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The turbulent stress tensor in large-eddy simulation is examined from a theoretical 
point of view. Realizability conditions for the components of this tensor are derived, 
which hold if and only if the filter function is positive. The spectral cut-off, one of the 
filters frequently used in large-eddy simulation, is not positive. Consequently, the 
turbulent stress tensor based on spectrally filtered fields does not satisfy the realizability 
conditions, which leads to negative values of the generalized turbulent kinetic energy 
k. Positive filters, e.g. Gaussian or top-hat, always give rise to a positive k. For this 
reason, subgrid models which require positive values for k should be used in 
conjunction with e.g. the Gaussian or top-hat filter rather than with the spectral cut- 
off filter. If the turbulent stress tensor satisfies the realizability conditions, it is natural 
to require that the subgrid model for this tensor also satisfies these conditions. With 
respect to this point of view several subgrid models are discussed. For eddy-viscosity 
models a lower bound for the generalized turbulent kinetic energy follows as a 
necessary condition. This result provides an inequality for the model constants 
appearing in a ‘ Smagorinsky-type’ subgrid model for compressible flows. 

1. Introduction 

Most turbulent flows contain too many scales to be solved directly. In order to 
reduce the number of scales to be solved, the Navier-Stokes equations governing 
turbulent flow are averaged. Two types of averaging approaches can be distinguished. 
In the classical approach, also known as the statistical approach, the equations are 
averaged with a statistical mean or ensemble average (Tennekes & Lumley 1972). In the 
filtering approach, which is the basis of the large-eddy simulation (LES) of turbulent 
flow (reviewed by e.g. Rogallo & Moin 1984), the averaging operator is a linear filtering 
operator, e.g. a local weighted average over a small volume of fluid. In the averaged 
Navier-Stokes equations additional terms appear, for which a model has to be 
assumed before the equations can be solved. The additional terms in the momentum 
equations are spatial derivatives of the turbulent stress tensor. In a large-eddy 
simulation this tensor is modelled with a subgrid model, so called since the scales which 
can be represented on the grid are solved explicitly, while the effect of the small 
‘subgrid scales’ is modelled. 

In the statistical approach the turbulent stress reduces to the Reynolds stress, which 
is a statistical central moment, and satisfies the so-called ‘ realizability conditions’ (Du 
Vachat 1977; Schumann 1977). Unlike the ensemble average in the statistical 
approach, the averaging operator in the filtering approach does not satisfy the 
Reynolds rules for the mean (Monin & Yaglom 1971, p. 207). Although for this reason 
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the turbulent stress in the filtering approach is not equal to the Reynolds stress, several 
analogies between these two stresses exist. First, the turbulent stress in the filtering 
approach satisfies the Reynolds equations for the Reynolds stress in the statistical 
approach (Germano 1992). In addition to this property, which is called the averaging 
invariance of the turbulent equations, Germano presents an algebraic identity for the 
turbulent stress, resulting in a dynamic subgrid-scale eddy-viscosity formulation. 
Invariances or algebraic properties related to the large-eddy-simulation technique and 
their applications to subgrid modelling are scarcely found in literature. In addition to 
Germano’s work, the work of Speziale (1985) should be mentioned, in which the 
Galilean invariance of subgrid models is discussed. 

In the present paper it will be shown that the realizability conditions for the 
Reynolds stress in the statistical approach are also valid for the turbulent stress in the 
filtering approach, if and only if the filter function is positive. The proof of this 
statement is given in $2, while in $3 the theory is illustrated for three filters commonly 
used in large-eddy simulation. Furthermore, in $ 4  it is argued that a consistent subgrid 
model for the turbulent stress should satisfy the same inequalities as the turbulent stress 
itself. Whether this requirement is fulfilled is investigated for several existing subgrid 
models. Moreover, it is shown that for eddy-viscosity models the realizability 
conditions lead to a lower bound for the generalized turbulent kinetic energy. 

