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Bell’s theorem, and its experimental tests, has shown that the two premises for Bell’s inequality—locality and objective reality—
cannot both hold in nature, as Bell’s inequality is broken. A simple test is proposed, which for the first time may decide which
alternative nature actually prefers on the fundamental, quantum level. If each microscopic event is truly random (e.g., as assumed
in orthodox quantum mechanics) objective reality is not valid whereas if each event is described by an unknown but deterministic
mechanism (“hidden variables”) locality is not valid. This may be analyzed and decided by the well-known reconstruction method
of Ruelle and Takens; in the former case no structure should be discerned, in the latter a reconstructed structure should be visible.
This could in principle be tested by comparing individual “hits” in a double-slit experiment, but in practice a single fluorescent
atom, and its (seemingly random) temporal switching between active/inactive states would possibly be better/more practical, easier
to set up, observe, and analyze. However, only imagination limits the list of possible experimental setups.

Through Bell’s theorem [1, 2], which put the (in)famous
Einstein-Podolsky-Rosen [3] argument on a solid and
testable footing, and experimental tests thereof [4–8] it
has been proven beyond reasonable doubt that no “locally
realistic” fundamental model of the world can be correct.
That is, a “sensible” worldview, such as that proposed in [3],
is unfortunately untenable.

So either the objective reality-condition (that things exist
in definite states whether we look or not) must be broken, for
example, as in orthodox quantum mechanics, or the locality-
condition (that events arbitrarily far away cannot affect
what happens here and now—relativistic separability and
causality) must be broken, for example, as in nonlocal hidden
variable theories. The variables are called “hidden” because
their existence is only conjectured and beyond our (present)
control, but meant to complete quantum mechanics into
a uniform description of micro and macro (Bell himself
was heavily biased towards a hidden variable resolution of
the problem [9]). The first detailed such theory, perfectly
deterministic and compatible with all known experimental
data, was [10]. Notice, however, that we are not necessarily
considering any specific existing hidden variable theory, but
an “ultimate” hidden variable theory that in principle decides

everything deterministically. In contrast in the orthodox
approach to quantum mechanics the quantum particles in
effect behave as particles when observed and as waves when
not observed—thereby, and at the most fundamental level,
introducing the ill-defined act of observation (“measurement
problem,” “collapse of the wave function,” and Bohr’s “irre-
versible act of measurement”), whereas particles in hidden
variable theories always behave as particles but are being
“pushed around” by the underlying (hidden) dynamics.
In such deterministic systems the present state completely
and uniquely determines the future, but as is well-known
chaotic systems can “impersonate” randomness due to their
extreme sensitivity to initial conditions; in a nutshell chaos
is about order and disorder in deterministic systems that are
nonlinear.

So far, it has not been possible to distinguish between the
locality versus reality alternatives, and the choice has been
mainly one of personal taste.

However, as hidden variable theories are deterministic
(quantum particles behaving as realistic classical particles
all the time, encoding Einstein’s “elements of physical real-
ity” [3]) and orthodox quantum mechanics fundamentally
probabilistic (each individual event/measurement assumed
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Figure 1: Seemingly random data, actually generated by the simple
and deterministic “logistic mapping” in its chaotic region, see text,
and [13].
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Figure 2: The reconstructed attractor in 2D from the data in
Figure 1, using (1), showing that its “randomness” has its origin in
dynamical deterministic chaos.

to be completely random), it should be possible to experi-
mentally test the distinction between them.

An experiment to test this possibility could be devised
in analogy to the confirmation of deterministic chaos in
a dripping water faucet [11, 12]. It is of course well-
known that deterministic chaos requires nonlinear systems
whereas the Schrödinger equation is linear. However, most
hidden variable theories like the original by Bohm [10] are
manifestly nonlinear (As an aside, if hidden variables is the
correct way to explain the violation of Bell’s inequality this
could make true quantum chaos possible, as opposed to the
usual notion of “quantum chaos” which is concerned with
quantum signatures of corresponding systems known to be
chaotic in the classical case, as the linear structure of the
Schrödinger equation alone does not support true chaos).

