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It is shown that certain existing phenomenological models of turbulence in terms of differential equations

for the Reynolds stresses R,z =< u’, u'g> do not guarantee realizable solutions. The known realizability
conditions are R z>0 for a = and R >R,, Rgs for as£B. A stronger requirement is that the matrix R,g
be positive semi-definite. This implies three conditions like non-negative eigenvalues or non-negative principal
invariants. Conditions are given which must be satisfied by the model itself in order to guarantee realizable
solutions for any realizable initial and boundary conditions. Some means are proposed which can be used

to change the existing models into realizable ones.

I. INTRODUCTION

Several phenomenological turbulence models have been
proposed which consist of a set of partial differential
equations for the mean velocities U;=(u;) and the Rey~
nolds stresses R,-,E(u,fu}) together with an appropriate
predictive equation for the integral length scale L or for
the dissipation rate €. One of the most recent examples
is that of Launder ef al.!’ These models contain closure
assumptions which relate algebraically unknown corre-
lations, such as the pressure-strain correlation &,;;
=(p'(u;,;+u; ;)), to the known quantities U;, Ry, and L
or € (u; ;=8u; /ox;),

The purpose of this paper is to show that such models
may not have a solution for an arbitrary set of initial
and boundary conditions in the sense that the known
realizability conditions

for a=4, (1a)
(1b)

Rg20

RE <R, Ry for a#p

may be violated. (The summation convention is adopted
for Latin, but not for Greek indices.) These conditions
are the consequence of real velocities and Schwarz’ in-
equality. A less known additional realizability condition
is?

det(Ry)20 . (1c)
A proof of this condition is given in the appendix,

Equation (1a) requires nonnegative energies and (1b)
states that the cross-correlation between the velocity
components u,'x and uB' is bounded by the magnitude of
autocorrelations., In order to see the physical meaning
of Eq. (lc) we rewrite it in the form

Ry3Rp3Ry /(Ryy RogRyy) 2 5[ RY, / (Ryy Roy)
+ Rf3/(RypRas) + Ry /(RysRyy) ~ 1]

from which we see that the three cross-correlations
cannot take on arbitrary values. For instance, if two
are well correlated with the same signs, the third must
be positive. ?

It appears that Eq. (1) comprises five independent in-
equalities. This is because of R, =R, and (1b) implies
(1a) for @=2,3 if R;;>0. We shall show, however, that
it is sufficient to check three inequalities. Also, we
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discuss the realizability properties of the exact unclosed
(unmodeled) equations for R;;; from this we learn how

to prove realizability and which terms should be modeled
jointly in order to guarantee realizability. Some means
will be proposed which avoid the problem of nonrealiz-
able solutions.

The problem of nonrealizable solutions has previously
been found for more complicated analytical models of
turbulence. In particular, it is known that the quasi-
normal theory, *~® in which the fourth-order correla-
tions are related to second-order correlations as in a
Gaussian flow, leads to the development of negative en-
ergy"'12 and violates other properties of turbulence.!®*!%
It seems, however, that this problem has not yet been
fully recognized with respect to the more engineering
oriented phenomenological models which close on the
basis of second order correlations. Deardorff'® found,
numerically, that such models sometimes produce non-
realizable solutions, but he assumed that this problem
was purely a consequence of finite difference approxi-
mations, Deardorff'® and André e? al.'? proposed a sim-
ple “clipping” approximation to allow feasible numerical
computations with such models. (The latter actually
used this approximation for triple correlations,) In this
approximation one checks, after each time step and at
each grid point, whether the inequalities (1a, b) hold and,
if not, takes a new value for the correlations R,; corre-
sponding to the equal sign of Egs. (la,b). Although this
seems to be a very simple cure to the problem, it is
not appealing from a theoretical point of view: I, e.g.,
a negative value of Ry, is replaced by zero, the magni-
tude in the change of R, depends upon the orientation of
the coordinate system. We therefore have a nonsteady
and noninvariant model.

