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Abstract. We show that for any natural number n and any knotK, there are infinitely many unknotting number
one knots, all of whose Vassiliev invariants of order less than or equal to n coincide with those of K.

1. Introduction.

In 1990, V. A. Vassiliev [21] defined a sequence of knot invariants and J. S. Birman and
X.-S. Lin [3] succeeded in giving an axiomatic description for Vassiliev invariants.

Our definition of Vassiliev invariants follows the Birman-Lin’s axioms in [3] or D. Bar-
Natan [1]. Whenever we have a knot invariant v which takes value in some abelian group, we
can extend it to an invariant of singular knots by the Vassiliev skein relation:

v(KD) = v(K+)− v(V−) .

Here a singular knot is an immersion of a circle in R3 whose only singularities are transversal
double points andKD , K+ andK− denote the diagrams of singular knots which are identical
except near one point as is shown in Fig. 1.1. An invariant v is called a Vassiliev invariant of
order n and is denoted by vn, if n is the smallest integer such that v vanishes on all singular
knots with more than n double points.

FIGURE 1.1.
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The set of all Vassiliev invariants is at least as powerful as all of quantum group invari-
ants. However, for any knot K and for any positive integer n, some examples of knots have
been constructed, all of whose Vassiliev invariants of order at most n coincide with those of
K ([4][7][10][14]). Our purpose is to construct such examples of knots whose unknotting
numbers are equal to one by using local moves called Cn-moves. Namely in this paper we
show the following results.

THEOREM 1.1. Let n be a natural number and K an oriented knot in S3. Then there
are infinitely many unknotting number one knots Jm (m = 1, 2, · · · ) such that K and Jm are
Cn+1-equivalent.

LEMMA 1.2. Let K and J be Cn+1-equivalent oriented knots. Then v(K) = v(J ) for
any Vassiliev invariant v of order less than or equal to n,

We will define Cn-moves and the Cn-equivalence in the next section. The following
theorem is an immediate consequence of Theorem 1.1 and Lemma 1.2.

MAIN THEOREM. Let n be a natural number andK an oriented knot in S3. Then there
are infinitely many unknotting number one knots Jm (m = 1, 2, · · · , ) such that v(Jm) =
v(K) for any Vassiliev invariant v of order less than or equal to n.

REMARK. A Cn-move is originally defined by K. Habiro in [5]. Habiro [6] showed
that two oriented knots have the same Vassiliev invariants of order less than or equal to n if
and only if they are Cn+1-equivalent by using the clasper theory. Lemma 1.2 is the ‘if’ part
of Habiro’s result and we give a simple proof of Lemma 1.2 in the next section. Our results
are obtained not by using the clasper theory, only by using the argument of knot diagrams.
We do not use the ‘only if’ part, the difficult half, of Habiro’s result. Our proof of Theorem
1.1 is elementary and constructive. After finishing the first version of this paper the first
author showed a simple proof of Main theorem in [11]. However the proof essentially uses
the difficult half of Habiro’s result. See also [22] and [13].

2. Band description of local moves.

We use a concept ‘band description of knots’ defined in [19] for the proof of Theorem
1.1. Note that the prototypes of band description appear in [17], [23] and [24]. In particular
in [24] it is shown that any knot can be expressed as a band sum of a trivial knot and some
Borromean rings. The concept of band description is a development of this fact.

A tangle T is a disjoint union of properly embedded arcs in the unit 3-ball B3. A tangle
T is trivial if there exists a properly embedded disk in B3 contaning T . A local move is a pair
of trivial tangles (T1, T2) with ∂T1 = ∂T2 such that for each component t of T1 there exists a
component u of T2 with ∂t = ∂u.

Let (T1, T2) be a local move, t1 a component of T1 and t2 a component of T2 such that
∂t1 = ∂t2. Let N1 and N2 be regular neighbourhoods of t1 and t2 respectively such that
N1 ∩ ∂B3 = N2 ∩ ∂B3. Let α be a disjoint union of properly embedded arcs in B2 × [0, 1] as
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FIGURE 2.1.

FIGURE 2.2.

illustrated in Fig. 2.1. Letψi : B2 ×[0, 1] → Ni be homeomorphisms withψi(B2 ×{0, 1}) =
Ni ∩ ∂B3 for i = 1, 2. Suppose that ψ1(∂α) = ψ2(∂α) and ψ1(α) and ψ2(α) are ambient
isotopic in B3 relative to ∂B3. Then we say that a local move ((T1 − t1) ∪ψ1(α), (T2 − t2)∪
ψ2(α)) is a double of (T1, T2) with respect to the components t1 and t2.

