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Abstract High-resolution video images contain huge

amount of data so that the real-time capability of image

registration and target localization algorithm is difficult to

be achieved when operated on central processing units

(CPU). In this paper, improved ORB (Oriented FAST and

Rotated BRIEF, FAST, which means ‘‘Features from

Accelerated Segment Test’’, is a corner detection method

used for feature points extraction. BRIEF means ‘‘Binary

Robust Independent Elementary Features’’, and it’s a bin-

ary bit string used to describe features) based real-time

image registration and target localization algorithm for

high-resolution video images is proposed. We focus on the

parallelization of three of the most time-consuming parts:

improved ORB feature extraction, feature matching based

on Hamming distance for matching rough points, and

Random Sample Consensus algorithm for precise matching

and achieving transformation model parameters. Realizing

Compute Unified Device Architecture (CUDA)-based real-

time image registration and target localization parallel

algorithm for high-resolution video images is also

emphasized on. The experimental results show that when

the registration and localization effect is similar, image

registration and target localization algorithm for high-res-

olution video images achieved by CUDA is roughly 20

times faster than by CPU implementation, meeting the

requirement of real-time processing.

Keywords Image registration � Target localization �

High resolution � Video images � CUDA

1 Introduction

Accurate target localization by effective image registration

algorithm, which plays a significant role in target recog-

nition and machine vision navigation, has received exten-

sive attention in the field of computer vision.

Constructing and matching descriptors in SIFT-based

[1] (SIFT means ‘‘Scale-Invariant Feature Transform’’, and

it’s an algorithm to detect and describe local features) or

SURF-based [2] (SURF means ‘‘Speeded Up Robust Fea-

tures’’, and it’s a local feature detector and descriptor partly

inspired by SIFT) methods are very complicated and

memory consuming; therefore, it is very difficult to apply

them for real-time image registration and target localiza-

tion for high-resolution video images by CPU [3]. In recent

years, local binary features have received wide attention

and been researched in depth due to the simple structure,

low memory requirements and fast feature extraction and

matching. Research led by Xu et al. [4] showed that it was

possible to realize image stabilization using image regis-

tration algorithm based on ORB with average cost of about

125 ms in 640 9 480 video images, 2–3 times faster than

based on SIFT. Research led by Li et al. [5] used image

registration algorithm based on ORB to realize target

detection with average cost of about 30 ms in 352 9 288

video images, about six times faster than based on SURF.

The use of CUDA [6] parallel architecture to achieve

speedup for image processing algorithm for high-resolution
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video images can reduce computing time and realize real-

time image registration and target localization [7, 8].

Research led by Tian et al. [9] implemented SIFT feature

extraction and matching algorithm using CUDA and

achieved 30–50 times speedup compared with CPU

implementation. Research led by Heymann et al. [10]

accelerated SIFT feature extraction algorithm by graphics

processing unit (GPU) with the speed of 20 frames/s in

640 9 480 video images. However, the real time of reg-

istration for high-resolution video images has not yet been

fully achieved. Therefore, this paper focuses on the

research of image registration and target localization par-

allel algorithm based on binary features, and on further

improvement of CUDA parallel algorithm [11] through

optimizing bandwidth and data access mode [12], and

finally on the realization of real-time image registration and

target localization for high-resolution video images.

2 Research of image registration and target

localization parallel algorithm

High-resolution digital video image contains such a huge

amount of data that when binary feature-based image

registration and target localization algorithm operated on

CPU is applied, enormous time is cost and real-time

implementation is hard to be realized. This paper focuses

on 3 of the most time-consuming part of the algorithm:

binary feature extraction, feature matching based on

Hamming distance and RANSAC [13] algorithm, and on

performing them through CUDA for real-time image reg-

istration and target localization for high-resolution video

images.

2.1 Research of image registration and target

localization parallel algorithm based on binary

feature

Binary feature-based image registration and target local-

ization algorithm is mainly divided into four parts: (1)

Binary feature extraction; (2) Feature matching based on

Hamming distance; (3) RANSAC algorithm for matching

pure points and achieving transformation model parame-

ters; (4) Coordinate transform to locate the target. The

whole process of the algorithm is illustrated in Fig. 1.