If we, for example, replace the dripping faucet with a
double-slit experiment (According to R. P. Feynman the
double-slit experiment “... has in it the heart of quantum
mechanics. In reality, it contains the only mystery.”, The
Feynman Lectures on Physics, Vol.III, p. 1-1) with individual
quantum entities (electrons, neutrons, photons, etc.), the
effectively one-dimensional position (qi) of the successive
“hits” on the detector screen, in effect defining a discrete
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Figure 3: Reconstructed attractor in 3D from the data in Figure 1,
again using (1).

time series, can be used to try to reconstruct a chaotic
attractor, in case the underlying theory is dissipative, or
a deterministic structure in phase space, in case it is
nondissipative (Hamiltonian), by applying a method [14, 15]
of converting a single data series into a phase space portrait
via “delay coordinate embedding.” This can be accomplished,
assuming a suitably low-dimensional attractor/structure, by
defining the coordinates as follows:

x = qi, y = qi+1, z = qi+2. (1)

A given i then gives a point, (x, y, z), in phase space.
To give an elementary example, the seemingly random

data in Figure 1 is really due to the deceptively simple, but
actually incredibly rich, “logistic mapping,”

xn+1 = kxn(1− xn), (2)

in its highly chaotic regime with k = 4 [13].
The reconstructed attractor, using the method described

above, is seen in Figure 2 (2D) and in Figure 3 (3D).
We do not, however, expect that an eventual attrac-

tor/structure in real quantum mechanical data will be
so simple and low dimensional, even though the logistic
mapping has been shown to be in qualitative and quantitative
agreement with numerous real-life systems in all branches of
science, see, for example, [16] for some early examples. This
would be very surprising if not for the remarkable fact that
there exists a “universality” in this kind of chaos [17].

In a sense, the logistic mapping is just like a model
for observing “random” hits on an effectively 1D-detector
screen of unit length (arbitrarily defined), just like in the
double-slit experiment. The detector in effect defines a
natural Poincaré section—a discrete “stroboscope” mapping
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Figure 4: When no dynamical relation between the data points (qi)
exists, no structure is obtained by the reconstruction mechanism,
(1). This would be the case for “orthodox” quantum mechanics
where each individual hit/result/event is assumed to be completely
random. The world could then not be objectively real, but could be
local.

of the unit interval onto itself—of the underlying continuous
dynamics described by differential equations. If there is
a deterministic mechanism underlying the “random” hits
on the screen, creating the known statistical distribution
after many hits, it should then show up as a structure in
reconstructed phase space.

In principle, to capture all emitted quantum particles,
the ideal would be to have a perfectly efficient 4π-detector,
faithfully recording each individual quantum particle on
its “latitude and longitude.” A 2D-iterated mapping, of
the classic predator-prey kind, would then be a model for
the successive hits, the simplest one using “nonoverlapping
generations,” where each hit is described by two coordinates
(originally the populations of predator and prey species) and
is determined by the previous hit through a mapping of the
form

xn+1 = f
(

xn, yn
)

, yn+1 = g
(

xy , yn
)

. (3)

One such model, the Hénon mapping [18]

xn+1 = yn + 1− ax2
n, yn+1 = bxn, (4)

gives the famous Hénon-attractor. For the canonical values
a = 1.4 and b = 0.3 the Hénon map is chaotic; each individ-
ual hit appears random, but a clear structure builds up over
time, analogous to hits in the double-slit experiment. In the
former case the structure is fractal [19] whereas in the latter
case it may or may not be.

However, one could argue that any eventual hidden
variables must “know” that we have restricted the “landing
platform” for the quantum particle to an effectively 1D

Figure 5: If “hidden variables” are governed and determined
by dissipative equations an attractor will be reconstructed by
the qis. To mimic the apparently random behavior of quantum
mechanical data it will be a “strange attractor” with noninteger
(fractal [19]) dimension analogous to the famous Lorenz-attractor,
here reconstructed from time series data from only one of the three
variables of the Lorenz system [20]—the very first concrete example
of dissipative chaos. Any apparent attractor structure would tell
us nature is not local—causes arbitrarily far may affect results
“here”—that is, there are influences going faster than light (even
if we cannot control them for practical telegraphy). Furthermore, it
would indicate that the orthodox (“Copenhagen”) interpretation of
quantum mechanics is wrong.

strip, so that additional spatial variables are superfluous. The
hidden variables must also keep track of if one or both slits
are open and relay that information nonlocally (faster than
the speed of light) to the detector screen, as in [10], to comply
with the violation of Bell’s inequality.