Two local moves (T1, T2) and (U1, U2) are equivalent, denoted by (T1, T2) ∼= (U1, U2),
if there is an orientation preserving self-homeomorphismψ : B3 → B3 such that ψ(Ti) and
Ui are ambient isotopic in B3 relative to ∂B3 for i = 1, 2. Let K1 and K2 be oriented knots
in the oriented three-sphere S3. We say thatK1 andK2 are related by a local move (T1, T2) if
there is an orientation preserving embedding h : B3 → S3 such that Ki ∩ h(B3) = h(Ti) for
i = 1, 2 and K1 − h(B3) = K2 − h(B3) together with orientations. If K1 and K2 are related
by a local move (T1, T2) and (T1, T2) ∼= (U1, U2), thenK1 and K2 are related by (U1, U2).

A C1-move is a local move as illustrated in Fig. 2.2. A double of a Ck-move is called a
Ck+1-move. Note that any doubles of equivalent local moves with respect to the corresponding
components are equivalent. Therefore we have that for each natural number n there are only
finitely many Cn-moves up to equivalence. Two knotsK1 andK2 are Cn-equivalent ifK1 and
K2 are related by a finite sequence of Cn-moves and ambient isotopies.

We note that our definition of Ck-move follows that in [5], and is different from the one
in [6]. However by an easy induction on k it is shown that these two definitions are equivalent.

A local move (T1, T2) is Brunnian if for each pair of components t1 and t2 of T1 and T2

respectively with ∂t1 = ∂t2, T1 − t1 is ambient isotopic of T2 − t2 in B3 relative to ∂B3.

LEMMA 2.1. A Cn-move is Brunnian.
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FIGURE 2.3.

PFOOF. It is easy to see that a double of a Brunnian local move is Brunnian. Since a
C1-move is Brunnian the result follows. �

Now we define the similarity of knots ([10][18]) to prove Lemma 1.2. We say that a knot
K is n-similar to a knot L if the following occurs: There exists a diagram D(K) of K and a
collection A = {A1, A2, · · · , An} of n pairwise disjoint, nonempty sets of crossings ofD(K)
such that for any nonempty, not necessarily proper subcollection A′ of A, the diagram which
is obtained from D(K) by switching all the crossings in ∪A′ is a diagram of L. The first
author showed the following in [10].

LEMMA 2.2 ([10]). If a knot K is (n + 1)-similar to L, then the Vassiliev invariants
of order less than or equal to n of K coincide with those of L.

PROOF OF LEMMA 1.2. It is sufficient to show the case that K and J are related by
a Cn+1-move (T1, T2). Let h : B3 → S3 be the orientation preserving embedding such that
K ∩h(B3) = h(T1), J ∩h(B3) = h(T2) andK−h(B3) = J −h(B3). Let t1, t2, · · · , tn+2 be
the components of T1 and u1, u2, · · · , un+2 the components of T2 such that ∂tn+2 = ∂un+2.
LetD be a properly embedded disk in B3 containing T1. By the Brunnian property of (T1, T2)

we may suppose without loss of generality that t1 ∪ · · · ∪ tn+1 = u1 ∪ · · · ∪ un+1. Up to
ambient isotopy in S3 we may take regular projections ofK and J respectively such that they
differ only on the disk that is an injective image of h(D). Let Ai be the set of crossing points
of h(ui) and h(un+2) at which h(ui) goes over h(un+2) in the regular projection of J . Then
the setsA1, · · · , An+1 show that J is (n+1)-similar toK . Then we have the result by Lemma
2.2. See also [16] for related results. �

We say that a Cn-move (n ≥ 2) as illustrated in Fig. 2.3 is special where each of the
shaded regions represents n − 2 times iteratedly doubled arcs. The arcs t1, t ′1, t2 and t ′2 are
called specified arcs of this special Cn-move.

LEMMA 2.3. Any Cn-move (n ≥ 2) is equivalent to a special Cn-move.