ORB [14] feature is generated by FAST [15] key point

detection and BRIEF [16] feature description, providing a

good real-time performance. In addition, the ORB features

are invariant to image translation and rotation, and partially

invariant to change in illumination and viewpoint.

According to the disadvantage that the ORB features are

not invariant to image scaling, this paper presents improved

ORB feature extraction algorithm.

2.2 Research of improved ORB feature extraction

parallel algorithm

This paper describes an approach to extracting improved

ORB features. The image Gaussian Pyramid is firstly

constructed to identify key points and feature vectors in

each image layer, ensuring that the improved ORB fea-

tures are invariant to scale. Since all key points and

features extracted in each image layer are mapped to the

original image, making the location of features too dense

and repetitive, repeated points deletion and non-maxima

suppression algorithms are further proposed to make sure

feature points are evenly distributed and the effect of

image registration is improved. Following are the major

stages of computation used to generate the improved

ORB features: (1) construction of image Gaussian

Pyramid. (2) FAST key point detection in each image

layer. (3) Coordinate normalization in each image layer

of different sizes. (4) Repeated points deletion. Each key

point is compared to its corresponding key points in the

scale above and below and the key point which has the

largest response is preserved. (5) Non-maxima suppres-

sion. Each key point is compared to its eight neighbors

in the current image and eight neighbors in the scale

above and below. It is kept only if its response is larger

than all of these neighbors and otherwise it will be

deleted. (6) Sort the key points according to FAST and

Harris response [17], and pick the top N key points

where N is the number set in advance. (7) Assign the

orientation to each key point, describe the rBRIEF fea-

ture, and complete the improved ORB feature extraction.

The overall steps of the improved ORB feature extrac-

tion algorithm are illustrated in Fig. 2.

Corresponding parallel algorithm is further researched,

and the parallelization design of the improved ORB feature

extraction algorithm based on CUDA is as follows:

Reference imageReference image

Binary feature extraction Binary feature extraction 

Video imageVideo image

Binary feature extraction  Binary feature extraction 

Binary feature matching Binary feature matching 

Transformation model solutionTransformation model solution

Coordinate transformationCoordinate transformation

Target localizationTarget localization

Hamming distanceHamming distanceHamming distance

RANSACRANSAC

Fig. 1 Flowchart of binary feature-based image registration and

target localization algorithm
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1. There is no data communication between image layers

of Gaussian Pyramid in the process of FAST key point

detection. Therefore, FAST key points are detected

parallel in each image layer.

2. FAST key point detection is only associated with the

neighbor data in the current image of each pixel and

the process is the same, so it can be computed parallel

and massively.

3. Repeated point deletion and non-maxima suppression

algorithms are only related to the neighbor data in the

current image and the neighbors in the scale above and

below. Input three layers of image Gaussian Pyramid at

the same time and calculate parallel in the same way.

4. For each key point location, the orientation is calcu-

lated parallel and based on local image information

independently. Then, 256 bit ORB feature is

generated.

2.3 Research of improved ORB feature matching

parallel algorithm

Improved ORB feature matching algorithm is achieved in

two steps as follows.

2.3.1 Feature matching based on Hamming distance

for matching rough points

K1 and K2 are two improved ORB feature vectors:

K1 ¼ x0x1 � � � x255, K2 ¼ y0y1 � � � y255. The Hamming dis-

tance between K1 and K2 is defined as DðK1;K2Þ:

DðK1;K2Þ ¼
X

255

i¼0

xi � yi ð1Þ

where � is the XOR operation, xi or yiði ¼ 0; 1; . . .; 255Þ
can take the binary values of either 1 or 0. The smaller the

value of the Hamming distance DðK1;K2Þ is, the higher the

similarity degree between two feature vectors is. Otherwise

the similarity degree is lower.

