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REALIZABILITY OF BRANCHED COVERINGS OF SURFACES
BY

ALLAN L. EDMONDS, RAVI S. KULKARNI AND ROBERT E. STONG

Abstract. A branched covering M -> N of degree d between closed surfaces
determines a collection L'D of partitions of d—its "branch data"—corresponding to
the set of branch points. The collection of partitions must satisfy certain obvious
conditions implied by the Riemann-Hurwitz formula. This paper investigates the
extent to which any such finite collection 6D of partitions of d can be realized as the
branch data of a suitable branched covering. If N is not the 2-sphere, such data can
always be realized. If ''D contains sufficiently many elements compared to d, then it
can be realized. And whenever d is nonprime, examples are constructed of nonrealiz-
able data.

1. Introduction. Let M and TV denote closed, connected surfaces. A smooth map <£:
M -» TV is a degree d branched covering if for each x E TV there is a partition
A(x) = [ax,.. .,ar] of d such that, over a neighborhood of x in TV, <f> is equivalent to
the map/: {l,...,r} XC-C where/(/', z) = z"' and x corresponds to 0 in C. The
set of points xEN for which A(x) is not the trivial partition [1,...,1] of d
constitutes the branch set B^ of <j>. The collection ^D = {A(x): x E B^} (with
repetitions allowed) is called the branch data of 4>.

This paper is addressed to the following question.
Realizability Problem. Given a closed, connected surface TV and a collection

ÜD = {Ax,...,Ak} of partitions of a positive integer d, is there a branched covering
<j>: M — TV with ty as its branch data?

The history of the problem goes back to Hurwitz [8], who essentially showed how
to reduce the general question to a problem about realizing partitions by suitable
permutations in the symmetric group 2d. To describe this in the case TV is the
2-sphere S2, recall that each element a Eld may be written uniquely as a product
« = Yi • • • yr of disjoint cycles (including cycles of length 1 if necessary). Then a
determines the partition A = ||a|| = [|y, |,.. . ,|yr|] given by the lengths |y,| of these
cycles and one writes a E A. Two elements of 2d are conjugate if and only if they
have the same cycle lengths; thus the set of partitions of d, tr(d), is identified with
the set of conjugacy classes in 2¿. Now a collection ^ = {Ax,... ,Ak} of partitions
of d is the branch data for a connected branched covering of S2 if and only if there
exist a,,... ,ak E 2¿ such that a, G A¡, 1 < i < k', and a, • • • ak = 1 and the sub-
group (ax,...,ak) of 2d generated by {ctx,...,ak} acts transitively on {l,...,d}.
For more details see §2.

It turns out to be a very delicate problem, in general, to decide whether or not
there exist such elements in 2¿ for given 6D. There are some easy and well-known
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necessary conditions, which are here referred to as the Hurwitz conditions, and which
are essentially consequences of the Riemann-Hurwitz formula:

If <j>: M -> TV is a degree d branched covering of closed, connected surfaces with
branch data 6D = {Ax,... ,Ak), then the total branching v((j>) - v(fy) = 2f=1 v(A¡) is
even; where if A — [ax,...,ar] E tt(d), then v(A) = d — r — 2'=1(a, — 1). If TV is
orientable, then so is M; if d is odd and TV is nonorientable, then M is also
nonorientable. And finally, x(M) = dx(N) — v(<¡>), where x(M) ^ 2 if M is orien-
table and x(^) ** 1 if M is nonorientable. If M is orientable while TV is not, then <p
lifts to a branched covering <j>: M -> TV, where TV is the orientable double cover of TV;
it then follows that each A¡ — [B¡, C¡] where Ti, and C¡ are partitions of d/2 and
ûî> = {Bx,...,Bk,Cx,...,Ck} is the branch data for <j>.

When x(N) ^ 0 these conditions are actually also sufficient. The proof is rather
straightforward and is given in §3. This result is for the most part previously known.
The case when TV is orientable is given in Husemoller's thesis [7]. The case when TV is
nonorientable was proved by Ezell [5]. Ezell, however, did not distinguish the cases
when M can be chosen to be orientable.

Further results stated below require a more detailed study of certain products in
2d, which is given in §4.

Theorem. If TV is the projective plane and fy is a collection of partitions of d, then
there is a degree d branched covering <#>: M -» TV with M closed, connected, and
nonorientable, and with branch data fy if and only ifvxffl) is even and u(°D) > d — 1.

The proof is completed in §5. These results reduce the central problem to the
consideration of branched coverings of the 2-sphere S2. (The orientable branched
coverings of RF2 are actually branched coverings of S2, with some extra difficulty
related to choosing refinements A = [B, C] for partitions A.) The case TV = S2 is
very difficult: the necessary Hurwitz conditions are not sufficient, in general, and a
complete solution of the realization problem remains elusive.

Fix an integer d > 2 and let A(c7) denote the set of collections ^ = {Ax,...,Ak}
of putative branch data satisfying the Hurwitz conditions that v(ty) = 2u(/4,.) is
even and «(<$) > 2(d - 1).

Theorem. If d is not prime, then there exists ty E A(d) which is not the branch data
for a connected branched covering of S2.

Theorem. If d ¥= 4, then there are at most finitely many elements of A(d) which are
not realizable as the branch data for a connected branched covering of S2. In particular,
ifv^) ^ n(d) = 3(d - 1) then <$> is realizable.

These results are also proved in §5. The elements of A(4) are realizable with the
exception of the sequence of data of the form {[3,1], [2,2],... ,[2,2]}. If d = 2,3,5 or
7 every element of A(<i) is realizable. Similar assertions also hold for orientable
branched coverings of RF2.

These theorems suggest several questions.
(1) To what extent can the bound n(d) — 3(d — 1) above be improved? In

particular, if d is prime, is every element of A(d) realizable by a connected branched
covering of 52?
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REALIZABILITY OF BRANCHED COVERINGS 775

(2) Can one find further reasonably simple conditions which guarantee the
realizability of given branch data?

(3) Can one find reasonably stated additional conditions which must be satisfied
by the branch data of branched coverings of S2?

As for question (1), the results of §5 reduce the problem when d is prime to the
consideration of the 3 branch point case. But to date no conclusive results have been
obtained.

As an example of an answer to question (2) we have obtained a complete
determination of the realizability of branch data of the form fy = {[ax,...,ar],
[bx.bs],[m, 1,..., 1 ]}. ÜD is realizable if and only if u(6D) is even, v(fy) s* 2(d - I),
and, if v(Gù) = 2(d- 1), then m^d/GCD(ax ,bs). An equivalent
statement has been discovered independently and published by Boceara [2]. No
further details will be given here.

As an example of an additional condition, the following result is derived in §6.

Theorem. Let ty
2, and Ai = [a,-,,..

: [Ax,... ,Ar} be a collection of partitions of d with v^) = 2d —
,ajr],  1 < / < k. If ty is realizable as the branch data of a

connected branched covering of S , then

1 2
i=X m=\

¿~2 gcd(a,-m,a,-„) d- min 2 gcd(a,m,a,„)

For d a prime this inequality is always satisfied, but for certain rather limited
families of data it does provide nontrivial restrictions. See §6.

