually identifiable subjects. In some species, individ-

ual recognition is easily possible, based on natural patterns

and markings [16], potentially rendering the laborious

process of tag deployment obsolete.

Until now, conducting population or species compari-

sons of social network topology has been exceptionally

difficult, because most network descriptors are sensitive

to undersampling [16,76]. Rich biologging or biotelemetry

data sets, in conjunction with innovative analytical tech-

niques such as HMMs, will help biologists overcome these

problems. Over the years, reality-mining studies will pro-

vide data and models on the social fine structure and

dynamics of animal populations across a wide range of

species, facilitating major new insights through broad

evolutionary comparisons [77,78].
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