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General introduction 

During recent years several state space models concerning discrete 2-D 

systems (systems with two time parameters) have appeared in the litterature. 

These are used for example in image processing. To these models are 

attached the names of Attasi [IJ, Fornasini-Marchesini [2J, Givone-

Roesser [3J, the first two models being special cases of the third. 

This is shown in [4J. 

In this paper it is shown that all these models are special cases of 

a new model which is a straightforward generalization of the 1-D case. 
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1. Problem introduction 

(1.1) 

A 2-D I/O (Input/Output) system is characterised by the following 

convolution equation. 

Ykh == 

00 

I Fk-1,h-j 
i,j==O 

u .. 
1.J 

k=O,l, ••• 

h == 0,1, ••• 

where Ykh E JR P, u
ij 

E lR m, FIn E JR pxm 

for p Ell', mEN fixed. 

If FIn == 0 when I < 0 or n < 0, the system is said to be causal. 

Next we introduce some notation. 

(1.2) JR[s,z] denotes the set of polynomials 1.n the variables sand z 

with real coefficients. 

(1.3) JRPxm[s,z] denotes the set of pxm matrices with entries in JR[s,zJ. 

(1.4) JR (s, z) denotes the set of rational functions in sand z. 

(1.5) lRPxm(s,z) denotes the set of pxm matrices with entries in JR(s,z). 

The elements of JR[s,zJ can also be considered as polynomials in z 

with coefficients in lR [sJ, thus lR [s, 

Analogously, JRPxm[s,z] == lR[sJ Pxm[ 

== lR[s][z]. 

A polynomial q E R[s,z] seen as an element of lR [s][z] will be 
-notated as q. 

- pxm - pxm Analogously for P and P where P E JR [s,z] and P E lR [s][z]. 

pxm( ) PI PI Let T E:R s, z , T can be written in the form = where 
q -q p, p, q, q are as above. 

Definition 

(1.6) T <- lRPxm(s,z) is called proper if for T = PI 
q 

1
0 degree of q(z) is not less than the qegree of P(z) 

2° degree of the coefficient of the highest power in z in q(z) is 

not less than the degree of all other coefficients of q(z) and the 
-

entries of F(z), 

() pxm().. ." II • I b 1.7 T E lR s,z 1.8 str1.ctly pr02er 1.f not less l.S rep aced y 

"greater" in the above definition. 
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Let q(s,z) € ]R[s,zJ, suppose the degree of q(s,z) in s is m and 

the degree of q(s,z) in z is n. 
! 

Then for q to be the denominator of a proper T it is necessary and 
, .. \ . . . n m 

sufficient that the coeff~c~ent of the monom~al z s is not equal 

to zero. 

This coefficient can w.Lo.g. taken to be unity. 

2 1 zs + s 
Examples - and 2 are not proper. - z+s ' 

z s + s 

2 
z s + zs + 1 

z + 3s is proper. 

Consider the formal power series representation of T(s,z) 

IX) 

\' -k -h (1.8) T(s,z) = L Lkh z s 
k,h=O 

Now define an I/O system by taking Fkh = Lkh ~n (1.1) for all k,h. 

Then we have: 

(1.9) T(s,z) is proper iff the associated I/O system is causal. 

In the next we are going to construct a state space realization of 

a proper T(s,z), which is an undefined object up to now. 

For that purpose we need same theorems on linear systems over a 

commutative ring, as can be found in [5J, [6J, [7], [8]. 
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2. Linear systems over commutative rings 

Let R be a commutative ring. 

Definition 

(2.1) A system r is (A,B,C,D) where A E Rnxn, B E Rnxm, C E RPxn, D E RPxm 

for some integers n,m,p. n is called the rank of the system. 

If m = p = I we call the system scalar. 

We will use an interpretation in terms of discrete-time dynamics. 

~+1 == A~ + B~ x == 0 o 

k=0,1,2, ••• 

Usually ~ E R
n 

will be called the state, ~ E R
m 

is called the 

input and Yk E RP is called the output. 