In conclusion, it should be noted that there is a very close connection between the
problem addressed in this paper and the problem of determining the subgroups $ of
finite index d in a given Fuchsian group T. If T acts on the complex upper halfplane
77, then passing to quotient spaces yields a branched covering <I>\77 — T\H. If one
fixes T, then the subgroups $ of index d correspond to branch data satisfying certain
extra conditions. See Singerman [12] and also Edmonds, Ewing and Kulkami [3, 4].
The present authors plan to address in a sequel to this paper the realizability
problem from this point of view, emphasizing the fundamental case of three branch
points.1

Acknowledgements. All three authors received financial support from the
National Science Foundation. The second author acknowledges the support of the
Guggenheim Foundation and the hospitality of the University of Colorado where
part of this work was done. The third author is indebted to Leonard Scott for many
conversations about this material.

2. The Hurwitz conditions. Let <f>: M -» TV be a degree d branched covering of
closed, connected surfaces. Clearly the branch points in TV are isolated, and hence B^
is a finite set. The branched covering <¡> is completely determined by the restriction

1 An exposition of this work and other related material appears in Surface-Symmetries, Holomorphic
Maps and Tessellations by Ravi S. Kulkami, Differential Geometry Proceedings, Special Year, Maryland
1981-82 (ed. Brooks, Gray, Reinhart), Progress in Math., vol. 32. Birkhäuser, 1983, pp. 162-176.
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<í>0: M — <t>lB^ -» TV — Bq, an ordinary, connected <7-fold covering space. For given a
connected (7-fold covering space \p: P -» TV — F where F C TV is a finite set, covering
space theory applied to small circles about the elements of F shows that \p extends to
a branched covering M — TV where M is just the end compactification of P, and is a
closed, connected surface.

Ifi/>: F->TV — F is a <7-fold covering space, one may fix a base point x0 E TV — F
and identify i//"'(.x0) with {1,... ,J}. Lifting loops in TV — F based at x0 then yields
a homomorphism 77,(TV — F, x0) -» 2¿. For a loop which runs along a path from x0
to a small circle C about x G F, around the circle, and back to x0 by the same path
one obtains a permutation a whose conjugacy class A is the partition associated to x
in the corresponding branched covering. The partition A = [a„... ,ar] where i//~'(C)
consists of r circles mapped by degrees ax,... ,ar.

Since one knows the fundamental groups of surfaces (see [9], for example), one
may then write down the algebraic conditions for the existence of a connected ¿-fold
covering.

Lemma 2.1. Let TV be a closed, connected surface and "D= {Ax,.. .,Ak} be a
collection of partitions of d (repetitions allowed). Then a necessary and sufficient
condition that there exist a d-fold branched covering tf>: M -» TV with M closed and
connected and with branch data 6D is as follows:

(a) For TV = S2, there exist elements a, E 2¿, a, G A,,- such that a, ■ ■ ■ ak= 1 and
(ax,... ,ak) acts transitively on {I,.. .,d}.

(b) For TV = F„, a connected sum of « > 1 copies of Sx X Sx, there exist elements
a, E 2¿, a, E A¡, and ßj, y E 2rf, 1 «Sy < «, s«c« ?«ar

a,---a^,yAV---/U,ArV = l

a«i/ (ax,.. .,ak, ßx,yx,.. .,ßn,yn) acts transitively on {l,...,d}.
(c) For TV = [/„, a connected sum of n > 1 projective planes RF2, f«e/-e em/

elements a, G 2¿, a, G 4p a«(7 /}. G 2d, 1 <J < «, ímc« í«aí a, • • • akß2 ■ ■ ■ ß2 = 1
and (ax,.. .,ak, ßx,...,ßn) acts transitively on {I,... ,d}.    D

When TV = U„, trx(N — 7?^) is generated by elements xx_,xk, yx,... ,y„ with the
relation xx ■ ■ ■ xk. y2 ■■ ■ y2 = 1, while trx(N) is generated by yx,...,y„ where y2
■ ■ ■ y2 = 1. The orientable double cover TV -> TV corresponds to the subgroup of
7T,(TV) which is the kernel of the homomorphism w: ttx(N) -* { + 1,-1} where
w(y,) = — 1 for 1 <y ^ «. Similarly the orientable double cover of TV — B^ corre-
sponds to the kernel of w: ttx(N — B^) — { + 1,-1} where w(x¡) = +1, Ki< k,
and w(yj)= — 1, 1 <y" < «. On the other hand, if p: ttx(N — 7?^) -» 2d is the
homomorphism with p(x,) = a, and p(v^) = /S, which determines the branched
covering <¡>: M -> TV then the covering M — <¡>~xB<j> ^ N — B^ corresponds to the
subgroup p"'(2¿_,) C 7T,(TV — Ti^,). Thus one has the following characterization of
orientability.

Lemma 2.2. If <¡>: M -» TV ¿s a connected, degree d branched covering of TV = £/„,
?«e« M /i orientable if and only if p'x(^d^x) E ker(w).    D
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Proposition 2.3. Let <p: M -» TV be a degree d branched covering of closed,
connected surfaces. If TV is orientable, then so is M; if d is odd and TV nonorientable,
then so is M.

Proof. The orientability or nonorientability of a surface is not changed by
deleting a finite set of points. If TV is orientable, then so is TV — B^. An orientation of
TV — Bç can be pulled back to an orientation of M — fy^B^. Therefore M is
orientable.

Now suppose d is odd and TV is nonorientable. Then there is an orientation-revers-
ing simple closed curve C C TV — B^. Some component C, of <¡>~X(C) maps by odd
degree to C, and hence is also orientation-reversing in M.    D

Proposition 2.4. If <p: M -» TV is any degree d branched covering of closed,
connected surfaces, then the total branching v(<p) satisfies v(<f>) = dx(N) — x(M).

Proof. Triangulate TV so that each point of B^ is a vertex. The homotopy lifting
property shows that the edges in TV can be lifted to M to induce a triangulation of M
with respect to which <f> is simplicial. Over each simplex of TV not in B^ there are
exactly d simplices in M. If x E B^ then |<¿r'(.x)|= r where A(x) — [ax,...,ar].
Using the formula x = V — E + F one then computes directly that x(^0 = d\(N)
— 2f=,(¿/— r¡), where B^ = {xx,...,xk} and A(x,) = [au,.. .,air], K i < k. This
yields the required formula.    D

Corollary 2.5. Let <p: M -» TV be any degree d branched covering of closed,
connected surfaces. Then

-   Ç-2

»(*)

2<7-2     ifN = S¿,
d — 2       if N — RP2 and M is orientable,
d — I       if N — RP2 and M is nonorientable.

Proof. If M is orientable, then x(M) < 2 = x(S2); if M is nonorientable, then
X(M) « 1 = x(RF2). Now apply Proposition 2.4.    D

Proposition 2.6. If <p: M -> TV is any degree d branched covering of closed,
connected surfaces, then the total branching v(<¡>) is even.

