Realization of Vassiliev Invariants by Unknotting Number One Knots

Yoshiyuki OHYAMA, Kouki TANIYAMA and Shuji YAMADA
Nagoya Institute of Techlogy, Tokyo Woman's Christian University and Kyoto Sangyo University
(Communicated by S. Kaneyuki)

Abstract

We show that for any natural number n and any knot K, there are infinitely many unknotting number one knots, all of whose Vassiliev invariants of order less than or equal to n coincide with those of K.

1. Introduction.

In 1990, V. A. Vassiliev [21] defined a sequence of knot invariants and J. S. Birman and X.-S. Lin [3] succeeded in giving an axiomatic description for Vassiliev invariants.

Our definition of Vassiliev invariants follows the Birman-Lin's axioms in [3] or D. BarNatan [1]. Whenever we have a knot invariant v which takes value in some abelian group, we can extend it to an invariant of singular knots by the Vassiliev skein relation:

$$
v\left(K_{D}\right)=v\left(K_{+}\right)-v\left(V_{-}\right) .
$$

Here a singular knot is an immersion of a circle in R^{3} whose only singularities are transversal double points and K_{D}, K_{+}and K_{-}denote the diagrams of singular knots which are identical except near one point as is shown in Fig. 1.1. An invariant v is called a Vassiliev invariant of order n and is denoted by v_{n}, if n is the smallest integer such that v vanishes on all singular knots with more than n double points.

K_{+}

K_{-}

Figure 1.1.

Received November 21, 2000; revised February 6, 2001
1991 Mathematics Subject Classification. 57M25.
Key words and phrases. unknotting number one knot, Vassiliev invariant.

The set of all Vassiliev invariants is at least as powerful as all of quantum group invariants. However, for any knot K and for any positive integer n, some examples of knots have been constructed, all of whose Vassiliev invariants of order at most n coincide with those of K ([4][7][10][14]). Our purpose is to construct such examples of knots whose unknotting numbers are equal to one by using local moves called C_{n}-moves. Namely in this paper we show the following results.

THEOREM 1.1. Let n be a natural number and K an oriented knot in S^{3}. Then there are infinitely many unknotting number one knots $J_{m}(m=1,2, \cdots)$ such that K and J_{m} are C_{n+1}-equivalent.

Lemma 1.2. Let K and J be C_{n+1}-equivalent oriented knots. Then $v(K)=v(J)$ for any Vassiliev invariant v of order less than or equal to n,

We will define C_{n}-moves and the C_{n}-equivalence in the next section. The following theorem is an immediate consequence of Theorem 1.1 and Lemma 1.2.

MAIN THEOREM. Let n be a natural number and K an oriented knot in S^{3}. Then there are infinitely many unknotting number one knots $J_{m}\left(m=1,2, \cdots\right.$,) such that $v\left(J_{m}\right)=$ $v(K)$ for any Vassiliev invariant v of order less than or equal to n.

REmARK. A C_{n}-move is originally defined by K. Habiro in [5]. Habiro [6] showed that two oriented knots have the same Vassiliev invariants of order less than or equal to n if and only if they are C_{n+1}-equivalent by using the clasper theory. Lemma 1.2 is the 'if' part of Habiro's result and we give a simple proof of Lemma 1.2 in the next section. Our results are obtained not by using the clasper theory, only by using the argument of knot diagrams. We do not use the 'only if' part, the difficult half, of Habiro's result. Our proof of Theorem 1.1 is elementary and constructive. After finishing the first version of this paper the first author showed a simple proof of Main theorem in [11]. However the proof essentially uses the difficult half of Habiro's result. See also [22] and [13].

2. Band description of local moves.

We use a concept 'band description of knots' defined in [19] for the proof of Theorem 1.1. Note that the prototypes of band description appear in [17], [23] and [24]. In particular in [24] it is shown that any knot can be expressed as a band sum of a trivial knot and some Borromean rings. The concept of band description is a development of this fact.

A tangle T is a disjoint union of properly embedded arcs in the unit 3-ball B^{3}. A tangle T is trivial if there exists a properly embedded disk in B^{3} contaning T. A local move is a pair of trivial tangles $\left(T_{1}, T_{2}\right)$ with $\partial T_{1}=\partial T_{2}$ such that for each component t of T_{1} there exists a component u of T_{2} with $\partial t=\partial u$.