One might object that situations where R;; is close to
the extreme state given by the equal signs of Eq. (1) are
rare in physics, and models which do not guarantee
realizability might still be valid in most applications.
However, then the problem remains of defining the
range of applicability of a given model. Also, we should
notice that the solution of the model equations is usually
found by iteration and we have to insure, therefore, that
neither the initial guess nor any intermediate solution
falls outside this range of applicability. In fact, it is
the author’s experience that such an iterative solution
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process might diverge and violate Eq. (1) although a
stationary realizable solution exists. In such cases it
is important to know whether the divergence is a conse-
quence of a perhaps unstable numerical scheme, which
can be adjusted, or a consequence of the model itself
and of the initial and boundary conditions,

The following discussion is restricted to incompress-
ible fluids with constant density and constant viscosity v.
The averaging operator { ) denotes either the time-,
space-, or ensemble mean value, Fluctuating quantities
are denoted by a prime, e.g., #;=u;—{u;) is the fluc-
tuating velocity component in the direction of the ith co-
ordinate.

i1. CONSEQUENCES OF THE REALIZABILITY
CONDITION

If, for some but not necessarily all values of o R,,
=(uu.) =0, then u_ itself must be zero for all points
in space and time over which the average ( ) is taken.
From the definition of R4 it follows that

R,a=0~Ryp=0, £=1,2,3. (2a)

In cases where (R4)? = R, Rss for some values of o and
8 (a# B) it follows'” that u; = Au, where A is equal at all

points over which the average is taken. Consequently,
we have
(Ra8)2 =Roofles =~ Rag =ARyq
Res = A’R 4
R;,,=AR,,, v=1,2,3, (2b)

Finally, it has been shown by du Vachat'® det(R ) =0
implies u, = Aug + Bu,, where A and B are real constants
so that

det(Ryg) =0~ R, =ARy + BRy, ,
Rug =ARgg + BRy, ,
R,,=ARy,+BR,, . (2¢)

These results will be used subsequently.

Next, we show that Eq. (1) is equivalent to the de-
mand that R, is a positive semi-definite matrix so that
QExiR”x,ZO (3)

for arbitrary real nonvanishing vectors x; (also stated
by du Vachat'®), For proof, we note that the necessary
and sufficient conditions for Q>0 are'”

Ry;20, (4a)

Ry Ry — R3,2 0, (4b)

det(Rqys) = Ryy (RopRsy = R3s) = Rip(RizRyy — RasRys)
+Ryg(RysRos — RppRy4)2 0 . (4c)

Therefore, if @20, then Eq. (lc) and two of the condi-
tions (la, b) are satisfied. Thus, Eq. (3) is necessary
for Eq. (1) to be true. It is also sufficient since the re-
maining conditions of Egs. (la,b) are consequences of
Eq. (3) as can be seen: The property of positive semi-
definiteness does not change under a similarity trans-
formation C.!" Therefore, we may rotate our coordinate
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system around the second coordinate by 90° and the
third coordinate by -~ 90° so that

Ry; Rz Ry
ct (RaB)C = R;ﬂ = Rz3 Rz Ry
Ry Ry Ry

As R;B is positive semi-definite, the second pair of
conditions Ry, >0 and R,,Rsy — R24> 0 follows from (4a)
and (4b). The final pair of conditions (R;3= 0 and R;R 3
- R;>0) follows in the same manner from a rotation
around the second coordinate by — 90° and the third co-
ordinate by 90°. This closes the required proof.

We see, that instead of the five checks required by
Eq. (1), the thvee checks stated in (4) are sufficient.
Condition (3) also implies nonnegative eigenvalues!” and
nonnegative values of the three principal invariants!’

L =Ry + Ry + Ry3> 0, (5a)
I, = RyyRyp — Riy + Ry Ryg ~ B2,

+ RyyRyg— R25> 0, (5b)
L=det(R,,)>0. (5¢)

However, Eq. (4) is numerically most convenient.