2. Realizability conditions 

In the large-eddy simulation of turbulent flow, any flow variable f is decomposed 
into a large-scale contribution fand a small-scale contribution f’, i.e. f=f+f. The 
filtered part f is  defined as follows : 

where x and c are vectors in the infinite flow domain R. The filter function G depends 
on the parameter A ,  called the filter width, and satisfies the condition 

for every x in S. If this filter is applied to the Navier-Stokes equations for 
incompressible flow, the turbulent stress tensor 7i, appears in the filtered equations, 

7i, = qq- iii ii,, (3) 

where ui is the component of the velocity field in the xi-direction. 
The filtering approach is different from the statistical approach, in which the 

averaging - operator represents the ensemble average and T ~ ,  is equal to the Reynolds 
stress u& Since the averaging operator is a statistical mean, it is well-known that the 
tensor u; u; is positive semidefinite (Du Vachat 1977 ; Schumann 1977). If the tensor 7u 

is positive semidefinite (or ‘ positive’ for convenience) then the following inequalities 
hold (Ortega 1987, p. 36): 

7i i  2 0 for i ~ { 1 , 2 , 3 } ,  (4) 

1 ~ ~ ~ 1  < (7ii7,,)1’2 for i , j€ { 1 , 2,3), (5) 

det(~,,) 2 0. (6) 
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We refer to these three properties as ‘realizability conditions’. If the filtering approach 
is followed, in general 7ij + and, therefore, we will investigate the conditions under 
which 7i, is positive semidefinite. 

The turbulent stress tensor 7ij in large-eddy simulation is preferably ‘positive’ for a 
number of reasons. First, if 7$, is ‘positive’, the generalized turbulent kinetic energy 
formally introduced by German0 (1992), 

(7) 

is a positive quantity at each location of the flow domain for an arbitrary velocity field. 
This quantity is frequently used in the theory of subgrid modelling and is often required 
to be positive. As an example, we mention the available k-equation models, which 
would become ill-defined for negative values of k. Moreover, twice the turbulent 
kinetic energy is an upper bound for all components of the turbulent stress, i.e. 
1 ~ ~ ~ 1  G 2k for all i andj, which follows from the estimates given in equation (5).  Other 
analogies between the classical approach with the ensemble average and the filtering 
approach exist, if 7i is ‘positive’. For example, as in the classical approach, the 
fractions 7t,/(7ig 7,,)lli in the filtering approach can be considered as correlation 
coefficients. The existence of such analogies could be a reason why turbulence models 
developed for the ensemble averaged equations can often be applied in large-eddy 
simulation. An example is Smagorinsky’s (1963) model, which is quite similar to the 
classical mixing-length model of Prandtl. 

In the following it will be proved that 7c, is positive semidefinite if and only if the 
filter kernel G(x,C) is positive for all x and C. As a first step, suppose G 2 0. In order 
to prove that 7y is ‘positive ’ for all x in the flow domain 52, a subset 52, is defined, being 
the support of the function (+ G(x, 4. Moreover F, is the space of real functions on 
the domain 52,. Since G 2 0, for f, gE F, the expression 

k = h+ 7 2 2  + 7 3 3 h  

= 1 G(x,C)AOg(C)dC 
QX 

defines an inner product on F, (Rudin 1973, p. 292). Next, we show that the turbulent 
stress can be written as an inner product. Using the definition of the filter operator, 
equation (1) and property (2), yields 

7&) = q ( x )  - iii(X) q x )  

= u , ( x )  - Ui(X) q x )  - q x )  q x )  + q ( x )  q x )  

= s, 
- ~ , ( x )  J ~ ( x ,  6 ~ L T )  a + ~ x )  uj(x) J ~ ( x ,  Q d< 

Q, QX 

G(x, C)(Ui(C) - %(X))(U,(C> - q x ) )  d5 = (G, q,, (8) 
= s, 

with u;(T) = u,(T)-iii(x) defined on 52,. In this way the tensor 7ij forms a 3 x 3 
Grammian matrix of inner products. Since such a matrix is always positive semidefinite 
(Ortega 1987, p. 74), 7u is positive semidefinite and satisfies the realizability conditions. 
Note that I$(<) is not identical to the standard velocity fluctuationz&) = ut(& - ir,(t), 
since also depends on x.  Consequently, (8) is not equal to u;u;. Moreover, the 
relation Zi = iii, which is not true in general, is not used in the derivation. 
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Filter Filter function G(x, c) Fourier transform d(k) 

l / A 3  if Ixi-&I < +A,  sin($lk,) n- 
0 otherwise. +Ak, 

Top-hat 

Gaussian e x p ( q )  

TABLE 1. Filter functions in physical and spectral space. G(k) is the Fourier transform of G(x,5) 
with respect to the vector x-5. 

