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Abstract. In this paper realization algorithms for systems over a principal 

ideal domain are described. This is done using the Smith form or a 

modified Hermite form for matrices over a principal ideal domain. It is 

shown that Ho's algorithm and an algorithm due to Zeiger can be 

generalized to the ring case. Also a re€ursive_realization algorithm, 

including some results concerning the partial realization problem, 

is presented. Applications to systems over the integers, delay differential 

systems and 2-D systems are discussed. 



1. INTROVUCTION 

The input-output behavior of a strictly causal linear time invariant 

system can be characterized by its impulse response sequence or Markov 

sequence M = (M
1

,M
2

, .•. ). Given the Markov sequence the input-output 

behavior of the system is given by 

(1. 1) 
k-1 

Yk = 2 ~ ,u, 
i=O -~ ~ 

(k = 1,2, ••• ) 

where (uO'u1, ... ) is the input sequence at (Y1'Y2' .•• ) the output. 

Realization theory is concerned with the problem of finding matrices 

C,A,B to a given Markov sequence M such that the impulse response_of the 

system in state space from 

(1. 2) 

equals M. We denote the system (1.2) simply by L = (C,A,B). Thus, L is a 

realization of M if 

(1. 3) M, = C A
i

- 1 B 
~ 

(i=1,2, ••• ) 

and a realization algorithm constructs such a system L to given M. 
Usually, one is particularly interested in so called canonical (or 

minimal) realizations (for a definition, see section 2). 

If the entries of the M,'s and the matrices C,A,B are real numbers, 
~ 

we say that M is a Markov sequence over lR and L is a system over lR. 

Realization algorithms for systems over lR have been given by a number 

o£ authors ([3J, [15J, [11 J) . 

Most of of these algorithms can be extended without any change to systems 

over an arbitrary field. It has been observed in [9J, [7J that delay 

systems can be modeled as systems over the ring lR[dJ of polynomials, 

i.e., systems (C,A,B) in which the entries of the matrices are 

polynomials. Similarly, the theory of 2-D systems can be formulated 

in terms of systems over the ring of proper rational functions or over 

the ring of stable proper rational functions (see [lJ, [2J,[17J). Therefore, 

it is useful to have a generalization of realization theory to systems 

over rings. A basis for such a theory is laid in [12J, [13J. For very 

readable surveys of this theory we refer to [16J, [8J. 

This paper will be concerned with explicit algorithms for the construction 

of canonical realizations of Markov sequences over a principal ideal 
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domain. In [12J, Silverman's algorithm is used to compute a realization 

of a Markov sequence over a principal ideal domain. The realization is 

obtained by first computing a realization over the quotient field of the 

domain and then applying a suitable state space transformation. 

In section 2 a more direct realization algorithm is proposed, which is 

related to an algorithm due to Zeiger (cf.[6]). 

It is also shown that the original Zeiger algorithm and the Ho algorithm 

can be extended to systems over a principal ideal domain, but the 

algorithm described in this paper seems to be more appealing. 

In section 3, a recursive algorithm similar to Rissanen's algorithm 

(see [lJ) is described which to some extent can also be used for 

obtaining partial realizations. 

In a final section some examples are given of application of the 

algorithm described in section 2. 

2. THE REALIZATION ALGORITHM 

In this paper, R denotes a principal ideal domain, with quotient field 

Q(R) , unless otherwise stated. The set of m x n matrices over R will be 

denoted by Rmxn. The rank of a matrix A will be its rank as a matrix over 

Q(R). A matrix A E R
mxn 

will be called right regular if there does not 

exist a nonzero vector x E Rn satisfying Ax = O. Equivalently A is right 

regular if rank A = n. The matrix A is called right invertible if there 
. + nXm + 

ex~sts A c R such that AA = I. Left regularity and left invertibility 

are defined similarly. 

M mxp 
Consider a sequence = (M

1
,M

2
, ••• ) of matrices ~ € R • A system 

mxn nxn nxp E = (C,A,B), where C E R I A € R ,B E R is called a realization 

of M if 

(2. 1) (k = 1,2, ••• ) 

In this case M is called the Markov sequence of E. The number n is called 

the dimension of the realization. 