Define Thr as the threshold of the Hamming distance. If

DðK1;K2Þ is larger than Thr, then remove the matching key

points corresponding to the two feature vectors. Calculate

the Hamming distance of each improved ORB feature

vector between the reference image and the image to be

registered to get all the rough matching points.

2.3.2 RANSAC algorithm for matching pure points

and achieving transformation model parameters

In this paper, the affine transformation is used to describe

the changes between images. The point (x, y) in the ref-

erence image can be transformed to the point (x1, y1) in the

image to be registered after the affine transformation.

½x1; y1; 1�
T ¼ H½x; y; 1�T ð2Þ

where H ¼
a11 a12 a13
a21 a22 a23
0 0 1

2

4

3

5 is the transform matrix and

aij represents the parameter in the affine transform matrix.

Let P be the set of the coordinate data of all rough

matching points. Then, the parameters of the affine trans-

form matrix can be computed by sampling three matching

points from P. The other matching points from P are used

to verify the calculated affine transform model. The num-

ber of matching points that conforming to this model is

added up and the best model which has the most number of

matches is determined.

Corresponding parallel algorithm is further researched,

and the parallelization design of the improved ORB feature

matching algorithm based on CUDA is as follows:

1. The calculation of Hamming distance between two

feature vectors is completely independent and needs no

data communication, therefore the Hamming distance

can be computed parallel and independently.

2. The XOR operation between the 256-dimensional

features vectors is only related to the bit data of each

dimension, therefore the calculation of it can be

independent and parallel.

3. In the process of RANSAC algorithm, the sampling

from the coordinate data set P is random and

independent. Therefore, each calculation of random

sampling is achieved in parallel.

Input ImageInput Image

Gaussian Pyramid

construction

Gaussian Pyramid 

construction

FAST keypoint detection in 

each image layer

FAST keypoint detection in 

each image layer

Repeated points deletionRepeated points deletion

Non-maxima suppressionNon-maxima suppression

Orientation assignmentOrientation assignment

256bit feature vector256bit feature vector

improved ORB featurepimproved ORB feature

Coordinate normalization Coordinate normalization 

Fig. 2 Flowchart of Improved ORB feature extraction algorithm
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4. When calculating the affine transform model based on

sampling data, the calculation process is only related

with each sampling data, and each calculation process

is independent, so the transform model based on

RANSAC can be computed parallel and

independently.

5. There is no data communication when checking the

correctness of each transform model according to its

own parameters and all rough matching points.

Therefore, the process of transforming model testing

based on RANSAC can be parallel and independent.

3 Real-time implementation of image registration

and target localization based on CUDA

In this section, detailed illustration of the implementation

of our algorithm based on CUDA is shown. Firstly, the

overall framework of our algorithm is shown in Fig. 3.

Then, detailed description of parallel optimization and

implementation of improved ORB feature extraction is

given in Sect. 3.2. Finally, Sect. 3.3 presents implementa-

tion of improved ORB feature matching which includes

Hamming distance and RANSAC algorithm based on

CUDA.

3.1 Parallel optimization and implementation

of improved ORB-based image registration

and target localization by CUDA

The tasks of CPU and GPU are reasonably divided

according to the amount of calculated data, the paralleliz-

ability of the algorithm, transmission delay and other fac-

tors. The improved ORB feature extraction and matching

by CUDA are parallel implemented. In addition, the

improved ORB feature matching contains Hamming dis-

tance for matching rough points and RANSAC algorithm

for precise matching and achieving transformation model

parameters. The implementation process of the CUDA-

based image registration and target localization is shown in

Fig. 3.

3.2 Parallel optimization and implementation

of improved ORB feature extraction based

on CUDA

Real-time implementation of CUDA-based improved

ORB feature extraction is divided into three parts: parallel

construction of image Gaussian Pyramid; parallel detec-

tion of improved FAST key point; parallel extraction of

improved ORB feature vector. The main steps are as

follows.

3.2.1 Parallel construction of image Gaussian Pyramid

Determine the size of each image layer. Map the coordinate

of each image for thread index where each thread corre-

sponds to an image pixel. Then calculate the Gaussian

Pyramid of image in parallel by down sampling and

bilinear interpolation.

