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In this paper, first, by introducing Holstein-Primakoff representation of α-deformed
algebra, we achieve the associated non-linear coherent states, including su(2) and
su(1,1) coherent states. Second, by using waveguide lattices with specific coupling
coefficients between neighbouring channels, we generate these non-linear coherent
states. In the case of positive values of α, we indicate that the Hilbert size space is
finite; therefore, we construct this coherent state with finite channels of waveguide
lattices. Finally, we study the field distribution behaviours of these coherent states,
by using Mandel Q parameter. C 2015 Author(s). All article content, except where
otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported
License. [http://dx.doi.org/10.1063/1.4923325]

I. INTRODUCTION

Undoubtedly, analogy between the physical systems has been one of the most important sub-
ject in physics which has twofold aspects: first, in theoretical aspect, it causes different theories to
close each other; second, it helps to construct new experimental methods. It can be illustrated by
analogy of media with curved space-time in general relativity1–3 and classical analogy of quantum
systems.4–6 In fact, analogy between wave optics and quantum mechanics has been a highlighted
subject, since the early developments of quantum mechanics.7 This analogy is mathematically rooted
in the similarity of dynamic process of par-axial optics domain and the dynamic quantum process
as well as in an isomorphism between the time independent Schödinger equation and the Helmholtz
equation.8 Recently, analogy of quantum systems with classical optics is interesting, because of its
enormous consequence both in fundamental quantum mechanics and in technological applications.

Optical analogy of quantum mechanics has been followed, at least, in three classes: the first
one is related to some general issues in quantum mechanics and quantum information, such as
Aharonov-Bohm and Bery phase, coherent control of quantum tunnelling, etc; the second one is
related to mimics of some quantum optics simulations, such as Jaynes-Cummings model, Rabi
Model, etc; the third one is related to solid-states physics, such as Bloch oscillations, Zener tunnell-
ing, etc.9 This study is focused on the first and second classes of them.

In fact, the dynamical process of light propagation in waveguide lattices are saturated with the
Schödinger-like equation.10 Due to such character, the generation of Glauber-Fock states, coherent
states, su(1,1) and su(2) coherent states, by using the photonic lattices, have been studied.11–17 In
these cases, by considering the edge channel in the exited state, a displacement type su(1,1) coherent
states are realized in waveguide lattices. Also, the field distribution of any channel corresponds to
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number state and deformed number state, with regard to coupling coefficients among neighbouring
channels of waveguide lattices.

As is known, coherent states for the harmonic oscillator were mathematically constructed,
following Schrödinger, with the aim of finding the quantum counterparts of the classical points in
the phase space.18–20 Furthermore, coherent states have had central roles in quantum theory, such
as quantum optics,21 most quantization theories22,23 and transition between quantum and classical
mechanics,24 etc. In addition, mathematically, trying to construct the non-linear coherent states
leads to different definitions of non-linear coherent states, such as Gazeau-Klauder coherent states
which are defined as the eigenstates of the deformed annihilator operators24 and displacement type
coherent states which are obtained through the operation of deformed displacement operators on
their relevant reference states.25

Mathematically, α-deformed coherent states, as non-linear coherent states, are generalization
of su(2) and su(1,1) coherent states.26 In physical realization, α-deformed algebra describes har-
monic oscillators confined at the center of a potential well, depending to sing of α with infinite
or finite well.26 In addition, this algebra can be realized the position-dependent mass harmonic
oscillator as well as harmonic oscillators on the constant curvature surfaces, i.e., spherical and
hyperbolic surfaces.27,28

In this paper, by defining the generalized Holstein-Primakoff representation of α-deformed
algebra, we obtain the displacement type of α-deformed coherent states, as a special case of
non-linear coherent states, for the first time. Then, by considering the coupling coefficients be-
tween neighbouring channels as Ck,k+1 ∝

 |α|m (2 j − sgn(α)m) /2, where j,m ∈ N, we generate
the α-defoemed coherent states in the photonic lattices. Moreover, we demonstrate behaviours of
field distributions in any channel waveguide lattices and consider the role of the coupling coefficient
between neighbouring channels. Finally, we study the role of α, as a coupling coefficient between
neighbouring channels, in statistical property of the field distributions in waveguide lattices and
consider their field distribution behaviours, by examining the Mandel Q parameter.29

The paper is organized as follows: in section II, we introduce the generalized Holstein-
Primakoff representation of α-deformed coherent states; in section III, we study generations of
these coherent states, by using photonic lattices, and study the field distributions in these struc-
tures; in addition, we investigate the non-classical behaviours of these coherent states, by using the
Mandel Q parameter; finally, section IV is devoted to some conclusions and remarks.