Given a system E = (C,A,B) we define for k = 1,2, ••• 

(2.2) 

(2.3) 

k-1 Q(E,k):= [B,AB, ••• ,A BJ 

P(E,k):= [C',A'C'"",(A,)k-1C'J' 

A system E is called reachable if Q(E,n) is right invertible and observable 

if P(E,n) is right regular. A reachable and observable realization is 
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called canonical. 

In order to construct such a canonical realization we form the infinite 

Hankel matrix 

Ml M2 M3 

M2 M3 
(2,4) H:= 

M3 

In addition, we consider Hankel blocks 

We define rank H = sup rank Htk' The following result is instrumental. 
~,k 

(2.6) THEOREM. SUPPoBe that for a aertain pair of integers t,k we have 
. ~Xn nXkp nxp 

rank H tk ::;; rank. H ::;;: n, If matr1.-aes PER , Q E R , Qk E R 

satisfy 

(i) H~,k+l = P[Q,Qk J 

(ii) Q is right invertibZe 

(iii) P is right reguZar 

then there exists a unique reaZization L = (C,A,S) of M suah that 

P = P(L,~), [Q,QkJ = Q(E,k+l), viz. 

(2.7) 

where Po is the matrix aonsisting of the first m rows of P, Qi E Rnxp 

is deFined by the bZoak deaomposition Q = [Qo,Q , .•• ,Q 1] and Q + is 
1 k-

a right inver'se of Q. 
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PROOF Considering Ai as the Markov sequence of a system over Q(R), we 

find a canonical Q(R)-realization E = (C,A,B) of M of dimension n. 

Then we have 

(2.8) PQ = H~k = PQ 

- - -+ 
where P:= P(E,~), Q:= Q(E,k). Let P be a left inverse (over Q(R» of 

-+ 
P and Q a right inverse of Q. Then we have 

-+ -+ 
P PQQ = I. 

- + nxn -1 -+ 
Thus, if we define S:= QQ E Q(R) I then S is invertible and S = P P 

- -1 - - -1 
The system E = (C,A,B) defined by A:= SAS , B = SB, C:= CS is also 

a realization of Mover Q(R). Equation (2.8) implies 

-
Q = SQ 

- -1 
P = PS 

Hence, P = P(E,~), Q = Q(E,k). But then, we must have C 
nxp 

B = Q
O 

E R • In addition, 

and consequently, Q
k 

= AkB. It follows that 

mxn = Po E R I 

and hence (2.7), which implies A E Rnxn. That E is also canonical over R 

follows easily from (ii) and (iii) and the Cayley-Hamilton theorem. 0 

(2.9) REMARK. Obviously, theorem (2.6) remains valid if R is any integral 

domain. 

The following result states that for sufficiently large k a factorization 

of the form 

is always possible, once the factorization 

is given. 

o 
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(2.10) THEOREM. Let P E Rtmxn, Q E Rnxkp satisfy the conditions (ii) 

and (iii) of theorem (2.6) and assume that rank H~k = rank H $ k. If 

HR.k :: PQ 

mxn then there exists a unique Q
k 

E R such that 

PROOF. There exists a realization of dimension $ k. (see [13]). By the 

Cayley-Hamilton theorem the sequence M satisfies a recurrence relation 

of the form 

kpxp 
If we write W:= [alI, ••• takI]' (R , then it follows that 

Hence we may choose Q
k 

= QW. The uniqueness of Q
k 

follows from the 

right regularity of P. 

(2.11) REMARK. Also this result is valid for more general rings than 

principal ideal domains. Obviously, it suffices that the Markov parameters 

satisfy a recurrence relation of order $ k. This is for example the case 

for integrally closed rings (see [13J). 

Now the question arises of how to compute a factorization of HR.,k+1' 

One way of doing this depends on the Smith canonical form. We start by 

factorizing HR.k as follows. There exist invertible matrices U and V and 

an n x n diagonal matrix D such that (see [10J) 

(2. 12) HR.k = U ~ ~ V 

(Some of the zero matrices in (2.15) may be empty). The matrix D is 

regular (i.e. right and left regular). If we define 

P:= rDl + -1[~ 
U l~ I Q:= [I,OJV I Q := V oj 

we see that P is right regular and QQ+ = I, so that Q is right invertible. 

o 

o 
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In addition H~k = PQ. Now if we decompose H~/k+l as 

it follows from theorem (2.10) that there exists a matrix Q such that 
k 

S = PQk' hence 

i.e., the first n rows of u-1s are divisible by the corresponding 

diagonal element of D, and the remaining rows are zero. Thus, we are 

able to determine Qk' 

(2.13) REMARK. If these conditions on S are not satisfied, this implies 

that M does not have a realization of dimension less than k+l. 