The I/O map fZ: (uO,u 1'···) ~ (YO~Yl~"') 

is completely determined by (F
O

,F
1

,F
2

, ••• ) where 

(2,2) FO = D~ Fi = CAi-IB i = 1,2, ••• see also (I. 1 ) 

In fact every I/O map (linear, shift invariant and causal defined 

~n the usual way) is given by a sequence (F
O

,F
I
,F

2
, ••• ) 

Now let there be given an I/O map fr characterised by (F
O

,F
1
,F2, ••• ). 

We say that the system (A,B,C,D) realizes fr if (2.2) holds. 

Because the Cayley-Hamilton theorem is valid over a commutative ring 

we have: 

Theorem [9J ch 10.11. 

(2.3) An I/O map fr is realizable iff it is recurrent. Where recurrency 

of (F
O

,F
1
,F

2
, ••• ) is defined as: 

n-I 
L a. F. k for all k ~ O. 

~ 1+ i=l 

where a. E R ~ == l, .•. ,n-l 
1 

and some integer n. 

The formal power series associated with (FO,F
1

, •• ) is defined by: 

00 

W(z) = I 
i=O 

-i 
F.z 

1 
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Theorem [5J 

(2.4) (FO,F 1,F2 •.• ) is realizable iff the associated formal power series 

W(z) is rational. 

(2.5) 

(2.6) 

(2.7) 

In the case R is field another necessary and sufficient condition is: 

has finite rank 

The smallest integer n such that all minors of order greater than n 

are zero will be called the rank of the Hankel matrix. 

The definitions of reachability and observability are the same as in 

the case where R is a field. 

We have: 

A realization is reachable iff the columns of B, AB, 
n span R • 

n-l 
••• , A B 

A realization is observable iff CAix = 0 i = O,l, ••• ,n-l implies x=0 

Definition 

(2.8) A realization is minimal if n is minimal. 

Contrary to the case where R is field we have if R is a ring: 

Minimality does not imply reachability and observability [5J. 

However if R is a principal ideal domain (P.I.D) we have: 

Theorem [6J 

(2.9) If the Hankel-catrix associated with an I/O map characterised by 

the sequence (F
O

,F
1

,F
2 

••• ) has finite rank n then there exists a 

reachable and observable realization which has itself rank n. 

This theorem is proved by introducing the quotient field K of R 

and then proving that there is a minimal realization over K which 

is in fact a realization over the P.I.D. R. 

(2.10) 

The ring which will be of central importance here is the ring 

of proper rational functions in one variable s. 

Rg = {:~:~ I degree b ~ degree a} 

This ring is actually a P.I.D. as can easily be proved [5]. 
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3. The realization procedure 

(3. 1) 

(3.2) 

(3.3) 

pxm - ....pXtn -
Let T(s,z) E lR (s,z) and T == P/ where P E.Jl:C [s][z] and q <::. lR[s][zJ. 

q 

Suppose T is proper and let W(z) = L 
i=O 

-i F.z be its associated formal 
1 

power series where F. are matrices whose entries are proper rational 
]. 

functions in s. 

To obtain a minimal realization of W(z) we apply theoretn (2.9) 

to the I/O map f~ characterised by (FO,F I , ••• ), the P.I.D. being Rg 

which gives us matrices: 

D(s), C(s), A(s), B(s) 

all of whose entries are elements of R ,with dimensions p x m, 
g 

p x n, n x n, n x m. 

We have: 

-1 
T(s,z) = D(s) + C(s)[zI - A(s)] B(s) 

The dynamical interpretation is given by the following equations: 

~+I(S) = A(s) ~(s) + B(s) ~(s) ~o(s) = 0 

Yk(s) == C(s) ~(s) + D(s) ~(s) with appropriate dimensions. 

where ~(s) is a formal power series for each k = 0,1, ••• 

(X) 

1c (s) == I ~is-i analogously for ~(s) and Yk(s). 
i=O 

This minimal realization is called the first level realization of T(s,z). 

Observe that we do not require ~k(s), ~(s), Yk(s) to be rational. 