PROOF. We will prove by an induction on n. Is is clear that the result holds for n = 2.
Let (T1, T2) be a Cn+1-move. Then (T1, T2) is a double of a Cn-move (U1, U2). By the
hypothesis of the induction, we may suppose that (U1, U2) is a specialCn-move. If (T1, T2) is
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FIGURE 2.4.

a double of (U1, U2) with respect to the components that are not specified arcs, then (T1, T2)

itself is a special Cn+1-move. Suppose that (T1, T2) is a double of (U1, U2) with respect
to specified arcs. Then by the deformation illustrated in Fig. 2.4 we have that (T1, T2) is
equivalent to a special Cn+1-move. �

COROLLARY 2.4. Cn+1-equivalence implies Cn-equivalence.

PROOF. It is easy to see that a special Cn+1-move is realized by twice applications of
a Cn-move as is shown in Fig. 2.5. Thus we have the result. �
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FIGURE 2.5.

FIGURE 2.6. FIGURE 2.7.

A C1-link model is a pair (α, β) where α is a disjoint union of k + 1 properly embedded
arcs in B3 and β is a disjoint union of arcs on ∂B3 with ∂α = ∂β as illustrated in Fig. 2.6.

Suppose that aCk-link model (α, β) has been defined where α is a disjoint union of k+1
properly embedded arcs in B3 and β is a disjoint union of k + 1 arcs on ∂B3 with ∂α = ∂β

such that α ∪ β is a disjoint union of k + 1 circles. Let γ be a component of α ∪ β and N
a regular neighbourhood of γ in B3. Let V be an oriented solid torus, D a disk in ∂V , α0

properly embedded arcs in V and β0 arcs on D as illustrated in Fig. 2.7.
Let ψ : V → N be an orientation preserving homeomorphism such that ψ(D) =

N∩∂B3 andψ(α0 ∪β0) bounds disjoint disks in B3. We further assume for a technical reason
that ψ(β0) does not contain γ ∩β. Then we call the pair ((α−γ )∪ψ(α0), (β−γ )∪ψ(β0))

a Ck+1-link model. We also say that the pair ((α− γ )∪ψ(α0), (β − γ )∪ψ(β0)) is a double
of (α, β) with respect to the component γ . A special C2-link model is illustrated in Fig. 2.8.
The components γ1 and γ2 in Fig. 2.8 are called the specified components of this special C2-
link model. A double of a special Cn-link model with respect to a component γ that is not
a specified component is called a special Cn+1-link model. And the specified components of
this special Cn+1-link model are the same as those of the special Cn-link model. A link model
is a Cn-link model for some n.
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FIGURE 2.8.

Let (α1, β1), · · · , (α�, β�) be link models. LetK be an oriented knot. Let ψi : B3 → S3

be an orientation preserving embedding for i = 1, · · · , � and b1, · · · , bm mutually disjoint
disks embedded in S3. Suppose that they satisfy the following conditions;

(1) ψi(B
3) ∩ ψj (B3) = ∅ if i �= j ,

(2) ψi(B
3) ∩K = ∅ for each i,

(3) bi ∩K = ∂bi ∩K is an arc for each i,
(4) bi ∩⋃�

j=1 ψj (B
3) = ∂bi ∩⋃�

j=1ψj (B
3) is a component of ψk(βk) for some k for

each i,
(5)

⋃m
i=1 bi ∩ ⋃�

i=1 ψi(B
3) = ⋃�

i=1 ψi(βi).
Let J be an oriented knot defined by J = K ∪ (⋃m

i=1 ∂bi)∪ (
⋃�
i=1 ψi(αi))−

⋃m
i=1 int(∂bi ∩

K) − ⋃�
i=1 ψi(intβi) where the orientation of J coincides with that of K on K − ⋃m

i=1 bi .
We denote J by J = Ω(K; b1, · · · , bm; (α1, β1), · · · , (α�, β�);ψ1, · · · , ψ�). Then we say
that J is a band sum of K and link models (α1, β1), · · · , (α�, β�). We call each bi a band.
Each image ψi(B3) is called a link ball.

Let (T1, T2) be a local move. Then (T2, T1) is also a local move. We call (T2, T1) the
inverse of (T1, T2). It is easy to see that the inverse of theC1-move is equivalent to itself. Then
it follows inductively that the inverse of a Cn-move is equivalent to a Cn-move (but possibly
not equivalent to itself).

LEMMA 2.5. Let n be a natural number greater than one. Let K and J be Cn-
equivalent knots. Then J is a band sum of K and some special Cn-link models.