The computation of a Smith form might be rather elaborate. Therefore, it 

is useful to point out that it is also possible to compute a realization 

of M using a slight modification of the Hermite form of Htk • 

(2.14) THEOREM. If H is a p x q matrix over R of rank n~ there exists 

a p x p permutation matrix IT~ a q x q invertibZe matrix v and a p x n 

matrix F satisfying 

such that 

F .. =O (i<j) 
~J 

H =: IT[F,OJV 

F .. :f 0 
~~ 

The proof of this result is analogous to the proof for the ordinary 

Hermite form (see [10J) and will be omitted. 

If we apply this theorem to H = Htk we obtain 

Htk == II[F,O]V 

Then we define P:= ITF, Q:= (I, 0 ~ and we have the desired factorization. 

The matrix Qk has to be determined from the equation PQ k = S, i.e., 
-1 

FQk == II S. However, since [In' 0] F is a regular matrix I Q
k 

is uniquely 

determined by the n x n equation: 

o 
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and this equation is easy to solve because of the triangular character 

of [I O]F. It follows from theorem (2.10) that a solution exists and 
n 

satisfies the equation FQ
k 

= n- l s, provided rank H ~ k. 

(2.15) REMARK. The algorithm given, is closely related to Zeiger's 

algorithm (cf.[6]). In this algorithm for systems over a field, the 

factorization H~k = PQ with Q right invertible and P left invertible 
+ + yields the realization C = P

l
' A = P (aH) tk Q , B = Ql where (aH) tk 

is the Hankel block of the shifted Markov sequence and p+ is a left 

inverse of P. In the case of a system over a ring this algorithm is 

not directly applicable since it is usually not possible to factorize 

H~k such that P is left invertible and Q is right invertible (see 

remark (2.17». However, if one is willing to perform calculations 

in the quotient field Q(R) , then one can use Zeiger's algorithm, 

since it follows from theorem (2.6) and (2.10) that the resulting 

(C,A,B) is a realization over R. 

(2.16) REMARK. The method of computing a factorization using the Smith 

form (2.15) is obviously related to Ho's algorithm. The proper 

generalization of Ho's algorithm to the ring case is the following: 

starting from the factorization 

UH V = R,k ~O O~ 

where U and V are invertible and D is a regular diagonal matrix, we 

construct E = (C/A,B) from 

Then (C,A,B) is the realization of M corresponding to the factorization 

Htk = PQ, where 

[
DJ ' P 

_- u-1 -1 Q = [I,O]V • 

o 
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The solvability of the equations for A and B again follows from theorem 

(2.6) and (2.10). 

The algorithm proposed in this section, in particular if the modified 

Hermite form is used, is simpler than the algorithms mentioned in 

remark (2.15) and (2.16). In the algorithm given in remark (2.15) it is 

necessary to do calculations in Q(R) and inverses of both P and Q 

have to be calculated. For the algorithm mentioned in remark (2.16) 

it is necessary to compute the Smith form which is more elaborate than 

the Hermite form. (It is not necessary, however, that the diagonal 

elements in the Smith form satisfy the usual divisibility condition). 

(2.17) REMARK. A realization E = (C,A,B) is called split if both 

(A,B) and (A' ,C') are reachable (see [16J). If a Markov sequence M 

admits a split realization E then every canonical realization E of M 
is split, since it follows from the realization isomorphism theorem 

that P(E,n) = P(E,n)T for some invertible matrix T. Obviously the 

realization given in theorem (2.6) is split iff P is left invertible. 

Therefore, if we construct P and Q using (2.12), the realization is split 

iff the invariant factors of Htk are invertible. Thus we recover 

the result of Sontag ([16, theorem 4.8J). 

3. A RECURSIVE REALIZATION ALGORITHM 

In practical situations, the total Markov sequence is not always 

immediately available. For this reason it is useful to have partial 

realization algorithms, where finite Markov sequences are processed 

and where the computational results are updated as soon as new data is 

available. For systems over fields such partial realization algorithms 

are known (see [4J, [5J, [11J). 