Proof. Let <f> have branch data fy — {Ax,... ,Ak} where A¡ = [aiX,.. .,air], 1 *£ i
< k. By definition u(<p) = 1k=x(d — r¡). Note that v(At\ s= d — ri can be interpreted
as the minimum number of transpositions required to write any a, G A,, as a product
of transpositions. Thus u(<i>) is even if and only if the product a, • • • ak belongs to
the alternating group for some (or any) choice of a, G A¡. But by Lemma 2.1,
ax,...,ak can be chosen so that a, • • • ak is trivial, a product of commutators, or a
product of squares, all of which lie in the alternating group.    D

Alternate proof of Proposition 2.6. Consider Z2 homology and cohomology.
For any closed surface TV, w2(N) = wx(N)2 and x(^) — (wx(N)2,[N]) mod2,
where [TV] is the fundamental class and w^TV) G H*(N; Z2) «
Hom(7F+(TV : Z2); Z2) is the Stiefel-Whitney class. Also the proof of Proposition 2.3
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shows that <j>*wx(N) = wx(M). Then modulo 2

x(M)=(wx(M)2,[M])

= {{<p*wx(N))2,[M])= (<p*{wx(N)2),[M}}

= {wx(N)2,<p*[M])= (wx(N)2,d[N])

= d(wx(N)2,[N])=dX(N).

Thusv(<p) = dX(N)-x(M) = 0mod2.    □
Technical note. The condition that v(<¡>) = 2,v(A¡) = 0mod2 is the analogue in

dimension 2 of the unusual relation that U {RP(PU): d¡j is even} -» TV X RF00
bounds for higher-dimensional branched coverings [13, §3]. Here vt, represents the
normal bundle of a component of <p~x(B^).

The final result of this section is the statement of a further condition satisfied by
an orientable branched covering of a nonorientable surface.

Proposition 2.7. Let d be an even integer, ^ = {Ax,...,Ak} a collection of
partitions of d, and TV be a closed, connected, nonorientable surface. Then a necessary
and sufficient condition that there exist a degree d branched covering <#>: M -» TV with
branch data fy and M orientable is that for each i, 1 < i < k, one can express Aj as a
concatenation [ B¡, C, ] of two partitions of d/2 such that {B,,..., Bk, Cx,..., Ck } is the
branch data of a degree d/2 branched covering of the orientable double covering of TV.

Proof. Suppose <f>: M — TV is a degree d branched covering with M orientable and
with branch data 6D. Since <j>*wx(N) = wx(M) = 0 there is a lift <>: M -» TV of <t>
through the orientable double covering tt: Ñ -> N. For x E B^, tt~x(x) consists of
two points x' and x", and A(x) = [A(x'), A(x")\ where A(x') and A(x") are the
partitions of d/2 determined by $.

Conversely suppose 6D= {Ax,.. .,A,} and A¡ — [TJ,, C,], 1 < i < k, is a refinement
of A¡ into two partitions of d/2. Suppose 8: M -» TV is a degree d/2 branched
covering with branch set {x\,.. .,x'k, x\',...,xk} and corresponding branch data
{Bx,...,Bk,Cx,...,Ck}. By composing 8 with an isotopy of TV if necessary, one may
assume that w(x,') = ir(x"). Then w • 8 is a branched covering with branch data 6D.
□

Note. While pairs of elements in the branch data of <?: M -» TV may be combined
arbitrarily to give the branch data of a branched covering M -» TV, it is false that
every refinement of the branch data of a <$>: M -> TV is the branch data for a
branched covering M -» TV. See §5.

It should be noted that just TV, the total branching t>, and the orientability of M
always determine at least one branched covering.

Proposition 2.8. Let M and TV be closed, connected surfaces and d > 2. Suppose
that

(a) M is orientable if N is orientable,
(b) // d is odd or d = 2 and TV is nonorientable, then M is nonorientable.

Then there is some degree d branched covering <j>: M — N if and only if \( M) < d\(N)
and v = d\(N) — x(-M) w even.
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Proof. By the preceding results of this section the given conditions are necessary.
For sufficiency choose "D = {Ax,...,Ak} with v(At) = 1 (so k — v) i.e. A¡ —
[2,1,...,1], 1 < /' < k. To see that this data can always be realized, one applies
Lemma 2.1 as follows.

First suppose TV = S2. Then k = v 5* 2d — 2. Realize <î> by the transpositions

(1,2),(1,2),(1,3),(1,3),...,(1,Í7),(1,¿),(1,2),(1,2),...,(1,2),(1.2).
Next suppose N = Tn, n > 1. Let a, = • ■ ■ = ak = (1,2), ßx = (1,2,... ,d), and

Y, =ßi = Y2= ••• =Y„= 1.
If TV is nonorientable and M is orientable one can trivially refine [2,1,..., 1] to

[[2,1,..., 1],[1,..., 1]] and apply the orientable case to get a degree d/2 branched
covering of the orientable double cover TV. Proposition 2.7 then yields the required
branched covering of TV.

Finally suppose M and TV are nonorientable. If TV = RF2 then k — v > d — 1. If
d = 2just set a, = ■ ■ ■ = ak = (1,2) and ßx = 1. If d > 3 and is odd, set a, = (1,2),
a2 = (1, 3),. . . ,ad_x = (1, d) and a, = (1, 2) for i > d, and set ßx =
(l,2,...,d)(d~X)/2. If N = Un, «5*2, then set «, = ••• = ak = (1,2), 0, =
(1,2,.. .,¿7), ß2 = (d, d — 1,..., 1), and /?• = 1 for y 3* 3. One can use Lemma 2.2 to
verify that the corresponding branched covering is nonorientable. (See the proof of
Proposition 3.3.)    D

Remark. The branched coverings constructed above are called simple branched
coverings. Every branched covering of surfaces can be approximated by a simple
one, and under relatively mild conditions any two simple branched coverings
between the same surfaces are equivalent to one another, i.e., equal after allowing
pre- and post- composition with homeomorphisms [1].

3. Elementary realizability results. In this section it is proved that the realizability
problem always has an affirmative solution when the target has nonpositive Euler
characteristic.

Lemma 3.1. If a E 2¿ with v(a) = d — r, then for any t > 0 with r + 2r < d one
may express a as the product of a d-cycle and an (r + 2t)-cycle.

Proof. One may take

«.= (l,...,fl|)(fli + l,-.-.a2) ■•• (ar~x + 1,-■■»*,)

where   1 < ax < a2 < ■ ■ ■ < ar = d.   Let   ß = (I, ax + I, a2 + I,. .. ,ar_x +
1, bx,...,b2l) where bx < b2< • • • < b2t are not in the set {l,ax + l,...,ar_x + 1}.

Then y = aß is a ¿/-cycle: Let/30 = (1, ax + l,...,ar_x + 1) and/J, = (1, bx,...,b2l),
so ß = ß0ßx; then

aß = aß0ßl = (1,2,.. .,d)(l, bx,...,b2l)

— (l,...,bx - 1, b2,...,b3 - 1, b4,...,b2t_x - 1,
b2l,...,d,bx,...,b2- 1, b3,...,b2,_2 - I, b2l_x,...,b2l - 1).