The product A(s) ~k(s) is well defined because rational functions 

are also formal power series with the usual definition of product. 

The matrices D(s),C(s), A(s), B(s) are uniqurly determined up to 

isomorphism [5J. 

The realization (D(s), C(s), A(s), B(s» 1S isomorphic to 

(D(s),C(s),A(s),B(s» if there exists an invertible matrix S(s), 

S(s) and S-I(5) both having entries in the P.I.D. R , such that 
g 

D(s) D(s), e(s) = C(s) S-I(s) 

A(S) 
-1 

= S(s) A(s) S (s), B(s) = S(s)B(s). 



(3.4) 
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The matrices D(s)~ C(s), A(s), B(s) can be seen as )-D transfer 

matrices themselves. 

Realizing each of them we obtain realizations 

DD DC DA DB for D(s) 

CD CC CA CB for C(s) 

AD AC AA AB for A(s) 

BD BC BA BB for B(s) 

(all of them are single matrices, not products) 

who constitute minimal realizations such that: 

A(s) = AD + AC[sI - AAJ 
-1 

AB 

and analogously for D(s), C(s) and B(s). The matrix S(s) (3.2) 

can of course be given an analogous dynamical interpretation. 

(3.4) will be called the second level realization of T(s,z). 

The interpretation of the second level realization is the following: 

c~h+l = CA ~h + CB~h 

Ykb :: CD~h + CCckh + DCdkh + DDukh 

where the vectors have suitable dimensions and all initial conditions 

are equal to zero. 

In (3.5) ~h. ~h, ckh ' ~h' bkh are local state variables 

Furthermore we have: 

<Xl 

() \ ~ s-h 
~ s .. L k 

k h=O h 

see(3.2) 
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A flow diagram for (3.2) and (3.5) revealing the first and second 

level realization is: 

! -z 

fig. 1. 

We will show that the mode~of [lJ,[2J,[3J are special cases of the 

above constructed model. 

To prove this it is enough to show that the model of [3J is a special 

case of our model since the models in [lJ and[2J are special cases 

of the model of [3J, compare [4J. 

With notation as in [3J the model considered there is: 

y 
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We now have: 

Theorem 

.7) The model ~n (3.6) can be written in the form (3.2) and (3.5). 

The corresponding matrices are: 

-1 C(s) :: CZ[sI -
-1 

D(s) ... CZ[sI - A4 J B2 A4 J A3 + C
1 

A(s) ... Al + Ai sl - A J- 1 
A3 ' B(s) :::: A

2
[sI - A J- 1 

B2 + BI 4 4 

and 

DD = 0 DC = C2 
DA :,: A DB = 

4 
CD = C

1 
CC = Cz CA = A CB = A3 4 

AD = A] AC = A
Z 

AA = A AB = A3 4 
BD = BI BC A2 BA = A BB = BZ 4 

proof: Introducing formal power series in two variables z and s 

(Or Z-transform in two variables) 

co 
\' -k -h 

y(s,z) = L Ykh Z s 
k,h=O 

we obtain: 

y(s,z) 

Now: [ZI-AI 

-A 
3 

and assuming zero initial conditions 

and then by calculating both inverses in the right-hand side we obtain: 

y(s,z) = T(s,z) u(s,z) where 

T(s,z) 

• [Bl+A2[sr-A4J-IB2J,proving the theorem. 

Starting with a transfer matrix our procedure will give dynamical equations 

of relatively small order. 

The procedure of [4J for scalar transfer functions to obtain a 

Givone-Roesser model will usually result in large matrices. 