However, for systems over rings the problem of finding minimal partial 

realization algorithms is still unsolved. To some extent, the following 

theor~m gives a result on partial realization. 

(3.1) THEOREM. Let M = (M
1

, ••• ,M
N

) be a finite sequenae with Mk E Rmxp. 

Let k and t be positive integers suah that k + t = N.Suppose that we 

have the faatorization 

(3.2) 

+ where P is right reguZar and Q is right invertibZe with right inverse Q . 

~ 

o 
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(3.3) =: n 

and k ~ n, then there exists a unique partiat reatization E = (C/A,B) 

satisfying [Q,QkJ = Q{E,k+l), P = P(E,!), viz 

where Po E R
mxn consists of the first m rows of P and Qi € R

nxp 
is 

defined by·the btock decomposition Q = [QO,Ql, ••• ,Qk-lJ. 

PROOF. Defining S € Rtmxp by the decomposition H
t

,k+l = [Htk,SJ, we 

+ conclude from (3.2) that S = HtkW, where W:= Q Qk' If we decompose 

W by Wi = [Wi, •.. ,WkJ where Wi € RPxP, then the Markov parameters 

satisfy the following recurrence relation 

(3.4) • •. + 

for j = l, ..• ,t. Now, let us define Mi for i > N by this recurrence 

relation. Then the result will follow from Theorem 2.6 if we know that 

rank H 

(3.5) 

= rank Hik =: n. According to [15] it suffices to show that 

rank Ho 1 k . = n x.+ , +] 

for j = 1,2, ..•. For j = 0 this equality follows from (3.3). For j ~ 0 

we have, by (3.4): 

h W~ [0 0 W J' R(k+j)pxp were j!= , •.. " l""'Wk € 

This equation implies (3.5). 

Let us suppose that we are given an infinite sequence M = (M
1

,M
2

, .•. ), 

and that we want to compute a partial realization of (M
1

, ••• ,MN) where N 

is a given positive integer. 

The algorithm is based on recursive construction of the modified 

Hermite form, ITJ/,k' Vtk , TJ/,k' Ftk of H
tk

, that is, 

o 
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where rank F1k = n. We start constructing a modified Hermite form of 

HU = M
1

, (R. == 1,k = 1) (see(2.14». Thus we obtain matrices TI
ll

,Vll ,Tll ,Fll 
such that 

and F11 is right regular and lower triangular. If M1 == 0 then F11 is 

the empty matrix. We proceed recursively as in case a or case e depending 

upon the following properties (for general 1,k), 

= f
O
J1.k Wlkp~ p, n < k, n + p < km, Vtk - ~ j 

for suitable matrices UJ1.k' w1k and Ip E RPxP 

Case a: Property P is satisfied: We add a block row to HJ1.k and write 

H V == ~J1.k d" 1+1,k J1.k S S 
1 2 

then, if S2 == 0 we obtain a partial realization of (M1'"'"'~+J1.) as 

follows: Define 

-1 
P:= TIJ1.k FJ1.k' 

Then we write HJ1.k = [HJ1.,k-1' S] and we have 

= p[r ,O,OJ 
n 

where [r ,0,oJ C Rnx(n+(km-n-p)+p)" It follows that 
n 

and hence HJ1.,k-l == PQ and 

o 
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and hence S = PQk-l. Consequently, we have the relation (3.2) with k 

replaced by k - 1. Also, it is clear that P is right regular and Q is 

right invertible. 

By P we have k ~ nand (3.3) follows from the equation S2 = O. Thus we 

may apply theorem (3.1). 

If £ + k ~ N, the algorithm has terminated. If not, we notice that 

property P is still satisfied with £ replaced by £ + 1 and we proceed 

with case a. If S2 ¥ 0 we determine the Hermite form of S2 and therewith 

the Hermite form of H£+l,k' Then we check again whether P is satisfied 

(with 1 replaced by 1 + 1). 

