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REALIZABILITY OF THE ADAMS-NOVIKOV SPECTRAL
SEQUENCE FOR FORMAL A-MODULES

TYLER LAWSON

(Communicated by Paul Goerss)

Abstract. We show that the formal A-module Adams-Novikov spectral se-
quence of Ravenel does not naturally arise from a filtration on a map of spectra
by examining the case A = Z[i]. We also prove that when A is the ring of in-
tegers in a nontrivial extension of Qp, the map (L, W ) → (LA, WA) of Hopf
algebroids, classifying formal groups and formal A-modules respectively, does

not arise from compatible maps of E∞-ring spectra (MU, MU∧MU) → (R, S).

1. Introduction

The recent development of highly structured categories of spectra has led to
questions about what kinds of algebro-geometric procedures can be imported into
homotopy theory. In particular, it often leads to the hope that there might be
“algebraic extensions” of the sphere spectrum that play the role of the ring of
integers in a number field. For example, the notion of a Galois extension of a
ring spectrum is defined in [6]. Unfortunately, the sphere spectrum has no Galois
extensions unless one inverts a set of integers, roughly because Galois extensions
cannot have ramified primes.

Additionally, Schwänzl, Vogt, and Waldhausen have shown that there exists no
A∞-ring spectrum R such that HZ∧R � HZ[i] by making use of a calculation in
topological Hochschild homology [7]. (Assuming R is connective, it would neces-
sarily have the homotopy type of S ∨ S, with some A∞-structure imposed.)

This might suggest that another approach would be in order, based on different
algebraic properties of the sphere spectrum. One such approach is through the
Adams-Novikov spectral sequence. This spectral sequence computes the stable
homotopy groups of the sphere and has an E2-term given by Ext groups of the
Hopf algebroid (MU∗, MU∗MU). Due to the work of Quillen [4], it is possible
to identify this E2-term as Ext groups of the Hopf algebroid (L, W ) representing
formal groups and strict isomorphisms between them.

Ravenel, in his article [5], defined the Adams-Novikov spectral sequence for for-
mal A-modules. For a ring A, a formal A-module is a formal group together with an
action of the ring A by endomorphisms of formal groups. There is a Hopf algebroid
(LA, WA) representing formal A-modules and strict isomorphisms between them.
A formal group is a formal Z-module. These Hopf algebroids are functorial in A.
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If A is the ring of integers in an algebraic extension of Q, we get a map of
Ext-groups

Ext∗∗(L,W )(L, L) → Ext∗∗(LA,WA)(LA, LA).

The domain of this map is the E2-term of the Adams-Novikov spectral sequence for
the homotopy groups of the sphere, while the range is, by definition, the Adams-
Novikov E2-term for formal A-modules. It is natural to ask whether this map of
spectral sequences arises as a filtration of a map S → SA from the sphere spectrum
to an algebraic extension of S.

Unfortunately, the answer is no in general. If A = Z[i], we will indicate as an
example a computation of the first few terms of the 2-primary formal Z[i]-module
Adams-Novikov spectral sequence in section 3, together with the map from the
ordinary Adams-Novikov sequence. This map would violate the nontrivial extension
in the 3-stem. (A rough calculation seems to indicate that for an extension field
totally ramified at an odd prime, the existence of the Toda differential does not
immediately give rise to a contradiction.)

The extension in the 3-stem is detected by the ordinary Adams spectral sequence,
suggesting that there is some incompatibility with the Steenrod algebra. By making
this incompatibility precise, we find that the following general result holds.

Theorem 1.1. Let A be the ring of integers in a finite extension field of Q. There
is no diagram of E∞-ring spectra

MU
ηL ��

��

MU ∧ MU

��

MU
ηR��

��
R

ηL �� S R
ηR��

realizing the diagram

L
ηL ��

��

W

��

L
ηR��

��
LA

ηL �� WA LA
ηR��

on homotopy groups unless A = Z.

