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Realization of parametric resonances in a nanowire mechanical system
with nanomanipulation inside a scanning electron microscope

Min-Feng Yu,1,* Gregory J. Wagner,2,† Rodney S. Ruoff,2 and Mark J. Dyer1
1Zyvex Corporation, Advanced Technologies Group, 1321 North Plano Road, Richardson, Texas 75081

2Northwestern University, Department of Mechanical Engineering, 2145 Sheridan Road, Evanston, Illinois 60208
~Received 3 April 2002; published 2 August 2002!

We realize parametric resonances in a nanowire mechanical system using an oscillating electric field. Reso-
nances at drive frequencies near 2f 0 /n, where f 0 is the nanowire’s fundamental resonance frequency, forn
from 1 to 4 were observed inside a scanning electron microscope, and analyzed. Such resonances were found
to originate from the amplitude-dependent electric field force acting on the nanowire and can be described by
the Mathieu equation, which has known regions of instability in the parameter space.
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Nanostructures such as nanotubes, nanorods, nanow
kers, and nanoplatelets have attracted great attention rec
due to the promise of applications in sensing, materials r
forcement, vacuum microelectronics, and microelectrom
chanical ~MEMS! or nanoelectromechanical system
~NEMS!. The extremely small physical dimensions of nan
structures imply high sensitivity to external perturbation, a
this characteristic has been recently investigated for fem
gram mass measurement, and biomolecule and
sensing.1,2 Physics similar to the type reported here may
timately confer superior performance for future NEMS sy
tems having nanostructure components.3,4

Parametric resonance describes the resonance due
parametric excitation~a periodically varying coefficient! in
the homogeneous equation of motion of the system.5 In a
single-degree-of-freedom mechanical system, parame
resonance described by the Mathieu equation is

d2Y

dt2
1m

dY

dt
1~a12« cosvt !Y50, ~1!

where Y is an angular or displacement variable,m is the
damping constant, anda and« are system parameters. For a
undamped system (m50), the theory predicts instabilities a
a5n2/4 for n51,2, . . . , andregions of instability in the
parameter space described bya and«. Such instabilities re-
sult in parametric resonances of the system at drive frequ
cies of 2v0 /n, wherev0 is the natural resonance frequen
of the system. This principle has been applied in optics
optoelectronics,6 in high sensitivity electronics,7 in supercon-
ducting Josephson junction devices,8 in electron Penning
trapping,9 as well as in mechanical system analysis.5 The
realization of high order parametric mechanical resonanc
macroscopic systems is generally difficult due to mechan
energy losses and strict conditions applied at highern deter-
mined by the system parameters; high order~for n up to 4!
parametric mechanical resonance was only recently obse
in microscale MEMS resonators.4

We report the discovery of up to four parametric res
nances for cantilevered nanowires. A theory for a forced
bration system that includes a forcing term proportional
the amplitude of the resonance was used for the analy
regions of instability were mapped, and hysteresis in
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parametric resonance response curve was observed. E
lent agreement between the theory and experiment
found.

Figure 1~a! shows the schematic of the experiment for t
study of the resonance mechanics of nanowires. A dc b
and an ac signal from a sine wave signal generator, wh
generates the oscillating electric field, are applied betw
the nanowire and a counter electrode. By tuning the f
quency of the ac signal, the cantilevered nanowire can
excited such that maximum amplitude is achieved when
frequency of the drive signal matches the mechanical re
nance frequency of the nanowire. Such a technique has
cently been demonstrated1 to drive vibrations and to deduc
the Young’s modulus values of carbon nanotubes insid
transmission electron microscope. However, in the previ
study,1 the oscillating force applied on cantilevered nan
tubes due to the interaction between the induced charge
the oscillating electric field was treated as a perturbation,
only the natural resonances were observed.

A nanomanipulation stage was developed for use insid
field emission scanning electron microscope~Leo1530
SEM!.10 This stage is capable of nanometer resolution m
tion, and free-space manipulation and characterization
nanostructures by the probes controlled by the nanoman
lator.