Our second level realization gives more matrices but they are "smaller", 



(3.9) 
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This can be shown as follows: 

Writing (3.5) in Givone-Roesser form the corresponding matrices and 

vectors are: 

Rkh = xkh ' Al = AD, A2 == [AC,BC,O,O], Bl = BD 

akh AB AA 0 0 ° fo1 
b

kh 
0 0 BA ° ° BB( 

Skh= , A3 = , A4 :: , B2 = 
o \ c

kh 
CB 0 0 CA 0 

d
kh 

0 0 0 0 DA DBJ 

C :: CD , C
2 = [O,O,CC,DC] 

I 

example 

Consider a scalar proper transfer function 

n i L a, (8) z 
i=O ~ 

T(s,z) = n 
zj L b, (z) 

j=O J 

properness implies that b (s) ~ 0 and that the degree of b (s) is not 
n n 

less than the degree of any other coefficient. 

n i 
L a. (s) z 

i=O ~ 

T(s,z) = n 
zj L s. (s) 

j=O ~ 

where 

a. (8) b, (s) 
a, (s) = ~ 

€ R and 6.(s) R b (s) =m E 
~ g J b s g n n 

To simplify the example we will assume a (s) = O. 
n 

The first level realization gives: 

D(s) == o because a (8) 
n = 0, C(s) = 
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B(s) = r~ 
o I 

A(s) = 

1 I 0 
-Sn_l(s) I 

L 

The second level realization gives 

CD, CC, CA, CB, AD, 'AC, AA, AB, BD 
, 

BC == BA == BB == 0 

The first level realization was very easy because of the standard 

controllable form of A(s) and B(s). 

The resulting state space equations are 

[~+l 'hl rAD 

"!c,h+1 - ~E 
~ h + 1 = CA ckh + CB xkh 

Ykh == CD ~h + CC ~h 

where AD is n by n, AA is m by m, CA is m by m and m is the degree of 

b (s). 
n 

Two kinds of system matrices have been obtained 

(n+m) by (n+m) 

representing dynamics in two directions and [CAJ m by m representing 

dynamics in one direction. 

In [4J a (n+2m) by (n+2m) system matrix is obtained for this transfer 

function because the authors wanted system equations in Roessers form. 

It is the authors opinion that the above equations with two kinds of 

dynamics are more natural because 

of the I-D case. 

are a straightforward generalization 



4. 1) 
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Stability 

Let T(s,z) E lRPxm(s,z) be the transfer matrix of a causal I/O system (1.1). 

The system (1.1) is said to be BIBO (bounded input-bounded output) 

stable if: Y M > a 3 N > a such that Yi,j II uijll ~ M =4> II Ykhli ~ N, Y k,h 

where II II denotes the Euclidean norm. 

Theorem 

The I/O system is BIBO stable iff E IIFkhll < <:X> for a proof see [ISJ. 
k,h=O 

Theorem (Shanks) 

.2) The I/O system is BIBO stable if q(s,z) # 0 for lzl ~ 1, lsi ~ 1. 

.3) 

where q(s,z) is the least common multiple of all denominators of the entries 

of T(s,z). 

For a proof see [12J, this proof is for the scalar case but the 

matrix case is completely analogous. 

Theorem (Huang) 

q(s,z) -:f 0 for I zl :::; 1, \ s I :::; 1 iff 

1
0 

'l(s,O) -:f 0 for \ 5\ :::; 

20 q(s,z) # a for \ zl s: 1 , I s I .. 1 

for a proof see [11J, [13J 

'd' (1 1) h () By cons~er~ng q ;'z were q s,z 
n 

= .La b_{s) zJ and mUltiplying 
J= J 

with appropriate powers of sand z and using Huangs theorem we have: 

Theorem . 
• 4) q(5,Z)"1 ° for lsi ~ 1, Izl ~ I iff 

1
0 

b (s) "1 a for \sl ~ 1 
n 

2
0 

q(s,z) -:f a for Izi ~ 1, lsi = 1 

Therefor for BIBO stability it is necessary that b (s) is stable 
n 

(b (s) -:f 0, \ s I 2 1). 
n 

This motivates us to introduce a subring R of R cr g 

{a(s) I I I Rcr = b(s) b(s) # 0, IS, 2 I} 

R is also a P.I.D. [5J cr 

Before introducing stabilizability of 2-D systems we state the 

following: 
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Theorem [5J . 
(4.5) Let R be a P.I.D., A E Rnxn , B E Rnxm and A,B reachable. 