It follows from this that there exists no E∞ “algebraic sphere” SA such that
π∗(SA ∧ MU) ∼= LA as an L-algebra. Given such an SA, an explicit computation
with the Künneth spectral sequence for

SA ∧MU ∧MU � (SA ∧MU) ∧
MU

(MU ∧MU),

together with unit maps arising from the weak equivalence

(SA ∧MU) ∧
SA

(SA ∧MU) → SA ∧MU ∧MU,

would show that the pair (SA ∧ MU, SA ∧ MU ∧ MU) violates Theorem 1.1.
As a partial converse, if we further assume that (R, S) forms a Hopf algebroid of

spectra (having comultiplication and augmentation maps that satisfy appropriate
diagrams, in addition to the given left and right units), the algebraic sphere SA

could be recovered by the cobar construction C(R, S, R). (This follows because the
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natural map R∧ MU → S is a weak equivalence, and the smash product with MU
can be moved inside the cobar construction.)

The proof of Theorem 1.1 proceeds by calculating what the analog of the dual
Steenrod algebra would be. This proof occupies section 4. In fact, the theorem
holds locally at any prime of A whose decomposition group is nontrivial; this is a
phenomenon associated to any extension of the local field, rather than merely to
the ramified primes.

The author would like to thank Michael Hill and Haynes Miller for discussions
related to this note.

2. The Lazard ring for formal A-modules

In this section, we will make explicit the form of the Lazard ring for formal
A-modules for specific choices of A. The formulas from this section are taken from
Hazewinkel [3], section IV.21.

If A is a ring, a formal A-module is a formal group law F over an A-algebra R
with a map φ : A → End(F ) such that the diagram

A
φ

����
��

��
��

� �� R

End(F )

d

�����������

commutes, where d is the differential at 0. For a ∈ A, the endomorphism φ(a) of
F is a power series [a](X) ∈ R[[X]].

We now restrict to a particular case. Let K be a finite extension of Qp of degree
n, with ring of integers A. Choose a uniformizer π of A. As ideals of A, (p) = (πe),
where e is the ramification index. The residue field A/(π) has order q = pf . These
satisfy e · f = n.

For a positive integer n, define ν(n) = 1 if n is not a prime power and � if n is a
power of some prime �. Finally, let Cn(X, Y ) = ν(n)−1((X + Y )n − Xn − Y n).

Define LA to be the Lazard ring for formal A-modules, and FA the universal
formal A-module over LA. As a ring,

LA
∼= A[Y1, Y2, Y3, . . .].

The coefficients can be identified. Modulo Y1, . . . , Yn−2 and terms of degree n + 1
and higher in X and Y , we find the following:

(1) FA(X, Y ) ≡
{

X + Y + Yn−1ν(n)Cn(X, Y ) if n �= qm,

X + Y + π−1Yn−1ν(n)Cn(X, Y ) if n = qm

([3], IV.21.4.8).
By restriction, a formal A-module is also a formal group law, and this corresponds

to a map L → LA. If F is the universal formal group law over Z, we know that
L ∼= Z[X1, X2, . . .]. Modulo X1, . . . , Xn−2 and terms of degree n + 1 and higher,

F (X, Y ) ≡ X + Y + Xn−1Cn(X, Y ).
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Therefore, the map L → LA can be expressed as follows:

(2) Xn 	→

⎧⎪⎨
⎪⎩

Yn, n �= pm − 1,

pYn, n = pm − 1, n �= qk − 1,(
p
π

)
Yn, n = qk − 1.

The ring LA is part of a Hopf algebroid (LA, WA) representing formal A-modules
and strict isomorphisms between them. There are left and right unit maps ηL, ηR :
LA → WA. As a module over ηL(LA),

WA
∼= LA[b1, b2, . . .].

We choose the coefficients bi to be the coefficients of the universal strict isomorphism

f(x) = x +
∑

bi xi+1

from f−1 ◦ FA ◦ f to FA.
If (L, W ) is the Hopf algebroid representing formal groups and strict isomor-

phisms, we know that
W ∼= L[b1, b2, . . .]

as a module over ηL(L). The restriction map L → LA extends to a map (L, W ) →
(LA, WA) of Hopf algebroids. The map W → WA is the extension of scalars map
L[bi] → LA[bi].

The ring WA has a quotient ring A ⊗LA
WA, where the map LA → A classifies

the additive group law. This ring, which is isomorphic to A[b1, b2, . . .], classifies the
universal strict isomorphism whose range is the additive formal group law. We now
wish to determine the image of the right unit, which is equivalent to determining
the domain formal group law.

Proposition 2.1. Modulo ηR(Y1), . . . , ηR(Yn−1), the image of ηR(Yn) in the ring
A[b1, b2, . . .] is −bn if n �= qm − 1 for any m, and −πbn if n = qm − 1.