We note that I, is the most sensitive measure with re-
spect to realizability, since I is positive under “nor-
mal” conditions where R,,>0 and (Ry)?< R, Rss (@, B
=1, 2, 3, o #8) and becomes zero if for any o and 8+ «,
Rya=00r (RyP =R, Rg. This can easily be seen for
Ry; =0 or for Rs= Ry,Ry from Eq. (4c) using (2a) and
(2b), respectively. For other values of « and g this fol-
lows from Eq. (4c) with cyclic permuted indices. This
result, in principle, implies that if R 4z varies contin-
uously starting from a realizable initial state with I;> 0,
then a nonrealizable state cannot be reached without
passing through a point where I;=0. (If the average op-
erator is the time mean value, then “initial state” means
the initial guess of an iterative solution or boundary val-
ues if the model equations are parabolic and can, there-
fore, be solved by a marching procedure.) Moreover,
I, is zero for all times at walls where all velocity com-
ponents vanish. The single and convenient requirement

L,>0 (6)

for all points inside the flow region away from walls is,
therefore, in principle, a sufficient condition for real-
izability if R4 is a continuous function of space and
time with realizable initial conditions. Unfortunately,
this result is true only if the R, are related to each
other as though they were the elements of the Reynolds
stress. If however, the values of R, are being gener-
ated by model equations there is no guarantee that this
will be so, ? since we used Eqs. (2) which may be vio-
lated by the model results, Therefore, Eq. (6), al-
though being sufficient in principle, is not sufficient in
practice.

Finally in this paragraph, we ask for the consequences
with respect to models of turbulence. We have already

discussed conditions for R itself while the Reynolds-
stress models predict DR, /Dt. D/Dt is the total time
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0 t

FIG. 1. Required behavior of F as a function of time ¢ when
approaching the limit F=0. F is either R, or Ry, Rg— Rg,
(o =8) or det (R g).

derivative

D 9 3

=y, — .
Dt at dx;
For this purpose, we consider a point where either R,
=0 or (R =R,aRss. If R, is a continuous function,
we may use a Taylor series expansion, and as R, must
be realizable in the neighborhood of the point under con-
sideration (see Fig. 1), it follows that for realizability
R,,=0 requires that
2 9

a—tRN=O, —R

ax, 0, y=1,2,3,

aa™ (7a)
and the first nonzero higher derivative must be positive
(if R4 is not a continuous function of time, then a posi-
tive first time derivative is allowed). Similarly, if

(RaB)z = Ror aRBB ’ (7b)
then

9 ) 9 ]

3_t(R°'ﬂ)2:8_t (RaaRBB) ’ E?(thxﬁ): J(RaaRBB) s

4 k4
v=1,2,3,

and if

det(R)=0,
then

3 9

3—Ifdet(R°‘B):0 s gx—det(RaB)=0 N Y= 1, 2,3 (70)

T

are required for realizability.
equivalent to

These requirements are

R,,=0-DR,,/Dt=0, (8a)

(Raa)z = Ry o g = !
2R DR 3/ Dt = Ry oDRys/ Dt + Ry DR, ./ Dt , (8b)

det(R,z) =0~ Ddet(R,,)/Dt=0, (8¢)

for arbitrary values of U;. Equation (8) can be used to
check whether a given model {(which describes DR,g/Dt)
has realizable solutions.

Strictly speaking, this check should be applied not only
with respect to the closure assumptions but also to the
numerical approximations like finite differences.

723 Phys. Fluids, Vol. 20, No. 5, May 1977

HI. REALIZABILITY OF THE EXACT (UNCLOSED)
REYNOLDS-STRESS MODELS

From the Navier—Stokes equations we obtain, as
usual,1 the following equations:

DR 8 rr r

Dt =Pog+ Do+ Doy + Doy + Bop — €08 (©)
with the
production: Pog==RopUs p— RgpUy 1 s

turbulent diffusion:  Dgs == (uytstty) 4 5

Dog=~pug) s —{pthg) o,

1
D,g = VRaB,kk s

pressure diffusion:
viscous diffusion:

redistribution: B =(p'(tgs+us o)) , and

. . . n ! 1
viscous dissipation: €, =20 %, 425 ) -

These are the exact unclosed equations and we do ex-
pect, of course, that these equations will satisfy Eq.

(8). In fact, we can prove this by inserting (9) in (8) and
by using (2). We find that the following terms satisfy

(8) independent of all other terms: P, Dag, (Dog+ @),
and (Do’ - €,4). Let us prove this, for example, for

P,y and P,. This means that we have to prove (8) in

the form

Ryy=0— Py ==2R\ Uy ; = 2R, U 5 - 2R30, 4=0.