Thus a = y/?"1 has the required form.    D
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Corollary 3.2. Every element in the alternating group on d symbols can be
expressed as

(i) a product of two d-cycles,
(ii) a commutator aßa~xß~x with a a d-cycle,

(iii) a product of two squares a2ß2 with aß a d-cycle.

Proof. If y lies in the alternating group v(y) = d — r is even. By Lemma 3.1,
y = OT where a and t are ¿-cycles. Now t is conjugate to a~x, so t = ßa'xß'x, so
y = aßa~xß~x. Finally a is conjugate to t so y = (ara~x)r = a2(a_lT)2 for some a
and a(a~V) = t is a ¿-cycle.    D

Proposition 3.3. Let TV be a closed, connected surface with Euler characteristic
X(TV) =s 0, and iet ÖÖ = {Ax,...,Ak} be a collection of partitions of d with v(ty) even.
Then there is a degree d branched covering <f>: M -» TV w¿« branch data ty such that M
is connected and M is orientable if and only if TV is.

Proof. Arbitrarily choose a, G A¡, 1 < i < k. Then a, • • • ak lies in the alternating
group since v^) is even.

First consider the case when TV = Tn, an orientable surface of genus n 5* 1. By
Lemma 2.1(b), it suffices to find /?,, y,,... ,ßn, y„ G 2d such that a, • • • aJ/3,, y,]
•••[/VyJ=1 and (a,,.. .,«*, /J,, y,,.. .,/*„, y„> acts transitively. Simply apply
Corollary 3.2 to write (ax ■ ■ ■ ak)~x = ßxyxßxlyx~x where ßx is a ¿-cycle and set
ß, = y, = 1 for / > 1. By Proposition 2.3 the total space M of the corresponding
branched covering is automatically orientable.

Second, consider the case when N = Un, a connected sum of « > 2 projective
planes. By Lemma 2.1(c), one must find elements ßx,...,ßn E 2¿ such that a,
• • • akß2 ■ ■ • ß2 = 1 and (a,,... ,ak, /?,,. ..,ß„) acts transitively. Apply Corollary
3.2 to write (a, • • • ak)'x = ß2ß2 where ßxß2 is a ¿-cycle, and set /J. = 1 for y > 3. It
remains to verify that in this case the total space M of the corresponding branched
covering is nonorientable. The orientation homomorphism w: Trx(Un — B^, x0) -» Z2
is given by w(a¡) = +1 and w(bj) — —I where a¡, bj denote the generators de-
scribed in §2 corresponding to a,, ßj above. Then w(bxb2) — +1 and ßxß2 is a
¿-cycle. Therefore there is an r such that ßx(ßxß2)r fixes 1, i.e. lies in 2rf_,, while
w(ßx(ßxß2)r) = — 1. By Lemma 2.2, M is nonorientable.    D

Proposition 3.4. Let TV be a closed, connected, nonorientable surface with x(TV) «£ 0,
and let fy — {Ax,...,Ak} be a collection of partitions of an even integer d with t>(öD)
even. Then there is a degree d branched covering <f>: M -> TV with branch data "D such
that M is connected and orientable if and only if each A¡ refines [d/2, d/2].

Proof. The necessity of the final condition is given by Proposition 2.7. To prove
the sufficiency choose a refinement A¡ = [B¡, C¡], 1 < / < k, where B¡ and C, are
partitions of ¿/2. Let S = {TJ,,... ,7J^, C,,... ,Ck}. Then v(&) = v(<>î)) is even, and
X(TV) = 2\(N) < 0, where TV is the orientable double cover of TV. By Proposition
3.3, there is a degree ¿/2 branched covering ip: M -* TV with branch data S and M
connected and orientable. Then by Proposition 2.7 the desired branched covering <i>:
M -» TV exists.    D
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4. Products in symmetric groups. In order to proceed further with a study of
realizability of branching data several technical results about products in symmetric
groups are required. Recall that 7r(¿) denotes the set of all partitions of ¿.

Lemma 4.1. Let A, B E ■n(d) with v(A) + v(B) = d - t, t 5* 1. Then for any
a EA, ß E B, v(aß) *£ ¿ - t.

Proof. Let a E A, ß E B be representatives and set y = aß. Suppose (a, ß) acts
on {1,2,...,d} with exactly q orbits. Since y G (a, ß ), y must have at least q oribts,
i.e. v(y) =£ ¿ — q. Let C denote the partition determined by y. Then v(A) + v(B) +
v(C)^2d- t - q.

Now a/Jy"1 = 1 so there is a branched covering <¡>: M -> S2 with branching data
6D = {A, B, C}, where M is a closed orientable surface with exactly q components.
The Hurwitz formula says ¿x(52) - [v(A) + v(B) + v(C)] = x(A/) < qx(S2) =
2q. Therefore 2¿ — 2q =£ v(A) + v(B) + v(C). This means q > t, and therefore
v(y) < ¿ — q <: d — t, as required.    D

Lemma 4.2. Let A, B E it(d) with v(A) + v(B) = d — t, t > 1. Then there exists
a E A and ß G B such that

(i) the group (a, ß) generated by a and ß acts with precisely t orbits; and
(ii) if C is the partition of (1,. ..,d] into the orbits of the action of (a, ß), then

aß E C.

Proof. First we observe that the second assertion follows from the first. By
Lemma 4.1, v(aß) < d — t. As in the proof of Lemma 4.1, 2¿ — 2t < v(a) + v(ß)
+ v(aß) < 2¿ — 2t. Therefore v(aß) — d — t. Since the partition associated with
aß must refine the partition C and v(aß) — v(C), it follows that aß E C.

The first assertion will be proved by induction on ¿.
If v(A) = 0, then a E A must be the identity, so that (a, ß)- (ß) has d - v(B)

orbits, as does ß G TJ. This same observation applies if u(7J) = 0. This implies the
assertion for d = 1 (v(A) = v(B) = 0) and for ¿ = 2 (v(A) + v(B) < 1).

Proceeding inductively, suppose v(A) — d — r > 0. One may then fix a standard
representative

a = (l,2,...,¿,)(¿, + 1,...,¿2)--- (¿r_, + l,...,dr)EA

where dr = d and ¿, > 1. Let TJ = [bx, b2,...,bs], so that v(B) = d — s and t = r +
s — d. Represent the unknown /J G TJ as a product ß = ßx ■ ■ • ßs of disjoint cycles,
when ßj represents the ¿by-cycle whose entries remain to be determined.

Observe that bx < r, since d - 1 > v(A) + v(B) > (¿ - r) + (bx - 1). Set /?, =
(1,¿, + 1,...,¿A_, + 1). The orbits of (a) acting on (1,...,¿} are the sets
P¡ = (¿,_, + 1,...,¿,}; and with this choice of ßx, F, U ■ • • UPh¡ will all lie inside
one orbit of (a, ß).

