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Abstract—This paper presents a systematic methodology for
achieving stable locomotion behaviors on transfemoral pros-
theses, together with a framework for transitioning between
these behaviors—both of which are realized experimentally on
the self-contained custom-built prosthesis AMPRO. Extending
previous results for translating robotic walking to prosthesis,
the first main contribution of this paper is the gait generation
and control development for realizing dynamic stair climbing.
This framework leads to the second main contribution of the
paper: a methodology for motion intent recognition, allowing
for natural and smooth transitions between different motion
primitives, e.g., standing, level walking, and stair climbing. The
contributions presented in this paper, including stair ascent
and transitioning between motion primitives, are verified in
simulation and realized experimentally on AMPRO. Improved
tracking and energy efficiency is seen when the online op-
timization based controller is utilized for stair climbing and
the motion intent recognition algorithm successfully transitions
between motion primitives with a success rate of over 98%.

I. INTRODUCTION

According to the National Center for Health Statistics
approximately 222,000 people in the United States are
transfemoral amputees [1]. Their daily life is greatly limited
by the use of energetically passive prostheses. While the
development of passive devices has achieved stable level
ground walking, reports indicate that the amputees using
them have increased metabolic costs and exert as much
as three times the affected-side hip power and torque [2].
More importantly, stair climbing—one common activity of
daily living for able-bodied persons—remains a challenging
task for transfemoral amputees. As a means to address the
shortcomings of passive devices, powered prostheses capable
of providing net power in conjunction with various pros-
thesis controllers have been developed in recent decades to
achieve successful human-like powered flat-ground walking
[3], [4], [5]. However, to the knowledge of the authors, the
implementation of stair ascent with a powered knee and
ankle transfemoral prosthesis is limited and only found in
[6], [7] with the use of variable impedance control. This
motivates the first main contribution of this paper.

The authors’ previous work has reported a systematic
methodology for using bipedal robots to test prosthetic
controllers with the goal of potentially reducing the cost of
clinical testing for prostheses and expediting the develop-
ment of optimal controllers [8], [9]. In particular, a nominal
walking gait was found for the robot platform which displays

qualitatively human-like walking, and prosthetic controllers
were tested on a “leg” of the robot [9]. Through this method,
a novel on-line optimization-based transfemoral prosthesis
control method: control Lyapunov function (CLF) based
quadratic programs (QPs), coupled with variable impedance
control, is tested and verified on the bipedal robot AMBER.
This synergistic method was then translated to a custom-
built self-contained transfemoral prosthetic device to achieve
level walking [8]. In this paper, the first contribution is
the extension of the described framework from walking on
flat ground to stair ascent, yielding both prosthesis gait
generation and on-line optimal controller to realize these
gaits on the device. Through experimental testing, the on-
line optimal control framework is compared to traditional
control methodologies. The results indicate both improved
tracking and energy efficiency.

Another fundamental advantage of powered prostheses
is that these devices are capable of interacting with the
user in intelligent and natural ways, while passive devices
can only assist the user with a predefined routine. In order
to realize the potential of powered protheses, an intention
interface is necessary to allow the user to control the
device through different motion behaviors, i.e., switching
between different motion primitives. Proposed approaches
include using mechanical triggers or compensatory body
movements [10]. However, more natural and smooth motion
switching strategies are found when utilizing pattern recog-
nition algorithms which, for example, have been realized
successfully in [7], [11], [12]. Motivated by the goal of
making the proposed framework practically applicable to
prosthesis users, the second main contribution of this paper
is a simple yet effective motion intent recognition algorithm
using a neural network classifier. Exploiting the advantages
of an instrumented healthy leg and a switch-score scheme,
the method is able to accomplish motion switches between
3 motion primitives (including standing, level walking and
stair ascent) naturally with minimum delay. More impor-
tantly, for one switch mode, the total time cost from static
database training to real-time implementation is less than
30 minutes including minimum tuning on the switch-score
scheme. The motion intent algorithm is able to predict the
motion transition with 1 failure during the total of 56 switch
tests, i.e., the accuracy is above 98%.

The structure of this paper is as follows: the automatic
prosthetic gait generation method is introduced in Sec. II.