A computerized data acquisition system for acquiring
amplitude versus frequency response curve was also de
oped. In the acquisition, the SEM beam control is first se
line scan mode11 across the nanowire. The sine wave sign
generator~Wavetek 2500! is programmed to tune the driv
frequency at fixed step~10 Hz to 10 kHz depending on th
frequency resolution needed for the response curve!, and at
each step, the SEM line scan signal is acquired and p
cessed to obtain the amplitude of the driven nanowire at
driving frequency. Figure 1~b! shows an SEM image of a
cantilevered boron nanowire12 fixed at one end in a raw
sample and an etched tungsten probe positioned near the
end of the nanowire as the electrode. The amplitude-d
frequency curve acquired at 10 Hz scan step@Fig. 1~c!#
shows the typical Lorentzian shape for a fundamental m
resonance centered atf 051.19832 MHz; according to the
full-width-at-half-height the quality factorQ is 2900 for this
nanowire resonator~the Young’s modulus of the nanowire i
estimated to be 160 GPa!. Alternatively, by setting the beam
control for the SEM in ‘‘spot mode’’ so that the beam scan
stopped, a periodic signal from the SEM detector output
©2002 The American Physical Society06-1
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FIG. 1. ~a! Schematic of the experimenta
setup inside the SEM showing the resonating b
ron nanowire under the applied dc bias and
drive signal. The top-right hand inset in~a! shows
the geometric relation between the nanowire a
the drive electrode along the plane of the nan
wire vibration, the bottom-left hand inset shows
representative boron nanowire in resonance.~b!
SEM image showing a 12.6-mm long and 170-nm
diameter boron nanowire fixed at one end in t
raw sample and a closely positioned probe ele
trode tip.~c! The response curve for the mechan
cal resonance of the nanowire at its fundamen
mode acquired atVdc50 V andVac5300 mV.
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be acquired when the laterally resonating nanowire trave
the stationary electron beam. This technique provides a
rect measurement of the real oscillating frequency and
tentially phase of the nanowire.

The electric field-induced resonance of a cantileve
nanowire can be described as a nonlinear system with fo
vibration. With a dc voltageVdc and an ac drive signa
Vaccos(Vt), the forcing termF(x,t) ~wherex is the distance
along the nanowire! is F(x,t)52Q(x,t)Vdc

2 (11b2/2
12b cosVt1b2/2 cos 2Vt), whereb5Vac/Vdc, the angular
drive frequencyV is related to f through V52p f , and
Q(x,t) is a function that depends on the geometry and e
trical parameters of the system. For small displacement
the nanowire,Q(x,t) can be approximated by an expansi
in y(x,t) ~the displacement of the nanowire!: Q(x,t)
5Q0(x)1Q1(x)y(x,t)1O(y2). The electric field force on
a segment of the wire is a Coulomb force.13

We include the effect of the electric field force to fir
order iny, and the equation of motion for the vibrating bea
is

rA
]2y

]t2 1c
]y

]t
1EI

]4y

]x4 52Vdc
2 ~112b cosVt !Q1~x!y,

~2!

wherer is the volume density~2460 Kg m23 for boron!, A is
the cross sectional area,c is the damping coefficient,E is the
bending modulus, andI is the area moment of inertia of th
nanowire having a lengthL.

Integrating over the lengthL of the beam to remove thex
dependence14 in Eq. ~2! gives an equation for the time de
pendence of each natural resonance mode
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u̇i1

1

V2 S v i
21

qiVdc
2

rAg i
1

2bqiVdc
2

rAg i
cost Dui50,

~3!

where v i5k i
2AEI/rA,g i5L21*0

Lf idx ~note that v i

is the natural angular frequency of modei!. Equation ~3!
has been made nondimensional by scaling time withV21

and length with L. This equation has the form of th
damped Mathieu equation@as described in Eq.~1!#,
with parametersm5c/rAV, a5V22@v i

21qiVdc
2 /(rAg i)#,

«5V22bqiVdc
2 /(rAg i). The vibration in our experiments i

the fundamental mode (i 50) resonance, for whichk0
'1.875/L and g0'0.783. Since the Mathieu equation h
points of instability at values ofa given byn2/4, according to
Eq. ~3! this occurs for values of the driving frequency give
by VR5(2/n)Av0

21q0Vdc
2 /(rAg0). Note that these reso

nances are not exactly proportional to the natural freque
v0 , but instead are shifted by a small amount depend
upon q0 and Vdc. This deviation has not been included
previous studies,1 but has been observed recently by G
et al. in their study on the resonance of multiwalled carb
nanotubes15 ~though in their qualitative analysis the depe
dence of the resonance frequency on the appliedVdc is con-
sidered to be the result of the increasing mechanical ten
along the nanotube under increasing dc bias!. There is also
the possibility that permanent surface charge may be pre
in the system, which can contribute to the tension effect a
thus the frequency shift.

We now present the experimental results on the param
ric resonances of individual boron nanowires. Figure
shows the acquired amplitude-drive frequency curves
6-2
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FIG. 2. The amplitude versus drive frequency curves for the parametric resonancesf at 0.453 MHz~acquired atVdc535 V andVac

51000 mV!, 0.674 MHz~acquired atVdc50 V andVac5300 mV! and 1.386 MHz~acquired atVdc510 V andVac5300 mV!. The left hand
inset shows the SEM image of the nanowire~11.6-mm long and 67-nm in diameter! and the probe electrode tip~placed 1.5mm away from
the free end of the nanowire!. The right-hand inset shows the comparison between the drive resonance frequency~square! for the parametric
resonances from the experiment and the curve according to the theory.
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three parametric resonances centered at drive frequencief of
0.453 MHz~close to 2f 0/3!, 0.674 MHz~the resonance fre
quency of the fundamental modef 0!, and 1.386~close to
2 f 0! for a boron nanowire~the Young’s modulus of the
nanowire was estimated to be 230 GPa! as shown in the left
hand inset in Fig. 2. The resonance atf 50.329 MHz~close
to f 0/2! excited manually withVdc50 V andVac51 V using
another signal generator was also visually observed but
response curve was not acquired because the frequency
out of the range of the computer-controlled signal genera
~0.4 MHz–1.1 GHz!. A comparison between the experime
tal data ~represented by solid squares in the plot! and the
curve according toVR52v0 /n is plotted in the right-hand
inset in Fig. 2, and shows an excellent agreement. The S
spot mode method described above was used and it
found that the nanowire oscillated constantly near its fun
mental frequencyf 0 with the above four different drive fre
quencies, which is a characteristic of a parametric resona
system.