The d — bx points {l,...,d} — supp(/S,) not yet assigned to the cycles ß2,...,ßs
can be partitioned into r — bx + 1 sets Qx,... ,Qr_h¡ + x, where Qx = {I,.. .,dh} —
supp(/91),Ô2 = /A1 + „...,Ôr-A1 + i = Fr. Note that g, =* 0, since ¿, > 1.
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Now set A' = [| Qx \,... ,\ Qr_h¡ + X \] and TJ' = [b2,.. .,bs] in tt(d - bx), so v(A') =
(d - bx) - (r - bx + l) = d - r - I and u(TJ') = (d - bx) - (s - 1). Thus v(A')
+ v(B') - (d - bx) + d - r - s = (d - bx) - t. Let a' = a\ ■ ■ ■ a'r_bt + x G A'
where the entries of a', come from Q¡. By induction there exists ß' E TJ' with entries
in {1,...,¿} — supp(/J|) such that (a',ß') has t' orbits where t' = (d — bx) —
v(A') — v(B') = t. Then just set ß = ßxß' to complete the proof.    D

Remark. In the situation of Lemma 4.2 it is difficult to prescribe the particular
conjugacy type of aß. If one assumes v(A) < u(7J) and A = [ax,... ,ar], ax 3= • ■ ■ 5»
ar, and TJ = [bx,...,bs], bx> ■ ■ ■ > bs, then examination of the proof shows that
one can achieve ||aß\\ = püjl^'a,, bs_l+2,...,bs).

Lemma 4.3. Let A, B E -n(d) with v(A) + v(B) = (d - 1) + r, r > 0. Then for
each k satisfying 0 < k < r, k = rmod2, one may choose a E A, ß E B so that
(a, ß) acts transitively on {1,... ,¿} and so that v(aß) = (d — 1) — k.

Proof. Let TJ = [b,,...,bs] and k = r — 2j. Let i>0 be determined by the
requirement that v(A) + (bx - l)+ ■■■ +(b¡- 1) < d - 1 and v(A) + (bx - 1)
+ • ■ • +(bi+x — 1) > ¿ — 1. Therefore there is a positive integer/such that/ — 1 <
bi+x-l and v(A) + (bx - I) + ■ ■ ■+(b, - I) + (f - I) = d - I. Let TJ'=
[bx,... ,b¡, f,l,... ,1] be the induced partition of ¿, and TJ" = [bj+x — f +
l,b, + 2,...,bs).

We view TJ" as a partition of « symbols {ux,...,un}, one of which occurs in the
/-cycle of ß' and otherwise disjoint from the symbols which ß' involves.

By choice t>(TJ") = r and by Lemma 3.1, TJ" can be realized by a product of an
«-cycle and an (« — r + 2y')-cycle in the symbols («,,... ,un}. Equivalently there is
ß" E TJ" and an «-cycle y such that yß" G [(« — /- + 2y), 1,..., 1]. We may assume
that the ¿-cycle aß' has the form (ux,...,wx,u2,...,w2,...,un,...,wn) and that
y = («,,...,«„).

Set ß = ß'ß". The product aß = (aß')ß" can then be described as being obtained
from («,,...,u„)ß" E [(« — r + 2j), 1,..., 1] by replacing each Uj by the block
Uj,. ..,Wj occurring in aß'. In other words aß is the product of r — 2j + 1 disjoint
cycles, so that v(aß) = d — (r — 2y + 1) = (d — 1) — r + 2y, as required.    D

Corollary 4.4. Let A, B E -rr(d) with v(A) + v(B) > d - I and v(A) + v(B) =
d + 1 mod2. Then there exist a G A, ß E B such that (a, ß) acts transitively on
{1,... ,¿} a«¿ so that aß is a d-cycle.

Proof. If v(A) + v(B) = d - 1, this follows from Lemma 4.2. If v(A) + v(B) s*
d + 1, take k = 0 in Lemma 4.3.    D

Remark. Again, in general, it is very difficult to control the sizes of the blocks
Uj,..., occurring in aß', so that one has trouble controlling the lengths of the cycles
in aß. We shall need a precise result, however, when v(A) + v(B) = ¿mod 2.

Lemma 4.5. Let A, B E tt(d) with v(A) + v(B) = d + 2q, q 3= 0. Then there exist
a E A, ß E B such that (a, ß) acts transitively on {1,...,d} a«¿ aß G [¿/2, ¿/2] //
A = B = [2,... ,2] and aß E [d - 1, 1] otherwise.
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Proof. First suppose A = B = [2,.. .,2] with d = 2r. If a = (1,2)(3,4) ■ ■ ■ (2r-
1, r ) and ß = (2, 3)(4,5) • • • (2r - 2, 2r - l)(2r, 1), then

aß=(l,3,...,(2r- l))(2r, 2r - 2,... ,2) G [/•, /•].

Now suppose that not both A and TJ are [2,..., 2]. Then one of A and TJ contains a
term greater than 2, since otherwise u(/l) + u(7J) < ¿. Without loss of generality
one may assume that A has an entry greater than 2, since aß E C if and only if
/J 'a"1 G C. Let a = (l,...,¿,)(¿, + 1,...,¿2) •••(¿r_i + l,...,dr)EA, with ¿r
= ¿ and ¿,>2. Since v(A)<d- 1, u(7J)>0. Therefore B = [bx,...,bs] with
ft,>2.

Consider the partitions A'— \ax — l,a2,...,ar\ and TJ' = [bx — 1, /32,... ,bs]
(where a,.+ 1 = ¿,+ 1 - ¿,). Realize ^' by a' = (1,2,... ,(¿, - 1))(¿, + 1,...,¿2)
■ ■ • (¿r_i + 1,... ,dr). Here we are viewing A' and TJ' as partitions of {1,... ,d) —
{dx}. Note that

v(A') + v(B') = (v(A) -l) + (v(B) - 1) = (¿- 1) - I +2q.
By Lemma 4.2 there is ß' E TJ' such that a'ß' is a (d — l)-cycle. Referring to the
actual construction of ß' in the proof of Lemma 4.2, one may take ß' to begin with
lhe(bx - l)-cycle(l,¿, + l,...,dh¡_2 + 1).

Now a = a'(l, ¿,). Set ß = (1, dx)ß'. Then ß G TJ and aß is a (d - l)-cycle.
Moreover, (a, ß) is transitive on {1,...,¿} since a moves ¿,, while aß is a
(d — l)-cycle on the symbols different from ¿,.    D

Remark. If A = B = [2,...,2] with d = 2r and a G A, ß E B such that (a, ß) is
transitive, then aß E [r, r] necessarily. One may invoke transitivity appropriately to
see that a and ß may be labelled so as to have the precise form used in the beginning
of the proof of Lemma 4.5. This observation leads to a simple family of nonrealiz-
able branching data: {[2,...,2],[2,...,2],[l, d — 1]}. See also Corollary 6.4 for
another look at data of this type.

Corollary 4.4 and Lemma 4.5 also follow from [2].