Let $\left(T_{1}, T_{2}\right)$ be a local move, t_{1} a component of T_{1} and t_{2} a component of T_{2} such that $\partial t_{1}=\partial t_{2}$. Let N_{1} and N_{2} be regular neighbourhoods of t_{1} and t_{2} respectively such that $N_{1} \cap \partial B^{3}=N_{2} \cap \partial B^{3}$. Let α be a disjoint union of properly embedded arcs in $B^{2} \times[0,1]$ as

Figure 2.1.

Figure 2.2.
illustrated in Fig. 2.1. Let $\psi_{i}: B^{2} \times[0,1] \rightarrow N_{i}$ be homeomorphisms with $\psi_{i}\left(B^{2} \times\{0,1\}\right)=$ $N_{i} \cap \partial B^{3}$ for $i=1,2$. Suppose that $\psi_{1}(\partial \alpha)=\psi_{2}(\partial \alpha)$ and $\psi_{1}(\alpha)$ and $\psi_{2}(\alpha)$ are ambient isotopic in B^{3} relative to ∂B^{3}. Then we say that a local move $\left(\left(T_{1}-t_{1}\right) \cup \psi_{1}(\alpha),\left(T_{2}-t_{2}\right) \cup\right.$ $\left.\psi_{2}(\alpha)\right)$ is a double of $\left(T_{1}, T_{2}\right)$ with respect to the components t_{1} and t_{2}.

Two local moves (T_{1}, T_{2}) and (U_{1}, U_{2}) are equivalent, denoted by $\left(T_{1}, T_{2}\right) \cong\left(U_{1}, U_{2}\right)$, if there is an orientation preserving self-homeomorphism $\psi: B^{3} \rightarrow B^{3}$ such that $\psi\left(T_{i}\right)$ and U_{i} are ambient isotopic in B^{3} relative to ∂B^{3} for $i=1,2$. Let K_{1} and K_{2} be oriented knots in the oriented three-sphere S^{3}. We say that K_{1} and K_{2} are related by a local move $\left(T_{1}, T_{2}\right)$ if there is an orientation preserving embedding $h: B^{3} \rightarrow S^{3}$ such that $K_{i} \cap h\left(B^{3}\right)=h\left(T_{i}\right)$ for $i=1,2$ and $K_{1}-h\left(B^{3}\right)=K_{2}-h\left(B^{3}\right)$ together with orientations. If K_{1} and K_{2} are related by a local move $\left(T_{1}, T_{2}\right)$ and $\left(T_{1}, T_{2}\right) \cong\left(U_{1}, U_{2}\right)$, then K_{1} and K_{2} are related by $\left(U_{1}, U_{2}\right)$.

A C_{1}-move is a local move as illustrated in Fig. 2.2. A double of a C_{k}-move is called a C_{k+1}-move. Note that any doubles of equivalent local moves with respect to the corresponding components are equivalent. Therefore we have that for each natural number n there are only finitely many C_{n}-moves up to equivalence. Two knots K_{1} and K_{2} are C_{n}-equivalent if K_{1} and K_{2} are related by a finite sequence of C_{n}-moves and ambient isotopies.

We note that our definition of C_{k}-move follows that in [5], and is different from the one in [6]. However by an easy induction on k it is shown that these two definitions are equivalent.

A local move (T_{1}, T_{2}) is Brunnian if for each pair of components t_{1} and t_{2} of T_{1} and T_{2} respectively with $\partial t_{1}=\partial t_{2}, T_{1}-t_{1}$ is ambient isotopic of $T_{2}-t_{2}$ in B^{3} relative to ∂B^{3}.

Lemma 2.1. A C_{n}-move is Brunnian.

Figure 2.3.

Pfoof. It is easy to see that a double of a Brunnian local move is Brunnian. Since a C_{1}-move is Brunnian the result follows.