It follows from {2a) that P;; =0, g.e.d.
Py, we have to prove

R{y = Ry Ryp ~ — 2Ry5(Ry, Up  + Ry Uy )
== 2Ry Ry Uy = 2Ry Ry, Uy -

In the case of

Here, some terms cancel and we can rewrite the condi-
tion as

(Ry2Ry3 = R11Ro3)Us, s + (RypRos — RigRpp) Uy 3=0 .

Since the values of U, 3 and U, , are arbitrary, we have
to prove that the terms in parentheses are zero, which,
in fact, follows from (2b), g.e.d. The proof for the
other terms is similar. We note, that we cannot prove
realizability for D,z and &, or D, and €,, independent-
ly. This suggests that independent modeling of these
terms may result in nonrealizable models. The fact
that realizability can be proven independently for the
terms in groups as indicated shows that the realizability
of the exact equations is guaranteed for any sign and
magnitude of the values U; ;, p, or vu, ;.

V. EXAMPLES OF NONREALIZABLE
TURBULENCE MODELS

Several researchers proposed models for the redis-
tribution or pressure-strain correlation &,;, e.g.,
Rotta'® proposed

®;5=- c1€(Ry; - 8 yR/3)/E (10a)
€=¢,/2, E=R,/2.

Naot et al.?° and Launder? proposed
By5=~ coPyy— 6;3Py/3) , (10b)

and Crow, 2 Lilly, ?® and Deardorff!® include a term of
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the form

&y =— c3Rp(U; 5+ Uj 4) (10¢)
while Rotta'® and Launder ef ql.! use
;5= a'I"I, Ul,m (10d)

instead of (10b); here, a7} is a linear function of R.
Usually, certain combinations of these models are used.

The coefficients ¢;, i=1, 2, 3 are empirical constants.
It might be noted that (10c) can be rigorously deduced on
the assumption of local isotropy and (10d) follows from
the exact equations by use of a truncated Taylor-series
expansion. Both are based, therefore, on the assump-
tion that the departure of the isotropic and homogeneous
state is not too large. For the following demonstration
of nonrealizable models we restrict ourselves to homo-
geneous turbulence so that the diffusion terms may be
neglected, ' We notice that we also need specific models
for the dissipation. A model which combines the usual
proposals is

€:5=2€[dR;; /Ry, + (1 - d)5;4/3], (11)
where 0<d<1 is at least a function of the Reynolds num-
ber and probably of det(R.;). The total dissipation ¢
itself may be specified as a function of E, L, and v.
Using Egs. (2) and (8) we find the following results for
these models: Equation (10a) together with Eq. (11)
gives a realizable model if

&} >1-d. (12)
(This requirement has been found by Rotta® for d=0.)
Strictly speaking, Eq. (8) requires that ¢,=(1-4). If
¢ > (1 - d), then realizability is enforced by the model
stronger than required mathematically in the sense that

Roy=0~0R,/3t>0, a=1,2,3
aRgg BRM BRQQ
(RaB)z :RaaRBB "ZRaB ot <R, at + Ryg Y, ’

8=1,2,3. B+a.

We may call such models “over-realizable.” Such
models would be unsuitable for extremely anisotropic
turbulence like the quasi-two-dimensional situations ex-
pected, e.g., for certain atmospheric or magnetohydro-
dynamic flow problems. 2

Equation (10b) does not guarantee realizability. I,
for example, we assume i=1, j=1, then—for Ry =0—we
require

Py~ p{P1y — 5Pp) — €112 0
which is equivalent to
~ 3 ¢(RypUs 2 + RogUp 3+ RpUs 5 + RygUy 3) ~ €11 2.0

which is violated, e.g., for large positive values of
RypUs 5+ RyyUy 5. Similarly, Eq. (10c) violates the real-
izability condition, e.g., for Ry, =0 unless U, is suffi-
ciently large, and Eq. (10d) also violates the realizabil-
ity condition for certain values of U; ;.