5. Branched coverings of the sphere and projective plane. The object of this section
is to apply the facts obtained in §4 about products in symmetric groups to the
problems of realizing branch data for branched coverings of RF2 and S2.

Theorem 5.1. Let tf) = {/I,,... ,Ak} be a collection of partitions of a positive integer
d. Then there is a branched covering M -» RF2 of degree d, with M connected, and
with branch data ty // and only if2.v(A¡)^d— 1 and "2,v(A¡) is even. Moreover M
can be chosen to be nonorientable.

Proof. The necessity of the conditions on 2u(^4,) is given by Corollary 2.5 and
Proposition 2.6. For sufficiency one may repeatedly apply Lemmas 4.2, 4.3 and 4.5
to choose representative permutations a, G A¡, 1 < i < k, so that (ax,.. .,ak) acts
transitively on {1,... ,¿} and a, • • • ak E [d] if ¿is odd, while a, ■ ■ ■ ak E[d — 1,1]
or a, • ■ • ak E [d/2, d/2] if d is even.

If ¿ is odd, each ¿-cycle is a square in 2¿, so there is a ¿-cycle ß such that
a, • • ■ akß2 = 1. If ¿ is even, and ax ■ ■ ■ ak E [d — 1,1], then there is ß E [d — 1,1]
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such that a, • • • akß2 = 1; if a, ■ ■ ■ ak E [d/2, d/2], then there is ß E [d] such that
ax---akß2=l.

In each case by Lemma 2.1, there is a branched covering M -* RF2 with branch
data 6D. To see that M is nonorientable, note that (ax,.. .,ak) is transitive, so that
there is y G (a,,... ,ak) with y(/?(l)) = 1. Then yß E 2d_, and wx(yß) =
^(y^ií/J) = 1 ■(—1)= — 1, so that Mis nonorientable by Lemma2.2.    D

We now turn to the situation of branched coverings of S2. At the end of this
section we address the question of orientable branched coverings of RF2.

If ty = {Ax,...,Ak} is a collection of partitions of 6D we say simply that °D is
realizable if °D arises as the branch data of a connected branched covering of S2. By
Lemma 2.1 this is equivalent to the existence of representatives a, G A, such that
a, ■ ■ ■ ak= 1 and (ax,...,ak) is transitive on {1,.. .,d}.

Proposition 5.2. A collection <*¡) = {Ax,...,Ak} of partitions of d, with some
A, = [d] is realizable if and only ifv(6¡))> 2d - 2 and v(ty) = 0mod2.

Proof. It remains only to prove sufficiency. If k — 2, the hypothesis implies
A, = A2 — [d] and one lets a, = (1,.. .,.d) and a2 = axx. If k = 3 this is Corollary
4.4. Now proceed inductively to consider the case k > 3.

We may assume Ak = [¿]. Consider two subcases. First suppose some v(A,) +
v(Aj) =s d — 1 (»'#/); say v(Ax) + v(A2) < d — 1. By Lemma 4.2 there exist
a, G Ax, a2 G /12 such that v(axa2) — v(ax) + v(a2). Let A — ||a,a2||. Then °D' =
{A, A3,...,Ak} satisfies the hypotheses of the proposition. Thus there exist a E A,
a, G A¡, 3 =s i; =£ k, which realize 6D'. Now a is conjugate to axa2, say a = ya^ohy-'.
Then ya,y_1, ya2y"', a3,... ,ak realized.

For the second subcase suppose v(A¡) + v(A¡)> d for all / ¥=j. By Lemmas 4.3
and 4.5 there exist a, G Ax, a2E A2 such that v(axa2) 3= ¿ — 2, and, of course,
u(a,a2) = ü(a,) + u(a2)mod2. Again set6D' = {A,A3,...,Ak} where A = [|«,«21|.
Then ü(6D') = 0mod2 and u(6D') > (d - 2) + d/2 + (¿- 1) 3* 2¿ - 2. Thus <lD' is
realizable by induction. As before this implies that &D is realizable.    D

Proposition 5.3. A  collection of partitions of d, 6D = {Ax.Ak}, with some
A, = [d - 1, 1], is realizable if and only if v^) s* 2¿ - 2, u(°D) = 0 mod 2, a«¿ l'D is
not

(l){[2,2],...,[2,2],[3,l]}(d=4,k^3)or
(2){[2,...,2],[2,...,2],[¿- l,l]}(d=2r,k = 3).

Proof. It was observed in §4 that the data (2) is not realizable. That data (1) is
not realizable follows from the fact that the permutations in [2,2] generate the
2-Sylow subgroup of 24 which contains no 3-cycle.

It remains to prove the realizability of the remaining allowable data 6D. The
hypotheses imply k > 3; when k — 3 it is a consequence of Lemma 4.5. Inductively
consider the case k 3= 4. It may be assumed that Ak = [d— 1,1]. A reduction
procedure similar to that used in the proof Proposition 5.2 will be employed.

By Lemmas 4.2, 4.3 and 4.5 there exist a, E Ax and a2 E A2 such that either
v(axa2) = v(ax) + v(a2) or v(axa2) 3* ¿ — 2 (and, of course, v(axa2) = v(ax) +
u(a2)mod2). If d — 4, it may be arranged that axa2 & [2,2], since <>D does not have
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form (1). Let <$' = {||a,a2||, A3,...,Ak). Either v(°D') = u(6D) or u(üD') s* (¿ - 2)
+ 1 + (3 - 2) = 2¿ - 3. Since ü(öD') = u(6D)mod2, in fact t>(<3)') > 2d - 2. By
induction 6D' is realizable; as in the proof of Proposition 5.2, ÖD is then realizable.
D

Theorem 5.4. A collection <5) = {.4,,...,.4¿} of partitions of an integer ¿3*2,
d ¥= 4, is realizable provided v(°D) =0 mod 2 a«¿ v(6i)) > 3(d — 1 ).

Proof. The cases where ¿ = 2 are trivial, so assume throughout that d > 3. The
case /c < 2 is vacuous. If /c = 3, then the hypotheses imply that Ax = A2 = A3 = [d],
and that d is odd. In this case simply take a, = a2 = (1,2,... ,d) and a3 = (a1a2)"1.
Inductively proceed to the case k 5* 4.

There will be two cases. First suppose some u(/l,) + v(A-) < d — l, i ¥*j. It may
be assumed that v(Ax) + v(A2) < d — 1. By Lemma 4.2 there exist ax E Ax and
a2 E A2 such that v(axa2) = ü(a,) + v(a2). Let /l = ||a,«2]| and ty =
{/I, y43,... ,Ak}. By induction 6D' is realizable. Altering the choice of ax and a2 by a
conjugation shows that fy is realizable.