3.2.2 Parallel detection of improved FAST key point

1. FAST key point detection in each image layer

Map the coordinate of each image layer for thread index,

where each block is assigned 32 9 8 threads and the

number of blocks is:

Nblock 1¼
W � 6þ dimBlock:x� 1

dimBlock:x

�
H � 6þ dimBlock:y� 1

dimBlock:y

ð3Þ

where Nblock 1 is the number of blocks in this step, W and

H are width and height of the image. The purpose of this

distribution method is to prevent access violation. Each

thread corresponds to one pixel, accesses its neighboring

information, and parallel detects for the FAST key point. If

the condition of FAST key point is met, put the coordinates

of the pixel in global memory. At the same time, use the

atomicAdd function to add up the number of key points in

global memory.

Distribute the global memory with the same size of the

image layer, which is used to store response of the corre-

sponding key point, and then set it to zero. If the pixel is

determined as FAST key point, the response is stored in the

corresponding position of the allocated memory.

2. Coordinate normalization in each image layer of

different sizes

Distribute the global memory with the same size of the

original image as a response map to store the updated

response of the key point. To use the execution units

effectively, each block is assigned 256 threads and the

number of assigned blocks is:

Nblock 2 ¼
Nkeypoints þ dimBlock:x� 1

dimBlock:x
ð4Þ

where Nblock 2 is the number of blocks in the step of

coordinate normalization and Nkeypoints is the number of key

points. In each thread, the normalized coordinates of each

key point are calculated and updated on the corresponding

location in the response map.

3. Repeated points deletion and non-maxima suppression

Pass the coordinates, response and neighbor response of

the key point in current image layer and corresponding
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neighbor response in the scale above and below as argu-

ments to the kernel function of repeated points deletion and

non-maxima suppression. Each block is assigned 256

threads and the number of blocks is:

Nblock 3 ¼
N

0

keypoints þ dimBlock:x� 1

dimBlock:x
ð5Þ

where Nblock 3 is the number of blocks in this step and

N
0

keypoints is the number of key points in current image layer.

Each thread corresponds to one key point and reads 27

responses around the key point in three image layers. If the

response of the key point is the biggest, retain this key

point and remove two corresponding key points in the scale

above and below, otherwise remove this key point. Use the

atomicAdd function to add up the number of key point after

repeated points deletion and non-maxima suppression.

4. Sort the key points according to FAST and Harris

response

Put the coordinates and response of the key point after

repeated points deletion and non-maxima suppression into

the kernel function to sort. Implement parallel sort by

calling the sort_by_key algorithm in Thrust library. Get

(2 9 N) key points which have strong responses and N is

the number set in advance.

Calculate the Harris responses of these key points and

also implement parallel sort by calling the sort_by_key

algorithm in Thrust library. Then pick the top N key points

which have strong responses as the results of improved

FAST key point detection.

3.2.3 Parallel extraction of improved ORB feature vector

Firstly, compute the orientation of the key point in parallel.

Each block is assigned 32 9 8 threads and the number of

blocks is:

Nblock 4 ¼
Nall keypoints þ dimBlock:y� 1

dimBlock:y
ð6Þ

where Nblock 4 is the number of blocks in the step of

computing the orientation of the key point and Nall keypoints

is the number of all key points. Calculate two neighbor

moments m_01, m_10 and store the results in shared

memory to improve the efficiency of repeated data access.

The thread with the 0 index in each block calculates the

orientation of the key point according to the definition of

Fig. 3 Flowchart of CUDA-based image registration and target localization algorithm
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intensity centroid with the values of m_01 and m_10 and

stores the results in global memory.

Configure the parameters and start the kernel function of

feature extraction. Each block is assigned 32 9 8 threads

and the number of blocks is:

Nblock 5 ¼
Lþ dimBlock:x� 1

dimBlock:x

�
Nall keypoints þ dimBlock:y� 1

dimBlock:y
ð7Þ

where Nblock 5 is the number of blocks in this step and L is

the length of feature vector.