II. α-DEFORMED COHERENT STATES: GENERALIZED HOLSTEIN-PRIMAKOFF
REPRESENTATION

Let us define the following generalized Holstein-Primakoff operators:

Â =


|α|
2
�
2N − sgn(α)â†â�1/2

â,

Â† =


|α|
2

â†
�
2N − sgn(α)â†â�1/2

,

M̂ =
α

2
�
â†â − sgn(α)N�

. (1)

which α ∈ R and N ∈ N are the arbitrary fixed numbers; â and â† are the harmonic oscillator
annihilation and creation operators, respectively. These operators realize the α-deformed operators
with following communication relations:26

[Â†, Â] = 2M̂ , [M̂ , Â] = −1
2
α Â, [M̂ , Â†] = 1

2
α Â†. (2)

Also, we can define generalized displacement operator, D̂α(β), as

D̂α(β) = exp
�
β Â† − β∗Â

�
, (3)

where β = −|β |e−iϕ. The normal ordered form of displacement operator (3) is given by,26
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D̂α(β) = eζ Â
†
eϑM̂e−ζ

∗Â, (4)

which the coefficients of the normal ordered form are given by,

ζ = −e(−iϕ)


2
α

tan(


α

2
β), ϑ =

−4α
|α|2 ln | cos(


α

2
β)|. (5)

In this case, if α = 2 and α = −2 are chosen, the relation (4) describes Gaussian decomposition of
displacement operator of su(2) and su(1,1) algebras, respectively.

By using the relation (4), we can explicitly achieve the displacement type of α+-deformed
coherent states:

|β,α+⟩ = D̂α+(β)|0⟩ α > 0

=


1 + tan2(


α

2
|β |
2
)
−N 2N

n=0

(
2N
n

) 1
2

e−inϕtann(


α

2
|β |
2
) |n⟩. (6)

Also, when α is negative, the displacement type of α−-deformed coherent states is given by

|β, α− ⟩ = D̂α−(β)|0⟩, α < 0

=


1 − tanh2(


|α|
2

|β |
2
)


2N ∞
n=0

(
Γ(n + 2N)
n!Γ(2N)

) 1
2

e−inϕ tanhn(


α

2
|β |
2
)|n⟩. (7)

III. NON-LINEAR COHERENT STATES IN PHOTONIC LATTICES

The normalized modal field evolution can be described by the following set of coupled differen-
tial equations:

i
dE j,m

dZ
+ f ( j,m)Em−1 + f ( j,m + 1)Em+1 = 0, E−1 = 0, (8)

where z = Z/κ is the actual propagation distance and κ is the coupling coefficient.10 In this case, by
choosing function f ( j,m) as the following relation

f ( j,m) =


|α|
2

m (2 j − sgn(α)m), (9)

we can generate α-deformed coherent states in a photonic lattices so that the function f ( j,m)
indicates the coupling coefficients among neighbouring channels of waveguide lattices as shown in
the Figure 1. Also, the first channel of the waveguide lattices is chosen as exited channel, |0⟩.

In addition, we study the Mandel Q parameter, as a parameter to monitor the nature of the
density distribution.29 The mandel Q parameter, which is defined by

FIG. 1. Schematic views of a lattice of 2 j +1 and infinity waveguides, which are realization of α-deformed coherent states
by positive and negative values of α, respectively, in plots (a) and (b).
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Q |β,α±⟩ =
⟨n̂2⟩|β,α±⟩ − ⟨n̂⟩2

|β,α±⟩
⟨n̂⟩|β,α±⟩ − 1, (10)

is negative for a sub-poissonian distribution (photon antibunching) and positive for a super-
poissonian distribution (photon bunching) and Q = 0 stands for poissonian statistics.