PROOF. By Lemma 2.3, it is assumed that a Cn-move is special. We consider the
sequence K = K0 → K1 → · · · → K� = J , where Ki and Ki+1 are related by a special
Cn-move. We will prove by an induction on �. Let (α, β) be a link model of a Cn-move. Let
β ′ be a disjoint union of properly embedded arcs in B3 that is a slight push off of β. Then we
can show inductively on n that the local move (α, β ′) is equivalent to a Cn-move. Conversely
we can show that a Cn-move is equivalent to (α, β ′) for some link model (α, β). In particular
a special Cn-move corresponds to a special Cn-link model. See for example Fig. 2.9.
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FIGURE 2.9.

FIGURE 2.10.

Therefore we have the result in the case � = 1. By an inductive argument it is sufficient
to consider the case that J is a band sum of a knot K1 and some special Cn-link models
where K and K1 are related by a special Cn-move. Let (T1, T2) be the special Cn-move
and h : B3 → S3 the orientation preserving embedding such that K ∩ h(B3) = h(T1),
K1 ∩ h(B3) = h(T2) and K − h(B3) = K1 − h(B3). We can sweep the link balls and then
slide the bands out of the ball h(B3) by an ambient isotopy of J which fixes K1 setwisely.
Note that this is possible by the triviality of the tangle T2. Then we choose the link ball and
bands in h(B3) so thatK1 is a band sum ofK and a special Cn-link model. Note that the new
link ball and the bands are disjoint from the previous ones. Therefore J is a band sum of K
and the special Cn-link models. �

LEMMA 2.6. Let (α, β) be a Ck-link model. Let β1, β2, · · · , βk+1 be the components
of β. We give an arbitrary orientation to each βi . Let K, J1 and J2 be oriented knots.
Suppose that J1 = Ω(K; b1, · · · , bk+1; (α, β); ϕ) and J2 = Ω(K; c1, · · · , ck+1; (α, β);ψ)
such that ∂bi ⊇ ϕ(βi) and ∂ci ⊇ ψ(βi) for each i. For each of bi ∩ K and ci ∩ K we give
an orientation that is coherent to the orientation of ϕ(βi) and ψ(βi) in bi and ci respectively.
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FIGURE 2.11.

Suppose that the ordered sets of oriented arcs (b1∩K, b2∩K, · · · , bk+1∩K) and (c1∩K, c2∩
K, · · · , ck+1∩K) are isotopic on the circleK . Then the knots J1 and J2 areCk+1-equivalent.

PROOF. First we claim that a crossing change between a band and a string is equivalent
to a Ck+1-move. We will show this by an induction on k. When k = 1 the crossing change is
nothing but a C2-move. See Fig. 2.10.

Let b be the band and γ the component of α ∪ β whose image intersects with b.
First suppose that (α, β) is a double of a Ck−1-link model (α′, β ′) such that γ is still

a component of α′ ∪ β ′. Then we have that the crossing change is a ‘double’ of a crossing
change in the case k − 1. See for example Fig. 2.11. Then by the hypothesis of the induction
we have the result. Therefore it is sufficient to show that up to equivalence (α, β) is a double
of some Ck−1-link model (α′′, β ′′) such that γ is still a component of α′′ ∪ β ′′.

Consider the sequence of link models (α(1), β(1)), (α(2), β(2)), · · · , (α(k), β(k)) =
(α, β) such that (α(j+1), β(j+1)) is a double of (α(j), β(j)) with respect to the component
γ (j) of α(j)∪β(j) for each 1 ≤ j ≤ k−1. Let γ ′(j+1) and γ ′′(j+1) be the components of
α(j+1)∪β(j+1) that are not components of α(j)∪β(j). If γ ′(k) �= γ and γ ′′(k) �= γ then
we set (α′′, β ′′) = (α(k − 1), β(k − 1)) and have the conclusion. Therefore we may suppose
without loss of generality that γ ′(k) = γ . If {γ ′(�), γ ′′(�)}∩{γ (�), γ (�+1), · · · , γ (k−1)} =
∅ for some 2 ≤ � ≤ k − 1, then by changing the order of doubling we have the conclusion.
Suppose none of the cases above occur. Let γ ′(2), γ ′′(2) and γ ′′′(2) be the components
of α(2) ∪ β(2). Then we easily have that γ ′(2) and γ ′′′(2), or γ ′′(2) and γ ′′′(2) are still
components of α(k) ∪ β(k). Then by the deformation illustrated in Fig. 2.12 we have the
conclusion. In Fig. 2.12 the shaded part represents iteratedly doubled arcs in the sense of link
model. See for example Fig. 2.13. Thus we have shown the claim.
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FIGURE 2.12.