We proceed to show that G 2 0 is not only a sufficient, but also a necessary condition 
for 7i, to be positive semidefinite. Suppose the condition G 2 0 is not fulfilled for a 
piecewise-continuous filter function G.  Then vectors x and r^ in 51 and a 
neighbourhood of l, V = {CESZ~ lc-tl < S} exist, such that G(x, c) < 0 for all C E  V. 
For a function u1 on SZ with ul(@ =l 0 if CE V and ul(C) = 0 elsewhere, 7Jx) appears 
to be negative : 

Consequently, the tensor 7tj is not positive semidefinite, which completes the proof that 
T ~ ,  is positive semidefinite if and only if the filter function G is positive. 

3. Filters 

In the previous section we have shown that the turbulent stress tensor is positive 
semidefinite if and only if the condition G 2 0 is fulfilled. If this is the case, we call the 
corresponding filter a positivefilter. In this section we consider some of the positive and 
non-positive filters which frequently appear in the literature on large-eddy simulation. 
Also, turbulent kinetic energies obtained with positive and non-positive filters are 
compared for a fully developed turbulent flow field. 

Typical filters commonly used in large-eddy simulation, the top-hat, Gaussian and 
spectral cut-off filter, are listed in table 1. The top-hat and Gaussian filters are positive, 
whereas the spectral cut-off is not. Hence 7ij is 'positive' if the first two filters are 
applied, but not if the spectral cut-off is applied to the velocity field. For compressible 
flows the Favre filter is used, iii = pq/p ,  where p is the density (Erlebacher et al. 1992). 
This filter inherits positivity from the underlying 'bar' filter, but does in general not 
commute with partial derivatives, unlike the filters listed in table 1. 

Next the specific behaviour of the turbulent stress based on the spectral cut-off filter 
is illustrated. First, as an example the sinusoidal velocity profile u, = sin (ak,x,) with 
4 < a < 1 is considered and the cut-off filter is applied with cut-off wavenumber k,. 
Since u1 is a single Fourier mode, the filter operation is easily performed in Fourier 
space. This implies 

T,, = t - + cos (2akc xl) - (+ -a cos (2akc xl)) = 4 cos (2ak, xl), 

which is not positive for all x,. Consequently, for spectrally filtered fields 7f3 does not 
satisfy the realizability conditions. 

As a further illustration the generalized turbulent kinetic energy is calculated by 
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FIGURE 1 .  Contours of the generalized turbulent kinetic energy in the centreplane of the mixing layer 
at t = 80 for (a) the top-hat filter, (6) the Gaussian filter and (c) the spectral cut-off filter. Solid and 
dotted contours indicate positive and negative values respectively. The contour increment is 0.04. 

filtering a turbulent velocity field. For this purpose we use the database of a direct 
numerical simulation (in which no turbulence model is adopted) of the temporal 
mixing layer in three dimensions with a convective Mach number of 0.2 (Vreman, 
Geurts & Kuerten 1993). At this Mach number the flow can be regarded as 
incompressible (Sandham & Reynolds 1991). The simulation was performed on a 
uniform cubic grid with grid spacing h and 1283 grid points, and an additional 
simulation on a 1923 grid confirmed the accuracy of the database. The length in the 
streamwise direction was chosen equal to four times the wavelength of the most 
unstable mode given by linear stability theory. The scenario of the simulation showed 
the roll-up of the spanwise vorticity, resulting in four spanwise rollers at the non- 
dimensional time t = 20. Subsequently, pairing of these rollers was observed, reducing 
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FIGURE 2. The generalized turbulent kinetic energy integrated over the homogeneous directions as a 
function of the normal coordinate (XJ for the mixing layer at t = 80. Top-hat filter (solid), Gaussian 
filter (dotted) and spectral cut-off filter (dashed). 