In this paper, a 256-element improved ORB feature

vector is used. The amount of data on each dimension is a

bit, so that each feature vector has the length of 32 uchar

data. Use thread index to get the serial number of each key

point and the ordinal position in the global memory of each

feature vector. Generate the feature vector according to the

orientation of the key point and the sampling mode in the

image block around in each thread. Finally, the results of

improved ORB feature vectors are stored in the global

memory. The manner of thread index of improved ORB

feature vector extraction is shown in Fig. 4.

3.3 Parallel optimization and implementation

of improved ORB feature matching based

on CUDA

3.3.1 Parallel optimization and CUDA implementation

of improved ORB feature matching

In this subsection, CUDA function in the OpenCV Library

is used to complete the parallel feature matching algorithm

based on Hamming distance. The main steps are as follows:

1. Create a BruteForceMatcher_GPU_base object. Call

the matchSingle function to calculate Hamming dis-

tance algorithm between each feature vector in two

images. Obtain the maximum Hamming distance value

and the corresponding index of each feature vector in

the image to be registered from the reference image.

2. Transmit the Hamming distance value and the data

matrix of corresponding index from global memory

back to CPU host memory.

3. In CPU host, mismatches are removed according to the

threshold to get the rough matching points, the

coordinates and corresponding index values of the

matching points are saved.

4. Load the data of coordinates and corresponding index

of the rough matching points from CPU memory into

GPU memory, providing data for RANSAC algorithm

for parallel calculation of transformation model

parameters.

3.3.2 Parallel optimization and CUDA implementation

of RANSAC algorithm

Firstly, generate random numbers in CPU memory

according to the index array. Secondly, parallelly imple-

ment calculation and test of RANSAC model using CUDA.

Finally, select the best transformation model parameters

which are in a good agreement in CPU memory. The main

steps are as follows:

1. Generate M sets of random numbers according to the

number of iterations of M and each set contains three

different random numbers in CPU memory. Load the

random numbers, which are invariants in solution

process, from CPU memory into constant memory in

GPU. Use the caching mechanism of constant memory

to improve data access speed.

2. Configure the parameters and start the kernel function

of model calculation. The thread with the 0 index in

each block gets three sample numbers determined by

three random numbers and reads the corresponding

coordinates of rough matching points from the constant

memory. Then each thread calculates the model

parameters with the coordinate data and stores the

results in shared memory.

3. Configure the parameters and start the kernel function

of model test. Each thread reads the corresponding

sample in constant memory and check the match

degree with the model in this block. Use the atomicAdd

function to add up the numbers of samples which are

consistent with the model.

4. Transmit the numbers of samples which are consistent

with the model in each block from GPU memory to

CPU memory. Then select the best model which has

the largest number and achieve the pure matching

points according to the threshold.
Fig. 4 Diagram of thread index of Improved ORB feature vector

extraction
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4 Experimental results

In this paper, real-time image registration and target local-

ization algorithm for high-resolution video images based on

improved ORB by CUDA is realized. The experiments

verified that the parallel algorithm achieved on CUDA is 20

times faster than the serial algorithm achieved on CPUwhen

the effects of image registration and target localization are

similar, meeting the requirement of real-time processing.

Experimental environment: the computer used was a desktop

with six 2 GHz Intel Xeon E5-2620 processors for the CPU,

GPU equipped with a NVIDIA Tesla K20C of 0.71 GHz

enclosing 1024 threads each block, 3.5 of calculation

capacity. The computer was also equipped with the VS2010

configured with OpenCV 2.4.6. In addition, we use CUDA

5.5 in the experiments. The experiment of improved ORB

feature extraction was conducted to verify the effect of

repeated points deletion and non-maxima suppression. There

are three of the most time-consuming parts in the image

registration and target localization algorithm: improved

ORB feature extraction, feature matching based on Ham-

ming distance and RANSAC algorithm for precise matching

and achieving transformation model parameters. The

experiments of these three parts were carried out, respec-

tively, to get the computation time of CUDA and CPU when

the experimental effects were similar. The total time of

image registration and target localization algorithm achieved

on CUDA and CPU were measured, respectively, when the

experimental effects were similar.