mXn Then for every p}"'Pn E R there exists K E R such that 

det[zI-A+BKJ = (z-P 1)(z-P2)"'(z-P
n

). 
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5. Feedback, pole-placement and stabilization 

Consider now a proper transfermatrix T(s,z) E RPxm(s,z). 

n 
Let T(s,z) = P(z)/_ and q(z) = I 

q (z) j=O 

We will assume b (s) ~ 0 for lsi ~ j 
n 

Then deviding all coefficients of all powers of z by b (s) 
n 

T(s,z) can be considered as a p x m matrix whose elements are 

proper rational functions in z with coefficients in R . (1 

be a first level minimal realization of T(s,z) with dynamics: 

~~l(S) = A(s) ~(S) + B(s) ~(s) 

Yk(s) .. C(s) ~(s) + D(s) ~(s) with appropriate dimensions 

Choose Pl"'Pn E R(1 such that (z-Pj)"'(z-Pn) is stable. 

By theorem (4.5) there exists K(s) E Rm n such that: 

det[zI-A(s)+B(s)K(s)] .. (z-P1) ••• (z-Pn)' 

We can thus stabilize the 2-D system by a feedback law. 

We can even take PI'"Pn to be constants which is very remarkable. 

K(s) can be given a dynamical interpretation by realizing the ]-D 

transfer matrix K(s) as follows: 

lk,h+ 1 ::: KA lkh + KB xkh 

with appropriate dimensions and zero initial condition. 

mxn 
KA is stable because K(s) E R • 

IJ 

We will now consider more closely the reachability condition which 

is restrictive for applying the above procedure. 

First we have: 

A(s), B(s) reachable 

is equivalent to: 
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. n'mxn There eXLsts L(s) E R such that: 

(5.1) [B(s) ,A(s)B(s), ••• ,An- 1 (s)B(s) ] L(s) = I 

Theorem 

(5.2) A(s), B(s) 
n-l 

is reachable iff [B(s), A(s)B(s), •.• ,A (s)B(s)J 

has rank n for all lsi ~ 1 and for lsi ~ ro or equivalently: 
1 n-l 1 1 I I (5.3) rank [B(-), ••• ,A (-) B(-)J is n for all SI ~ 1 after multiplying 
s s s 

with an appropriate power of s to obtain again reational functions in s 

Proof: by (5.1) necessity is obvious. 

The condition is also sufficient. , 
First replace s by ~ and multiply with an appropriate power of s. 

s 
Now suppose A(s), B(s) is not reachable. 

Then we have [10J that: 

The greatest cammon divisor of all n x n minors of (5.3) LS not 

invertible in the ring 

RO = {;~:~ I b(s) f 0 lsi ~ I} 

Therefor there exists sO' Isol ~ 1 such that all n x n minors 

of (5.3) are zero for s = So thus for s = So (5.3) has not 

full rank. 

The case So = 0 corresponds to the case lsi ~ ro in (5.2). 

Not making the stability requirements, the ring of interest 1S there

for R , we have the next: 
g 

Theorem 

(5.4) A(s), B(s) is reachable iff AD, BD is reachable see (3.4) for 

AD and BD. 

(5.5) 

This theorem can be proved in the same way as theorem (5.2) 

by using the ring 

R = {a(s) I b(D) f O} 
a b(s) 

instead of R 
cr 

There is still another characterization of the reachability 

of A(s), B(s). 

In [4J modal controllability is defined as follows 

A21 and fBIl are modally controllable if: 

A41 IB21 
...l '- _ 
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[HI -A

J 
and rJ are left 

coprime with respect to 

S-A: 
(w.r.t.) CI: [s,z] 

-A B2 3 

where left coprimeness is defined by: 

Every left common factor is necessarily unimodular. 

Instead of lRCs,z] we take here ~[s,z], the ring of polynomials 1n 

two variables with complex coefficients, because the field of 

coefficients has to be algebraically closed. See also [4J part 1. 

nXn nXm Suppose A(s,z) E a [s,zJ, B(s,z) E a [s,zJ. 