Now we define the similarity of knots ([10][18]) to prove Lemma 1.2. We say that a knot K is n-similar to a knot L if the following occurs: There exists a diagram $D(K)$ of K and a collection $\mathcal{A}=\left\{A_{1}, A_{2}, \cdots, A_{n}\right\}$ of n pairwise disjoint, nonempty sets of crossings of $D(K)$ such that for any nonempty, not necessarily proper subcollection \mathcal{A}^{\prime} of \mathcal{A}, the diagram which is obtained from $D(K)$ by switching all the crossings in $\cup \mathcal{A}^{\prime}$ is a diagram of L. The first author showed the following in [10].

Lemma 2.2 ([10]). If a knot K is $(n+1)$-similar to L, then the Vassiliev invariants of order less than or equal to n of K coincide with those of L.

Proof of Lemma 1.2. It is sufficient to show the case that K and J are related by a C_{n+1}-move $\left(T_{1}, T_{2}\right)$. Let $h: B^{3} \rightarrow S^{3}$ be the orientation preserving embedding such that $K \cap h\left(B^{3}\right)=h\left(T_{1}\right), J \cap h\left(B^{3}\right)=h\left(T_{2}\right)$ and $K-h\left(B^{3}\right)=J-h\left(B^{3}\right)$. Let $t_{1}, t_{2}, \cdots, t_{n+2}$ be the components of T_{1} and $u_{1}, u_{2}, \cdots, u_{n+2}$ the components of T_{2} such that $\partial t_{n+2}=\partial u_{n+2}$. Let D be a properly embedded disk in B^{3} containing T_{1}. By the Brunnian property of (T_{1}, T_{2}) we may suppose without loss of generality that $t_{1} \cup \cdots \cup t_{n+1}=u_{1} \cup \cdots \cup u_{n+1}$. Up to ambient isotopy in S^{3} we may take regular projections of K and J respectively such that they differ only on the disk that is an injective image of $h(D)$. Let A_{i} be the set of crossing points of $h\left(u_{i}\right)$ and $h\left(u_{n+2}\right)$ at which $h\left(u_{i}\right)$ goes over $h\left(u_{n+2}\right)$ in the regular projection of J. Then the sets A_{1}, \cdots, A_{n+1} show that J is $(n+1)$-similar to K. Then we have the result by Lemma 2.2. See also [16] for related results.

We say that a C_{n}-move ($n \geq 2$) as illustrated in Fig. 2.3 is special where each of the shaded regions represents $n-2$ times iteratedly doubled arcs. The arcs $t_{1}, t_{1}^{\prime}, t_{2}$ and t_{2}^{\prime} are called specified arcs of this special C_{n}-move.

LEMMA 2.3. Any C_{n}-move $(n \geq 2)$ is equivalent to a special C_{n}-move.
Proof. We will prove by an induction on n. Is is clear that the result holds for $n=2$. Let $\left(T_{1}, T_{2}\right)$ be a C_{n+1}-move. Then $\left(T_{1}, T_{2}\right)$ is a double of a C_{n}-move $\left(U_{1}, U_{2}\right)$. By the hypothesis of the induction, we may suppose that $\left(U_{1}, U_{2}\right)$ is a special C_{n}-move. If $\left(T_{1}, T_{2}\right)$ is

III

III

III

III

Figure 2.4.
a double of $\left(U_{1}, U_{2}\right)$ with respect to the components that are not specified arcs, then $\left(T_{1}, T_{2}\right)$ itself is a special C_{n+1}-move. Suppose that $\left(T_{1}, T_{2}\right)$ is a double of (U_{1}, U_{2}) with respect to specified arcs. Then by the deformation illustrated in Fig. 2.4 we have that $\left(T_{1}, T_{2}\right)$ is equivalent to a special C_{n+1}-move.

Corollary 2.4. C_{n+1}-equivalence implies C_{n}-equivalence.
Proof. It is easy to see that a special C_{n+1}-move is realized by twice applications of a C_{n}-move as is shown in Fig. 2.5. Thus we have the result.

Figure 2.5.

Figure 2.6.

Figure 2.7.

A C_{1}-link model is a pair (α, β) where α is a disjoint union of $k+1$ properly embedded arcs in B^{3} and β is a disjoint union of arcs on ∂B^{3} with $\partial \alpha=\partial \beta$ as illustrated in Fig. 2.6.