Proof. If f(x) = x +
∑

bix
i+1 is the universal strict isomorphism, then f is a map

from G to the additive formal group law, where G(x, y) = f−1(f(x) + f(y)). By
equation (1), when we reduce modulo ηR(Y1), . . . , ηR(Yn−2) and terms of degree
n + 1 and higher, we find that

f−1(f(x) + f(y)) ≡
{

X + Y + ηR(Yn−1)ν(n)Cn(X, Y ) if n �= qm,

X + Y + ηR(Yn−1)π−1ν(n)Cn(X, Y ) if n = qm.

Applying f to both sides, we find that

f(x) + f(y) ≡

⎧⎨
⎩

f
(
X + Y + ηR(Yn−1)ν(n)Cn(X, Y )

)
if n �= qm,

f
(
X + Y + ηR(Yn−1)π−1ν(n)Cn(X, Y )

)
if n = qm.

Taking terms of degree n gives the formula

bn−1X
n + bn−1Y

n ≡
{

ηR(Yn−1)ν(n)Cn(X, Y ) + bn−1(X + Y )n if n �= qm,

ηR(Yn−1)π−1ν(n)Cn(X, Y ) + bn−1(X + Y )n if n = qm.

In particular, modulo ηR(Y1), . . . , ηR(Yn−2), we have ηR(Yn−1) ≡ −bn−1 if n �=
qm, and ηR(Yn−1) ≡ −πbn−1 if n = qm. Re-indexing gives the statement of the
proposition. �
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3. The formal Z2[i]-module Adams-Novikov sequence

In this section, we fix A to be the ring Z2[i]. We will compute the formal A-
module Adams-Novikov spectral sequence out to dimension 3 by using the reduced
bar complex

0 → LA → WA → WA ⊗LA
WA → · · · ,

where WA is the kernel of the augmentation map ε : WA → LA.
Let π = 1+i be a uniformizer for A. We can choose generators of LA and WA, as

in section 2, such that X1 	→ πY1 and b1 	→ b1. As ηRX1 = X1−2b1, we deduce the
formula ηR(Y1) = Y1 − (2− π)b1. Similarly, ∆b1 = 1⊗ b1 + b1 ⊗ 1. These formulas
allow us to directly compute the homology of this complex out to the 3-stem; we
record the result in the following diagram. The vertical axis denotes Ext-degree,
and the horizontal axis denotes total degree.

��

��

A

A/π

A/π

A/π

A/π2

The elements in total degree 3 are generated by the cycles νA = b2
1 − πY1b1 and

η3
A = b1 ⊗ b1 ⊗ b1 in the bar complex. The map of Adams-Novikov sequences sends

the element ν = b2
1 − X1b1 to νA, and sends η3 to η3

A.
This violates the extension in the 2-primary Adams-Novikov spectral sequence.

A lift of ν to π3(S) satisfies 4ν = η3, but any lifting of νA would have to be π3-
torsion, and hence be killed by π4 = −4.

4. The formal A-module Steenrod algebra

We now prove the following. Let A be the ring of integers in a finite extension
of Qp, and let (LA, WA) be the Hopf algebroid associated to A.

Theorem 4.1. There is no diagram of E∞-ring spectra

MU
ηL ��

��

MU ∧ MU

��

MU
ηR��

��
R

ηL �� S R
ηR��

realizing the diagram

L
ηL ��

��

W

��

L
ηR��

��
LA

ηL �� WA LA
ηR��

on homotopy groups unless A = Zp.

Theorem 1.1 follows immediately by completing at any prime that is not totally
split.
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Proof. Suppose that we had a diagram of E∞-ring spectra as stated. We have that
R is (−1)-connected with π0R = A, so we can form a diagram of E∞-ring spectra

MU ��

��

HFp

��
R �� HFq,

where Fq is the residue field of A.
We then get a map of E∞-ring spectra

HFp ∧
MU

(MU ∧MU) → HFq ∧
R

S,

where the smash product is taken along the left unit. The Künneth spectral se-
quence of [2] shows that on homotopy groups, this map is the extension of scalars
map

Fp[b1, b2, . . .] → Fq[b1, b2, . . .].

These rings respectively classify the universal strict isomorphisms into the additive
formal groups over Fp and Fq.

Smashing along the right unit then gives a map of E∞-ring spectra

HFp ∧
MU

(MU ∧MU) ∧
MU

HFp → HFq ∧
R

S ∧
R

HFq.