FIGURE 2.13.

Note that a full twist of a band is removable by the crossing change described above as
illustrated in Fig. 2.14. Thus we have the result. �

LEMMA 2.7. Let (α, β) be a special Ck-link model and γ1, γ2 the specified compo-
nents of α∪β. LetK and J be oriented knots. Suppose that J=Ω(K; b1, · · · , bk+1;(α, β);ϕ)
such that bi ∩ ϕ(γi) �= ∅ for i = 1, 2. Then there is a special Ck-link model (α′, β ′) with the
same specified components γ1, γ2 and an oriented knotH = Ω(K; c1, · · · , ck+1; (α′, β ′); ϕ′)
that satisfies the following conditions;



REALIZATION OF VASSILIEV INVARIANTS 27

FIGURE 2.14.

FIGURE 2.15.
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FIGURE 2.16.

(1) K ∩ bi = K ∩ ci for each i,
(2) ϕ′(B3) = ϕ(B3),

(3) ci ∩ ϕ′(γi) = bi ∩ ϕ(γi) for i = 1, 2,
(4) b1 ∪ c1 is an annulus,
(5) b2 ∪ c2 is a Möbius band,
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FIGURE 2.17.

FIGURE 2.18.

(6) J and H are Ck+1-equivalent.

PROOF. First we note that the move illustrated in Fig. 2.15 is realized by �-times ap-
plications of Ck+1-moves where the shaded region represents iteratedly doubled k arcs. Then
by the deformation illustrated by Fig. 2.16 we have the result. �

PROOF OF THEOREM 1.1. First we note that a C2-move is equivalent to a delta move
defined in [9] as illustrated in Fig. 2.17. We note that the same move is defined in [8] indepen-
dently. It is shown in [9] that knots are transformed into each other by delta moves. Then by
Lemma 2.5 we have thatK is a band sum of a trivial knotK0 and some specialC2-link models.
Let (α, β) be a special C2-link model. Suppose that K = Ω(K0; b1, · · · , b3�; (α, β), · · · ,
(α, β); ϕ1, · · · , ϕ�) such that bi ∩ ϕj(β) �= ∅ if and only if 3(j − 1) < i ≤ 3j . We deform
K ∩ (b1 ∪ b2 ∪ b3 ∪ ϕ1(α ∪ β)) up to C3-equivalence using Lemmas 2.6 and 2.7, the result
is still denoted by the same symbols, so that the knot K ′ = Ω(K0; b1, b2, b3; (α, β); ϕ1) is
just as illustrated in Fig. 2.18. Note that by a crossing change at ∗ in Fig. 2.18 we have trivial
knot.

Next we deformK ∩ (b4 ∪ b5 ∪ b6 ∪ϕ2(α∪β)) up to C3-equivalence using Lemmas 2.6
and 2.7 so that they are as illustrated in Fig. 2.19.
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FIGURE 2.19.

We continue similar deformations and finally have a knot K1 that is C3-equivalent to K
so that the crossing change at the crossing corresponding to ∗ in Fig. 2.19 deformsK1 into a
trivial knot.

Since K and K1 are C3-equivalent, we can express K as a band sum of K1 and some
special C3-link models. Then by similar deformations of K up to C4-equivalence we have
a knot K2 and a crossing ∗ whose change deforms K2 into a trivial knot. Then we express
K as a band sum of K2 and some special C4-link models. We continue the process above
and finally have a knot Kn−1 that is Cn+1-equivalent to K . Note that the unknotting number
of Kn−1 is 0 or 1. By the result in [12], we have the following: There exists a Cn+1-move
such that by operating this Cn+1-move for Kn−1 repeatedly, we have an infinite sequence
of mutually Cn+1-equivalent knots J ′′

1 = Kn−1, J
′′
2 , J

′′
3 , · · · , no two of whose order n + 1

Vassiliev invariants coincide. Note that each J ′′
m can be expressed as a band sum of Kn−1 and

some special Cn+1-link models. By a similar deformation up to Cn+2-equivalence we have
a knot J ′

m with unknotting number 0 or 1. Since Cn+2-equivalence does not change order
n + 1 Vassiliev invariants we have an infinite sequence of mutually Cn+1-equivalent knots
J ′

1 = Kn−1, J
′
2, J

′
3, · · · . At most one of them is a trivial knot. Therefore by removing it if it

be we have the desired sequence J1, J2, · · · . �
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