Suppose that a C_{k}-link model (α, β) has been defined where α is a disjoint union of $k+1$ properly embedded arcs in B^{3} and β is a disjoint union of $k+1 \operatorname{arcs}$ on ∂B^{3} with $\partial \alpha=\partial \beta$ such that $\alpha \cup \beta$ is a disjoint union of $k+1$ circles. Let γ be a component of $\alpha \cup \beta$ and N a regular neighbourhood of γ in B^{3}. Let V be an oriented solid torus, D a disk in $\partial V, \alpha_{0}$ properly embedded arcs in V and β_{0} arcs on D as illustrated in Fig. 2.7.

Let $\psi: V \rightarrow N$ be an orientation preserving homeomorphism such that $\psi(D)=$ $N \cap \partial B^{3}$ and $\psi\left(\alpha_{0} \cup \beta_{0}\right)$ bounds disjoint disks in B^{3}. We further assume for a technical reason that $\psi\left(\beta_{0}\right)$ does not contain $\gamma \cap \beta$. Then we call the pair $\left((\alpha-\gamma) \cup \psi\left(\alpha_{0}\right),(\beta-\gamma) \cup \psi\left(\beta_{0}\right)\right)$ a C_{k+1}-link model. We also say that the pair $\left((\alpha-\gamma) \cup \psi\left(\alpha_{0}\right),(\beta-\gamma) \cup \psi\left(\beta_{0}\right)\right)$ is a double of (α, β) with respect to the component γ. A special C_{2}-link model is illustrated in Fig. 2.8. The components γ_{1} and γ_{2} in Fig. 2.8 are called the specified components of this special C_{2} link model. A double of a special C_{n}-link model with respect to a component γ that is not a specified component is called a special C_{n+1}-link model. And the specified components of this special C_{n+1}-link model are the same as those of the special C_{n}-link model. A link model is a C_{n}-link model for some n.

Figure 2.8.

Let $\left(\alpha_{1}, \beta_{1}\right), \cdots,\left(\alpha_{\ell}, \beta_{\ell}\right)$ be link models. Let K be an oriented knot. Let $\psi_{i}: B^{3} \rightarrow S^{3}$ be an orientation preserving embedding for $i=1, \cdots, \ell$ and b_{1}, \cdots, b_{m} mutually disjoint disks embedded in S^{3}. Suppose that they satisfy the following conditions;
(1) $\psi_{i}\left(B^{3}\right) \cap \psi_{j}\left(B^{3}\right)=\emptyset$ if $i \neq j$,
(2) $\psi_{i}\left(B^{3}\right) \cap K=\emptyset$ for each i,
(3) $b_{i} \cap K=\partial b_{i} \cap K$ is an arc for each i,
(4) $b_{i} \cap \bigcup_{j=1}^{\ell} \psi_{j}\left(B^{3}\right)=\partial b_{i} \cap \bigcup_{j=1}^{\ell} \psi_{j}\left(B^{3}\right)$ is a component of $\psi_{k}\left(\beta_{k}\right)$ for some k for each i,
(5) $\bigcup_{i=1}^{m} b_{i} \cap \bigcup_{i=1}^{\ell} \psi_{i}\left(B^{3}\right)=\bigcup_{i=1}^{\ell} \psi_{i}\left(\beta_{i}\right)$.

Let J be an oriented knot defined by $J=K \cup\left(\bigcup_{i=1}^{m} \partial b_{i}\right) \cup\left(\bigcup_{i=1}^{\ell} \psi_{i}\left(\alpha_{i}\right)\right)-\bigcup_{i=1}^{m} \operatorname{int}\left(\partial b_{i} \cap\right.$ $K)-\bigcup_{i=1}^{\ell} \psi_{i}\left(\operatorname{int} \beta_{i}\right)$ where the orientation of J coincides with that of K on $K-\bigcup_{i=1}^{m} b_{i}$. We denote J by $J=\Omega\left(K ; b_{1}, \cdots, b_{m} ;\left(\alpha_{1}, \beta_{1}\right), \cdots,\left(\alpha_{\ell}, \beta_{\ell}\right) ; \psi_{1}, \cdots, \psi_{\ell}\right)$. Then we say that J is a band sum of K and link models $\left(\alpha_{1}, \beta_{1}\right), \cdots,\left(\alpha_{\ell}, \beta_{\ell}\right)$. We call each b_{i} a band. Each image $\psi_{i}\left(B^{3}\right)$ is called a link ball.