A. Analogy of α+-deformed coherent states

Consider a photonic lattices included 2 j + 1 channels, the coupling coefficients among neigh-

bouring channels of waveguide lattices is given by f ( j,m) =


α
2 m (2 j − m), α > 0, and the first

channel is chosen as the exited channel, |0⟩. Thus, by using equation (8), we can generate an
analogy with α+-deformed coherent states,

|Z,α+⟩ =

1 + tan2

(
α

2
Z
2

)− j 2 j
m=0

(
2 j
m

) 1
2

tanm

(
α

2
Z
2

)
|m⟩. (11)

In this case, the amplitude field distribution Em in the mth channel, at the distance Z , is given by,

Em =


1 + tan2

(
α

2
Z
2

)− j (
2 j
m

) 1
2

tanm

(
α

2
Z
2

)
. (12)

In Figures 2(a), 2(b) and 2(c), we depict the amplitude field distribution among the lattice when
the first element is initially exited, i.e., |0⟩, for different values of coupling constant α. These
figures demonstrate that increasing of α causes field distributions to be localized in the center of the
waveguide lattices.

For the state |Z,α+⟩, by using equations (10) and (11), we find the Mandel Q parameter as

Q |Z,α+⟩ = −sin2
(

α
2

Z
2

)
, saturated by the inequality −1 ≤ Q |Z,α+⟩ ≤ 0, indicating sub-Poissonian

statistics, apart from the trivial case, Z = 0, or α = 0. In addition, at the distance Z = π(2n
− 1)√2/α, we obtain Q |Z,α+⟩ = −1 as it is shown in Figure 3.

B. Analogy of α−-deformed coherent states

We can choose coupling function (9) as f ( j,m) =

−α
2 m (2 j + m), α < 0, which is realization

of α−-deformed coherent states in photonic lattices with infinite channels. Also, we choose the first
channel in exited state, |0⟩. Thus, by using equation (8), we can generate an analogy of α−-deformed

FIG. 2. Propagation dynamics of the classical nonlinear coherent state for 30 channels and α = 0.02 in (a), α = 0.2 in (b)
and α = 2 in (c). Also, propagation dynamics of them for α =−0.02 in (d), α =−0.2 in (e) and α =−2 in (f).
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FIG. 3. Mandel Q parameter of α+-deformed coherent state versus Z at α = π2

2 (solid line), α = 2π2 (dashed line) and

α2= 9π2

4 (dotted line).

coherent states,

|Z,α−⟩ =

1 − tanh2(


−α
2

Z
2
)


2 j ∞
m=0

(
Γ(m + 2 j)
m!Γ(2 j)

) 1
2

tanhm *
,


−α
2

Z
2
+
-
|m⟩. (13)

In this case, the amplitude field distribution Em in the mth channel, at the distance Z , is given by,

Em =


1 − tanh2(


−α
2

Z
2
)


2 j (
Γ(m + 2 j)
m!Γ(2 j)

) 1
2

tanhm *
,


−α
2

Z
2
+
-
. (14)

Also, figures 2(d), 2(e) and 2(f), show the amplitude of the field distribution Em, among the lattices,
when the first element is initially exited, |0⟩, for different values of α. These figures indicate that
the field distributions are localized near the first channel when the coupling constant is decreased. In
addition, by comparing plots (a) and (d), we indicate that the behaviour of the field distributions are
the same, as a result of approaching α zero.

Also, after some simple calculation, we find the Mandel Q parameter for the state |β,α−⟩
as Q |Z,α−⟩ = sinh2

(
−α
2

Z
2

)
. It is obvious we have Q |Z,α−⟩ > 0, which indicates super-poissonian

statistics unless we have either the trivial vacuum field case, Z = 0, or α = 0.
In Figure 4, we show the effect of α on the variation of Mandel Q parameter for different values

of Z . In this case, quantum behaviour of the system is increased by increasing of the α absolute
value.

FIG. 4. Mandel Q parameter of α−-deformed coherent state versus Z at α = π2

2 (solid line), α = 2π2 (dashed line) and

α2= 9π2

4 (dotted line).
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IV. CONCLUSIONS

In conclusion, we studied a generalization of Holstein-Primakoff representation of α-deformed
harmonic oscillator as a non-linear algebra including su(2) and su(1,1) algebra, and associated
coherent states. Besides, by using a photonic lattices with special choosing of coupling coefficients
between neighbouring channels, we obtained α-deformed coherent states and studied their distri-
butions of the fields. Finally, we considered the Mandel Q parameter as a criteria of non-classical
property of these distributions. Specially, we indicated that positive α led to the sub-poissonian
statistics while the negative α led to the super-poissonian statistics. Our findings will be very impor-
tant to realization of non-linear coherent states, with non-classical behaviour, in classical optics,
with photonic lattices.
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