4.1 Improved ORB feature extraction experiment

Two sets of video images of different pixels were selected

to be experimented, respectively, of ORB feature

extraction and improved ORB feature extraction:

(a) 1280 9 720 pixels; (b) 1920 9 1080 pixels. The con-

trast effects of feature extraction are shown in Figs. 5 and

6.

The numbers of same key points and mutual neighbor

key points in the same images after ORB feature extraction

and improved ORB feature extraction were compared as

shown in Table 1.

The experimental results show that improved ORB

feature extraction algorithm can effectively remove the

huge amount of repetitive points and excessively dense

neighbor points caused by feature extraction in multiple

layers of image Gaussian Pyramid. With improved ORB

feature extraction algorithm, the key points extracted can

be evenly distributed and the accuracy of image registra-

tion and target localization is improved. In experimental

image (b), there are 263 same key points and 544 mutual

neighbor key points out of 1024 key points extracted when

using ORB feature extraction, whereas 93 same key points

and 254 mutual neighbor key points out of 1024 key points

extracted when using improved ORB feature extraction.

4.2 Image registration and target localization

experiment

Two sets of video images of different pixels were

selected to be experimented, respectively, of image regis-

tration and target localization: (a) 1280 9 720 pixels;

(b) 1920 9 1080 pixels. There was a certain degree of

scaling, rotation and viewpoint change between the refer-

ence image and the image to be registered. The contrast

effects of image registration and target localization

achieved on CPU and CUDA, respectively, are shown in

Figs. 7, 8, 9 and 10.

 ( ) 1280×720 original image   ( ) 1280×720 local image    ( ) 1920×1080 original image     ( ) 1920×1080 local image 

Fig. 5 Effects of ORB feature extraction

 ( ) 1280×720 original image    ( ) 1280×720 local image    ( ) 1920×1080 original image   ( ) 1920×1080 local image 

Fig. 6 Effects of Improved ORB feature extraction
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The experimental results show that, in regard of the

certain degree of scaling, rotation and viewpoint change of

high-resolution video images, improved ORB image reg-

istration and target localization algorithm achieved,

respectively, on CPU and CUDA can both realize accurate

registration and target localization.

In this paper, root mean-square error (RMSE) is used

as the evaluation index for the image registration and

target localization effect. Each RMSE values between

reference image and the image to be registered after

image registration and target localization achieved,

respectively, on CPU and CUDA in the six sets images

were calculated and compared. The numerical comparison

is shown in Table 2.

The experimental results show that, in the six sets

images, the RMSE values between reference image and

the image to be registered after image registration and

target localization achieved, respectively, on CPU and

CUDA are both minute, and the effect of image regis-

tration and target localization based on improved ORB

feature achieved by CPU and by CUDA implementation

is similar.

4.3 Accelerating experiments based on CUDA

To verify the acceleration of CUDA parallel algorithm, 3 of

the most time-consuming parts of image registration and

target localization algorithm were experimented, respec-

tively, andwhen the effect was similar, the computation time

difference of algorithm implementation between CPU and

CUDAwas compared.When effect was similar, the different

total computation time of image registration and target

localization cost by CPU and by CUDA implementation was

compared. Two sets of video images were selected to be

experimented: (a) 1280 9 720 pixels, 43 s, 25 frame/s, 1093

frames; (b) 1920 9 1080 pixels, 31 s, 25 frame/s, 796

frames. Some of the representative images in the two sets of

experimental video were shown in Figs. 11 and 12.

1. Improved ORB feature extraction

Contrast of performance of improved ORB feature

extraction achieved on CPU and CUDA is shown in

Table 3.