Let $\left(T_{1}, T_{2}\right)$ be a local move. Then $\left(T_{2}, T_{1}\right)$ is also a local move. We call $\left(T_{2}, T_{1}\right)$ the inverse of (T_{1}, T_{2}). It is easy to see that the inverse of the C_{1}-move is equivalent to itself. Then it follows inductively that the inverse of a C_{n}-move is equivalent to a C_{n}-move (but possibly not equivalent to itself).

Lemma 2.5. Let n be a natural number greater than one. Let K and J be C_{n} equivalent knots. Then J is a band sum of K and some special C_{n}-link models.

Proof. By Lemma 2.3, it is assumed that a C_{n}-move is special. We consider the sequence $K=K_{0} \rightarrow K_{1} \rightarrow \cdots \rightarrow K_{\ell}=J$, where K_{i} and K_{i+1} are related by a special C_{n}-move. We will prove by an induction on ℓ. Let (α, β) be a link model of a C_{n}-move. Let β^{\prime} be a disjoint union of properly embedded arcs in B^{3} that is a slight push off of β. Then we can show inductively on n that the local move $\left(\alpha, \beta^{\prime}\right)$ is equivalent to a C_{n}-move. Conversely we can show that a C_{n}-move is equivalent to $\left(\alpha, \beta^{\prime}\right)$ for some link model (α, β). In particular a special C_{n}-move corresponds to a special C_{n}-link model. See for example Fig. 2.9.

Figure 2.9 .

Figure 2.10.

Therefore we have the result in the case $\ell=1$. By an inductive argument it is sufficient to consider the case that J is a band sum of a knot K_{1} and some special C_{n}-link models where K and K_{1} are related by a special C_{n}-move. Let $\left(T_{1}, T_{2}\right)$ be the special C_{n}-move and $h: B^{3} \rightarrow S^{3}$ the orientation preserving embedding such that $K \cap h\left(B^{3}\right)=h\left(T_{1}\right)$, $K_{1} \cap h\left(B^{3}\right)=h\left(T_{2}\right)$ and $K-h\left(B^{3}\right)=K_{1}-h\left(B^{3}\right)$. We can sweep the link balls and then slide the bands out of the ball $h\left(B^{3}\right)$ by an ambient isotopy of J which fixes K_{1} setwisely. Note that this is possible by the triviality of the tangle T_{2}. Then we choose the link ball and bands in $h\left(B^{3}\right)$ so that K_{1} is a band sum of K and a special C_{n}-link model. Note that the new link ball and the bands are disjoint from the previous ones. Therefore J is a band sum of K and the special C_{n}-link models.

Lemma 2.6. Let (α, β) be a C_{k}-link model. Let $\beta_{1}, \beta_{2}, \cdots, \beta_{k+1}$ be the components of β. We give an arbitrary orientation to each β_{i}. Let K, J_{1} and J_{2} be oriented knots. Suppose that $J_{1}=\Omega\left(K ; b_{1}, \cdots, b_{k+1} ;(\alpha, \beta) ; \varphi\right)$ and $J_{2}=\Omega\left(K ; c_{1}, \cdots, c_{k+1} ;(\alpha, \beta) ; \psi\right)$ such that $\partial b_{i} \supseteq \varphi\left(\beta_{i}\right)$ and $\partial c_{i} \supseteq \psi\left(\beta_{i}\right)$ for each i. For each of $b_{i} \cap K$ and $c_{i} \cap K$ we give an orientation that is coherent to the orientation of $\varphi\left(\beta_{i}\right)$ and $\psi\left(\beta_{i}\right)$ in b_{i} and c_{i} respectively.

Figure 2.11.

Suppose that the ordered sets of oriented arcs $\left(b_{1} \cap K, b_{2} \cap K, \cdots, b_{k+1} \cap K\right)$ and $\left(c_{1} \cap K, c_{2} \cap\right.$ $\left.K, \cdots, c_{k+1} \cap K\right)$ are isotopic on the circle K. Then the knots J_{1} and J_{2} are C_{k+1}-equivalent.