V. METHODS OF INSURING REALIZABILITY

One way to circumvent the problem of nonrealizability
consists in “clipping” as described in the introduction.
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A better method, because it is continuous and tensorially
invariant, might be the following: First, we split our
model in two parts. One contains all the terms for which
we can prove realizability [e.g., (10a) and (11) with
(12)]; the other part contains all terms which do not
guarantee Eq. (8). Then, we multiply the second part by
a function F(y) which is dependent on a measure y of

how close we are to the limits allowed by Eq. (1), and

F is zero if we reach the limits, but otherwise positive
and close to unity.

The result including Eq. (6) and the consequence that
I;>0 as long as Iy> 0 and R, >0 for at least one index
a suggests the use of

y=1/{,/3)%>0

as the required measure. (y=1 for the isotropic state.)
Possible forms of the function F(y) are

F(y)=1-QQ -9y

where the constant A > 0 controls the steepness in the
decrease of the nonrealizable terms if y =0 is approached.
The second proposal has the advantage that for A>1
3F/8y=0 for y=1 so that the effect of this correction is
negligible in the neighborhood of the isotropic state.

The constant A must be chosen large enough in order to
insure realizability, since I3> 0 is necessary but not suf-
ficient for realizability of the model result,

F(y)=y* or

Instead of this artifice it would, of course, be prefer-
able if all parts of the model were constructed in such a
way that realizability is always guaranteed. This is a
demand which should be satisfied by closure assump-
tions in addition to the requests usually stated®® of cor-
rect dimensions, tensorial form, and correct proper-
ties of invariance,
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APPENDIX

Here, we shall prove that Eq. (1¢) is a consequence
of real velocities. For this purpose we refer to the fact
that R;; is defined as some average, e.g.,

R;;=limR,(N); i=1,2,3; j=1,2,3

N+

with

N
Ry (N) 2 Wt (R (X)) Wy

Wy =$;wk ; l(w,>0 for all k>0),
k=

over products of the velocities »,(x,) (i=1, 2, 3) at N dif-
ferent points X, in phase space using positive weights

wy. R;; and det(R;;) are real values because of w, and

u; being real. We shall show that the average R;;(N) sat-
isfies
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detR;;(N)>0 (A2)
for all N>1.

The proof is by complete induction. For this we first
note that Eq. (A2) is true for N=1 since by algebra using
(A1) we find

detR;;(1)=0. (A3)

Let us assume that (A2) is true for some specific value,
N. Then, we have to prove that

detR,;(N+1)>0 .,

Now, using (Al),
i

detR,;(N+1)

=det{ [WyRy;(N) + wy o Xy Jui(Xy )]/ Wy} o
For brevity we use the abbreviations

Pyy=WyRi;(N)/ Wy

N (A4
vy :ui'(xmll (wN+1/WN+1)1/2 ’ )

and note that because of w,> 0,
det(P;;)>0

if (A2) holds, and that the v; are real values if the ve-
locities u; are real, We then have to show that

det(P;; +v;04)>20 .
By algebra we find

det(Py; + v;0;) = Py PppPyy — Py Py — Ppo Piy ~ PyyPip + 2Py PyyPiy
+(PyyPys = Poy)tf + (Pyy Pyy — Pjy)vh + (Pyy Ppy — )0} +2(PyyPyy — PysPyy) 0y 0

+2(P1pPyg = PpyPyg)vyvy + 2(Pyp Py — Piy Pyy)vavs =det(Py)) + @

with the quadratic expression
Q = (vy, vs, v3)* M~ (v1, V5, vy)" .
The matrix M is
(PypPyy— Pis)
(PysPys = PyyPyz)
(PypPyy— Py Pys)

(PysPiy = P3sPyy)
(Pyy Py — PZy)
(P1yPyg = P11 Ppy)

M=

For arbitrary real values (v, v;, v3) We have @20 since
M is positive semi-definite, which follows from'":

(a) M;, >0 because of Eq. (1b);

(b) My My, — M3, = Pydet(P,;) >0 because of Eq. (Ad),
(1a), and (A2);

(c) Finally by algebra, we find

det(M;;) =det(P;;?>0 because of (A4) and R;; being
real,

Therefore, det[R,;(N+1)]>0 if det[R,;(N)]>0 and the lat-
ter is true for all N because it is true for N=1, Thus,
Eq. (lc) is a condition which must be satisfied by R,; if
this Reynolds stress tensor describes a real flow.
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