the number of rollers to two at t = 40. The final pairing was accomplished at t = 80, 
at which time the complicated structure of the flow was highly three-dimensional. In 
the following the flow field at t = 80 is used for the calculation of the generalized 
turbulent kinetic energy k, defined in equation (7). We compare k obtained with the 
top-hat and Gaussian filter, as examples of positive filters, to k obtained with the 
spectral cut-off filter. The filter width A ,  which is the same in the three filter functions, 
is chosen equal to 4h, which implies that if a large-eddy simulation of this flow is 
performed with grid spacing A ,  the grid contains 323 cells. In figure 1 contours of k are 
shown in the centreplane of the shear layer for the three filters. Also, k inregrated over 
the two homogeneous directions of the flow ((k)) is plotted as a function of the normal 
coordinate in figure 2. These figures show that the generalized turbulent kinetic energy 
k is positive everywhere if the top-hat or Gaussian filter is used. However, if the spectral 
cut-off is employed, k and even (k) are negative in some parts of the flow. 

As a conclusion, unlike the top-hat and Gaussian filters, the spectral cut-off filter 
gives rise to a turbulent stress tensor which does not satisfy the realizability conditions. 
This does not imply that 7ij becomes ill-defined for the spectral cut-off filter. However, 
certain properties of 7dj which are true for positive filters do not hold for the spectral 
cut-off. In particular, the generalized turbulent kinetic energy, k, obtained with 
spectrally filtered velocity fields, can locally be negative. Similarly, the generalized 
turbulent dissipation rate (German0 1992, equation (25)), 

can locally be negative if a spectral filter is used, while it is positive for positive filters. 
Some consequences of these properties will be discussed in the next section. Finally, the 
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fact that ri, based on spectrally filtered fields is not ‘positive’ might explain the large 
amount of backscatter for this filter when compared to positive filters (Piomelli et al. 
1990). 

4. Subgrid models 

The large-eddy-simulation approach is to close the filtered equations by replacing 
the exact turbulent stress 7y with a subgrid model, represented by the tensor mi,. A 
model which shares some basic properties with the turbulent stress is appealing from 
a theoretical point of view. For example, since 7i, is a symmetric tensor, the model mi, 
is preferably symmetric as well, which is true for all existing subgrid models. Secondly, 
the filtered Navier-Stokes equations are Galilean invariant. As Speziale (1985) has 
argued, they should retain this property if 7i, is replaced by the model mu. The 
observation that T,, is ‘positive’ for positive filters is another basic property of the 
turbulent stress. Therefore, it is reasonable to require the model mi, to be ‘positive’ as 
well, if a positive filter is adopted. Such a requirement is based not only on theoretical 
but also on practical grounds. For example, it provides a useful lower bound for the 
generalized turbulent kinetic energy when an eddy-viscosity model is adopted, as will 
be shown below. In the following a number of subgrid models are considered and the 
question of whether they are ‘positive’ for positive filters is addressed. 

First consider Bardina’s scale-similarity model (Bardina, Ferziger & Reynolds 
1984) : 

mi, = ii, ii, - Ui ii,. 

This tensor is obtained if the definition of the turbulent stress 7i, (equation (3)) is 
applied to the filtered velocity field ui. The tensor mi, is also called the resolved 
turbulent stress (German0 1992) and is clearly ‘positive’ for positive filters. Another 
‘positive’ tensor is the model by Clark, Ferziger & Reynolds (1979): 

- - -  

mij = &A2(Viii-Vir,), 

which was obtained using Taylor expansions. This tensor is positive semidefinite since 
it can be interpreted as a Grammian matrix with respect to the Euclidian inner product 
in UP. Notice that m,, is ‘positive’, even if the filter is not positive, and, consequently 
the use of this model in conjunction with e.g. the spectral cut-off filter is not consistent. 

The two subgrid models discussed above are not of the eddy-viscosity type. Next we 
turn to the group of eddy-viscosity models (e.g. Rogallo & Moin 1984). The 
anisotropic part of the turbulent stress, 

is modelled with 

The symbol u, represents the eddy viscosity and 

is the strain rate. If the flow is incompressible, the divergence term vanishes, while for 
compressible flows the bar filter represents the Favre filter. The sum of the anisotropic 
and isotropic parts is formally written as 

mi, = - v, S,, +$kk6,. (9) 
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An interesting result is obtained if mij is required to satisfy the realizability conditions. 
This requirement implies : 

mt2 + mi, + 4, < m,, mZ2 + m,, m39 + mz2 m,,. 

v,"(%, + g3 + g,) < v~(Sl1 S,, + S, S,, + S,, S;J + $k2. 