In [4J the following is proved. 

Theorem 

(5.6) A(s,z) and B(s,z) are left comprime w.r.t. a[s,zJ iff: 

(5.7) 

1
0 

A(s,z) and B(s,z) are left comprime w.r.t. ~(s)[zJ 

2
0 

A(s,z) and B(s,z) are left comprime w.r.t. ~(z)Cs] 

where ~(s) (a(z» is the field of rational functions in s (z) 

with complex coefficients. 

Next suppose (AD, AC, AA, AB) and (BD, BC, BA, BB) are realizations 

of A(s) and B(s). 

We then have: 

Theorem 

If rZ-AD -AC -B

J 
and rBD] are 

-AB S-M 

S-~A lB~ ... 0 0 

left comprime w.r.t. a[s,z] then A(s), B(s) is reachable. 

Proof Suppose that A(s), B(s) is not reachable. 

Then [z-A(s)J and B(s) are not left comprime or equivalently: 

[z-A(s), B(s)] is not right invertible 

Therefor there exists 

L(s,z) E lR(S)[Z] S.t. '" z - A(s) = L(s,z) A 
'" B(s) = L(s,z) B 

and L(s,z) 1S not unimodular. 
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We now have: 

I~-AD -AC -B

J [~ 
-AC -B

J 
fZ-AD-AC[ ~~AAl-l AB 0 

~] -AB s-AA 

S-~A "" s-AA o -[s-AA] AB I 

l 0 0 0 s-BA l 0 0 

and thus 

[Z-~ -AC 

-~J [(st -AC 
-BCl t A 

0 

:J A = . ~AB s-AA = s-AA o -Es-AA]-l AB I 

0 s-BA 0 s-B~ 0 0 

[::] _ [L(st J[ - J 
-AC -BC B 

-B = s-AA 

S-~A [S-B~]-lBB 0 

- -Hence A and B are not left coprime w.r.t. 1R(s)[zJ and therefor not 

left coprime w.r.t. ¢[s,zJ. 

So we have that the modal controllability of 

rAD AC Bj [~:J implies the reachability l: AA o and of: 

0 BA 

[AD + AC[s-AAJ-1ABJ and [BD + BC[s-BA]-lBB] 

We can prove a partial inverse of theorem (5.7) 

Theorem 

(5.8) If A(s), B(s) is reachable then 

(5.9) 

[

S-AD 

-AB 

o 

-AC 

s-AA 

o 

-BC] fBD] o and 0 

s-BA _BB 

are left coprime w.r.t. ~ (s)[zJ 

Proof Suppose A(s) and B(s) are reachable and thus [z-A(s)] and B(s) 

are left coprime. Therefor there exists L(s,z) and Q(s,z) with 

entries from 1R(s)[z] s.t. 

[z-A(s)] L(s,z) + B(s) Q(s,z) = I 

Now we have: 

jZ-AD 
, -AB 

L 0 

-AC 

s-AA 

o 

L A" 

[S-AA:l- 1
+A

1
LA

2 
-B t QA2 



where Al = [s-AAJ- 1AB 

-1 
BI [s-BA]' BB 

L = L(S,z) 

which proves the theorem. 
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A2 = 

B2 = 

Q = 

AC[s-AAJ 
-1 

BC[s-BAJ 
-] 

Q(s,z) from (5.9) 

The complete inversion of theorem (5.7) is still under investigation 

in particular the role minimal realizations of A(s) and B(s) play. 
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Conclusions 

In this paper a realization procedure has been described as an application 

of the theory of linear systems over commutative rings. In [14J Sontag 

makes a remark about this. 

Under certain conditions the existence of a stabilizing feedback regulator 

has been proved and connections with [4J have been made. 

It is the authors opinion that the algebraic methods used here 

to be very fertile in 2-D systems theory, 

11 prove 

In 5. the reachability condition is rather severe but in the case of 

a scalar transfer function which can be first level realized in standard 

controllable form this condition is always satisfied. Compare the 

example in 3. 
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