Regions of mechanical instability in parameter space
expected as a result of the Mathieu equation. Figure 3~a!
shows such a stability chart for a nanowire having a length
10 mm and a diameter of 114 nm for its parametric resona
n51. The plot was obtained by acquiring 42 amplitude v
sus frequency response curves at 42 pairs ofVdc and Vac
voltages. From each acquired response curve, two thres
frequencies, one at the jump up point such as the pointA and
another at the smoothly rising up part of the curve such
the pointB in the response curve as shown in Fig. 3~b!, were
determined. The jump down event such as at the pointC in
Fig. 3~b! depends on other high order perturbations in a la
amplitude oscillation system, and is not related to the reg
of instability defined by the parametric resonance equat
TheVdc, Vac, and threshold frequencies were then conver
to a and« according to formulas given above, which result
in the upper and lower boundaries for the instability reg
as shown in Fig. 3~a!. The plot clearly shows a ‘‘tongue’
shape for the unstable region confined between the two lin
boundaries as predicted by the Mathieu equation. The da
lines in Fig. 3~a! are the predicted boundaries from th
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theory for comparison. Mapping the stability chart f
higher-order parametric resonance, such as forn53, is dif-
ficult due to the higher excitation voltages needed for su
mapping. Applying higher ac and dc voltage significan
disturbs the electron beam in the SEM imaging and thus
data acquisition.

Hysteresis is seen from the frequency response curve
the parametric resonancen51 of the nanowire at constant d
and ac bias as shown in the inset in Fig. 3~b!. Two curves

FIG. 3. ~a! Stability diagram for the parametric resonancen
51 of a boron nanowire having a diameter of 114 nm and a len
of 10 mm. The dashed lines indicate the boundaries according to
theory. ~b! Amplitude-frequency response curve obtained fro
modeling for the parametric resonancen51 described in Fig. 2.
The arrowed lines indicate the locations of the possible jumps.
inset in~b! is the experimental result showing the hysteresis for
nanowire described in Fig. 2. The bias conditions for the exp
ment wereVdc517.6 V andVac5550 mV.
6-3
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acquired from a forward frequency sweep and from a ba
ward frequency sweep are displayed. ‘‘Jump up’’ at poinA
and ‘‘jump down’’ at pointC between the upper and lowe
branches of the response curve are clearly resolved, ind
ing that there is an unstable portion of the response cu
between pointsA andC that is unattainable.

This hysteresis can be understood by considering the n
linear force-deflection behavior of the nanowire. In param
ric resonance, unlike resonance of a simple mass-stiffn
system, finite damping alone is not sufficient to keep
amplitude from growing to infinity as time increases; rath
the nonlinear behavior of the system must provide the up
limit to amplitude growth. To demonstrate this, we consid
an undamped version of the Mathieu equationd2u/dt21(a
12« cost)u2«au350, wherea is assumed to give the rela
tive size of a cubic nonlinearity in the system. Using a m
titime expansion16 in the small parameter«, and considering
values of the parametera near 1

4 ~so thata5 1
4 1«a1!, we

derive periodic solutions having the formu5A0 cos(t/2
1u). Three solutions for the steady-state amplitude e
A050, A05(2/A3a)(a161)1/2. The presence of multiple
stable solutions fora1.21 explains the hysteresis seen
the experiment neara5 1

4 . Figure 3~b! shows the respons
curve obtained according to these solutions obtained f
this model.
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A parametrically driven cantilevered nanowire can be d
signed to operate near the boundary conditions accordin
the stability chart, and could provide very effective respon
to either individual molecule or nanoparticle attachment
threshold transition for making ‘‘supersensitive’’ sensors
e.g., molecular adsorbates. A parametric resonator has a
unique feature that a normal resonator does not have. P
metric resonances only occur when the parameters liea
particular range. For the case reported in this paper, thr
adjustable parameters define the stability chart: the ac an
voltage and the frequency of the oscillating electric fie
Thus, an array of nanoresonators can be envisioned w
resonance is literally ‘‘turned on’’ from the nonresonan
condition, or vice versa, by the adsorption of single m
ecules, and the resonance condition can be readily tune
simple adjustments of the these parameters. Further inv
gation and development of such high selectivity and h
sensitivity sensors are suggested.
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