Case 13 Property P is not satisfied. We add a block column to H£k 

and write 

We try to find a matrix W such that 

IT H t ,k+l [:k :J m [F tk,O,OJ 

The existence of such a W can be investigated by performing column 

operations on the matrix [F£k,O,SJ. Due to the special form of F£k' this 

investigation is very simple and explicit conditions for the existence 

of W can be given: 

(1) The ith row of S is divisible by (F£k)ii" 

(2) If the appropriate multiple of the ith column is subtracted from 

th 1 f S ( t make the i th ) f . 1 th e co umns 0 so as 0 row zero or ~ = , •.• ,n, en 

the resulting columns have to be zero. 

If we are able to construct W, then we check whether k ~ n. If so, we 

are in case a. If not, or if W does not exist, we are again in case S. 
In the latter case, we of course have to update the Hermite form. 

We show that the procedure terminates, provided H has finite rank. First 

we note that for a fixed value of £, we cannot have infinitely often 

that case B holds. For k increases at every step and we must have 

k ~ n after a number of steps, because n ~ tm. Also, condition (1) 

of case S cannot be violated infinttely often, since at every step 

the ideal in R generated by (Ftk)ii will strictly increase unless 
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condition (1) is satisfied. Furthermore, condition (2) will certainly 

be satisfied if n=rank H and every time (2) is not satisfied, n will 

increase. Similarly, in case at S2 = 0 will hold if n = rank Hand 

otherwise n will increase. This shows the finiteness of the algorithm. 

The algorithm given here is not a true algorithm for partial realization, 

since one needs a infinite sequence of Markov parameters in order to 

complete the algorithm. Of course, one can always extend a finite 

sequence such that the resulting sequence has a Hankel matrix of finite 

rank. However, it is not at all obvious how to extend the Markov sequence 

in such a way that the rank will be minimal (compare [12, 3A]). 

4. APPLICATIONS ANV EXAMPLES 

A. If R is a field, then Theorem (2.6) yields a slight modification 

of Zeiger's algorithm. The modification seems to be computationally 

attractive, since for the realization only a right inverse of Q is needed. 

It is not necessary to compute a left inverse of P. 

B. In [12,2C], an example of a Markov sequence over R =~ is given: 

Ml = r -~, M = r 2j t 
~ ~ 2 ~ ~ 

Let us compute a realization for this sequence. It is easily seen that 

rank H22 = rank H = 2. We compute the Hermite decomposition of H22 : 

2 -2 2 2 2 0 0 0 1 -1 1 1 

H22 
2 0 1 1 2 1 0 0 a 2 -1 -1 = = 
2 2 a a 2 2 a a a 1 a a 
1 1 a a 1 1 a 0 0 a a -1 

Hence, we obtain 

1 1 2 0 
1 

-J. Q+ 0 0 2 1 = I P = 
0 -1 2 2 -1 

0 0 1 1 

The matrix Q2 is determined from the equation PQ2 = S := [Mj,M4]' = O. Hence 

Q2 = O. Consequently, we find the following realization: 
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C=p =r B"l,A= 
o ~ ~ 

21,2
2 

2+ = 11 Il, B = 2 = f1 -~ 
L::1 -~ 0 12 ~ 

C. As has been pointed out in [9J, [7J, delay-differential systems can be 

modeled as systems over the ring R =E[dJ. For instance, if we introduce the 

delay operator d by dy(t) = y(t- 1) in the system of equations (see [7, sec

tion 7J). 

(4. 1) 
Y'i (t) + yi (t - 1) = 2ui (t - 2) - 6u2 (t) 

y"(t) + y' (t-1) 
2 2 = -2u

1 
(t - 3) - 2u2 (t) + 4u

2 
(t - 1) 

we obtain y = Wu, where 

W = 
[ 

2 
1 2d s 

2 3 
s + ds -2d s 

-6 l 
-2S+~ 

and s denotes the differentiation operation: sy = y'. (We assume zero initial 

conditions.) We want to obtain a representation of the equations (4.1) in 

the ferm 

x(t) = A(d)x + B(d)u , 
(4.2) 

yet} = C(d)x • 

To this end, we consider W a rational matrix overE(d) and we expand in powers 

of s-1 

-1 -2 
W = Ml (d)s + M2 (d)s + •••. 