Proof. First we claim that a crossing change between a band and a string is equivalent to a C_{k+1}-move. We will show this by an induction on k. When $k=1$ the crossing change is nothing but a C_{2}-move. See Fig. 2.10.

Let b be the band and γ the component of $\alpha \cup \beta$ whose image intersects with b.
First suppose that (α, β) is a double of a C_{k-1}-link model ($\alpha^{\prime}, \beta^{\prime}$) such that γ is still a component of $\alpha^{\prime} \cup \beta^{\prime}$. Then we have that the crossing change is a 'double' of a crossing change in the case $k-1$. See for example Fig. 2.11. Then by the hypothesis of the induction we have the result. Therefore it is sufficient to show that up to equivalence (α, β) is a double of some C_{k-1}-link model $\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right)$ such that γ is still a component of $\alpha^{\prime \prime} \cup \beta^{\prime \prime}$.

Consider the sequence of link models $(\alpha(1), \beta(1)),(\alpha(2), \beta(2)), \cdots,(\alpha(k), \beta(k))=$ (α, β) such that $(\alpha(j+1), \beta(j+1))$ is a double of $(\alpha(j), \beta(j))$ with respect to the component $\gamma(j)$ of $\alpha(j) \cup \beta(j)$ for each $1 \leq j \leq k-1$. Let $\gamma^{\prime}(j+1)$ and $\gamma^{\prime \prime}(j+1)$ be the components of $\alpha(j+1) \cup \beta(j+1)$ that are not components of $\alpha(j) \cup \beta(j)$. If $\gamma^{\prime}(k) \neq \gamma$ and $\gamma^{\prime \prime}(k) \neq \gamma$ then we set $\left(\alpha^{\prime \prime}, \beta^{\prime \prime}\right)=(\alpha(k-1), \beta(k-1))$ and have the conclusion. Therefore we may suppose without loss of generality that $\gamma^{\prime}(k)=\gamma$. If $\left\{\gamma^{\prime}(\ell), \gamma^{\prime \prime}(\ell)\right\} \cap\{\gamma(\ell), \gamma(\ell+1), \cdots, \gamma(k-1)\}=$ \emptyset for some $2 \leq \ell \leq k-1$, then by changing the order of doubling we have the conclusion. Suppose none of the cases above occur. Let $\gamma^{\prime}(2), \gamma^{\prime \prime}(2)$ and $\gamma^{\prime \prime \prime}(2)$ be the components of $\alpha(2) \cup \beta(2)$. Then we easily have that $\gamma^{\prime}(2)$ and $\gamma^{\prime \prime \prime}(2)$, or $\gamma^{\prime \prime}(2)$ and $\gamma^{\prime \prime \prime}(2)$ are still components of $\alpha(k) \cup \beta(k)$. Then by the deformation illustrated in Fig. 2.12 we have the conclusion. In Fig. 2.12 the shaded part represents iteratedly doubled arcs in the sense of link model. See for example Fig. 2.13. Thus we have shown the claim.

Figure 2.12.

Figure 2.13.

Note that a full twist of a band is removable by the crossing change described above as illustrated in Fig. 2.14. Thus we have the result.

Lemma 2.7. Let (α, β) be a special C_{k}-link model and γ_{1}, γ_{2} the specified components of $\alpha \cup \beta$. Let K and J be oriented knots. Suppose that $J=\Omega\left(K ; b_{1}, \cdots, b_{k+1} ;(\alpha, \beta) ; \varphi\right)$ such that $b_{i} \cap \varphi\left(\gamma_{i}\right) \neq \emptyset$ for $i=1,2$. Then there is a special C_{k}-link model ($\alpha^{\prime}, \beta^{\prime}$) with the same specified components γ_{1}, γ_{2} and an oriented knot $H=\Omega\left(K ; c_{1}, \cdots, c_{k+1} ;\left(\alpha^{\prime}, \beta^{\prime}\right) ; \varphi^{\prime}\right)$ that satisfies the following conditions;

Figure 2.14.

Figure 2.15.