As modern technology has made it possible to trap and
observe individual quantum objects, such as atoms, it might
be better and easier to exploit this fact than trying to use the
mythical double-slit. Measurements of “quantum jumps” in
single atoms [23, 24], and the resulting fluctuation of their
fluorescent on/off states, may make an ideal testing ground
where recorded data should already be present (the time
series underlying Figure 2 in both articles [23, 24] could
in principle be directly inserted into (1) above), but only
imagination limits the list of possible experimental setups.

If the seemingly random florescence gives rise to a
distinct structure in phase space, with noninteger fractal
dimension, onto which the phase space points are concen-
trated, it would be a clear indication that it is actually the
consequence of dynamical deterministic chaos (i.e., hidden
variables), in direct analogy to how [11, 12] revealed deter-
ministic chaos in the dynamics of the dripping water faucet
(Figure 6). For examples of qualitatively typical chaotic
attractors/structures see, for example, the figures in [11, 12]
or the famous examples presented in the figures in this article
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Figure 6: “The Lorenz map”—when successive, erratically fluc-
tuating, amplitude maxima were plotted for the Lorenz attractor
(previous figure) using a technique analogous to the one described
in this article, the surprising result was this nearly one-dimensional
attractor; hidden order in chaos [20], and a concrete simple
example of the relation between continuous dynamics and discrete
mappings.

(accompanied by their respective physical implications to the
problem at hand in the figure captions to Figures 5 and 7).
However, the exact shape, dimension, and complexity will be
governed by the (unknown) detailed underlying dynamics.
The rest of the analysis carries through just like in [11, 12].

In fact, in the present case it is in principle even easier
to obtain a conclusive result as any observed structure
indicates a deviation from the usual assumption of total
randomness of quantum mechanics—where it is normally
assumed that, for example, the hit of an individual particle is
a completely independent and truly random process—even
if one has collected one million successive data points the
next one, according to orthodox quantum mechanics, will
be a complete surprise and impossible to predict even in
principle, see Figure 4.

So, in a perfect world it should be easy to potentially
disprove orthodox quantum mechanics. A practical problem
is of course that there exist no perfect particle detectors,
which results in missing part of the series and also in
the introduction of noise in the data. The more of the
series one misses, the harder it becomes to reconstruct an
(eventual) attractor/structure. This may, as stated above,
be circumvented by observing, for example, single atoms
exhibiting quantum jumps as this “. . . can be detected with
unity quantum efficiency” [23].

If, however, no attractor/structure is found in the exper-
imental data, that is, if the points are scattered randomly in
phase space, as in Figure 4, where every qi has been generated
at random, then quantum mechanical “measurements” (e.g.,
hits on detector screen, timing between on/off states, etc.)
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Figure 7: If “hidden variables” are governed and determined by
nondissipative (Hamiltonian) equations no attractor will result, yet
a structure differing from pure randomness will emerge. Such a
result would imply the same conclusion regarding the world as
noted in the text accompanying Figure 5. The example shows the
modern reconstructed phase space of the “restricted circular three-
body problem” in astronomy [21], where Poincaré first glimpsed
what today is known as deterministic chaos, nondissipative in this
case. This (the corrected and printed version [22]) was his winning
contribution (price money: 2,500 Swedish Kronor) to a contest
announced in 1885 to celebrate the 60th birthday of the Swedish
King Oscar II in 1889. What Poincaré found was that small changes
in the initial conditions (such as positions and initial velocities of
planets) produced huge and unpredictable outcomes-deterministic
chaos in today’s parlance.

probably cannot be described by deterministic equations,
and some truly stochastic effect(s) must instead be at work,
for example, as assumed in orthodox quantum mechanics.

Hence, it should be possible to test, and potentially
falsify: either the hypothesis that quantum randomness is
due to underlying deterministic dynamics-hidden variables
(in which case the “randomness” actually would merely be
apparent, not fundamental)—without having to know and
penetrate the details of the underlying equations, or the stan-
dard fundamentally probabilistic interpretation/postulate of
Born as used in orthodox quantum mechanics, and hence
answer if nature prefers to break locality or objective reality
on her fundamental level. In case of the former, it would
indicate an unexpected and deep hidden connection between
the three great revolutions of 20th-century science; relativity,
quantum mechanics, and chaos theory, and perhaps even
point the way towards a unified complex nonlinear systems
theory of the future.
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