A three-level hierarchical control architecture, including the
intention recognition, is discussed in Sec. III. The exper-
imental realization of the nonlinear real-time optimization
based controller on a prosthesis for stair ascent is illustrated
in Sec. IV. Motion transitions with the proposed intention
recognition is also tested in this section. Conclusions and
future work are presented at the end.

II. PROSTHETIC GAITS GENERATION

With the goal of designing a prosthetic gait utilizing
robotic models, a hybrid system model with anthropomor-
phic parameters is considered in this section. An optimiza-
tion problem is then introduced for automatic gait design.

A. Motion Capture with IMU

In an effort to achieve natural human-like prosthetic
walking for a transfemoral amputee, a low-cost inertial
motion capture system with IMUs is developed to collect
healthy human locomotion data. A model based Extended
Kalman Filter (EKF) [13] is introduced to obtain accurate
joint angle information about the human subject. During
the experiments, the subject was asked to walk along a
straight line or ascend a staircase (with 10 cm stair height)
in a flat-footed gait for several steps, the data of which are
averaged to yield the unique trajectories for optimization [8].
The human trajectories captured by the IMUs are compared
with camera motion capture data (with 25 cm stair height)
obtained from UC Berkley Motion Capture Lab [14]. The
results shown in Fig. 1 indicate that the IMU system is able
to capture the human locomotion trajectory quantitatively
with the differences between the trajectories largely due to
the stair hight difference in the two experiments (10 cm vs.
25 cm); this affects peak swing knee angle. Finally, note
that these differences will not significantly affect the gaits
generated since the human data only seeds the optimization
problem that yields gaits for the prosthesis.

B. Gait Generation For Prostheses

With the reference human trajectories collected, the
next step is to design a prosthetic gait that is specific to
the individual user and the particular prosthetic device. A
planar bipedal robot with anthropomorphic parameters is
considered to be the “human” model for the purpose of gait
design. Based on this model and the human locomotion data
obtained with the IMUs, the human-inspired optimization
[15] is implemented to generate a human-like gait that is
both stable and optimal for the prosthetic device.

Robot Model. Due to the presence of discrete behav-
ior in walking, i.e., due to impacts that result from foot
strike, we represent a bipedal robot as a hybrid system
with configuration space QR with the coordinates given as:
θ = (θsa,θsk,θsh,θnsh,θnsk,θnsa)

T as shown in Fig. 2. The
equations of motion of the continuous dynamics are obtained
using the Euler-Lagrange formula:

D(θ)θ̈ +H(θ , θ̇) = Bu, (1)

where D(θ)∈R
6×6 is the inertial matrix and H(θ , θ̇)∈R

6×1

contains the terms of the Coriolis effect and the gravity
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Fig. 1: Average angles for human subject and the optimized
angles as compared to the one standard deviation (STD) of
camera motion captured data [14].

vector. The torque map B= I6 and the control input, u, is the
vector of torque inputs; more details can be found in [15].

Aiming to achieve human-like robotic walking, we con-
sider the “complex” human locomotion system as a “black
box.” Therefore, the goal becomes to drive the actual robot
outputs ya(θ , θ̇) to the desired human outputs yd(t,α) that
are represented by a specific walking function characterized
by a parameter set α [15]. The objective then becomes to
drive the error y(θ , θ̇ ,α) = ya(θ , θ̇)− yd(t,α) → 0. With
these outputs (i.e. virtual constraints), the human-inspired
controller as discussed in [15] can be utilized to drive y → 0
in a provably exponentially stable fashion for the continuous
dynamics. However, the robot will be “thrown-off” the
designed trajectory when impacts occur. This motivates the
introduction of the partial hybrid zero dynamics (PHZD)
constraints aiming to yield a parameter set α that ensures
the tracking of position based outputs will remain invariant
and smooth even through impacts. In particular, with the
partial zero dynamics (PZD) surface defined as:

PZα = {(θ , θ̇) ∈ QR : y2(θ ,α) = 0, ẏ2(θ ,α) = 0}, (2)

where y2(θ ,α) is the position based outputs as discussed in
[15], the PHZD constraints can be stated as:

∆R(SR ∩PZα) = PZα , (PHZD)

where ∆R and SR are the reset map and switching surface
of the robot model, respectively. A detailed explanation of
these constraints can be found in [15], [16].