Figure 2.16.
(1) $K \cap b_{i}=K \cap c_{i}$ for each i,
(2) $\varphi^{\prime}\left(B^{3}\right)=\varphi\left(B^{3}\right)$,
(3) $c_{i} \cap \varphi^{\prime}\left(\gamma_{i}\right)=b_{i} \cap \varphi\left(\gamma_{i}\right)$ for $i=1,2$,
(4) $b_{1} \cup c_{1}$ is an annulus,
(5) $b_{2} \cup c_{2}$ is a Möbius band,

Figure 2.17.

Figure 2.18.

(6) J and H are C_{k+1}-equivalent.

Proof. First we note that the move illustrated in Fig. 2.15 is realized by ℓ-times applications of C_{k+1}-moves where the shaded region represents iteratedly doubled k arcs. Then by the deformation illustrated by Fig. 2.16 we have the result.

Proof of Theorem 1.1. First we note that a C_{2}-move is equivalent to a delta move defined in [9] as illustrated in Fig. 2.17. We note that the same move is defined in [8] independently. It is shown in [9] that knots are transformed into each other by delta moves. Then by Lemma 2.5 we have that K is a band sum of a trivial knot K_{0} and some special C_{2}-link models. Let (α, β) be a special C_{2}-link model. Suppose that $K=\Omega\left(K_{0} ; b_{1}, \cdots, b_{3 \ell} ;(\alpha, \beta), \cdots\right.$, $\left.(\alpha, \beta) ; \varphi_{1}, \cdots, \varphi_{\ell}\right)$ such that $b_{i} \cap \varphi_{j}(\beta) \neq \emptyset$ if and only if $3(j-1)<i \leq 3 j$. We deform $K \cap\left(b_{1} \cup b_{2} \cup b_{3} \cup \varphi_{1}(\alpha \cup \beta)\right)$ up to C_{3}-equivalence using Lemmas 2.6 and 2.7, the result is still denoted by the same symbols, so that the knot $K^{\prime}=\Omega\left(K_{0} ; b_{1}, b_{2}, b_{3} ;(\alpha, \beta) ; \varphi_{1}\right)$ is just as illustrated in Fig. 2.18. Note that by a crossing change at $*$ in Fig. 2.18 we have trivial knot.

Next we deform $K \cap\left(b_{4} \cup b_{5} \cup b_{6} \cup \varphi_{2}(\alpha \cup \beta)\right)$ up to C_{3}-equivalence using Lemmas 2.6 and 2.7 so that they are as illustrated in Fig. 2.19.

Figure 2.19.

We continue similar deformations and finally have a knot K_{1} that is C_{3}-equivalent to K so that the crossing change at the crossing corresponding to $*$ in Fig. 2.19 deforms K_{1} into a trivial knot.

Since K and K_{1} are C_{3}-equivalent, we can express K as a band sum of K_{1} and some special C_{3}-link models. Then by similar deformations of K up to C_{4}-equivalence we have a knot K_{2} and a crossing $*$ whose change deforms K_{2} into a trivial knot. Then we express K as a band sum of K_{2} and some special C_{4}-link models. We continue the process above and finally have a knot K_{n-1} that is C_{n+1}-equivalent to K. Note that the unknotting number of K_{n-1} is 0 or 1. By the result in [12], we have the following: There exists a C_{n+1}-move such that by operating this C_{n+1}-move for K_{n-1} repeatedly, we have an infinite sequence of mutually C_{n+1}-equivalent knots $J_{1}^{\prime \prime}=K_{n-1}, J_{2}^{\prime \prime}, J_{3}^{\prime \prime}, \cdots$, no two of whose order $n+1$ Vassiliev invariants coincide. Note that each $J_{m}^{\prime \prime}$ can be expressed as a band sum of K_{n-1} and some special C_{n+1}-link models. By a similar deformation up to C_{n+2}-equivalence we have a knot J_{m}^{\prime} with unknotting number 0 or 1 . Since C_{n+2}-equivalence does not change order $n+1$ Vassiliev invariants we have an infinite sequence of mutually C_{n+1}-equivalent knots $J_{1}^{\prime}=K_{n-1}, J_{2}^{\prime}, J_{3}^{\prime}, \cdots$. At most one of them is a trivial knot. Therefore by removing it if it be we have the desired sequence J_{1}, J_{2}, \cdots.