The homotopy groups of the left-hand spectrum form the dual Steenrod algebra
A∗. Write B∗ = π∗(HFq ∧R S ∧R HFq).

We get by naturality a map of Künneth spectral sequences

TorL
∗∗(Fp[bi], Fp) → TorLA

∗∗ (Fq[bi], Fq)

that converges to some filtration of the map A∗ → B∗.
Proposition 2.1 shows that the image of ηR(Yi) in Fq[b1, b2, . . .] is congruent

modulo ηR(Y1), . . . , ηR(Yi−1) to −bi if i �= qm − 1, and 0 if i = qm − 1. The same
proposition shows that a similar result holds for Xi with q replaced by p. This
determines the right module structure of Fp[bi] and Fq[bi].

The sequence (p, X1, X2, . . .) is regular in L, so we can resolve Fp over L by the
Koszul complex

∞⊗
i=0

(L Xi−→L),

where X0 = p by convention. The tensor product is taken over L. Similarly,
(π, Y1, Y2, . . .) is regular in LA, so we have a similar Koszul resolution for Fq over
LA.

The following Tor calculations follow:

TorL
∗∗(Fp[bi], Fp) ∼= Fp[ξ1, ξ2, . . .] ⊗ Λ[τ0, τ1, τ2, . . .],

TorLA
∗∗ (Fq[bi], Fq) ∼= Fq[ξf , ξ2f . . .] ⊗ Λ[σ0, σf , σ2f , . . .].

The elements ξk live in Tor degree zero and total degree 2(pk − 1). (The element
ξk is represented by bpk−1.) The elements τk live in Tor degree 1 and total degree
2pk−1, while the elements σkf live in Tor degree 1 and total degree 2qk−1. Because
the terms in the spectral sequence are generated by terms in homological degrees
0 and 1, the spectral sequence collapses.
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The map of spectral sequences sends ξk to 0 if f does not divide k. In fact, the
Tor-degree zero terms form the algebras Fp ⊗L W ⊗L Fp and Fq ⊗LA

WA ⊗LA
Fq

respectively. These rings classify the strict automorphisms of the additive formal
group laws over Fp and Fq. As such, they are the affine coordinate rings of the
group schemes of p-series and q-series respectively.

The map of Tor-groups is induced by a map of Koszul resolutions; this map of
resolutions is formed by tensoring together the maps

L
Xi ��

��

L

��
LA

Yi

�� LA.

The right vertical map is the natural inclusion. In order to make the diagram
commute, the left vertical map must be the inclusion if i �= pm − 1, multiplication
by p if i = pm − 1, i �= qk − 1 for any k, and multiplication by π if i = qk − 1, by
equation (2).

We then carry forward the computation on Tor. We find that the image of τkf

is σkf if the extension is unramified. In any other case, τk maps to zero.
However, there can be no such map A∗ → B∗ that respects the E∞-structure

unless the field extension is trivial. The reason is as follows.
The element ξf in A∗ would have nonzero image in B∗, and hence so does its

conjugate χξf . The field extension is nontrivial, so either f > 1 (implying that B∗
is trivial in dimensions 2 through 2q − 3), or the extension is totally ramified and
τ0 maps to 0. In either case, χτf−1 maps to 0.

If p = 2, this is immediately a contradiction, as χτf−1 lifts to a class in A∗ that
squares to a nonzero multiple of χξf .

If p > 2, the map A∗ → B∗ is a map of E∞-algebras over HFp, and so it
should respect the Dyer-Lashof operations. However, βQpk

χτf−1 = χξf in A∗ ([1],
Theorem III.2.3). The element χτf−1 has trivial image and χξf has nontrivial
image, which gives a contradiction. �

Remark 4.2. For clarity, we have chosen to assume that the object S is an E∞-
ring spectrum; it is possible to weaken this assumption. There is a folklore result
(for which the author does not know of a reference in the literature) to the ef-
fect that χξf = βQpk

(χτf−1) can be identified with the p-fold Massey product
〈χτf−1, . . . , χτf−1〉. The fact that the map A∗ → B∗ gives rise to a contradiction
only depends on the existence of p-fold Massey products, and these are well-defined
for Ap-algebras. We could therefore restrict our assumptions to S being an Ap-
algebra over R∧ Rop.
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