Human-Inspired Optimization. By enforcing the PHZD
constraints discussed above, a human-inspired optimization
is utilized to generate walking trajectories that are both
provably stable and kinematically human-like [15], [17].
More importantly, a lower-limb prosthesis must interact with
humans in a safety-critical fashion, thus more attention
should be placed on physical constraints that relate to
safety (e.g., hardware limits) and energy conservation (power
consumption). These specifications yield the optimization



Fig. 2: Human subject with AMPRO and the robotic model.

problem subject to both PHZD and physical constraints:

α∗ = argmin
α∈R26

CostHD(α) (3)

s.t (PHZD) Constraints,

Physical Constraints,

where the cost function is the least-square-fit error between
the human experimental data and the chosen walking func-
tion [14]. The end result of this optimization problem is the
parameter set α that renders an optimal1 (w.r.t. torque, foot
clearance, joint position and velocity) and provably stable
human-like stair ascent gait, which can be implemented
directly on the prosthetic device. The stability of the stair
climbing gait obtained through the optimization was nu-
merically validated through the Poincaré map [18], wherein
the magnitude of the maximum eigenvalue was found to be
0.069, indicating the stability.

To summarize, utilizing the trajectory of a healthy subject
as the reference, this optimization problem is subject to
both the PHZD constraints to ensure smooth transitions and
the physical constraints for torque and angle limitations,
such that the output gait is applicable for implementation
on the prosthetic device. Therefore, the main advantages of
utilizing this optimization problem are twofold: a) an optimal
smooth subject-like gait can be designed for a specific
amputee without hand tuning and, b) the output gait can
be practically implemented on the prosthetic device directly
while theoretically guaranteeing optimality.

III. CONTROLLER CONSTRUCTION

The architecture of the control scheme for the powered
transfemoral prosthesis includes three hierarchical levels, as
in Fig. 3. The low-level controller is realized in a closed-loop
by the ELMO motion drive, which is able to compensate for
the friction, damping effects and transmission dynamics. The
mid-level controllers generate the input torques for the joints

1Here “optimal” refers to local optimality assuming convergence of (3);
since the constraints are nonlinear, global optimality cannot be guaranteed.
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Fig. 3: Hierarchical control architecture of AMPRO.

using various controllers. In particular, the motion primitives
of flat-ground walking and stair climbing will be controlled
using a real-time quadratic program based controller as
described in [8], and a PD controller is utilized for the
standing mode control. The high-level controller predicts the
intent of the motion, and switches to the appropriate mid-
level controller accordingly.

A. MIQP+Impedance Control

In previous work [8], the authors proposed a novel
prosthetic controller that combines the rapidly exponentially
stabilizing control Lyapunov functions (RES-CLFs) based
quadratic program control [19] with impedance control in
an effort to achieve better tracking and improved energy
efficiency on prostheses. In particular, using the human-
inspired feedback linearization controller [15], the equation
(1) can be converted to a linear form as follows:

η̇ =

[
02×2 I2×2

02×2 02×2

]

︸ ︷︷ ︸

F

η +

[
02×2

I2×2

]

︸ ︷︷ ︸

G

µ, (4)

where η =(yp; ẏp)∈R
4×1 with yp =(θ p

a ,θ
p
k )

T the angles for
the prosthetic ankle joint and knee joint, respectively. Lever-
aging the Continuous Algebraic Riccati Equation (CARE)
with solution P = PT > 0, allows for the construction of a
RES-CLF [19] given as:

Vε(η) = ηT

[
1
ε I 0
0 I

]

P

[
1
ε I 0
0 I

]

η := ηT Pε η , (5)

with convergence rate ε > 0 [19]. In order to exponentially
stabilize the system, we want to find µ such that, for a
chosen γ > 0 [19], we have:

LFVε(η)+LGVε(η)µ ≤−
γ

ε
Vε(η), (6)

where LFVε(η) and LGVε(η) are the corresponding Lie
derivatives of the Lyapunov function (5) relative to the
dynamics in (4). Since this constraint is affine in µ , it can
naturally be utilized in a quadratic program (QP) to achieve
(point-wise) optimal choices of µ . More importantly, we add
the impedance term µ imp into the this construction for the
total hardware torque bounds, which yields the following



model independent quadratic program plus impedance con-
trol (MIQP+Impedance):

argmin
(δ ,µqp(η))∈R2+1

pδ 2 +µqpT µqp (7)

s.t LFVε(η)+
γ

ε
Vε(η)+LGVε(η)µqp≤δ , (CLF)

µqp ≤ µ
qp
MAX , (Max QP Torque)

−µqp ≤ µ
qp
MAX , (Min QP Torque)

µqp ≤ µMAX −µ imp
, (Max Input Torque)

−µqp ≤ µMAX +µ imp
, (Min Input Torque)

where δ is a relaxation factor that ensures that hardware
constraints (related to torque) take priority over control
objectives. This QP problem yields an optimal controller
that regulates the error in the output dynamics in a model-
independent rapidly exponentially convergence fashion. Si-
multaneously, by adding the impedance control as a feed-
forward term into the input torque, the model independent
dynamic system (4) gathers some information about the
system that it is controlling. We can also set the total
input torque bounds such that the optimization-based control
law will generate torques that respect the hardware torque
bounds µMAX , which is critical for practical implementation.

This nonlinear optimal control was first verified in sim-
ulation [20] and then on a bipedal robot: AMBER, which
has been shown to achieve stable “prosthetic” walking [9].
After being verified on the “human-like” robot platform,
the systematic methodology including the gait generation
method and the proposed controller was then translated to
a custom-built prosthetic device—AMPRO—for flat-ground
walking [8]. Stable and robust prosthetic flat-ground walking
in both the laboratory and real-world environments has been
achieved. More importantly, the proposed real-time optimal
controller also outperforms other existing controllers (such
as PD) w.r.t. both tracking (23% improvement) and power
consumption (25% reduction). This work will extend the
aforementioned previous results in two novel ways: (1) the
real-time optimization-based controller will be utilized to
achieve stair climbing both in simulation and experimen-
tally on the prosthesis AMPRO, and (2) motion transitions
between three motion primitives—standing, walking and
stair climbing—will be realized with the optimization-based
controller serving as the mid-level controller.

B. High-Level Intent Recognition

The high-level recognition is realized using a pattern
recognizer that combines neural network models for clas-
sification and a switch-score scheme for switching, which
will be discussed in this section.

Neural Network Classification. Neural network has been a
popular data-driven self-adaptive classification algorithm for
nonlinear models [21]. Mature commercial algorithms are
available for fast development, which is one of the reasons
why the neural network model is chosen as the classification
method for this work. In particular, for the three motion
primitives considered in this paper—standing (SD), level
walking (LW) and stair ascent (SA), the following motion

transitions are considered for these primitives: the switch
from LW to SD, from SA to SD and from SD to LW or
SA. All the models will be trained with separate databases,
which will be discussed in detail in Sec. IV.

Switch-Score Scheme. The confidence of the switching al-
gorithm can be greatly improved by adopting a switch-score
scheme. In particular, the switch-score scheme includes two
steps. For the first step, the forward hip position is used as a
threshold to trigger the motion intent recognition algorithm.
For example, the transition from SD to LW or SA will be
started only if the hip position is greater than zero. Once
the motion switch model is triggered, a switch-score for the
model will add up if a particular motion is detected contin-
uously. The motion primitive will switch when the switch-
score reaches a threshold. Note that this strategy saves
computation time (the intent recognition algorithm runs only
when a specific condition is satisfied) and increases the
classification accuracy (because the target motion is checked
constantly for a customized timing window to reduce the
possibility of miss-classification as much as possible).

IV. EXPERIMENTAL IMPLEMENTATION

With the gait generated in Sec. II and the control archi-
tecture introduced in Sec. III, we now have the framework to
realize the main contributions of this paper experimentally
on the custom-built prosthesis AMPRO: (1) the real-time
optimization based controller for the dynamic motion prim-
itives walking and stair ascent and (2) realization of motion
transitions between the three primitives considering in this
paper: standing, walking and stair climbing.