Secondly, suppose that v(A¡) + v(Aj) > d for all i ¥=j. By Proposition 5.2 it may
be assumed that each v(A¡) < ¿ — 2. There will be two subcases. First suppose that
some A, ¥= [2.2]. It may be assumed that ^4, ¥=[2,...,2] and v(Ax) is minimal
among v(A,) where A, ¥= [2,... ,2]. By Lemmas 4.3 and 4.5 there exist a, G Ax and
a2 E A2   such   that   axa2 E [d]   or   [¿ — 1, 1].   Let   A — ||a,a2||   and   6D' =
{A, A3.Ak). Now v(^')>(d- 2) + (k - 2)d/2 >2d~2, since in 6D at most
one v(A¡) < d/2 and k 3* 4. Now ÓJ)' is realizable except if k = 4 and ^43 = A4 =
[2,...,2]; but then u(°D)<2(¿- 2) + 2¿/2 = 3¿- 4< 3(¿- 1), contrary to as-
sumption. Altering the choice of a, and a2 by an appropriate conjugation then
realizes PD.

It remains to suppose/I, = [2,... ,2] for all /'. Then v(tf)) = kd/2 > 3(¿ — 1) since
ü(cD) = 0mod2; and thus

k>6(d- l)/¿>5,

because d is even and d > 6. Applying Lemma 4.5 twice one realizes a, G Ax,
a2 E A2, a3 E A, such that axa2a3 E [d] or [d — 1,1]. Since k > 6, Propositions 5.2
and 5.3 then imply that the reduced data {||a,a2a3||, A4,... ,Ak} is realizable; hence
so is 6D.    D

Remark. With care one can refine this proof to somewhat improve the bound
n(d) = 3(d — 1). For example if d is odd, the difficulties with [2,... ,2] do not arise
and one can get by with n(d) = 3d — 5.

Remark. The method of proof used for Theorem 5.4 applies to other general
families of data 6D= {Ax,...,Ak} as follows. We say that ^ is split table if there is a
permutation a of (1,...,/<} and an integer 5 such that 2-=1 v(AaU)) 3* d — 1 and
2*=J+1 v(Aa(i)) 3* ¿ — 1. One may as well assume a is the identity. Assuming
v(ty) = 0mod2, one can then find a, G A¡, 1 < /' < k, such that ax ■ ■ ■ as and
as+x ■ ■ ■ ak are both ¿-cycles or both (d — l)-cycles. An appropriate conjugation
then shows ^) is realizable.
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Remark. The problem of realizing branch data ÜD with u(°D) = 2(¿— 1) corre-
sponds to the problem of realizing rational functions CU{oo}->CU{oo} with
prescribed multiplicities for the zeros and poles. The problem of realizing poly-
nomial maps of degree ¿, C -> C, with prescribed multiplicities for its zeros
corresponds to the problem of realizing data "D with v(fy) = 2(¿ — 1) such that ÜD
contains [¿]. As we have seen the latter realizability problem has a complete
affirmative solution. Thorn in [14] gives another solution for this special case.

Corollary 5.5. If d ¥= 4 there exist only a finite number of nonrealizable sets of
branch data of degree d.

Proof. Only finitely many sets of branch data °D satisfy v^) < 3(¿ — 1).    D

Complement 5.6. For d = 4 a set Lî> = {Ax.Ak} of branch data is realizable if
and only if v(°D) > 2d - 2 = 6, u(6D) = 0 mod 2, and 6D is not
{[2.2], [2,2].[2,2], [3,1]}.

Proof. It was observed in §4 that the listed data cannot be realized. Suppose ty is
any other allowable set of branch data. If °D contains [4] or [3,1], then realizability
follows from Proposition 5.2 or 5.3. Otherwise the entries of °D are [2,2]'s and/or
[2,1, l]'s. If both appear, the now standard reduction procedure reduces one to the
case where [4] occurs. If only [2,1,1] appears (at least 6 times), then 3 entries can be
combined to reduce one to the [4] case. If only [2,2] appears, one again reduces to
the case of fewer entries by combining two [2,2]'s into one.    D

When d is not prime there always exist nonrealizable branch data.

Proposition 5.7. Ifd = ab,a,b> 1, then
60= {[a,...,a],[b+ 1,1.l],[a,a(b- 1)]}

satisfies u(L'D) = 2¿ — 2, but is nonrealizable.

Proof. The plan of proof is to fix ß = (1,2,... ,b + 1) G [b + 1,1,..., 1] and to
consider all possible a E [a,...,a], with (a, ß) transitive, and see that aß cannot lie
in[a,a(b - 1)].

Transitivity requires that none of the b a-cycles of a can involve only entries
greater than b + 1. It follows that (b — 1) a-cycles each contain exactly one entry
less than or equal to b + 1 and one of them contains exactly two such entries. So
without loss one can assume a has the form

(1 ...y...)(2- ••)••• (y-l,...)(y + l,...)••• (b+l,...)

for somey < b + 1.
Thus   '

«ß = (L_>-T_+_l_^¿^2^•      • • • b+2^- )(J^X->      ■ ■ 'ÎZ±^' )
u a a a va a

where u + v = a, u, v > I. Thus aß E [x, d — x] where x = umod a and ¿ — x =
v mod a. In particular, neither x nor d — x is divisible by a, and therefore aß =
$[a,a(b - 1)].    □
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Remark. It is a problem of some interest to determine just what branch data is
realizable. One would like to determine better bounds «(¿) such that t;(6D) 3» «(¿)
implies 6D is realizable. One would also like to decide whether all allowable data C'D is
realizable when d is prime. The reduction techniques of this section reduce the latter
question to the case of data with just 3 entries. Hand and computer checks have
shown that the answer is yes for ¿ = 3, 5, 7. Already for ¿ = 11 large numbers of
computations are required.

We now return to the problem of realizing branch data by orientable branched
coverings of RF2.

Theorem 5.8. If d is even, d ¥= 8, then a set 6D = {Ax,... ,Ak) of partitions of d
refining [d/2, d/2] is the branch data for a connected orientable branched covering of
RP2 provided ©(<$) 3» 3(¿/2 - I) and vC®) =0mod2.

Proof. Let d = 2d'. Choose a refinement A■ U A" of A¡, 1 < i*£ k. Then for
6D' = {A\, A",... ,A'k, A'k} one has

(<$') = 2(o(i4',) + v(A'/)) = So(4) > 3(¿' - 1).
By Theorem 5.4, 6D' is realizable. Composition with the covering S2 -» RF2 as in
Proposition 2.7 completes the proof.    D

Again one has the consequence that, given ¿ ¥= 8, only finitely many sets 6D of
branch data which refine [¿/2, ¿/2] and satisfy u(6D) = 0 mod 2 fail to be realizable
by connected orientable branched coverings of RF2.

Complement 5.9. For ¿ = 8, the collections fyk = {[3, 1, 1, 1, 1, 1], [2, 2, 2,
2],.. .,[2, 2, 2, 2]} (k > 2partitions) and&k = {[3, 1, 2, 2], [2, 2, 2, 2],... ,[2, 2, 2, 2]}
(k 5s 2 partitions) satisfy v(tf)k) = v(&k) — 4k — 2 3* 6 = d — 2, yet cannot be the
branch data of a connected orientable branched covering ofRP2.

Proof. The only refinements of [4,4] for the given data yield the data of
Complement 5.6 which are nonrealizable over S2.    D

6. A secondary condition. The purpose of this section is to study the effect of
pulling a branched covering <p: M — S2 back over itself, leading to a further
restriction on the branch data of 4> not implied by the Hurwitz conditions.