Equation (9) is substituted in this expression, which yields 

(10) 

Here the property that the tensor S ,  is trace-less has been employed. Thls property is 
also used to rewrite the terms between parentheses in the right-hand side of (10) as 
follows : 

Sl, szz + SI, s,, + s 2 2  s,, = %%I + s22 + s:3,)2 -a<s;, + S L  + S;J 

= -;<s;, + S i Z  + St,). 

Substituting this expression in (10) finally yields 

k 3 .\/3(v, S1/,) with S = +z S& 
i,l 

The inequality gives a lower bound for the generalized turbulent kinetic energy k when 
an eddy-viscosity model is adopted in conjunction with a positive filter. 

The lower bound for k provides information on the isotropic part of the turbulent 
stress in the eddy-viscosity formulation. In a large-eddy simulation of incompressible 
flow the isotropic part is usually added to the filtered pressure, resulting in a modified 
pressure (Rogallo & Moin 1984). In that case, the large-eddy simulation solves the 
modified pressure, while the (filtered) pressure itself remains unknown, which is 
undesirable in applications in which the pressure is an important quantity. The 
approach involving a modified pressure especially causes problems in the large-eddy 
simulation of compressible flows, since in the evolution equations for compressible 
flows the pressure not only appears in the momentum equations but also in the energy 
evolution equation and in the equation of state. For these reasons subgrid models have 
been proposed that explicitly prescribe k in order to model the isotropic part of the 
turbulent stress. For such models inequality ( I  1 )  is particularly interesting since it 
implies inequalities for the model coefficients, as shown in the following part of this 
section. 

In fact inequality (1 1) can be used to suggest a subgrid model for k corresponding 
to a specific eddy-viscosity model. We will demonstrate this for the Smagorinsky 
model, which leads to the Yoshizawa model for k. A similar procedure could be 
followed for e.g. the structure-function eddy-viscosity model (Normand & Lesieur 
1992). In a formulation equivalent to that given by Leith (1990) the Smagorinsky eddy 
viscosity (Smagorinsky 1963) is defined as 

v, = C i  A 2  S1/', 

where C, is the Smagorinsky constant. Inequality (1 1) now reduces to 

k >, ;1/3C; A'S, 

which suggests the following subgrid model for k: 

k = C, A2S, 

where the constant C, has to satisfy 

c, 3 ; 43c ; .  
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FIGURE 3. Contours of id3 Y, S'/* in the centreplane of the mixing layer at t = 80, usiag the 
Smagorinsky eddy viscosity with C, = 0.16 and the top-hat filter. Solid and dotted contours indicate 
positive and negative values respectively. The contour increment is 0.015. 

This inequality expresses a necessary condition for realizability, if a positive filter is 
used. The model for the generalized turbulent kinetic energy k in (12) is similar to the 
estimates for k given by Lilly (1967), DeardorE (1970), and it is known as the 
Yoshizawa model (Yoshizawa 1986). Yoshizawa proposes C,( = C,,,) = 0.16 and 
C,( = C ~ , , / C ~ , , )  = 0.0886, where C,,, and C,,, are notations which Yoshizawa uses 
in his presentation of the model. These values clearly satisfy inequality (13). 

The right-hand side of inequality (1 1) has been evaluated for the Smagorinsky eddy 
viscosity using the numerical database described in the previous section. Results for the 
centreplane are shown in figure 3 for the top-hat filter. The agreement with figure 1 (a)  
is reasonable and quantitatively corresponds to a correlation of 0.62. Thus Yoshizawa's 
model gives a reasonably good prediction of k on the tensor level, which is in agreement 
with the findings of Erlebacher et al. (1987, table 10). The results of averaging the right- 
hand side of (1 1) in the homogeneous directions are shown in figure 4, which may be 
compared with figure 2. For the positive filters (top-hat and Gaussian) we observe 
that inequality (1 1) is satisfied and that some global features of (k) are present in the 
lower bound as well. The lower bound is about half the value of k. For the non-positive 
spectral cut-off, inequality (1 1) is clearly not satisfied. Since the Yoshizawa model 
leads to positive values for k, it is suggested that the Yoshizawa model should not be 
used in conjunction with the spectral cut-off filter, for which the exact k attains negative 
values. It should be noticed that, on the vector level, i.e. when Vk is considered, the 
correlation of the Yoshizawa model is poor (Erlebacher et al. 1987; Speziale et al. 
1988). 