References

[1] D. Bar-Natan, On the Vassiliev invariants, Topology 34 (1995), 423-472.
[2] J. S. Birman, New points of view in knot theory, Bull. Amer. Math. Soc. (N.S.) 28 (1993), 253-287.
[3] J. S. Birman and X.-S. Lin, Knot polynomials and Vassiliev's invariants, Invent. Math. 111 (1993), 225270.
[4] M. N. Gusarov, On n-equivalence of knots and invariants of finite degree, Topology of Manifold and Varieties (ed. O. Viro), Adv. Soviet Math. 18 (1994).
[5] K. Habiro, Master thesis of University of Tokyo (1994).
[6] K. Habiro, Claspers and finite type invariants of links, Geom. Topol. 4 (2000), 1-83, [http://www.maths. warwick.ac.uk/gt/GTVol4/paper1.abs.html].
[7] X.-S. Lin, Finite type link invariants of 3-manifold, Topology 33 (1994), 45-71.
[8] S. V. Matveev, Generalized surgeries of three-dimensional manifolds and representations of homology spheres (in Russian), Mat. Zametki 42 (1987), 268-278, 345.
[9] H. Murakami and Y. Nakanishi, On a certain move generating link-homology, Math. Ann. 284 (1989), 75-89.
[10] Y. Ohyama, Vassiliev invariants and similarity of knots, Proc. Amer. Math. Soc. 123 (1995), 287-291.
[11] Y. Ohyama, Web diagrams and realization of vassiliev invariants by knots, J. Knot Theory Ramifications 9 (2000), 693-701.
[12] Y. Оhyama and T. Tsukamoto, On Habiro's C_{n}-moves and Vassiliev invariants of order n, J. Knot Theory Ramifications 8 (1999), 15-23.
[13] Y. Ohyama and H. Yamada, Delta and clasp-pass distances and Vassiliev invariants of knots, to appear in J. Knot Theory Ramifications.
[14] T. Stanford, Braid commutators and Vassiliev invariants, Pacific J. Math., 174 (1996), 269-276.
[15] T. Stanford, Vassiliev invariants and knots modulo pure braid subgroup, to appear in Ann. Math.
[16] T. StANFORD, Four observations on n-triviality and Brunnian links, J. Knot Theory Ramifications 9 (2000), 213-219..
[17] S. SuZUKi, Local knots of 2-spheres in 4-manifolds, Proc. Japan Acad. 45 (1969), 34-38.
[18] K. TANIYAMA, On similarity of links, Gakujutu Kenkyu (issued by the school of education of Waseda University) $\mathbf{1 4}$ (1992), 33-36.
[19] K. TANIYAMA and A. YaSUhara, Local moves on spatial graphs and finite type invariants, to appear in Pacific J. Math.
[20] T. Tsukamoto, Clasp-pass moves and Vassiliev invariants of type three of knots, Proc. Amer. Math. Soc. 128 (2000), 1859-1867.
[21] V. A. VASSILIEV, Cohomology of knot space, Theory of Singularities and its Applications (ed. V. I. Arnold), Adv. Soviet Math. 1 (1990), Amer. Math. Soc.
[22] H. Yamada, Delta distance and Vassiliev invariants of knots, J. Knot Theory Ramifications 9 (2000), 967974.
[23] M. Yamamoto, Knots in spatial embeddings of the complete graph on four vertices, Topology Appl. 36 (1990), 291-298.
[24] A. YASUHARA, Delta-unknotting operation and adaptability of certain graphs, Proceedings of Knots 96, (ed. S. Suzuki), World Sci. Publ. Co. (1997), 115-121.

Present Addresses:

Yoshiyuki Ohyama

Department of Mathematics, College of Arts and Science, Tokyo Woman's Christian University, Zempukuji, Suginami-ku, Tokyo, 167-8585 Japan.
e-mail: ohyama@twcu.ac.jp
Kouki Taniyama
Department of Mathematics, School of Education, Waseda University,
Nishi-WASEDA, Shinjuku-Ku, TOKyo, 169-8050 Japan.
e-mail: taniyama@mn.waseda.ac.jp
Shuji Yamada
Department of Computer Science, Kyoto Sangyo University, Motoyama, Kamigamo, Kita-Ku, Kyoto, 603-8555 Japan.
e-mail: yamada@cc.kyoto-su.ac.jp