Then the matrices A,B,C in (4.2) have to satisfy CAkB = ~+l (k = 0,1, ••• ), 

i.e. (C,A,B) has to be a realization of the Markov sequence (M1 ,M2, ••• ). In 

this particular example we have 

~2d2 ~ [2d

3 

-~. M3 [d

4 

6d J M -
2 ' M2 = 2d4 = 1 - _2d3 _2dS _6d2 . 6d 

We compute a Hermite form of H
22

: 

2d2 
0 -2d3 

-6 -1 0 0 0 -=2d2 
0 2d3 6 

_2d3 
-2 2d4 

6d d -2 0 0 0 1 0 0 

-2d3 = 
-6 2d4 

6d d -6 0 0 0 0 1 0 

2d4 6d _2dS _6d 2 _d2 6d 0 0 1 0 0 0 
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It follows that 

ed2 2d3 ~o 0 

r~ 
0 

0 

d' 
1 

I P = d -2 
Q = 

Q+ = l~ 0 1 0 0 

l::2 
-6 

1/6 0 6d 

The matrix Q2 is easily obtained from PQ2 = S := [M3,M4J' which yields 

L
2d

4 

Q = 
2 0 

Notice, that it is not necessary to know M4 explicitly, since Q2 is uniquely 

determined by the equation P
O
Q2 = M30 

Thus we find the following realization: 

-d - [.1 J C - , A = 
d -2 o 

For the equations (4.2) we obtain: 

xl (t) = -x (t - 1) + 6x2 (t) - 2u (t - 2) I 1 1 

x
2 

(t) = u 2 
(t) , 

Y 1 (t) = -xl (t) , 

y 2 (t) = x 1 (t-l) - 2x2 (t) . 

Notice that P is actually left invertible, because its diagonal elements are 

invertible. It follows that we have a split realization. 

D. Also 2-D systems can be modeled using systems over the principal ideal 

domain R of proper rational functions (see [lJ, [2J, [17J). The realization 

algorithm given in this paper enables us to obtain a first level realization 

(see [1J) I which can be described by the following equations 

xk+1 (s) = A(S)Xk(s) + B(S)Uk(s) 

Yk(s) = C(s)xk(S) + D(S)Uk(s) 

where A(s), B(s), C(s), D(s) are matrices over R. For stable 2-D systems it 

is more appropriate to work with the principal ideal domain 

Rcr:= {res) E]R(S) I res) is proper and has no poles for lsi c.: 1}. 

For a proof that Rcr is a principal ideal domain see [16J. 
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A direct computation of Smith or Hermite forms over R seems to be rather o 
complicated. The problem can be simplified considerably, however, by apply-

ing the following ring isomorphism to R : For r EO: R we define r (s) by o 0 

res) := r(l/s) • 

The set R of rational functions, thus obtained, is characterized by 
o 

R = {rCs) (JR(s) I res) has no pole for lsi!> 1} • o 

This set is also a principal ideal domain (see [16J). Now let H(s) be a ma

trix over R of which we want to compute the R -Smith form. Let H(s) be the 
o 0 

matrix obtained by applying the maps res) + res) to each entry of H(s). Then 

H(s) is a matrix over R • Let h(s) be the least common multiple of the deno-
o 

minators of the entries of H(s) and let HCs) := h(s)H(s). Then H(s) is a po-

lynomial matrix. Using the standard procedure for computing Smith forms over 

R[s] we compute unimodular matrices U(s) and V(s) such that 

If we define D(s) := D(s)/h(s), then 

is the Smith form decomposition of HCs) over R • Note thatJR[sJ c R , so that 
0-0 

the unimodular polynomial matrices U and V are also invertible matrices over 

R. (Actually, this formula is the MacMillan form decomposition of the ratio
o 

nal matrix H(s) overJR[s]. The fact that H(s) is a matrix over R implies 
o 

that D(s) is a matrix over Ro.) 

Finally we replace s by l/s, i.e., we define 

U(s) := U(l/s), D(s) := D(1/s), V(s) := V(1/s) 

and we obtain the Smith form over Ro: 

H(s) = U(s)D(s)V(s) • 

REMARK. Notice that the matrices U and V only have poles and zeroes at s = 0.0 

completely similarly, one can reduce the computation of the Hermite form 

over Ro to the computation overJR[sJ. 

REMARK. In tre above applications all the rings under consideration are in 

fact Euclidean domains (see [14J). This fact can be exploited in the calcu

lations for the Smith form or the modified Hermite form (see [10J). 
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