The experimental results show that CUDA-achieved

improved ORB feature extraction is one order of

Table 1 Contrast of effect of ORB feature extraction and Improved ORB feature extraction

Image

number

Total number of extracted

key points

ORB feature extraction Improved ORB feature extraction

Number of same

key points

Number of mutual

neighbor key points

Number of same

key points

Number of mutual

neighbor key points

(a) 1024 280 565 108 234

(b) 1024 263 554 93 254

( ) reference image           ( ) scaling change            ( ) rotation change          ( ) viewpoint change 

Fig. 7 Effects of CPU-achieved image registration and target localization of 1280 9 720 high-resolution video images

( ) reference image ( ) scaling change ( ) rotation change           ( ) viewpoint change 

Fig. 8 Effects of CPU-achieved image registration and target localization of 1920 9 1080 high-resolution video images
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magnitude faster than its CPU implementation when

extracting the same number of key points and feature

vectors. As in the video (b), when extracting 512 key points

and feature vectors, the average computation time of CPU

is 346.6410 ms/frame and that of CUDA implementation is

34.1722 ms/frame and the accelerating rate of CPU to

CUDA is up to 10.1439. The accelerating rate will still

increase as the image pixels and the number of key points

extracted increase.

2. Feature matching based on Hamming distance

Contrast of performances of feature matching based on

Hamming distance achieved on CPU and CUDA is shown

in Table 4.

The experimental results show that when a same number

of key points are input, the feature matching based on

Hamming distance implemented on CPU and CUDA can

get similar number of average rough matching points. As in

the video (a), when 1024 key points were input, CPU and

CUDA implementation achieve 746 and 728 rough

matching points, respectively. This shows that the effect of

the feature matching based on Hamming distance imple-

mented on CPU and CUDA is similar. Moreover, the

average computation time of CPU is 26.0010 ms/frame and

that of CUDA implementation is 0.8422 ms/frame and the

accelerating rate of CPU to CUDA is up to 30.8724. The

algorithm using CUDA can achieve one order of magni-

tude speedup comparing with CPU implementation and the

accelerating rate will still increase as the image pixels and

the number of matching points increase.

3. RANSAC algorithm for matching pure points and

achieving transformation model parameters

Contrast of performance of RANSAC algorithm for

matching pure points and achieving transformation model

parameters achieved on CPU and CUDA is shown in

Table 5.

The experimental results show that when a similar

number of rough matching points are input, the RANSAC

algorithm for precise matching and achieving transforma-

tion model parameters implemented on CPU and CUDA

can get similar number of average pure matching points.

( ) reference image ( ) scaling change ( ) rotation change ( ) viewpoint change

Fig. 9 Effects of CUDA-achieved image registration and target localization of 1280 9 720 high-resolution video images

( ) reference image          ( ) scaling change           ( ) rotation change          ( ) viewpoint change 

Fig. 10 Effects of CUDA-achieved image registration and target localization of 1920 9 1080 high-resolution video images

Table 2 Contrast of effect of

CPU/CUDA-achieved image

registration and target

localization based on Improved

ORB feature

Image change Image

number

RMSE of CPU-achieved

registration and target

localization

RMSE of CUDA-achieved

registration

and target localization

Scaling change (a) 0.0216 0.0205

(b) 0.0103 0.0088

Rotation change (a) 0.0030 0.0059

(b) 0.0019 0.0010

Viewpoint change (a) 0.0126 0.0085

(b) 0.0031 0.0035
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As in the video (a), when 1024 key points were input, CPU

and CUDA implementation achieved 259 and 256 pure

matching points, respectively. This shows that the effect of

the RANSAC algorithm for precise matching and achiev-

ing transformation model parameters implemented on CPU

and CUDA is similar. Moreover, the average computation

time of CPU is 231.9470 ms/frame and that of the CUDA

implementation is 2.0659 ms/frame and the accelerating

rate of CPU to CUDA is up to 112.2741. The algorithm

using CUDA can achieve two orders of magnitude speedup

compare with CPU implementation and the accelerating

rate will still increase as the image pixels and the number

of matching points increase.