Let <i>: M -> S2 be a degree d branched covering with M connected and with
branch data % = {Ax,... ,Ak}. Now the restruction <f>0: M — <fxB^ -» S2 — TJ^ is an
ordinary covering space, and one many form the usual pullback of this covering
space over itself

M0 -\     M-4T%

M - <}>-xB^     -       S2-B^

where M0 = {(x, y) E (M - <fxB^) X (M - <j>~xB^): <¡>(x) = <¡>(y)} and the two
maps labeled <f>, and <i>2 are projections on the first and second coordinates,
respectively.
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Now the covering <¡>x may be compactified as described in §2 to give a degree d
branched covering <f>: M -» M. Note that M0 contains a diagonal copy of M — <fxB<¡¡
and hence neither M0 nor M is connected for ¿ > 1. Also <i>: M -» M is not the usual
set-theoretic pullback of $: M -» S2, which would not be a branched covering in
general.

To describe the branch data for <J> in terms of the branch data 6D of <j>, first note
that by elementary covering space theory the pullback of fh: 5' -» Sx, fh(z) = zh
over/u: S] -» S] consists of gcd(a, b) circles each mapped by a covering of degree
b/gcd(a, b).

Lemma 6.1. Let x E B^ with associated partition A(x) = [ax,...,ar] and y E <j>~x(x),
with local degree Oj. Then for the branched covering <J>: M -» M, y has the partition

My) = [ax/g\j,-- .,ax/gXj,... ,ar/grj,... ,ar/grj],

bij orj

where gtj = gcd(a,, ay).

Proof. Simply apply the preceding observation to a small circle going around y in
M which maps by a covering of degree a} to a circle going around x in S2.    D

Lemma 6.2. Let ¡j>:  M -> S2 have branch data ty = {Ax,_Ak}, where A¡ =
[a,i,... ,air ], 1 < i < k. Then the branched covering <j>: M -» M has total branching
given by

v($)= 2   2   U- 2&d(a
i=\ m=X  \ n=X

Proof. This is an immediate consequence of Lemma 6.1.    D
If "D = {Ax,... ,Ak} is any collection of partitions of ¿, A\aix,... ,air], 1 < /' < k,

it follows that the expression t>(€)) in Lemma 6.2 must satisfy the Hurwitz
conditions if ^ is the branch data of a branched covering. Now one can rather easily
check that v(^v) = 0mod2. Therefore when M =£ S2 no further restriction is im-
posed. However, if M = S2 then v(ty) must also verify an appropriate inequality.

Suppose M — S2, so that x(^) = 2. If M has t components, then x(^) * 2r and
by Proposition 2.4.

v(¿¡))>dx{M) -2t = 2(d- t).
The number t of components of M is at most the cardinahty of <j>~x(y), y E <j>^B^,
and so

r,

i^min   2 gcd(aiBI,a/B).
'■m  fi=i

Putting together these facts yields the following theorem.

Theorem 6.3. Let ty = {Ax,...,Ak} be a collection of partitions of d, with A¡ =
[ajX,... ,air ], I < i < k, such that v("D) = 2d — 2. Ifty can be realized by a branched
covering of S2, then

k      n
2   2

;=1   m=l
d~  2 gcd(a,m,a,„)

n=X
¿-min   2  gcd(a,„,,0

'•"'    n=X
D
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Remark. One can check that for any partition [a,,... ,ar] of d

2
m= X

2 gcd(a„,,a„)
h=i

d- r[gcd(ax,...,ar)].

Using this it follows easily that the inequality of Theorem 6.3 always holds when ¿ is
prime.

Corollary 6.4. If d = 2r, then the data "D = {[x,2r - x],[2,... ,2],[2,... ,2]},
with x < r, is realizable as the branch data for a connected branched covering of S2 if
and only if x = r.

Proof. Interpreting the two sides of the inequality in Theorem 6.3 one finds that
the left-hand side is 2r — (x + g) + 2r — (2r — x + g) = 2r — 2g, where g =
gcd(x, 2r — x). On the other hand the right-hand side is

2[2r - 2(min(x + g,2r - x + g))] = 2[2r - (x + y)]

since x < r. Then Theorem 6.3 states that if ^D is realizable, then 2r — 2g> 4r —
2(x + g). Thus 2x 3= 2r. But x < r implies x = r.

It was already shown in §5 that <î> is realizable when x — r.    D
Remark. In this particular example the pullback cf>: M — S2 has exactly two

branch points, which must therefore have the same type. One can then conclude
x = r simply by determining the corresponding partitions using Lemma 6.1, without
actually checking the inequality of Theorem 6.3.

The inequality of Theorem 6.3 seems to apply to very few examples. In Table 1
are listed all known examples, beyond Corollary 6.4.

Degree Data

[4,4,1], [3,3,3], [2,2,2,2,1]
[3,3,3], [3,3,3], [2,2,2,2,1]

10 [4,4,2], [3,3,3,1], [2,...,2]
16 [5,5,5,1], [3,...,3,1], [2,...,2]
16 [4,4,4,4],[3,...,3,1],[2,...,2]

[4,4,4,4,2], [3,. ..,3], [2,. ..,2]
21 [5,5,5,5,1], [3,...,3], [2,...,2,1]
25 [5,...,5],[3,...,3,1],[2,...,2,1]
36 [5,...,5,1],[3,...,3],[2,...,2]

10. 40 [5,. ..,5], [3,...,3,1], [2,. ..,2]
11. 45 [5,...,5],[3,...,3],[2,...,2,1]

Table 1

Theorem 6.3 has a purely algebraic interpretation about doubly transitive sub-
groups of the symmetric group. Compare [6,10].
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Theorem 6.5. Suppose ax,...,ak G 2¿ such that ax ■ ■ ■ ak = 1 and (a,,... ,ar) is
doubly transitive on {1,...,¿}. Then 2u(a,) is even and at least 2(d — 1). If
2ü(«,) = 2(¿- I), then

2    2  [d-  2&cd(aim,ain)   >2(¿-2)
i=l   m= X \ n=l /

where a, G [a,,,.. .,air ], 1 *S / < k.

Proof. The existence of a,,... ,ak implies the existence of a branched covering 4>:
M -» S2, as described in §2. The first assertion then is just the Hurwitz condition.
The hypothesis that (a,,...,ar) is doubly transitive corresponds to the geometric
assertion that the pullback M has exactly two components. Assuming 2/-(a,) =
2(¿— 1), one is the diagonal copy of M = S2, and the other arises from the
transitive action on pairs of elements in {1,...,¿}. Now Theorem 6.3 implies the
stated inequality.    D

Remarks. As examples, for ¿=6 the collections {[3,3],[2,2,2],[2,2,2]} and
{[4,1,1], [3,3], [2,2,2]} both admit transitive realizations, but no such choice of
doubly transitive realizations.

There are analogous algebraic results for matrices to be found in [11, Theorem 1,
p. 484].
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