A. Experiment Setup with AMPRO

AMPRO (AMBER Prosthetic) is a custom designed self-
contained transfemoral prosthetic device, which includes two
brushless DC motors to actuate both the ankle and knee
joints in the sagittal plane. More details about the design
specifications can be found in [8]. To provide a point of
human-robotic interaction, two IMUs are mounted on the
shin and thigh of the human leg. The EKF model (see Sec. II)
for each IMU is used to obtain the angle/velocity of both the
ankle and knee, which is directly used for control purposes
(see details in [8]).

B. Motion Recognition with Neural Network

To train the neural network models properly, a database
of the mechanical sensor data from both the healthy leg and
the prosthetic leg, via IMUs and encoders, respectively, are
collected. During the database collection experiment, the
test subject was asked to perform ten trials for each task,
which includes transitions from SD to LW, from LW to SD,
from SD to SA and from SA to SD. The labeling process is
supervised by a knee angle threshold of the healthy human
leg. In particular, when the swing knee angle is smaller
than the threshold, the data is considered to be the source
motion primitive of the transition. Otherwise, the data is
labeled as the target motion primitive of the transition. With
the labeled database, the neural network models are trained
with the guidance of Occam’s Razor principle [21]. With
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Fig. 4: Averaged experimental joint angles compared with
the designed joint angles obtained from optimization. Grey
area is the one standard deviation of the experiment results.

the guarantee that performance is similar between different
candidate models, the simplest model is chosen in order to
avoid over-fitting. In particular, all the finalized three models
are chosen to have only one hidden layer. For the two-class
classification models, 4 hidden neurons are used. For the
three-class classification model, a total number of 10 hidden
neurons are considered. The trained models are then used
for real-time motion recognition in the high-level control.

C. Experimental Results

A PD controller is first realized to track the reconstructed
trajectories obtained in Sec. II to achieve stair ascent. The
walking trials were performed on a stair case with 10 cm stair
height. The impedance parameters are then estimated using
the least-square fitting method based on the experimental
stair climbing data obtained using the PD controller.

Stair Ascent Implementation. With the impedance param-
eters, we apply the impedance control as the feed-forward
term while using the MIQP as the feedback to track the
desired joint trajectories. The resulting joint trajectories are
averaged and compared with the designed joint angles as
shown in Fig. 4, from which we can see that the actual
prosthetic walking can replicate the designed trajectory very
well. A video of the resulting behaviors can be seen at [22].

In order to show the optimality of the proposed optimal

TABLE I: Experiment Results Comparison.

Control erms[rad] emax[rad] µmax[Nm] P[W ]

PD
Ankle 0.0548 0.1218 37.200 6.0810

Knee 0.1336 0.5282 72.741 43.022

PD+ Ankle 0.0324 0.0896 30.3736 6.5867

Imp Knee 0.2054 0.7787 60.232 60.236

MIQPL Ankle 0.0250 0.1301 15.747 5.4835

+Imp Knee 0.0614 0.4185 50.072 51.656

MIQPH Ankle 0.0255 0.1236 16.404 5.363

+Imp Knee 0.0730 0.4114 66.117 54.389

controller, a PD+Impedance control that combines the PD
control and impedance control is tested and compared. Note
that, with the MIQP controller, physical torque bounds
can be considered directly in the quadratic program [8].
Therefore, the optimal torque will satisfy the torque bounds
automatically. For the first round of testing, the torque
bounds are set to be 80 Nm (MIQPH+Imp) due to the safety
concerns. With the goal of showing improved efficiency of
the proposed novel controller (7), the torque bounds are
reduced to 50 Nm (MIQPL+Imp) in the second round of
testing. The experiment results are listed in the Table I
(calculated from 3 rounds of experiments).

Intent Recognition Verification. With the optimal con-
troller verified for both LW and SA, the pattern recognition
algorithm is successfully realized on the prosthesis. To test
the effectiveness of the motion intent recognition algorithm,
a total of 14 tests are carried. In each round of the test,
the subject was asked to start from SD, take 3 steps of
LW, switch to SD, then continue to SA for 3 steps, finally
stopping at SD posture. During the total of 56 switches,
only one failed when the subject tried to start from SD to
LW. Experimental gait tiles including stair ascent and motion
transitions are shown in Fig. 5. The experiment results of the
motion transitions are shown in the attached video [22].