4. Real-time image registration and target localization

algorithm for high-resolution video images based on

improved ORB

The total computation time and speedup ratio of

improved ORB-based image registration and target

( ) 30th frame              ( ) 267th frame              ( ) 723th frame             ( ) 926th frame 

Fig. 11 Part of images of 1280 9 720 high-resolution video (a)

( ) 35th frame              ( ) 229th frame             ( ) 448th frame               ( ) 753th frame 

Fig. 12 Part of images of 1920 9 1080 high-resolution video (b)

Table 3 Contrast of performance of CPU/CUDA-achieved Improved ORB feature extraction

Video

number

Key points in

each frame

Average time of CPU-based

improved ORB

feature extraction (ms/frame)

Average time of CUDA-based

improved ORB

feature extraction (ms/frame)

Speedup

ratio

(a) 512 206.1230 33.2210 6.2046

1024 221.8500 30.0104 7.3924

(b) 512 346.6410 34.1722 10.1439

1024 355.1730 31.2002 11.3837

Table 4 Contrast of performance of CPU/CUDA-achieved feature matching based on Hamming distance

Video

number

Key points

in each

frame

CPU/CUDA-achieved

average rough matching

points in each frame

Average time of CPU-based feature

matching based on Hamming

distance (ms/frame)

Average time of CUDA-based feature

matching based on Hamming distance

(ms/frame)

Speedup

ratio

(a) 512 234/246 9.8120 0.3927 24.9860

1024 746/728 26.0010 0.8422 30.8724

(b) 512 232/218 10.9410 0.3632 30.1239

1024 752/744 29.4470 0.8472 34.7580
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localization for high-resolution video images achieved on

CPU and CUDA are shown in Table 6 and Fig. 13.

It can be seen in Table 6 and Fig. 13 that, when

implemented by CPU, the computation time of improved

ORB-based image registration and target localization for

high-resolution video images is relatively long and

increases significantly as image pixels and the number of

key points extracted increase. However, when imple-

mented by CUDA, the computation time is shorter and the

increase of which is relatively modest, meeting the

requirement of real-time processing. The experimental

results show that when effect is similar, the improved

ORB-based image registration and target localization

algorithm for high-resolution video images achieved by

CUDA is roughly 20 times faster than CPU implementation

and the speedup ratio will still increase with the increase of

image pixels and the number of key points extracted. Since

improved ORB feature extraction is the most time-con-

suming part in image registration and target localization

algorithm, which takes about 50 % of the CPU time and

above 90 % of the CUDA time, the total speedup ratio is

close to the speedup ratio of improved ORB feature

extraction algorithm.

5 Conclusion

In this paper, improved ORB-based real-time image reg-

istration and target localization for high-resolution video

images is realized and the difference between the perfor-

mances CPU and CUDA implementation is compared. The

experimental results show that when effect is similar, the

Table 5 Contrast of performance of CPU/CUDA-achieved RANSAC algorithm for matching pure points and achieving transformation model

parameters

Video

number

Key points in

each frame

CPU/CUDA-achieved average

pure matching points in each frame

Average time of CPU-based

RANSAC algorithm (ms/frame)

Average time of CUDA-based

RANSAC algorithm (ms/frame)

Speedup

ratio

(a) 512 138/122 143.9110 1.7221 83.5672

1024 259/256 231.9470 2.0659 112.2741

(b) 512 140/128 323.7640 1.6870 191.4641

1024 262/249 401.8650 2.0462 196.3958

Table 6 Total time and speedup ratio of CPU/CUDA-achieved image registration and target localization for high-resolution video images

Video

number

Key points in

each frame

Average time of CPU-based image registration

and target localization (ms/frame)

Average time of CUDA-based image registration

and target localization (ms/frame)

Speedup

ratio

(a) 512 360.3200 35.1634 10.2470

1024 479.9620 32.7017 14.6770

(b) 512 681.2054 36.8411 18.4904

1024 759.3550 33.6587 22.5604

Fig. 13 Total time and speedup ratio of CPU/CUDA-achieved image registration and target localization for high-resolution video images
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algorithm of improved ORB-based image registration and

target localization for high-resolution video images

achieved by CUDA is 20 times faster than CPU imple-

mentation and the speedup ratio will still increase with the

increase of image pixels.
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