The SEZH-model (Erlebacher et al. 1992; Zang, Dahlburg & Dahlburg 1992) is the 
sum of the similarity model and Yoshizawa's model. It was developed using the 
Gaussian filter, which is positive. The references suggest C,( = (CR/42) '9  = 0.092 and 
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FIGURE 4. id3 v, S’’’ integrated over the homogeneous directions as a function of the normal 
coordinate (x,) for the mixing layer at t = 80, using the Smagorinsky eddy viscosity with C, = 0.16. 
Top-hat filter (solid), Gaussian filter (dotted) and spectral cut-off filter (dashed). 

C,(= C,/2) = 0.0033 or even C, = 0. These values do not satisfy (13) and, 
consequently, the Yoshizawa part of this model is not realizable. However, this does 
not imply non-realizability of the complete SEZH-model, since the sum of the 
similarity model and Yoshizawa’s model can theoretically still be positive semidefinite. 
For this reason it is consistent to reformulate the SEZH-model in the following way: 
rather than modelling the ‘positive ’ tensor ui ,ui, the Yoshizawa model approximates 
T~~ - (iii iij - izi iij), which in general is not ‘ positive ’. 

An alternative for modelling k is to solve this quantity using an additional partial 
differential equation for k (Schumann 1975; Horiuti 1985; Moin & Jimenez 1993). In 
this formulation the eddy viscosity is proportional to k”’, while in the k-equation terms 
proportional to k’/’ and k3/’ occur. This model requires positive values for k and the 
formulation is such that k remains positive during the simulation, i.e. the model is 
‘realizable’. As for the models by Clark et al. and Yoshizawa, it is consistent to use the 
k-equation models in conjunction with positive filters only, since the exact k is 
guaranteed to be positive in this case. To employ these models with e.g. the spectral 
cut-off filter is less attractive, since in that case the original turbulent kinetic energy 
attains values of both signs, while the model requires positive values only. 

- 
- - -  

5. Conclusions 

In this paper the turbulent stress in large-eddy simulations has been shown to satisfy 
the same realizability conditions as the well-known Reynolds stress in the statistical 
approach. Positiveness of the filter function is a necessary and sufficient requirement. 
In particular this implies that the generalized turbulent kinetic energy is positive in all 
regions of the flow. In view of these considerations, the top-hat and Gaussian filters are 
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fundamentally different from the spectral cut-off filter. The first two filters (and their 
corresponding Favre filters for compressible flows) are positive, whereas the spectral 
cut-off is non-positive and, consequently, in the latter case the realizability conditions 
are not applicable. Indeed, the generalized turbulent kinetic energy k based on 
spectrally filtered fields obtained from a numerical simulation appeared to be negative 
in many regions of the flow. For this reason subgrid models which predict a positive 
k, e.g. the model by Clark et al., the Yoshizawa model and k-equation models, should 
be used in conjunction with a positive filter. Bardina’s similarity model satisfies the 
realizability conditions for positive filters only and, consequently, this model can be 
used in combination with any filter. Imposing realizability for eddy-viscosity models 
has led to a lower bound for k. Substitution of the Smagorinsky eddy viscosity in this 
inequality leads to the Yoshizawa model for compressible flow with a corresponding 
inequality for the model constants. 

In conclusion, the fundamental properties of the turbulent stress presented here give 
an increased understanding of the filtering technique and subgrid modelling within the 
large-eddy simulation of turbulent flow. If more research is conducted in this direction, 
such properties may lead to new insights into the theory of subgrid modelling. 

The time for the computations was provided by the Stichting Nationale 
Computerfaciliteiten (National Computing Facilities Foundation, NCF), which is 
financially supported by the Nederlandse Organisatie van Wetenschappelij k Onderzoek 
(Netherlands Organization for Scientific Research, NWO). 
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