D. Discussion

Due to the flat-foot assumption, the prosthetic ankle does
not provide significant power during the gait. Therefore, the
discussion will be mainly focused on the knee joint, which
provides most of the torque and power that are required
for stair ascent. From the tracking results shown in Table
I, we can conclude that tracking performances of the knee
are the best for MIQPH+Imp control. In addition to an
improved tracking performance (61.8% improvement for the
rms error erms and 46.3% for the max error emax), the power
consumption of MIQPL+Imp control is also less (14.5%
reduction) when compared to the PD+Impedance controller.

From the perspective of power consumption, the PD
controller actually has the lowest power consumption. We
argue that it is because of that the PD controller fails to
provide qualitative performance (sufficient power) during the
SA. In particular, for SA, there is a net knee extension in
stance (from 1.0 rad at the beginning to 0.2 rad at the end
of stance phase) to lift the user up to the stairs. However,
the PD controller failed to lift the user up effectively. The
user reported less “push” torque during stance phase when
using the PD control. Tests with higher PD gains were also
conducted. It was found that the large tracking error of stance
phase can not be reduced even with doubled PD gains. To
summarize, with all the discussion above, we can conclude
that the MIQP+Imp controller has the best balanced perfor-
mance between tracking and power requirements.

V. CONCLUSIONS

By leveraging a systematic methodology—including gait
generation and real-time optimization based controllers—the
first contribution of this paper was to extend this framework
to experimentally realize stable prosthetic stair climbing. The
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performance of multiple controllers—utilizing the generated
robotic walking inspired by the reference trajectories—are
compared, with the real-time optimization based controller
resulting in the best overall performance. The second contri-
bution of this paper was a simple and effective motion recog-
nition algorithm, which is utilized to experimentally achieve
non-stop, smooth, automatic and natural motion transitions
between a variety of behaviors with high accuracy. Future
work will focus on multi-contact walking gaits for more
natural human-like locomotion, higher staircases with a
second generation prosthesis, and motion intent recognition
algorithms utilizing only information on prosthetic device.
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[13] S. Šlajpah, R. Kamnik, and M. Munih, “Kinematics based sensory
fusion for wearable motion assessment in human walking,” Computer

methods and programs in biomedicine, 2013.

[14] H. Zhao, M. Powell, and A. D. Ames, “Human-inspired motion
primitives and transitions for bipedal robotic locomotion in diverse
terrain,” Optimal Control Applications and Methods, vol. 35, no. 6,
pp. 730–755, 2014.

[15] A. D. Ames, “Human-inspired control of bipedal walking robots,”
Automatic Control, IEEE Transactions on, vol. 59, no. 5, pp. 1115–
1130, 2014.

[16] W.-L. Ma, H. Zhao, S. Kolathaya, and A. D. Ames, “Human-inspired
walking via unified pd and impedance control,” in submitted to the

IEEE International Conference on Robotics and Automation, 2014.

[17] H. Zhao, W.-L. Ma, M. Zeagler, and A. D. Ames, “Human-inspired
multi-contact locomotion with amber2,” in Cyber-Physical Systems

(ICCPS), International Conference on, April 2014, pp. 199–210.

[18] T. S. Parker, L. O. Chua, and T. S. Parker, Practical numerical

algorithms for chaotic systems. Springer New York, 1989.

[19] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” Automatic Control, IEEE Transactions on, vol. 59, no. 4,
pp. 876–891, 2014.

[20] H. Zhao and A. D. Ames, “Quadratic program based control of
fully-actuated transfemoral prosthesis for flat-ground and up-slope
locomotion,” in American Control Conference, 2014, pp. 4101–4107.

[21] G. Zhang, “Neural networks for classification: a survey,” Systems,

Man, and Cybernetics, Part C: Applications and Reviews, IEEE

Transactions on, vol. 30, no. 4, pp. 451–462, Nov 2000.

[22] Realization of Stair Ascent and Motion Transitions with AMPRO.
https://youtu.be/oNZxkiiCnUg.


